A YANG Data Model for requesting Path Computation in an Optical Transport Network (OTN)
draft-gbb-ccamp-otn-path-computation-yang-01

Abstract

This document describes a YANG data model for a Remote Procedure Calls (RPC) to request Path Computation in an Optical Transport Network (OTN).

The YANG data models defined in this document conforms to the Network Management Datastore Architecture (NMDA).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights
1. Introduction

[I-D.ietf-teas-yang-path-computation] describes key use cases, where a client needs to request underlying SDN controllers for path computation. In some of these use cases, the underlying SDN controller can control an Optical Transport Network (OTN).

This document defines a YANG data model, which augment the generic Path Computation RPC defined in [I-D.ietf-teas-yang-path-computation], with OTN technology-specific augmentations required to request path computation to an underlying OTN SDN controller. These models allow a client to delegate path computation tasks to the underlying SDN controller without having to obtain OTN detailed information from the controller and performing feasible path computation itself.
The YANG data model defined in this document conforms to the Network Management Datastore Architecture [RFC8342].

1.1. Terminology and Notations

Refer to [I-D.ietf-ccamp-otn-topo-yang] and [I-D.ietf-ccamp-layer1-types] for the OTN specific terms used in this document.

The following terms are defined in [RFC7950] and are not redefined here:

* client
* server
* augment
* data model
* data node

The following terms are defined in [RFC6241] and are not redefined here:

* configuration data
* state data

The terminology for describing YANG data models is found in [RFC7950].

1.2. Tree Diagram

A simplified graphical representation of the data model is used in Section 3 of this document. The meaning of the symbols in these diagrams is defined in [RFC8340].

1.3. Prefix in Data Node Names
In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in Table 1.

| Prefix | YANG module | Reference |
|----------+---------------------------+-----------|
l1-types	ietf-layer1-types	[RFCYYYY]
te	ietf-te	[RFCZZZZ]
te-pc	ietf-te-path-computation	[RFCKKKK]
otn-pc	ietf-otn-path-computation	RFCXXXX

Table 1: Prefixes and corresponding YANG modules

RFC Editor Note: Please replace XXXX with the RFC number assigned to this document. Please replace YYY with the RFC number assigned to [I-D.ietf-ccamp-layer1-types]. Please replace ZZZZ with the RFC number assigned to [I-D.ietf-teas-yang-te]. Please replace KKKK with the RFC number assigned to [I-D.ietf-teas-yang-path-computation]. Please remove this note.

2. YANG Data Model for OTN Path Computation

2.1. YANG Model Overview

The YANG data model for requesting OTN path computation is defined as an augmentation of the generic Path Computation RPC defined in [I-D.ietf-teas-yang-path-computation], as shown in Figure 1.
The entities and Traffic Engineering (TE) attributes, such as requested path and tunnel attributes, defined in [I-D.ietf-teas-yang-path-computation], are still applicable when requesting OTN path computation and the models defined in this document only specifies the additional OTN technology-specific attributes/information, using the attributes defined in [I-D.ietf-ccamp-layer1-types].

The YANG module ietf-otn-path-computation defined in this document conforms to the Network Management Datastore Architecture (NMDA) defined in [RFC8342].

2.2. Bandwidth Augmentation

The OTN path computation model augments all the occurrences of the te-bandwidth container with the OTN technology-specific attributes using the otn-link-bandwidth and otn-path-bandwidth groupings defined in [I-D.ietf-ccamp-layer1-types].

2.3. Label Augmentations

The OTN path computation model augments all the occurrences of the
label-restriction list with OTN technology-specific attributes using the otn-label-range-info grouping defined in [I-D.ietf-ccamp-layer1-types].

Moreover, the model augments all the occurrences of the te-label container with the OTN technology-specific attributes using the otn-label-start-end, otn-label-hop and otn-label-step groupings defined in [I-D.ietf-ccamp-layer1-types].

