
Network Working Group D. Garcia
Internet-Draft R. Marin
Intended status: Experimental University of Murcia
Expires: November 3, 2017 A. Kandasamy
 A. Pelov
 Acklio
 May 2, 2017

LoRaWAN Authentication in RADIUS
draft-garcia-radext-radius-lorawan-03

Abstract

 This document describes a proposal for adding LoRaWAN support in
 RADIUS. The purpose is to integrate the LoRaWAN network join
 procedure with an Authentication, Authorization and Accounting (AAA)
 infrastructure based on RADIUS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 3, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Garcia, et al. Expires November 3, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft LoRaWAN-RADIUS May 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 4

2. LoRaWAN support in RADIUS 4
3. LoRaWAN Overview . 4
3.1. Introduction . 4
3.2. LoRaWAN join procedure Key Material 4
3.3. LoRaWAN joining procedure 5
3.4. LoRaWAN Key Derivation 6

4. Integration Overview . 7
4.1. Mapping LoRaWAN Entities to AAA Infrastructure 7
4.2. Assumptions . 7
4.3. Protocol Exchange . 7
4.3.1. Join-Request Attribute 8
4.3.2. Join-Answer Attribute 9
4.3.3. AppSKey Attribute 10
4.3.4. NwkSKey Attribute 11
4.3.5. Table of Attribute 11

5. Open Issues . 12
6. Security Considerations 12
7. Proof of concept implementation 13
8. Acknowledgments . 14
9. IANA Considerations . 14
10. References . 14
10.1. Normative References 15
10.2. Informative References 15

 Authors' Addresses . 16

1. Introduction

 Low Power Wide Area Network (LP-WAN) groups several radio
 technologies that allow communications with nodes far from the
 central communication endpoint (base station) in the range of
 kilometers depending on the specifics of the technology and the
 scenario. They are fairly recent and the protocols to manage those
 infrastructures are in continuous development. In some cases they
 may not consider aspects such as key management or directly tackle
 scalability issue in terms of authentication and authorization. The
 nodes to be authenticated and authorized is expected to be
 considerably high in number. One of the protocols that provide a
 complete solution is LoRaWAN [LoRaWAN]. LoRaWAN is a MAC layer
 protocol that use LoRa as its physical medium to cover long range
 (up-to 20 km depending on the environment) devices. LoRaWAN is
 designed for large scale networks and currently has a central entity

Garcia, et al. Expires November 3, 2017 [Page 2]

Internet-Draft LoRaWAN-RADIUS May 2017

 called Network Server which maintains a pre-configured key named
 AppKey for each of the devices on the network. Furthermore, session
 keys such as NwkSKey and AppSKey used for encryption of data
 messages, are derived with the help of this AppKey. Since each
 service provider would operate their Network Server individually,
 authenticating the devices becomes a tedious process because of
 inter-interoperability or the roaming challenges between the
 operators. An illustration of the LoRaWAN architecture can be seen
 in figure Figure 1. As we know the AAA infrastructure provides a
 flexible, scalable solution. They offer an opportunity to manage all
 these processes in a centralized manner as happens in other type of
 networks (e.g. cellular, WiFi, etc...) making it an interesting asset
 when integrated into the LoRaWAN architecture.

 +-------+ +-------+ +--------+
 +------+ | | | | | |
 | +--(LoRa)--+ +--(IP)--+ +-----(IP)-----+ |
 +------+ | | | | | |
 +-------+ +-------+ +--------+
 End-Device Gateway Network Join
 Server Server

 Figure 1: LoRAWAN Architecture

 The End-Device communicates with the Gateway by using the LoRa
 modulation. The Gateway acts as a simple transceiver, which forwards
 all data do the Network Server, which performs the processing of the
 frames, network frame authentication (MIC verification), and which
 serves as Network Access Port. This document describes a way to use
 standard RADIUS servers as a Join Server, and to use the RADIUS
 protocol for the interaction between the Network Server and the
 Application Server. This integration is illustrated in figure
 Figure 2

 +-------+ +-------+ +--------+
+------+ | | | | | |
|AppKey+--(LoRa)--+ +--(IP)--+ +---(RADIUS)---+ AppKey |
+------+ | | | | | |
 +-------+ +-------+ +--------+
End-Device Gateway Network Join
 Server Server
 (+ RADIUS client) (+ RADIUS server)

 Figure 2: LoRAWAN Architecture with AAA and RADIUS authentication.
 End-Device and RADIUS server have a shared secret - the AppKey, which
 is used to derive the session keys (NwkSKey and AppSKey).

