
WG Working Group S. Fluhrer
Internet-Draft Cisco Systems
Intended status: Informational S. Gazdag
Expires: 12 May 2023 genua GmbH
 D. V. Geest
 ISARA Corporation
 S. Kousidis
 BSI
 8 November 2022

Algorithm Identifiers for Hash-based Signatures for Use in the Internet
 X.509 Public Key Infrastructure

draft-gazdag-x509-hash-sigs-00

Abstract

 This document specifies algorithm identifiers and ASN.1 encoding
 formats for the Hash-Based Signature (HBS) schemes Hierarchical
 Signature System (HSS), eXtended Merkle Signature Scheme (XMSS), and
 XMSS^MT, a multi-tree variant of XMSS, as well as SPHINCS+, the
 latter being the only stateless scheme. This specification applies
 to the Internet X.509 Public Key infrastructure (PKI) when digital
 signatures are used to sign certificates and certificate revocation
 lists (CRLs).

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at
 https://example.com/LATEST. Status information for this document may
 be found at https://datatracker.ietf.org/doc/draft-gazdag-x509-hash-

sigs/.

 Discussion of this document takes place on the WG Working Group
 mailing list (mailto:WG@example.com), which is archived at
 https://example.com/WG.

 Source for this draft and an issue tracker can be found at
https://github.com/fluppe2/x509-hash-sigs.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

https://datatracker.ietf.org/doc/html/draft-gazdag-x509-hash-sigs-00
https://datatracker.ietf.org/doc/draft-gazdag-x509-hash-sigs/
https://datatracker.ietf.org/doc/draft-gazdag-x509-hash-sigs/
https://github.com/fluppe2/x509-hash-sigs
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 12 May 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Conventions and Definitions
 3. Subject Public Key Algorithms
 3.1. HSS Public Keys
 3.2. XMSS Public Keys
 3.3. XMSS^MT Public Keys
 3.4. SPHINCS+ Public Keys
 4. Key Usage Bits
 5. Signature Algorithms
 5.1. HSS Signature Algorithm
 5.2. XMSS Signature Algorithm
 5.3. XMSS^MT Signature Algorithm
 5.4. SPHINCS+ Signature Algorithm
 6. ASN.1 Module
 7. Security Considerations
 7.1. Algorithm Security Considerations
 7.2. Implementation Security Considerations
 8. IANA Considerations
 9. References
 9.1. Normative References
 9.2. Informative References
 Acknowledgments
 Authors' Addresses

1. Introduction

 Hash-Based Signature (HBS) Schemes combine Merkle trees with One/Few
 Time Signatures (OTS/FTS) in order to provide digital signature

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

 schemes that remain secure even when quantum computers become
 available. There security is well understood and depends only on the
 security of the underlying hash function. As such they can serve as
 an important building block for quantum computer resistant
 information and communication technology.

 The private key of HSS, XMSS and XMSS^MT is a finite collection of
 OTS keys, hence only a limited number of messages can be signed and
 the private key's state must be updated and persisted after signing
 to prevent reuse of OTS keys. Due to thise statefulness of the
 private key and the limited number of signatures that can be created,
 these signature algorithms might not be appropriate for use in
 interactive protocols. While the right selection of algorithm
 parameters would allow a private key to sign a virtually unbounded
 number of messages (e.g. 2^60), this is at the cost of a larger
 signature size and longer signing time. Since these algorithms are
 already known to be secure against quantum attacks, and because roots
 of trust are generally long-lived and can take longer to be deployed
 than end-entity certificates, these signature algorithms are more
 appropriate to be used in root and subordinate CA certificates. They
 are also appropriate in non-interactive contexts such as code
 signing. In particular, there are multi-party IoT ecosystems where
 publicly trusted code signing certificates are useful.

 The private key of SPHINCS+ is a finite but very large collection of
 FTS keys and hence stateless. This typically comes at the cost of
 larger signatures compared to the stateful HBS variants. Thus
 SPHINCS+ is suitable for more use-cases if the signature sizes fit
 the requirements.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The parameter 'n' is the security parameter, given in bytes. In
 practice this is typically aligned to the standard output length of
 the hash function in use, either 32 or 64 bytes. The height of a
 single tree is typically given by the parameter 'h'. The number of
 levels of trees is either called 'L' (HSS) or 'd' (XMSS^MT,
 SPHINCS+).