3. OTN Path Computation Tree Diagram

Figure 2 below shows the tree diagram of the YANG data model defined in module ietf-otn-path-computation.yang.

```yang
module: ietf-otn-path-computation

augment /te:tunnels-path-compute/te:input/te:path-compute-info
/te-pc:path-request/te-pc:te-bandwidth/te-pc:technology:
  +--:(otn)
    ++ otn
      +-- odu-type? identityref
      +-- (oduflex-type)?
        +--:(generic)
          |  ++ nominal-bit-rate
          |  |  l1-types:bandwidth-scientific-notation
          |  ++:(cbr)

      |  ++ cbr-client-type identityref
      |  +--:(gfp-n-k)
      |  |  ++ gfp-n uint8
      |  |  ++ gfp-k? gfp-k
      |  +--:(flexe-client)
      |  |  ++ flexe-client flexe-client-rate
      |  |  ++:(flexe-aware)
      |  |  |  ++ flexe-aware-n uint16
      |  |  |  +--:(packet)
      |  |  |  |  ++ opuflex-payload-rate
      |  |  |  |  |  l1-types:bandwidth-scientific-notation
```

--- otn
 --- odu-type? identityref
 --- (oduflex-type)?
 +-- (generic)
 | +-- nominal-bit-rate
 | l1-types:bandwidth-scientific-notation
 +-- (cbr)
 | +-- cbr-client-type identityref
 +-- (gfp-n-k)
 | +-- gfp-n uint8
 | +-- gfp-k? gfp-k
 +-- (flexe-client)
 | +-- flexe-client flexe-client-rate
 +-- (flexe-aware)
 | +-- flexe-aware-n uint16
 +-- (packet)
 +-- opuflex-payload-rate
 l1-types:bandwidth-scientific-notation
 augment /te:tunnels-path-compute/te:output/te:path-compute-result
 /te-pc:response/te-pc:computed-paths-properties
 /te-pc:computed-path-properties/te-pc:te-pc:te-bandwidth/te-pc:technology:
 +-- (otn)
 +-- ro otn
 +-- ro odu-type? identityref
 +-- ro (oduflex-type)?
 +-- (generic)
 | +-- ro nominal-bit-rate
 | l1-types:bandwidth-scientific-notation
 +-- (cbr)
 | +-- ro cbr-client-type identityref
 +-- (gfp-n-k)
 | +-- ro gfp-n uint8
 | +-- ro gfp-k? gfp-k
 +-- (flexe-client)
 | +-- ro flexe-client flexe-client-rate
 +-- (flexe-aware)
 | +-- ro flexe-aware-n uint16
 +-- (packet)
 +-- ro opuflex-payload-rate
 l1-types:bandwidth-scientific-notation
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:path-in-segment
 /te-pc:label-restrictions/te-pc:label-restriction:
 +++ otn-label-range
 +++ range-type? otn-label-range-type
 +++ tsg? identityref
 +++ odu-type-list? identityref
 +++ priority? uint8
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:path-out-segment
 /te-pc:label-restrictions/te-pc:label-restriction:
 +++ otn-label-range
 +++ range-type? otn-label-range-type
 +++ tsg? identityref
 +++ odu-type-list? identityref
 +++ priority? uint8
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:optimizations/te-pc:algorithm
 /te-pc:metric/te-pc:optimization-metric
 /te-pc:explicit-route-exclude-objects
 /te-pc:route-object-exclude-object/te-pc:type/te-pc:label
 /te-pc:label-hop/te-pc:te-label/te-pc:technology:
 +++:(otn)
 +++ otn
 +++ tpn? otn-tpn
 +++ tsg? identityref
 +++ ts-list? string
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:optimizations/te-pc:algorithm
 /te-pc:metric/te-pc:optimization-metric
 /te-pc:explicit-route-include-objects
 /te-pc:route-object-include-object/te-pc:type/te-pc:label
 /te-pc:label-hop/te-pc:te-label/te-pc:technology:
 +++:(otn)
 +++ otn
 +++ tpn? otn-tpn
 +++ tsg? identityref
 +++ ts-list? string
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:explicit-route-objects-always
 /te-pc:route-object-exclude-always/te-pc:type/te-pc:label