Garcia, et al. Expires November 3, 2017 [Page 3]

Internet-Draft LoRaWAN-RADIUS May 2017

 The document describes how LoRaWAN join procedure is integrated with
 AAA infrastructure using RADIUS [RFC2865] by defining the new
 attributes needed to support the LoRaWAN exchange.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. LoRaWAN support in RADIUS

 Regarding the overall functionality, the RADIUS LoRaWAN support
 defines the new Attributes needed for the management of the join
 procedure. The Network Server will implement a RADIUS client
 supporting this specification and therefore, it MUST implement the
 RADIUS attributes for this service. The NAS-Port-Type specifying the
 type of port on which the Network Server is authenticating the End-
 Device in this case MAY be 18 (Wireless - Other) or a new one
 specifically assigned for LoRaWAN (TBD.).

3. LoRaWAN Overview

3.1. Introduction

 The LoRAWAN specification defines how the MAC and PHY layer will be
 used with the LoRa radio technologies. It defines a process by which
 the smart objects can securely join the network in an authenticated
 way and exchange application information ciphered and integrity
 protected. The focus of this document is to extend how the process
 of joining is performed by the specification including a AAA
 infrastructure (RADIUS) to accomplish this. Next we review how the
 keys, and each message is used in the joining procedure. Then we
 elaborate some assumptions to design the integration of AAA in the
 joining procedure possible.

3.2. LoRaWAN join procedure Key Material

 The LoRaWAN specification describes 3 keys involved in the joining
 procedure. One as a root key that will be used to generate the other
 two, which will be used to secure the message exchanges after the
 joining procedure success. The AppKey key used to derive the other
 two keys, NwkSKey and AppSKey:

 o The AppKey is an AES-128 application specific key assigned by the
 owner of the application. This key is derived from an
 application-specific root key that is only known to the

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Garcia, et al. Expires November 3, 2017 [Page 4]

Internet-Draft LoRaWAN-RADIUS May 2017

 application owner and is stored in each device and in the Join
 Server that will perform the authentication.

 o The NwkSKey is a network session key that is specific to each End-
 Device. It is shared between the Network Server and the End-
 Device and used to calculate and verify the Message Integrity Code
 (MIC) for each data message, between both entities. Furthermore,
 it is used to cipher and decipher the payload of MAC-only data
 message.

 o The AppSKey is an application session key specific to each End-
 Device. It is in charge of ciphering and deciphering the payload
 of application-specific data messages and is also used to
 calculate and verify the MIC that may be added to the payload of
 application-specific data messages.

3.3. LoRaWAN joining procedure

 The LoRaWAN joining procedure, as described in the LoRaWAN
 Specification 1.0 [LoRaWAN], consists on one exchange. The first
 message of this exchange is called join-request (JR) message and is
 sent from the End-Device to the Network Server containing the AppEUI
 and DevEUI of the End-Device with a nonce of 2 octets called
 DevNonce. Figure 3 summarizes the format.

 +-------------+-------------+-------------+
 Size (bytes) | 8 | 8 | 2 |
 +---------------------------+-------------+-------------+
 Join Request | AppEUI | DevEUI | DevNonce |
 +-------------+-------------+-------------+

 Figure 3: Join Request Message

 In response to the join-request, the other endpoint will answer with
 the join-accept (JA) (Figure 4) if the End-Device is successfully
 authenticated and authorized to join the network. The join-accept
 contains a nonce (AppNonce), a network identifier (NetID), an End-
 Device address (DevAddr), a delay between the TX and RX (RxDelay)
 and, optionally, the CFList (see LoRaWAN specification [LoRaWAN]

section 7).

 +--------+-----+-------+----------+-------+-------------+
 Size (bytes)| 3 | 3 | 4 | 1 | 1 |16 (Optional)|
 +---+
 Join Accept |AppNonce|NetID|DevAddr|DLSettings|RxDelay| CFList |
 +--------+-----+-------+----------+-------+-------------+

 Figure 4: Join Accept Message

Garcia, et al. Expires November 3, 2017 [Page 5]

Internet-Draft LoRaWAN-RADIUS May 2017

 Next, we enumerate and describe each field involved in the join
 procedure message exchange.

 o AppEUI: Global application ID in IEEE EUI64 to uniquely identify
 the application provider.

 o DevEUI: Global End-Device ID in IEEE EUI64 to uniquely identify
 the End-Device

 o DevNonce: A random value.

 o AppNonce: A random value or some kind of unique ID provided by the
 Network Server. This value can be also generated by the AAA
 server, in case the network server wants to rely on the AAA server
 pseudo random number generation. For this, the AppNonce would be
 empty (set to zero), signaling the AAA server it has to generate
 the AppNonce.

 o NetID: A network identifier

 o DevAddr: A 32 bit identifier of the End-Device in the current
 network. It is composed of the Network ID and the Network
 Address.

 o DLSettings: 8 bits containing the down-link configuration.

 o RxDelay: 8 bits containing the delay between TX and RX.

 o CFList (Optional): Channel frequency list.

