
Workgroup: PANRG

Internet-Draft:

draft-garciapardo-panrg-drkey-02

Published: 12 January 2022

Intended Status: Informational

Expires: 16 July 2022

Authors: J. Garcia-Pardo

ETH Zuerich

C. Kraehenbuehl

ETH Zuerich

B. Rothenberger

ETH Zuerich

A. Perrig

ETH Zuerich

Dynamically Recreatable Keys

Abstract

DRKey is a pragmatic Internet-scale key-establishment system that

allows any host to locally obtain a symmetric key to enable a remote

service to perform source-address authentication, and enables first-

packet authentication. The remote service can itself locally derive

the same key with efficient cryptographic operations.

DRKey was developed with path aware networks in mind, but it is also

applicable to today's Internet. It can be incrementally deployed and

it offers incentives to the parties using it independently of its

dissemination in the network.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 July 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Outline

2. Terminology

3. Key Derivation

3.1. Overview

3.2. Assumptions

3.3. Key Hierarchy

4. Key Establishment

4.1. First Level Key Establishment

4.2. Second or Third Level Key Establishment

4.3. Key Server Discovery

4.4. Key Expiration

5. Packet Authentication

5.1. High-Speed DNS Authentication

5.2. EDNS(0) Authentication Option

6. Deployment

6.1. Deployment Incentives

6.2. Key-Server Latency

6.3. Network Mobility

6.4. Lighning Filter System as a DRKey Deployment

7. Security Considerations

7.1. DRKey and Trust in ASes

7.2. Authentication within an AS

7.3. Adversary Model

8. IANA Considerations

Authors' Addresses

1. Introduction

In today's Internet, denial-of-service (DoS) attacks often use

reflection and amplification techniques enabled by connectionless

protocols like DNS or NTP and the possibility of source-address

spoofing. The main goal of DRKey is to provide a highly efficient

global first-packet authentication system. DRKey provides packet

authentication at the network layer based on the network address

(i.e., the IP address in the current Internet or the combination of

AS number and local address in SCION), and not based on a higher-

level identity such as a domain name or web-server identity.

¶

¶

https://trustee.ietf.org/license-info

To obtain strong guarantees with high efficiency on a per-packet

basis, an authentication system based on symmetric cryptography is

required. DRKey does not rely on in-band protocols to negotiate

keys, so it is able to authenticate already the first packet

received from a host. DRKey also does not store the symmetric keys

for all potential senders, as it would be infeasible in an Internet-

scale system.

The core property achieved by DRKey is to enable a service to

rapidly derive a symmetric key to perform network-address

authentication for an arbitrary source host. This enables services

such as DNS or NTP to instantly authenticate the first request

originating from a client, thus providing a defense against

reflection-based DoS attacks. The key can also be used to

authenticate the payload of the request and reply, which is

particularly useful for DNS which by default does not include any

authentication.

The prototype system enables the server to derive the symmetric key

within two AES operations, which corresponds to 18 ns on a commodity

server platform, and authenticate the first packet within 85 ns on

commodity hardware. Such speeds cannot be achieved with protocols

based on asymmetric cryptography that require multiple messages to

be exchanged to establish a shared session key. For example, DRKey

outperforms RSA 1024-based source authentication by a factor of more

than 220, even under the assumption that the service already knows

the client's public key. In addition to providing highly efficient

network address verification, DRKey can also be used to authenticate

Diffie-Hellman (DH) keys in a protocol such as TCPcrypt.

1.1. Outline

The main ideas behind DRKey are as follows. Autonomous systems

(ASes) can obtain certificates for their AS number and IP address

range from a public-key infrastructure (PKI), i.e., SCION's control-

plane PKI in a SCION deployment or the Resource Public Key

Infrastructure (RPKI) in today's Internet. DRKey uses such a PKI to

bootstrap its own symmetric-key infrastructure. DRKey key servers

are set up in all deploying ASes and contact each other on a regular

basis to set up symmetric keys between pairs of ASes. These

symmetric keys are then used as a root keys to efficiently derive a

hierarchy of symmetric per-host and per-service keys. The hardware

implementation of the AES block cipher on most modern CPUs (Intel,

AMD, ARM), allows such a key derivation in about four to seven times

faster than a single DDR4 DRAM memory fetch. The approach described

ensures rapid key derivation on the server side, whereas a slower

key fetch is required by the client to a local key server. This one-

sidedness makes the source authentication for the receiving side as

efficient as possible and ensures that DRKey does not introduce new

¶

¶

¶

AS:

SCION:

Network Node:

Key Server:

End Host:

PRF:

DRKey Secret Value:

DRKey Key Arrow Notation:

DoS attack vectors. DRKey is incrementally deployable and provides

immediate benefits to deploying entities.