3. Subject Public Key Algorithms

 Certificates conforming to [RFC5280] can convey a public key for any
 public key algorithm. The certificate indicates the algorithm
 through an algorithm identifier. An algorithm identifier consists of
 an OID and optional parameters.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5280

 In this document, we define new OIDs for identifying the different
 hash-based signature algorithms. An additional OID is defined in
 [RFC8708] and repeated here for convenience. For all of the OIDs,
 the parameters MUST be absent.

3.1. HSS Public Keys

 The object identifier and public key algorithm identifier for HSS is
 defined in [RFC8708]. The definitions are repeated here for
 reference.

 The object identifier for an HSS public key is "id-alg-hss-lms-
 hashsig":

 id-alg-hss-lms-hashsig OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) alg(3) 17 }

 Note that the "id-alg-hss-lms-hashsig" algorithm identifier is also
 referred to as "id-alg-mts-hashsig". This synonym is based on the
 terminology used in an early draft of the document that became
 [RFC8554].

 The HSS public key's properties are defined as follows:

 pk-HSS-HashSig PUBLIC-KEY ::= {
 IDENTIFIER id-alg-hss-lms-hashsig
 KEY HSS-LMS-HashSig-PublicKey
 PARAMS ARE absent
 CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign,
cRLSign }
 }

 The HSS public key is defined as follows:

 HSS-HashSig-PublicKey ::= SEQUENCE {
 levels OCTET STRING, -- number of levels L
 tree OCTET STRING, -- typecode of top-level LMS tree
 ots OCTET STRING, -- typecode of top-level LM-OTS
 identifier OCTET STRING, -- identifier I of top-level LMS key pair
 root OCTET STRING -- root T[1] of top-level tree
 }

 See [RFC8554] for more information on the contents and format of an
 HSS public key. Note that the single-tree signature scheme LMS is
 instantiated as HSS with level L=1.

3.2. XMSS Public Keys

 The object identifier for an XMSS public key is id-alg-xmss-hashsig:

https://datatracker.ietf.org/doc/html/rfc8708
https://datatracker.ietf.org/doc/html/rfc8708
https://datatracker.ietf.org/doc/html/rfc8554
https://datatracker.ietf.org/doc/html/rfc8554

 id-alg-xmss-hashsig OBJECT IDENTIFIER ::= { itu-t(0)
 identified-organization(4) etsi(0) reserved(127)
 etsi-identified-organization(0) isara(15) algorithms(1)
 asymmetric(1) xmss(13) 0 }

 The XMSS public key's properties are defined as follows:

 pk-XMSS-HashSig PUBLIC-KEY ::= {
 IDENTIFIER id-alg-xmssi-hashsig
 KEY XMSS-PublicKey
 PARAMS ARE absent
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign } }

 The XMSS public key is defined as follows:

 XMSS-HashSig-PublicKey ::= SEQUENCE {
 type OCTET STRING, -- XMSS algorithm type
 seed OCTET STRING, -- bitmask seed
 root OCTET STRING -- root of the single-tree
 }

 See [RFC8391] for more information on the contents and format of an
 XMSS public key.

3.3. XMSS^MT Public Keys

 The object identifier for an XMSS^MT public key is id-alg-xmssmt-
 hashsig:

 id-alg-xmssmt-hashsig OBJECT IDENTIFIER ::= { itu-t(0)
 identified-organization(4) etsi(0) reserved(127)
 etsi-identified-organization(0) isara(15) algorithms(1)
 asymmetric(1) xmssmt(14) 0 }

 The XMSS^MT public key's properties are defined as follows:

 pk-XMSSMT-HashSig PUBLIC-KEY ::= {
 IDENTIFIER id-alg-xmssmt-hashsig
 KEY XMSSMT-PublicKey
 PARAMS ARE absent
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign } }

 The XMSS^MT public key is defined as follows:

 XMSSMT-HashSig-PublicKey ::= SEQUENCE {
 type OCTET STRING, -- XMSS^MT algorithm type
 seed OCTET STRING, -- bitmask seed
 root OCTET STRING -- root of top-level tree
 }

https://datatracker.ietf.org/doc/html/rfc8391

 See [RFC8391] for more information on the contents and format of an
 XMSS^MT public key.