3.4. LoRaWAN Key Derivation

 The keys NwkSKey and AppSKey are derived from the AppKey in both the
 Join Server and the End-Device according to the LoRaWAN specification
 [LoRaWAN] as follows:

 Derivation of the NwkSkey:

 NwkSKey = aes128_encrypt(AppKey, 0x01 | AppNonce | NetID | DevNonce |
 pad16)

 Derivation of the AppSkey:

 AppSKey = aes128_encrypt(AppKey, 0x02 | AppNonce | NetID | DevNonce |
 pad16)

 Note: The pad16 function appends octets of containing "zero" so that
 the length of the data is a multiple of 16.

Garcia, et al. Expires November 3, 2017 [Page 6]

Internet-Draft LoRaWAN-RADIUS May 2017

4. Integration Overview

4.1. Mapping LoRaWAN Entities to AAA Infrastructure

 In the current specification of LoRaWAN [LoRaWAN], there is no
 explicit reference to an external entity to which the Network Server
 can go to authenticate the End-Device. However, ongoing work related
 to LoRaWAN, such as the work in the LoRa Alliance
 [LoRaAllianceSecurity] sketches the use of a new entity, the Join
 Server, that will be in charge of performing the authentication.
 This separation of responsibilities is also the aim of our work,
 where the Join Server acts as an external AAA server in a AAA
 infrastructure using RADIUS as the protocol to communicate the
 Network Server and the Join Server. Further, it is under
 consideration the distribution of the AppSKey to a target application
 server instead of the Network Server. Therefore, the Join Server
 would need another protocol to deliver the AppSKey. Another RADIUS
 interface could be used for this purpose, though this I-D focuses on
 the joining procedure so far.

4.2. Assumptions

 For the integration of LoRaWAN joining procedure with RADIUS next we
 describe some assumptions regarding the LoRaWAN specification. The
 first is that the AppKey is only shared between the AAA server (Join
 Server) and the End-Device. The outcome of the successful join
 procedure (i.e. NwkSKey and AppSKey) are sent from the AAA server to
 the network-server. This allows for the End-Device to exchange
 message with the network-server, once the join procedure is finished,
 as specified in LoRaWAN [LoRaWAN].

4.3. Protocol Exchange

 The join procedure between the End-Device and the network-server
 entails one exchange consisting on a join-request message and a join-
 response message. In RADIUS the network-server implements a RADIUS
 client to communicate with the Join Server, which act as AAA Server.

 The protocol exchange is done in the following steps:

 1. The End-Device sends the join-request message to to the Network
 Server.

 2. Upon reception of the LoRaWAN join-request message, the Network
 Server creates a RADIUS Access-Request message, with the Join-
 Request attribute containing the original message from the End-
 Device, and the Join-Answer Attribute with all the fields of a
 join-answer message except for the MIC, which will be calculated

Garcia, et al. Expires November 3, 2017 [Page 7]

Internet-Draft LoRaWAN-RADIUS May 2017

 by the AAA Server (Join Server), since is the one that holds the
 AppKey.

 3. Once the AAA Server authenticates and authorizes the End-Device,
 sends back the Join-Answer with the MIC generated as specified by
 the LoRaWAN specification. Furthermore, as a consequence of a
 successful join procedure, the AppSKey (optional) and NwkSKey are
 generated and sent along in AppSKey and NwkSKey Attributes
 respectively.

 4. The Network Server receives the Access-Accept (if successful),
 obtains the content of the Join-Request attribute and sends it to
 the End-Device, storing in association with that End-Device the
 NwkSKey and the AppSKey.