A fundamental tradeoff in DRKey is the additional trust requirements

of end hosts in their local AS: as the key server is able to derive

the end-to-end symmetric key, this key cannot be used directly to

achieve secrecy between two end hosts. However, DRKey keys can be

used to authenticate that the source host indeed belongs to the

claimed AS, which suffices to resolve DoS attacks.

2. Terminology

Autonomous System. A one-entity managed network.

A Path-Aware inter-networking architecture.

An entity that processes packets.

An entity connected to the network, that contains

cryptographic keys, and is able to provide such keys to their

respective hosts, granted they have the required permissions.

A node in the network that executes programs in behalf of

users. Users usually have full control of their end hosts.

Pseudo Random Function. Function that has a low time

complexity to evaluate, but which inverse is very expensive to

obtain, making it infeasible to compute. PRF may have as

parameters a key and a value to which the function is applied.

A sequence of bytes kept in secret by the AS,

inside the Key Server. The validity of the secret value is

configurable per AS, and dictates the validity of other keys

derived from it. The secret value is either random, or derived

via a PRF from a random or secret sequence of bytes only known by

the AS. Secret values are the root of the DRKey key hierarchy. A

secret value for AS A is denoted as SVa. More generally, a secret

value can be bound to a standard protocol p (denoted as SVa^p).

Non-standard protocols do not have their own secret value.

In DRKey, level 1 and level 2 keys exist

to allow the authentication of the communication between one

source entity a and one destination entity b. The key is derived

by one side and copied to the other. The side that derives the

key is the source of the arrow in the DRKey key notation. So the

key K_{b->a} denotes a key that is derived at b's side and

obtained on a's side, independently of the flow of the packets.

The source side of the arrow is also called the "fast side", and

the destination, the "slow side". The fast side is typically a

server, and the slow side an end host.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

DRKey Level 1 Key:

DRKey Level 2 Key:

DRKey Level 3 Key:

MAC:

A key derived from a protocol bound secret

value, by specifying the source and destination AS IDs of the

ASes involved in the communication. The level 1 key can be

derived by applying a PRF keyed on the secret value, to the

identifiers of the source and destination ASes of the derivation.

A level 1 key between fast side AS A and slow one AS B is denoted

as K_{A->B}^p for a standard protocol "p", of K_{A->B}^* for non-

standard ones.

A key derived from a level 1 key, and used to

authenticate the source of packets from end-hosts to

infrastructure nodes, or to further derive level 3 keys. A level

2 key is derived by applying a PRF keyed on the level 1 key to

the identifiers of the source and destination of the

communication. These identifiers can be the AS ID plus the IP

address for the slow side, and the AS ID or the AS ID plus the IP

address for the fast side of the DRKey protected communication.

All level 2 keys are anchored to a protocol, identified by a

string. We distinguish two possible level 2 keys, depending on

the fast and slow sides of the key. (1) A level 2 key between the

fast side AS A and the slow side end host Hb in AS B for standard

protocol "p" is denoted as K_{A->B:Hb}^p. (2) A level 2 key

between the fast side endhost Ha in AS A and the slow side AS B

for standard protocol "p" is denoted as K_{A:Ha->B}^p. For non-

standard protocols the notation is the same but replacing p with

*,p.

A key derived from a level 2 host-to-AS key,

used to authenticate the source of end-host to end-host packets.

A level 2 key between the fast side endhost Ha in AS A and the

slow side end host Hb in AS B for standard protocol "p" is

denoted as K_{A:Ha->B:Hb}^p. For non-standard protocols the

notation is the same but replacing p with *,p.

Message Authentication Code is a sequence of bytes that

authenticates and protects the integrity of a message. Modifying

the sender identity or the content of the message is detected by

the MAC.

3. Key Derivation

To convey an intuition of the operation of the DRKey system, a high-

level overview is provided first.