3.4. SPHINCS+ Public Keys

 The object identifier for a SPHINCS+ public key is id-alg-
 sphincsplus-hashsig:

 id-alg-sphincsplus-hashsig OBJECT IDENTIFIER ::= { TBD }

 The SPHINCS+ public key's properties are defined as follows:

 pk-SPHINCSPLUS-HashSig PUBLIC-KEY ::= {
 IDENTIFIER id-alg-sphincsplus-hashsig
 KEY SPHINCSPLUS-PublicKey
 PARAMS ARE absent
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign } }

 SPHINCSPLUS-HashSig-PublicKey ::= OCTET STRING

 The SPHINCS+ public key is defined as follows:

 XMSSMT-PublicKey ::= SEQUENCE {
 type OCTET STRING, -- SPHINCS+ algorithm type
 seed OCTET STRING, -- bitmask seed
 root OCTET STRING -- root of top-level tree
 }

 [SPHINCSPLUS] contains more information on the contents and format of
 a SPHINCS+ public key.

4. Key Usage Bits

 The intended application for the key is indicated in the keyUsage
 certificate extension.

 If the keyUsage extension is present in an end-entity certificate
 that indicates id-alg-xmss-hashsig or id-alg-xmssmt-hashsig in
 SubjectPublicKeyInfo, then the keyUsage extension MUST contain one or
 both of the following values:

 nonRepudiation; and
 digitalSignature.

 If the keyUsage extension is present in a certification authority
 certificate that indicates id-alg-xmss-hashsig or id-alg-xmssmt-
 hashsig, then the keyUsage extension MUST contain one or more of the
 following values:

 nonRepudiation;
 digitalSignature;

https://datatracker.ietf.org/doc/html/rfc8391

 keyCertSign; and
 cRLSign.

 [RFC8708] defines the key usage for id-alg-hss-lms-hashsig, which is
 the same as for the keys above.

5. Signature Algorithms

 This section identifies OIDs for signing using HSS, XMSS, XMSS^MT,
 and SPHINCS+. When these algorithm identifiers appear in the
 algorithm field as an AlgorithmIdentifier, the encoding MUST omit the
 parameters field. That is, the AlgorithmIdentifier SHALL be a
 SEQUENCE of one component, one of the OIDs defined below.

 The data to be signed is prepared for signing. For the algorithms
 used in this document, the data is signed directly by the signature
 algorithm, the data is not hashed before processing. Then, a private
 key operation is performed to generate the signature value. For HSS,
 the signature value is described in section 6.4 of [RFC8554]. For
 XMSS and XMSS^MT the signature values are described in sections B.2
 and C.2 of [RFC8391], respectively. The octet string representing
 the signature is encoded directly in the BIT STRING without adding
 any additional ASN.1 wrapping. For the Certificate and
 CertificateList structures, the signature value is wrapped in the
 "signatureValue" BIT STRING field.

5.1. HSS Signature Algorithm

 The HSS public key OID is also used to specify that an HSS signature
 was generated on the full message, i.e. the message was not hashed
 before being processed by the HSS signature algorithm.

 id-alg-hss-lms-hashsig OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) alg(3) 17 }

 The HSS signature is defined as follows:

 HSS-HashSig-PublicKey ::= SEQUENCE {
 nspk OCTET STRING, -- number of signed public keys
 signed_pub_keys OCTET STRING, -- nspk many LMS signed public keys
 signed_msg OCTET STRING, -- an LMS signature of the message
 }

 Note that the number of signed public keys nspk equals L-1 where L
 denotes the number of levels. [RFC8391] contains more information on
 the contents and format of an HSS signature.