/te-pc:label-hop/te-pc:te-label/te-pc:technology:
 +++:(otn)
 +++ otn
 +++ tpn? otn-tpn
 +++ tsg? identityref
 +++ ts-list? string
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:explicit-route-objects-always
 /te-pc:route-object-include-exclude/te-pc:type
 /te-pc:label/te-pc:label-hop/te-pc:te-label
 /te-pc:technology:
 +++:(otn)
 +++ otn
 +++ tpn? otn-tpn
 +++ tsg? identityref
 +++ ts-list? string
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:path-in-segment
 /te-pc:label-restrictions/te-pc:label-restriction
 /te-pc:label-start/te-pc:te-label/te-pc:technology:
 +++:(otn)
 +++ otn
 +++ (range-type)?
 +++:(trib-port)
 | +++ tpn? otn-tpn
 +++:(trib-slot)
 +++ ts? otn-ts
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:path-in-segment
 /te-pc:label-restrictions/te-pc:label-restriction
 /te-pc:label-end/te-pc:te-label/te-pc:technology:
 +++:(otn)
 +++ otn
 +++ (range-type)?
 +++:(trib-port)
 | +++ tpn? otn-tpn
 +++:(trib-slot)
 +++ ts? otn-ts
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:path-in-segment
 /te-pc:label-restrictions/te-pc:label-restriction
 /te-pc:label-step/te-pc:technology:
 +++:(otn)
 +++ otn
 +++ (range-type)?
 +++:(trib-port)
 | +++ tpn? otn-tpn
++-:(trib-slot)
 ++- ts? otn-ts
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:path-out-segment
 /te-pc:label-restrictions/te-pc:label-restriction
 /te-pc:label-start/te-pc:te-label/te-pc:technology:
++-:(otn)
 ++- otn
 ++- (range-type)?
 +--:(trib-port)
 | ++- tpn? otn-tpn
 +--:(trib-slot)
 ++- ts? otn-ts
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:path-out-segment
 /te-pc:label-restrictions/te-pc:label-restriction
 /te-pc:label-end/te-pc:te-label/te-pc:technology:
++-:(otn)
 ++- otn
 ++- (range-type)?
 +--:(trib-port)
 | ++- tpn? otn-tpn
 +--:(trib-slot)
 ++- ts? otn-ts
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:path-request/te-pc:path-out-segment
 /te-pc:label-restrictions/te-pc:label-restriction
 /te-pc:label-step/te-pc:technology:
++-:(otn)
 ++- otn
 ++- (range-type)?
 +--:(trib-port)
 | ++- tpn? otn-tpn
 +--:(trib-slot)
 ++- ts? otn-ts
augment /te:tunnels-path-compute/te:input/te:path-compute-info
 /te-pc:synchronization/te-pc:exclude-objects
 /te-pc:te-label/te-pc:technology:
++-:(otn)
 ++- otn
 ++- tpn? otn-tpn
 ++- tsg? identityref
 ++- ts-list? string
augment /te:tunnels-path-compute/te:output/te:path-compute-result
 /te-pc:response/te-pc:computed-paths-properties
Figure 2: OTN path computation tree diagram

4. YANG Model for OTN Path Computation

<CODE BEGINS> file "ietf-otn-path-computation@2022-07-10.yang"
module ietf-otn-path-computation {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-otn-path-computation";
 prefix "otn-pc";

 import ietf-te-path-computation {
 prefix "te-pc";
 revision-date "2021-09-06";
 reference
 "I-D.ietf-teas-yang-path-computation-14: Yang model for requesting Path Computation.";
 }

 import ietf-te {
 prefix "te";
 revision-date "2021-02-20";
 reference
 "I-D.ietf-teas-yang-te-19: A YANG Data Model for Traffic Engineering Tunnels and Interfaces. ";
 }

 import ietf-layer1-types {
 prefix "l1-types";
 reference
 "I-D.ietf-ccamp-layer1-types:
 A YANG Data Model for Layer 1 Types. ";
}
This module defines a model for requesting OTN Path Computation. The model fully conforms to the Network Management Datastore Architecture (NMDA).

Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices."

revision "2022-07-10" {
 description
 "Initial version.";
 reference
augment "/te:tunnels-path-compute/te:input/te:path-compute-info/"
 + "te-pc:path-request/te-pc:te-bandwidth/te-pc:technology" {
 description
 "Augment TE bandwidth of the requested path.";
 case otn {
 uses l1-types:otn-path-bandwidth;
 }
 }

augment "/te:tunnels-path-compute/te:input/te:path-compute-info/"
 + "te-pc:tunnel-attributes/te-pc:te-bandwidth/te-pc:technology" {
 description
 "Augment TE bandwidth of the requested tunnel attributes.";
 case otn {
 uses l1-types:otn-path-bandwidth;
 }
 }

augment "/te:tunnels-path-compute/te:output/"
 + "te:path-compute-result/te-pc:response/"
 + "te-pc:computed-paths-properties/"
 + "te-pc:computed-path-properties/te-pc:path-properties/"
 + "te-pc:te-bandwidth/te-pc:technology" {
 description
 "Augment TE bandwidth of the computed path properties.";
 case otn {
 uses l1-types:otn-path-bandwidth;
augment "/te:tunnels-path-compute/te:input/te:path-compute-info/
 + "te-pc:path-request/te-pc:path-in-segment/"
 + "te-pc:label-restrictions/te-pc:label-restriction" {
edescription
 "Augment TE label range information for the ingress segment
 of the requested path."
 uses l1-types:otn-label-range-info;
}

augment "/te:tunnels-path-compute/te:input/te:path-compute-info/
 + "te-pc:path-request/te-pc:path-out-segment/"
 + "te-pc:label-restrictions/te-pc:label-restriction" {
edescription
 "Augment TE label range information for the egress segment
 of the requested path."
 uses l1-types:otn-label-range-info;
}

augment "/te:tunnels-path-compute/te:input/te:path-compute-info/
 + "te-pc:path-request/te-pc:optimizations/te-pc:algorithm/
 + "te-pc:metric/te-pc:optimization-metric/"
 + "te-pc:explicit-route-exclude-objects/
 + "te-pc:label-hop/te-pc:te-label/te-pc:technology" {
edescription
 "Augment TE label hop for the optimization of the explicit
 route objects excluded by the path computation of the requested
 path."
 case otn {
 uses l1-types:otn-label-hop;
augment "/te:tunnels-path-compute/te:input/te:path-compute-info/
 + "te-pc:path-request/te-pc:optimizations/te-pc:algorithm/
 + "te-pc:metric/te-pc:optimization-metric/
 + "te-pc:explicit-route-include-objects/
 + "te-pc:route-object-include-object/te-pc:type/te-pc:label/
 + "te-pc:label-hop/te-pc:te-label/te-pc:technology" {
 description
 "Augment TE label hop for the optimization of the explicit
 route objects included by the path computation of the requested
 path.";
 case otn {
 uses l1-types:otn-label-hop;
 }
}

augment "/te:tunnels-path-compute/te:input/te:path-compute-info/
 + "te-pc:path-request/te-pc:explicit-route-objects-always/
 + "te-pc:label-hop/te-pc:te-label/te-pc:technology" {
 description
 "Augment TE label hop for the explicit route objects always
 excluded by the path computation of the requested path.";
 case otn {
 uses l1-types:otn-label-hop;
 }
}
augment "/te:tunnels-path-compute/te:input/te:path-compute-info/"
 + "te-pc:path-request/te-pc:path-in-segment/"
 + "te-pc:label-restrictions/te-pc:label-restriction/"
 + "te-pc:label-start/te-pc:te-label/te-pc:technology" {
 description
 "Augment TE label range start for the ingress segment of the requested path."
 case otn {
 uses l1-types:otn-label-start-end;
 }
}