3.1. Overview

The basic use case of DRKey is when a host Ha in AS A desires to

communicate with a server Hb in AS B, and Hb wants to authenticate

the network address of Ha using a symmetric key. ASes A and B have

¶

¶

¶

¶

¶

set up one DRKey key server each, KSa and KSb respectively. Each AS

randomly selects a local secret value, SVa and SVb, which is only

shared with trustworthy entities (in particular the key servers) in

the same AS. The secret values are never shared outside the AS. The

secret value will serve as the root of a symmetric-key hierarchy,

where keys of a level are derived from keys of the preceding level.

In DRKey, the keys are derived using a CMAC with AES, which is an

efficient pseudorandom function (PRF). The key derivation used by

KSb in the example is: K_{B->A} = PRF_{SVb}(A).

Thanks to the key-secrecy property of a secure PRF, K_{B->A} can be

shared with another entity without disclosing SVb. The arrow

notation indicates the secret value used to derive the key. Thus

K_{B->*} would typically be used if AS B is on the performance

critical side, where * denotes the set of remote ASes.

To continue with the example, KSa will prefetch keys K_{*->A} from

key servers in other ASes, including K_{B->A} from KSb. In the

example, the server Hb is trustworthy, and can thus obtain the

secret value SVb to derive keys quickly. When Ha wants to

authenticate to Hb, it contacts its local key server KSa and

requests the key K_{B:Hb->A:Ha}, which KSa can locally derive from

K_{B->A}. Ha can now directly use this symmetric key for

authenticating to Hb.

The important property of DRKey is that Hb can rapidly derive

H_{B:Hb->A:Ha} by using SVb and performing two PRF operations. The

one-wayness of the key-derivation function allows a key server to

delegate key derivation to specific entities. The key derivation

process exhibits an asymmetry, meaning that the delegated entity Hb

can directly derive a required key, whereas host Ha is required to

fetch the corresponding key from its local key server. As opposed to

other systems that rely on a dedicated server for key generation and

distribution (such as Kerberos), this delegation mechanism allows

entities to directly obtain a symmetric key without communication to

the key server.

3.2. Assumptions

There exists an AS-level PKI, that authenticates the public key

of an asymmetric key pair for each participating AS E and

certifies its network resources; e.g. the SCION control-plane PKI

certifying AS numbers for a deployment in SCION and RPKI

certifying AS numbers and IP address ranges for a deployment in

today's Internet.

To verify the expiration time of keys and messages, DRKey relies

on time synchronization among ASes with a precision on the order

¶

¶

¶

¶

*

¶

*

of several seconds. This can be achieved using a secure time-

synchronization protocol such as Roughtime.

There exists an authentication mechanism for end hosts within an

AS. This is needed for access control.

3.3. Key Hierarchy

The DRKey key-establishment framework uses a key hierarchy

consisting of four levels:

0th-Level (AS-internal). On the zeroth level of the hierarchy,

each AS A randomly generates a local AS-specific secret value

SVa. The secret value represents the per-AS basis of the key

hierarchy and is renewed frequently (e.g., daily). In addition,

an AS can generate protocol-specific secret values: SVa^p =

PRF_{SVa}("p") for a standard protocol p, where "p" is its ASCII

encoding. The purpose of these values is that they can be shared

with specific services, such as DNS servers, that cannot be

trusted with SVa but should still be able to efficiently derive

additional keys. This construction introduces additional

communication and storage overhead, so only widely used protocols

such as DNS or NTP would have their own secret values. Non-

standard arbitrary protocols will not have their own independent

secret value, and thus it won't be shareable among services. For

these protocols, their level 1 keys will be derived from a

special secret value denoted as SVa^*, only used for the

derivation purpose.

1st-Level (AS-to-AS). By using key derivation, an AS A can derive

different symmetric keys using a PRF from the special local

secret value SVa^* or a protocol-specific secret value SVa^p.

These derived keys, which are shared between AS A and a second AS

B, form the first level of the key hierarchy and are called

first-level keys: K_{A->B}^x = PRF_{SVa^x}(B). The input to the

PRF is the (globally unique) AS number of AS B. The value of x

will be either p for standard protocols or * for arbitrary ones.

The first-level keys are periodically exchanged between key

servers of different ASes.