5.2. XMSS Signature Algorithm

 The XMSS public key OID is also used to specify that an XMSS
 signature was generated on the full message, i.e. the message was not

https://datatracker.ietf.org/doc/html/rfc8554#section-6.4
https://datatracker.ietf.org/doc/html/rfc8391
https://datatracker.ietf.org/doc/html/rfc8391

 hashed before being processed by the XMSS signature algorithm.

 id-alg-xmss-hashsig OBJECT IDENTIFIER ::= { itu-t(0)
 identified-organization(4) etsi(0) reserved(127)
 etsi-identified-organization(0) isara(15) algorithms(1)
 asymmetric(1) xmss(13) 0 }

 The XMSS signature is defined as follows:

 XMSS-HashSig-Signature ::= SEQUENCE {
 index OCTET STRING, -- index of the signature
 randomness OCTET STRING, -- a randomization string
 wots_sig OCTET STRING, -- a WOTS+ signature
 auth_path OCTET STRING, -- authentication path
 }

 auth_path consists of h (being the height of the tree) nodes.

 The format of an XMSS signature is formally defined using XDR
 [RFC4506] and is defined in Appendix B.2 of [RFC8391].

5.3. XMSS^MT Signature Algorithm

 The XMSS^MT public key OID is also used to specify that an XMSS^MT
 signature was generated on the full message, i.e. the message was not
 hashed before being processed by the XMSS^MT signature algorithm.

 id-alg-xmssmt-hashsig OBJECT IDENTIFIER ::= { itu-t(0)
 identified-organization(4) etsi(0) reserved(127)
 etsi-identified-organization(0) isara(15) algorithms(1)
 asymmetric(1) xmssmt(14) 0 }

 The XMSS^MT signature is defined as follows:

 XMSSMT-HashSig-Signature ::= SEQUENCE {
 index OCTET STRING, -- index of the signature
 randomness OCTET STRING, -- a randomization string
 xmss_sigs OCTET STRING, -- d reduced XMSS signatures
 }

 xmss_sigs consists of d (being the number levels) XMSS signatures in
 reduced form. Reduced form means that each XMSS signature contains
 only a WOTS+ signature and an authentication path, but no index and
 no randomization string.

 The format of an XMSS^MT signature is is formally defined using XDR
 [RFC4506] and is defined in Appendix C.2 of [RFC8391].

5.4. SPHINCS+ Signature Algorithm

 The SPHINCS+ public key OID is also used to specify that an SPHINCS+
 signature was generated on the full message, i.e. the message was not

https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc8391#appendix-B.2
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc8391#appendix-C.2

 hashed before being processed by the SPHINCS+ signature algorithm.

 id-alg-sphincsplus-hashsig OBJECT IDENTIFIER ::= { TBD }

 The SPHINCS+ signature is defined as follows:

 SPHINCSPLUS-HashSig-Signature ::= SEQUENCE {
 randomness OCTET STRING, -- a randomization string
 fors_sig OCTET STRING, -- a FORS signature
 ht_sig OCTET STRING, -- an HT signature
 }

 fors_sig consists of k private key values and their associated
 authentication paths, while ht_sig consists of d (being the number of
 levels) XMSS signatures.

 [SPHINCS] contains more information on the contents and format of a
 SPHINCS+ signature.

6. ASN.1 Module

 For reference purposes, the ASN.1 syntax is presented as an ASN.1
 module here.

 -- ASN.1 Module

 Hashsigs-pkix-0 -- TBD - IANA assigned module OID

 DEFINITIONS EXPLICIT TAGS ::= BEGIN

 IMPORTS PUBLIC-KEY, SIGNATURE-ALGORITHM FROM
 AlgorithmInformation-2009 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-
 algorithmInformation-02(58)} ;

 -- Object Identifiers

 -- -- id-alg-hss-lms-hashsig is defined in [ietf-lamps-cms-hash-sig]
 -- -- id-alg-hss-lms-hashsig OBJECT IDENTIFIER ::= { iso(1) --
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) -- smime(16)
 alg(3) 17 }

 id-alg-xmss-hashsig OBJECT IDENTIFIER ::= { itu-t(0) identified-
 organization(4) etsi(0) reserved(127) etsi-identified-organization(0)
 isara(15) algorithms(1) asymmetric(1) xmss(13) 0 }

 id-alg-xmssmt-hashsig OBJECT IDENTIFIER ::= { itu-t(0) identified-
 organization(4) etsi(0) reserved(127) etsi-identified-organization(0)
 isara(15) algorithms(1) asymmetric(1) xmssmt(14) 0 }

 id-alg-sphincsplus-hashsig OBJECT IDENTIFIER ::= { TBD }

 -- Signature Algorithms and Public Keys

 -- -- sa-HSS-LMS-HashSig is defined in [RFC8708] -- -- sa-HSS-LMS-
 HashSig SIGNATURE-ALGORITHM ::= { -- IDENTIFIER id-alg-hss-lms-
 hashsig -- PARAMS ARE absent -- PUBLIC-KEYS { pk-HSS-LMS-HashSig } --
 SMIME-CAPS { IDENTIFIED BY id-alg-hss-lms-hashsig } }