 AAA
 End-Device Network Server Server (Join Server)
----------- --------- -------
 | | |
1) | JR[MIC] | Access-Request |
 |------------------------>| Join-Request Att |
 | | Join-Answer Att* |
2) | |----------------------------------->|
 | | |
 | gen | | gen
 | | | | |
 | | | Access-Accept | |
 | v | Join-Answer Att | v
 | AppSKey | AppSKey Att* | AppSKey
3) | NwkSKey | NwkSKey Att | NwkSKey
 | |<-----------------------------------|
 | JA[MIC] | |
4) |<------------------------| |
 | | |

 Figure 5: Protocol

4.3.1. Join-Request Attribute

 Description

 This Attribute contains the original Join-Request message. This
 attribute will only appear in the Access-Request message. A summary
 of the Join-Request attribute format is shown below. The fields are
 transmitted from left to right.

Garcia, et al. Expires November 3, 2017 [Page 8]

Internet-Draft LoRaWAN-RADIUS May 2017

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | Type | Length | String...
 +-+

 Type

 TBD. for Join-Request

 Length

 18

 String

 The String field contains an octet string with the Join-Request
 message as received over the network, such as defined in [LoRaWAN].

4.3.2. Join-Answer Attribute

 Description

 This Attribute is used in both RADIUS Access-Request and RADIUS
 Access-Accept messages. In the first case, it contains the Join
 Answer message with all the needed values filled by the network-
 server except the MIC (this fact is marked with an *). With these
 values, the Join Server (AAA server) that holds the AppKey is able to
 create the MIC and compose the final Join Answer message. In the
 second case, it contains the Join Answer with the MIC generated by
 the Join Server (AAA server). A summary of the Join-Answer attribute
 format is shown below. The fields are transmitted from left to
 right.

Garcia, et al. Expires November 3, 2017 [Page 9]

Internet-Draft LoRaWAN-RADIUS May 2017

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | Type | Length | String...
 +-+

 Type

 TBD. for Join-Answer

 Length

 28

 String

 The String field contains an octet string with the Join-Answer as
 received over the network , as defined in [LoRaWAN].

4.3.3. AppSKey Attribute

 Description

 This Attribute contains the AppSKey, an application session key
 specific for the End-Device. This attribute is optional, and will
 only appear in the RADIUS Access-Accept message. A summary of the
 AppSKey attribute format is shown below. The fields are transmitted
 from left to right.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | Type | Length | String...
 +-+

 Type

 TBD. for AppSKey

 Length

 16+

 String

Garcia, et al. Expires November 3, 2017 [Page 10]

Internet-Draft LoRaWAN-RADIUS May 2017

 The String field contains an octet string containing the Application
 Session Key, as defined in [LoRaWAN].

4.3.4. NwkSKey Attribute

 Description

 This Attribute contains the NwkSKey, an network session key specific
 for the End-Device. This attribute will only appear in the Access-
 Accept message. A summary of the NwkSKey attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | Type | Length | String...
 +-+

 Type

 TBD. for NwkSKey

 Length

 16+

 String

 The String field contains the octet string of the Network Session Key
 , as defined in [LoRaWAN].

4.3.5. Table of Attribute

 Request Accept Reject Challenge # Attribute
 1 0 0 0 TBD. Join-Request
 1 1 0 0 TBD. Join-Answer
 0 0-1 0 0 TBD. AppSKey
 0 1 0 0 TBD. NwkSKey
 Request Accept Reject Challenge # Attribute

 Figure 6: Attributes Table

Garcia, et al. Expires November 3, 2017 [Page 11]

Internet-Draft LoRaWAN-RADIUS May 2017

5. Open Issues

 With the purpose of extending the authentication process via AAA
 infrastructures, and concretely, RADIUS, we have faced a question
 regarding the relationship between the AppEUI associated to the
 organization operating the Join Server and the realm used by RADIUS
 to route the AAA information to the AAA Server (Join Server) of that
 organization.

 In particular, the Network Server knows the AppEUI included in the
 Join Request, but it needs to discover the realm (Fully Qualified
 Domain Name) that corresponds to that organizations ID to be able to
 communicate with the concrete RADIUS server.

 NOTE: One option MAY be to use the DNS system to provide the FQDN
 associated to an AppEUI (which is an EUI64 address). The mapping
 using DNS to find out the domain name associated to an EUI64 address
 has been described in [RFC7043]. However, we would need the inverse
 process. Nevertheless, this needs further discussion.

6. Security Considerations

 In the LoRaWAN 1.0 specification, the AppSKey and NwkSKey are not
 sent over the network, they are derived in each of the endpoints that
 communicate, namely the End-Device and the Network Server. In this
 document we propose relegating the responsibility of deriving the
 Network Session Key and Application Session Key to the RADIUS server
 (the Join Server). These session keys need to be sent to the Network
 Server and if necessary to the application server.