2nd-Level (AS-to-host, host-to-AS). Using the symmetric keys of

the first level of the hierarchy, second-level keys are derived

to provide symmetric keys for authentication (AS-to-host cases)

or further derivation (host-to-AS cases) into the third level

keys. Second-level keys can be established between:

An AS as fast side, and an end-host as slow, for a standard

protocol p: K_{A->B:Hb}^p = PRF_{K_{A->B}^p}(0||Hb)

¶

*

¶

¶

*

¶

*

¶

*

¶

-

¶

An end-host as fast side, and an AS as slow, for a standard

protocol p: K_{A:Ha->B}^p = PRF_{K_{A->B}^p}(1||Ha)

An AS as fast side, and an end-host as slow, for a non-

standard, arbitrary protocol p: K_{A->B:Hb}^{*,p} = PRF_{K_{A-

>B}^*}(0||Hb||"p")

An end-host as fast side, and an AS as slow, for a non-

standard, arbitrary protocol p: K_{A:Ha->B}^{*,p} = PRF_{K_{A-

>B}^*}(1||Ha||"p")

3rd-Level (host-to-host). These keys are derived from the second

level host-to-AS, DRKeys. Depending on the protocol type, we

observe two cases:

Standard protocol p: the PRF is keyed on the level 2 host-to-

AS drkey: K_{A:Ha->B:Hb}^p = PRF_{K_{A:Ha->B}^p}(Hb)

Non-standard, arbitrary protocol p: the PRF is keyed on the

level 2 host-to-AS drkey: K_{A:Ha->B:Hb}^{*,p} = PRF_{K_{A:Ha-

>B}^{*,p}}(Hb)

4. Key Establishment

There are two types of key establishment: first level, and second or

third level key establishment, depending on the level of the key in

the hierarchy.

4.1. First Level Key Establishment

Key exchange is offloaded to the key servers deployed in each AS.

The key servers are not only responsible for first-level key

establishment, they also derive second-level keys and provide them

to hosts within the same AS. To exchange a first-level key, the key

servers of corresponding ASes perform the key exchange protocol. The

key exchange is initialized by key server KSb by sending the

request:

Where TS denotes a timestamp of the current time and val_time

specifies a point in time at which the requested key is valid. If an

optional protocol p is supplied, the protocol-specific first-level

key K'_{A->B}^p is requested, otherwise the general K_{A->B} is. The

requested key may not be valid at the time of request, either

because it already expired or because it will become valid in the

future. For example, prefetching future keys allows for seamless

transition to the new key. The request token is signed with B's

private key to prove authenticity of the request.

-

¶

-

¶

-

¶

*

¶

-

¶

-

¶

¶

¶

 req = A || B || val_time || TS || [p]¶

¶

Upon receiving the initial request, KSa checks the signature for

authenticity and the timestamp for expiration. If the request has

not yet expired, the key server KSa will reply with an encrypted and

signed first-level key derived from the local secret value SVa or,

if an optional protocol p was supplied in the request, SVa^p:

The term {A || key}_{PK_B} indicates that the concatenation of A

with the key is encrypted with asymmetric cryptography using B's

public key. The reply token is signed with A's private key.

Once the requesting key server KSb has received the key, it shares

it among other local key servers to ensure a consistent view. Each

key server can now respond to queries by entities within the same AS

requesting second-level keys. Alternatively, the proposed first-

level key exchange protocol could also make use of TLS 1.3 with

client certificates to secure the key exchange.

All first-level keys for other ASes are prefetched such that second-

level keys can be derived without delay. However, on-demand key

exchange between ASes is also possible. For example, in case a key

server is missing a first-level key that is required for the

derivation of a second-level key, the key server initiates a key

exchange. ASes that contain a large number of end hosts benefit from

prefetching most first-level keys, as they are likely to communicate

with a large set of destination ASes. In today's Internet there

exist around 68000 active ASes. Thus, setting up symmetric keys

between all entities requires minor effort and state. To avoid

explicit revocation, the shared keys are short-lived and new keys

are established frequently (e.g., daily). Subsequent key exchanges

to establish a new first-level key can use the current key as a

first line of defense to avoid signature-flooding attacks.