 -- -- pk-HSS-LMS-HashSig is defined in [RFC8708] -- -- pk-HSS-LMS-
 HashSig PUBLIC-KEY ::= { -- IDENTIFIER id-alg-hss-lms-hashsig -- KEY
 HSS-LMS-HashSig-PublicKey -- PARAMS ARE absent -- CERT-KEY-USAGE -- {
 digitalSignature, nonRepudiation, keyCertSign, cRLSign } } -- -- HSS-
 LMS-HashSig-PublicKey ::= OCTET STRING

 sa-XMSS SIGNATURE-ALGORITHM ::= { IDENTIFIER id-alg-xmss-hashsig
 PARAMS ARE absent PUBLIC-KEYS { pk-XMSS } SMIME-CAPS { IDENTIFIED BY
 id-alg-xmss-hashsig } }

 pk-XMSS PUBLIC-KEY ::= { IDENTIFIER id-alg-xmss-hashsig KEY XMSS-
 PublicKey PARAMS ARE absent CERT-KEY-USAGE { digitalSignature,
 nonRepudiation, keyCertSign, cRLSign } }

 XMSS-PublicKey ::= OCTET STRING

 sa-XMSSMT SIGNATURE-ALGORITHM ::= { IDENTIFIER id-alg-xmssmt-hashsig
 PARAMS ARE absent PUBLIC-KEYS { pk-XMSSMT } SMIME-CAPS { IDENTIFIED
 BY id-alg-xmssmt-hashsig } }

 pk-XMSSMT PUBLIC-KEY ::= { IDENTIFIER id-alg-xmssmt-hashsig KEY
 XMSSMT-PublicKey PARAMS ARE absent CERT-KEY-USAGE { digitalSignature,
 nonRepudiation, keyCertSign, cRLSign } }

 XMSSMT-PublicKey ::= OCTET STRING

 sa-SPHINCSPLUS SIGNATURE-ALGORITHM ::= { IDENTIFIER id-alg-
 sphincsplus-hashsig PARAMS ARE absent PUBLIC-KEYS { pk-SPHINCSPLUS }
 SMIME-CAPS { IDENTIFIED BY id-alg-sphincsplus-hashsig } }

 pk-SPHINCSPLUS PUBLIC-KEY ::= { IDENTIFIER id-alg-sphincsplus-hashsig
 KEY SPHINCSPLUS-PublicKey PARAMS ARE absent CERT-KEY-USAGE {
 digitalSignature, nonRepudiation, keyCertSign, cRLSign } }

 SPHINCSPLUS-PublicKey ::= OCTET STRING

 END

7. Security Considerations

7.1. Algorithm Security Considerations

 The cryptographic security of the signatures generated by the
 algorithms mentioned in this document depends only on the hash
 algorithms used within the signature algorithms and the pre-hash

https://datatracker.ietf.org/doc/html/rfc8708
https://datatracker.ietf.org/doc/html/rfc8708

 algorithm used to create an X.509 certificate's message digest.
 Grover's algorithm [Grover96] is a quantum search algorithm which
 gives a quadratic improvement in search time to brute-force pre-image
 attacks. The results of [BBBV97] show that this improvement is
 optimal, however [Fluhrer17] notes that Grover's algorithm doesn't
 parallelize well. Thus, given a bounded amount of time to perform
 the attack and using a conservative estimate of the performance of a
 real quantum computer, the pre-image quantum security of SHA-256 is
 closer to 190 bits. All parameter sets for the signature algorithms
 in this document currently use SHA-256 internally and thus have at
 least 128 bits of quantum pre-image resistance, or 190 bits using the
 security assumptions in [Fluhrer17].