 To send the messages over the network between the RADIUS server and
 the RADIUS client (in this case the Network Server). How to provide
 confidentiality to the key distributed is outside the scope of this
 document, nevertheless RadSec (RFC6614) or extensions such as those
 defined in RFC 6218 may be considered to protect the distribution.

 The AAA framework and its key management features become increasingly
 important as the use case of LoRaWAN adds functionality and
 complexity. This is the case for having the Application Server and
 Network Server as separate entities and each receive its keys.
 Although the utility is apparent in that specific case, it has to be
 considered in any other future use-case that may require key
 management and key distribution. Another point in favor of using AAA
 can be also appreciated since the modifications required by this
 proposal does not imply the modification of the protocols of the
 constrained link, but the unrestricted network that is used to manage
 LP-WAN.

https://datatracker.ietf.org/doc/html/rfc7043
https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc6218

Garcia, et al. Expires November 3, 2017 [Page 12]

Internet-Draft LoRaWAN-RADIUS May 2017

7. Proof of concept implementation

 The proof of concept is implemented using the Go programming
 language, that is well suited for the development of web servers or a
 network servers as in this case.

 The implementation of the network server is from [LoRaSERVER] which
 is tailored with the features of a RADIUS Client and the RADIUS
 server implementation from [RADIUSGo] that is modified to handle
 LoRaWAN attributes.

 The LoRa end-device, pre-configured with AppKey, from Nemeus [MK002]
 is a USB key that can be controlled by UART (AT command) through USB
 interface. A JAVA application installed on a Linux machine is used
 to send control and data messages from the End-Device.

 The LoRa Gateway is from EXPEMB [EXPEMB] which uses the packet
 forwarder to forward the LoRa packets to the LoRa Network Server.
 The Network Server is run in a docker container on a Linux machine
 transfers the LoRa packets into the RADIUS attributes to be sent to
 the RADIUS server. For now, the packets are sent to the default
 RADIUS server but in the future this would be changed as per the
 discussion in Section 5 in order to redirect the RADIUS request to
 appropriate RADIUS server.

 The RADIUS server is run in a docker container on a Linux machine
 which contains the mapping between the DevEUI of the End-Device and
 the AppKey. This AppKey from the map along with the received LoRa
 attributes is used to derive the session keys, NwkSKey and AppSKey,
 in the RADIUS server. These keys are transported as RADIUS
 attributes back to the network server.

+----------+ +---------+ +-------------+ +---------+
| | | LoRa | | Nwk server/ | | Radius |
|End-device+---------+ Gateway +----------+ RADIUS +--------+ Server |
| | LoRa | | IP | client | IP | |
+----------+ +---------+ +-------------+ +---------+

 A successful authentication would result in the session keys, NwkSKey
 and AppSKey, being visible on the network server that can be viewed
 using a web interface and the DevAddr being acquired by the End-
 Device from the Join Accept Lora message. Running Wireshark on the
 interface between RADIUS server and the Network Server shows the
 RADIUS packets with the LoRa attributes.

Garcia, et al. Expires November 3, 2017 [Page 13]

Internet-Draft LoRaWAN-RADIUS May 2017

 To simplify the design and implementation, we opted for creating one
 RADIUS Attribute per message, instead of per each field within the
 message since only the authenticating module responsible for the Join
 Procedure in the current network server is delegated to the AAA
 server and the AAA server would be able to obtain the required fields
 from this single attribute, i.e either JoinRequest or JoinAccept
 message. This design choice would follow the RADIUS guidelines given
 in [RFC6158] identifying it as string for being an opaque
 encapsulation of data structures defined outside RADIUS. Creating an
 attribute per field, would be useful in case the AAA infrastructure
 would change its behavior depending on the specific content of one or
 more of the fields contained in the message. This could be the case
 when the LoRaWAN use case becomes more complex and add more
 functionality.

 As future work, we intend to implement the proof of concept in
 FreeRADIUS

8. Acknowledgments

 This work has been possible partially by the SMARTIE project
 (FP7-SMARTIE-609062 EU Project) and the Spanish National Project
 CICYT EDISON (TIN2014-52099-R) granted by the Ministry of Economy and
 Competitiveness of Spain (including ERDF support).

 We also wanted to thank for the comments received about this document
 by Sri Gundavelli, Yeoh Chun-Yeow, Alan DeKok, Stephen Farrell and
 Mark Grayson.