4.2. Second or Third Level Key Establishment

End hosts request a second-level key from their local key server

with the following request format:

format = {type, requestID, protocol, source, destination}

An end host Ha in AS A uses this format for issuing the following

request to its local key server KSa:

¶

 key = PRF_{SVa}(B)

 or

 key = PRF_{SVa^p}(B)

 repl = {A || key}_{PK_B} || exp_time || TS

¶

¶

¶

¶

¶

¶

¶

 format || val_time || TS¶

It is assumed that this request and the reply are sent over a secure

channel. Similar to the first-level key exchange, val_time specifies

a point in time at which the requested key is valid. The key server

only replies with a key to requests with a valid timestamp and only

if the querying host is authorized to use the key. An authorized

host must either be an end point of the communication that is

authenticated using the second-level key or authorized separately by

the AS.

If the end host requested a third level key, it must now be derived.

It is done so from the obtained second level key.

4.3. Key Server Discovery

When a key server wants to contact another key server in a remote

AS, it needs to know the IP address of the remote server.

In the SCION architecture, the concept of service addresses can be

used to anycast to a key server in a specific AS.

For the regular Internet, RPKI can be used, which connects Internet

resource information to a trust anchor. As the deployment numbers of

RPKI are growing, the RPKI certificate can be extended with the IP

address of the key server (e.g., by encoding it into the common name

field or creating a separate extension). Using this mechanism, each

AS publishes a list of IP addresses (or an IP anycast address) that

is publicly accessible and shared by all key servers. The routing

infrastructure will direct the packets to the topologically nearest

key server. This mapping from an AS identifier to an IP address is

verifiable through RPKI to prevent unauthorized announcements of key

servers. In case RPKI has not been fully deployed, key-server

discovery could also work using a DNS entry that maps a domain to IP

addresses of key servers.

4.4. Key Expiration

Shared symmetric keys are short-lived (i.e., up to one day lifetime)

to avoid the additional complication of explicit key revocation.

However, letting all keys expire at the same time would lead to

peaks in key requests. Such peaks are avoided by spreading out key

expiration, which in turn leads to spreading out the fetching

requests. To this end, a deterministic mapping offset (A, B) -> [0,

t) is introduced. This function uniformly maps the AS identifiers of

the source in AS A and the destination in AS B to a range between 0

and the maximum lifetime t of SVa. This mapping is computed using a

(non-cryptographic) hash function:

¶

¶

¶

¶

¶

¶

 offset(A,B) = H(A || B) mod t¶

The offset is then used to determine the validity period of a key by

determining the secret value SVa^j that is used to derive K_{A->B}

at the current sequence j as follows:

I.e., depending on the destination B, the secret value SVa can be

different, even when chosen for the same point in time.

5. Packet Authentication

The DRKey keys enable source authentication of every packet. To send

DRKey source authenticated packets from end host Ha located in AS A

to endhost Hb located in AS B, end host Ha first obtains the second

level key K_{B:Hb->A}^p from the key server located in its AS A,

KSa. With it derives the third level key K_{B:Hb->A:Ha}^p, which is

used to authenticate. For a packet pkt, the source Ha then

calculates the authentication tag by computing the MAC keyed on the

third level key K_{B:Hb->A:Ha}^p, over an immutable part of the

packet pkt. This immutable part of pkt can include parts of the

layer-3 and layer-4 headers, and optionally the layer-4 payload. It

is important to only include immutable fields as the verification

would otherwise fail at the destination.

The packet received at the destination is used to determine the

source address Ha and source AS.

In SCION these are part of the regular header, thus no extra

information is needed other than the tag itself.

In the current internet, 4 bytes containing the AS ID, plus the

tag are added to the packet.

The destination Hb then derives or obtains the key K_{B:Hb->A:Ha}^p

and uses it with the same MAC function to recalculate the

authentication tag. The tag is then compared to the one present in

the packet.

5.1. High-Speed DNS Authentication

A protocol specific secret value is used SVb^p, with p = "DNS". The

level 1 key for a slow side A is derived directly in the DNS server:

This first level key is exchanged with other AS via the level 1 key

requests, as described in Section 4.1. For a DNS query from a end

host Ha, located in AS A, to a DNS server located in AS B, the first

level key is derived as described above, and then the second level

key is derived:

¶

 [start(SVa^j) + offset(A, B) , start(SVa^j+1) + offset(A, B))¶

¶

¶

¶

*

¶

*

¶

¶

¶

 K_{B->A}^p = PRF_{SVb^p}(A)¶

¶

How to compute the authentication tag and obtain the AS ID is

described in Section 5.