 [Zhandry15] shows that hash collisions can be found using an
 algorithm with a lower bound on the number of oracle queries on the
 order of 2^(n/3) on the number of bits, however [DJB09] demonstrates
 that the quantum memory requirements would be much greater.
 Therefore a parameter set using SHA-256 would have at least 128 bits
 of quantum collision-resistance as well as the pre-image resistance
 mentioned in the previous paragraph.

 Given the quantum collision and pre-image resistance of SHA-256
 estimated above, the current parameter sets used by id-alg-hss-lms-
 hashsig, id-alg-xmss-hashsig and id-alg-xmssmt-hashsig provide 128
 bits or more of quantum security. This is believed to be secure
 enough to protect X.509 certificates for well beyond any reasonable
 certificate lifetime.

7.2. Implementation Security Considerations

 Implementations MUST protect the private keys. Compromise of the
 private keys may result in the ability to forge signatures. Along
 with the private key, the implementation MUST keep track of which
 leaf nodes in the tree have been used. Loss of integrity of this
 tracking data can cause a one-time key to be used more than once. As
 a result, when a private key and the tracking data are stored on non-
 volatile media or stored in a virtual machine environment, care must
 be taken to preserve confidentiality and integrity.

 The generation of private keys relies on random numbers. The use of
 inadequate pseudo-random number generators (PRNGs) to generate these
 values can result in little or no security. An attacker may find it
 much easier to reproduce the PRNG environment that produced the keys,
 searching the resulting small set of possibilities, rather than brute
 force searching the whole key space. The generation of quality
 random numbers is difficult. [RFC4086] offers important guidance in
 this area.

 The generation of hash-based signatures also depends on random
 numbers. While the consequences of an inadequate pseudo-random
 number generator (PRNGs) to generate these values is much less severe

https://datatracker.ietf.org/doc/html/rfc4086

 than the generation of private keys, the guidance in [RFC4086]
 remains important.

8. IANA Considerations

 IANA is requested to assign a module OID from the "SMI for PKIX
 Module Identifier" registry for the ASN.1 module in Section 6.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://doi.org/10.17487/RFC2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://doi.org/10.17487/RFC8174>.

9.2. Informative References

 [RFC8391] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., and A.
 Mohaisen, "XMSS: eXtended Merkle Signature Scheme",

RFC 8391, DOI 10.17487/RFC8391, May 2018,
 <https://doi.org/10.17487/RFC8391>.

 [RFC8554] McGrew, D., Curcio, M., and S. Fluhrer, "Leighton-Micali
 Hash-Based Signatures", RFC 8554, DOI 10.17487/RFC8554,
 April 2019, <https://doi.org/10.17487/RFC8554>.

 [RFC8708] Housley, R., "Use of the HSS/LMS Hash-Based Signature
 Algorithm in the Cryptographic Message Syntax (CMS)",

RFC 8708, DOI 10.17487/RFC8708, February 2020,
 <https://doi.org/10.17487/RFC8708>.

Acknowledgments

 Thanks for Russ Housley for the helpful suggestions.

 This document uses a lot of text from similar documents ([RFC3279]
 and [RFC8410]) as well as [RFC8708]. Thanks go to the authors of
 those documents. "Copying always makes things easier and less error
 prone" - [RFC8411].

Authors' Addresses

 Scott Fluhrer
 Cisco Systems

 Email: sfluhrer@cisco.com

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://doi.org/10.17487/RFC2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://doi.org/10.17487/RFC8174
https://datatracker.ietf.org/doc/html/rfc8391
https://doi.org/10.17487/RFC8391
https://datatracker.ietf.org/doc/html/rfc8554
https://doi.org/10.17487/RFC8554
https://datatracker.ietf.org/doc/html/rfc8708
https://doi.org/10.17487/RFC8708
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc8410
https://datatracker.ietf.org/doc/html/rfc8708
https://datatracker.ietf.org/doc/html/rfc8411

 S. Gazdag
 genua GmbH

 Email: ietf@gazdag.de

 D. Van Geest
 ISARA Corporation

 Email: daniel.vangeest@isara.com

 S. Kousidis
 BSI

 Email: tbd@tbd.tbd