9. IANA Considerations

 In this document we define 4 new RADIUS Attributes that would need
 actions from IANA to assign the corresponding numbers.

 +--------+--------------+----------------------------+
 | Number | Name | Reference |
 +--+
TBD	Join-Request	Section 4 of this document
TBD	Join-Answer	Section 4 of this document
TBD	AppSKey	Section 4 of this document
TBD	NwkSKey	Section 4 of this document
 +--------+--------------+----------------------------+

10. References

https://datatracker.ietf.org/doc/html/rfc6158

Garcia, et al. Expires November 3, 2017 [Page 14]

Internet-Draft LoRaWAN-RADIUS May 2017

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",

RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC6158] DeKok, A., Ed. and G. Weber, "RADIUS Design Guidelines",
BCP 158, RFC 6158, DOI 10.17487/RFC6158, March 2011,

 <http://www.rfc-editor.org/info/rfc6158>.

 [RFC7043] Abley, J., "Resource Records for EUI-48 and EUI-64
 Addresses in the DNS", RFC 7043, DOI 10.17487/RFC7043,
 October 2013, <http://www.rfc-editor.org/info/rfc7043>.

10.2. Informative References

 [EXPEMB] EXPEMB, E., "LoRa MultiConnectivity Service Gateway - Last
 Accessed:", July 2016, <www.expemb.com/en/product/
 multi%E2%80%90connectivity-service-gateway-
 sgwmc%E2%80%90x86lr%E2%80%9012132/>.

 [LoRaAllianceSecurity]
 Girard, P., "LoRaWAN - SECURITY a comprehensive insight -
 Online Resource: Last Accessed", July 2016,
 <http://portal.lora-

alliance.org/DesktopModules/Inventures_Document/
FileDownload.aspx?ContentID=1085>.

 [LoRaSERVER]
 Acklio, A., "LoRa Server", July 2016,
 <http://www.ackl.io>.

 [LoRaWAN] Sornin, N., Luis, M., Eirich, T., and T. Kramp, "LoRa
 Specification V1.0", January 2015, <https://www.lora-

alliance.org/portals/0/specs/
LoRaWAN%20Specification%201R0.pdf>.

 [MK002] Nemesus, N., "MK002-xx-EU - Last Accessed:", July 2016,
 <http://www.nemeus.fr/en/mk002-usb-key>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2865
http://www.rfc-editor.org/info/rfc2865
https://datatracker.ietf.org/doc/html/bcp158
https://datatracker.ietf.org/doc/html/rfc6158
http://www.rfc-editor.org/info/rfc6158
https://datatracker.ietf.org/doc/html/rfc7043
http://www.rfc-editor.org/info/rfc7043
http://portal.lora-alliance.org/DesktopModules/Inventures_Document/FileDownload.aspx?ContentID=1085
http://portal.lora-alliance.org/DesktopModules/Inventures_Document/FileDownload.aspx?ContentID=1085
http://portal.lora-alliance.org/DesktopModules/Inventures_Document/FileDownload.aspx?ContentID=1085
http://www.ackl.io
https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
http://www.nemeus.fr/en/mk002-usb-key

Garcia, et al. Expires November 3, 2017 [Page 15]

Internet-Draft LoRaWAN-RADIUS May 2017

 [RADIUSGo]
 bronze1man, B., "Radius: A golang radius library - Last
 Accessed:", July 2016, <https://github.com/bronze1man/

radius>.

Authors' Addresses

 Dan Garcia-Carrillo (Ed.)
 University of Murcia
 Campus de Espinardo S/N, Faculty of Computer Science
 Murcia 30100
 Spain

 Phone: +34 868 88 78 82
 Email: dan.garcia@um.es

 Rafa Marin-Lopez
 University of Murcia
 Campus de Espinardo S/N, Faculty of Computer Science
 Murcia 30100
 Spain

 Phone: +34 868 88 85 01
 Email: rafa@um.es

 Arunprabhu Kandasamy
 Acklio
 2bis rue de la Chataigneraie
 35510 Cesson-Sevigne Cedex
 France

 Email: arun@ackl.io

 Alexander Pelov
 Acklio
 2bis rue de la Chataigneraie
 35510 Cesson-Sevigne Cedex
 France

 Email: a@ackl.io

https://github.com/bronze1man/radius
https://github.com/bronze1man/radius

Garcia, et al. Expires November 3, 2017 [Page 16]