5.2. EDNS(0) Authentication Option

DRKey can use EDNS(0) to avoid breaking the existing DNS resolvers

and authoritative servers. With a DRKey custom extension that

includes the total query/response length, the source AS number, a

timestamp, and the per packet MAC. The per-packet MAC for DNS

queries and responses is computed the DNS header and all fields

contained in the extension. Using the DRKey EDNS(0) option, packet

authentication for every DNS packet introduces 28 bytes of header

overhead.

6. Deployment

DRKey allows incremental deployment, as key servers could be

gradually deployed in each AS. Already in the incremental deployment

phase, DRKey prevents the addresses of upgraded ASes from being

spoofed at other upgraded destination ASes. Early adopters can

immediately profit from DRKey's security properties. Authenticating

a packet requires packet modification either at the end host, or at

a network appliance such as a middlebox or border router. Adding the

MAC at the end host does not increase the request size en-route.

When updating end hosts is not possible in the short-term, DRKey can

be implemented on a middlebox that computes a per-packet MAC and

modifies applicable bypassing packets.

Packet verification at the destination AS can be performed by a

middlebox as well. If a destination does not understand DRKey

traffic, it could fail to process this traffic. In this case, the

sending host contacts its local key server and asks if the

destination AS supports DRKey. The key server might have previously

derived second-level keys for an end host in the corresponding AS or

might forward the query to a key server in the destination AS. If an

AS supports DRKey, then it may deploy a middlebox that performs the

DRKey operations in case the end host does not support it. This will

prevent sending authenticated traffic to a destination host that

does not support DRKey. In the worst case, the end host could fall

back to legacy traffic.

In case of operational failures (e.g., a single key server fails),

the end entity will try to contact another key server in the same

AS. If all key servers fail, the system could fall back to the

current system with unauthenticated traffic.

 K_{B->A:Ha}^p = PRF_{K_{B->A}^p}(0 || Ha)¶

¶

¶

¶

¶

¶

¶

6.1. Deployment Incentives

Since DRKey can be deployed on commodity hardware and integrates

well with the current Internet infrastructure, the deployment

obstacle for DRKey is low. DRKey traffic can be recognized outside

of ASes that have deployed DRKey and can thus be prioritized by

servers. This means that even when relatively few companies deploy

DRKey to authenticate packets at their services (e.g., popular open

DNS resolvers of Google or Cloudflare), there are strong incentives

for ISPs to deploy DRKey and provide its services to their

customers.

6.2. Key-Server Latency

The initial connection setup depends on the latency of the

connection between the client and the key server. To lower latency,

DRKey's key servers should be positioned in an AS at a similar

location as local DNS resolvers. As even public resolvers have an

average query latency of less than 20 ms traversing the Internet, it

is expected that the latency of a local key derivation will be in

the order of a few ms. In most cases locally fetching a key will

result in a lower latency than a full round-trip between client and

server. For ASes that are geographically dispersed, multiple key

servers may be deployed (e.g., co-located with an access router or

per point-of-presence).

6.3. Network Mobility

Network mobility allows entities to move from one AS to another

while maintaining communication sessions. In DRKey, key derivations

are based on the current location of the entity in the Internet.

Therefore, as soon as an entity moves to another AS, it needs to

contact the key server of the new AS and fetch new second-level

keys. Because local key derivation is fast and the latency of

obtaining a key is small, the overhead is minimal.

6.4. Lighning Filter System as a DRKey Deployment

The Lightning Filter (LF) mechanism is a novel system that is

intended to complement traditional firewalls by enabling

cryptographically authenticated traffic shaping, based on the

autonomous system of the source host of the traffic. This reduces

significantly the load on the traditional firewall during denial-of-

service attacks, and even allows LF to be the only network defense

mechanism for a specific sub-network, e.g. by securing a DMZ that

exposes external services to untrusted networks.

The core principle of the LF system relies on DRKey, using the high

speed source authentication that DRKey enables. This way, the system

¶

¶

¶

¶

can authenticate each packet, assuring that it came from the host it

claimed to.

In case a breach is detected, the network administrators can

immediately add the host and/or the origin AS to a blacklist,

preventing packets originating there from reaching past the

Lightning Filter.

7. Security Considerations

7.1. DRKey and Trust in ASes

The keys provided by DRKey do not provide full end-to-end

authenticity or secrecy properties: The source and destination ASes

are able to derive the keys and could thus perform an active attack.

This attack is limited to these two ASes; active attacks by

intermediate ASes are not possible. DRKey always enables AS-level

source authentication and host-level source authentication under the

additional assumption of an honest source AS.

7.2. Authentication within an AS

To achieve secrecy as well as end-host authentication for

communication between end hosts and key servers, an AS needs an

intra-domain end-host and/or user-authentication system. Different

authentication mechanisms based on the operational environment are

discussed:

Authentication using TLS. In order to securely exchange second-

level DRKey keys between end hosts and key server, the end host

can establish a secure TLS channel to the key server. The

identity of the communicating parties is authenticated using

public-key cryptography for both the key server and the end host.

Thus, the key server can uniquely identify the end host and

verify its legitimacy to obtain a second-level key.

Deployment in ISPs. If the corresponding AS is an ISP, we assume

that they can identify their customers (e.g., terminal connection

number or router that has been deployed by the ISP). In this

case, only an attacker that is present at the customers local

network can gain access to learn keys.

Company / University. For ASes that are under the control of

companies or universities, login credentials or other local

authentication mechanisms can be used to identify the user. This

gives companies the ability to run their own web servers and have

full control over their key material.

Mobile Devices. For mobile devices such as smart phones that are

connected to the Internet through a mobile telecommunication

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

network, clients could be authenticated by the telecom provider,

for example using the International Mobile Equipment Identity

(IMEI).

7.3. Adversary Model

The adversary can deviate from the protocol and attempt to violate

its security goals. The Dolev-Yao model is assumed, where the

adversary can reside at arbitrary locations within the network. The

adversary can passively eavesdrop on messages and also actively

tamper with the communication by injecting, dropping, delaying, or

altering packets. However, the adversary has no efficient way of

breaking cryptographic primitives such as signatures, pseudorandom

functions (PRFs), and message authentication codes (MACs). It is

assumed that there exists a secure channel between end hosts and a

key server within the same AS.

Assuming the mentioned capabilities, the goal of the adversary is to

obtain cryptographic keys of other parties to forge authenticated

messages. By compromising an entity, the adversary learns all

cryptographic keys and settings stored. The adversary can also

control how the entity behaves, including fabrication, replay, and

modification of packets. Both end hosts and network nodes

compromises are considered.

8. IANA Considerations

This document has no IANA actions.

Authors' Addresses

Juan A. Garcia-Pardo

ETH Zuerich

Email: juan.garcia@inf.ethz.ch

Cyrill Kraehenbuehl

ETH Zuerich

Email: cyrill.kraehenbuehl@inf.ethz.ch

Benjamin Rothenberger

ETH Zuerich

Email: benjamin.rothenberger@inf.ethz.ch

Adrian Perrig

ETH Zuerich

Email: adrian.perrig@inf.ethz.ch

¶

¶

¶

¶

mailto:juan.garcia@inf.ethz.ch
mailto:cyrill.kraehenbuehl@inf.ethz.ch
mailto:benjamin.rothenberger@inf.ethz.ch
mailto:adrian.perrig@inf.ethz.ch

	Dynamically Recreatable Keys
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Outline

	2. Terminology
	3. Key Derivation
	3.1. Overview
	3.2. Assumptions
	3.3. Key Hierarchy

	4. Key Establishment
	4.1. First Level Key Establishment
	4.2. Second or Third Level Key Establishment
	4.3. Key Server Discovery
	4.4. Key Expiration

	5. Packet Authentication
	5.1. High-Speed DNS Authentication
	5.2. EDNS(0) Authentication Option

	6. Deployment
	6.1. Deployment Incentives
	6.2. Key-Server Latency
	6.3. Network Mobility
	6.4. Lighning Filter System as a DRKey Deployment

	7. Security Considerations
	7.1. DRKey and Trust in ASes
	7.2. Authentication within an AS
	7.3. Adversary Model

	8. IANA Considerations
	Authors' Addresses