augment "/te:tunnels-path-compute/te:input/te:path-compute-info/"
 + "te-pc:path-request/te-pc:path-in-segment/"
 + "te-pc:label-restrictions/te-pc:label-restriction/"
 + "te-pc:label-end/te-pc:te-label/te-pc:technology" {
 description
 "Augment TE label range end for the ingress segment of the requested path."
 case otn {
 uses l1-types:otn-label-start-end;
 }
}

augment "/te:tunnels-path-compute/te:input/te:path-compute-info/"
 + "te-pc:path-request/te-pc:path-in-segment/"
 + "te-pc:label-restrictions/te-pc:label-restriction/"
 + "te-pc:label-step/te-pc:technology" {
 description
 "Augment TE label range step for the ingress segment of the requested path."
 case otn {
 uses l1-types:otn-label-step;
 }
}
description
"Augment TE label range start for the egress segment of the requested path."

case otn {
 uses l1-types:otn-label-start-end;
}

augment "/te:tunnels-path-compute/te:input/te:path-compute-info/"
 + "te-pc:path-request/te-pc:path-out-segment/
 + "te-pc:label-restrictions/te-pc:label-restriction/
 + "te-pc:label-end/te-pc:te-label/te-pc:technology" {
 description
 "Augment TE label range end for the egress segment of the requested path."
 case otn {
 uses l1-types:otn-label-start-end;
 }
}

augment "/te:tunnels-path-compute/te:input/te:path-compute-info/"
 + "te-pc:path-request/te-pc:path-out-segment/
 + "te-pc:label-restrictions/te-pc:label-restriction/
 + "te-pc:label-step/te-pc:technology" {
 description
 "Augment TE label range end for the egress segment of the requested path."
 case otn {
 uses l1-types:otn-label-step;
 }
}

augment "/te:tunnels-path-compute/te:input/te:path-compute-info/"
 + "te-pc:synchronization/te-pc:exclude-objects/
 + "te-pc:te-label/te-pc:technology" {
 description
 "Augment TE label hop for the explicit route objects to always exclude from synchronized path computation."
 case otn {
 uses l1-types:otn-label-hop;
 }
}
augment "/te:tunnels-path-compute/te:output/"
 + "te:path-compute-result/te-pc:response/"
 + "te-pc:computed-paths-properties/"
 + "te-pc:computed-path-properties/te-pc:path-properties/
 + "te-pc:path-route-objects/te-pc:path-route-object/
 + "te-pc:type/te-pc:label/"
 + "te-pc:label-hop/te-pc:te-label/te-pc:technology"
 {
 description
 "Augment TE label hop for the route object of the computed
 path.";
 case otn {
 uses l1-types:otn-label-hop;
 }
 }
<CODE ENDS>

Figure 3: OTN path computation YANG module

5. Manageability Considerations

TBD.

6. Security Considerations

<Add any security considerations>

7. IANA Considerations

This document registers the following URIs in the "ns" subregistry within the "IETF XML registry" [RFC3688].

Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.

This document registers the following YANG module in the "YANG Module Names" registry [RFC7950].

name: ietf-otn-path-computation
prefix: otn-pc
reference: this document

8. References

8.1. Normative References
[I-D.ietf-ccamp-layer1-types]

[I-D.ietf-teas-yang-path-computation]

[I-D.ietf-teas-yang-te]

8.2. Informative References

Busi, et al. Expires 11 January 2023

Internet-Draft YANG for OTN Path Computation July 2022

[I-D.ietf-ccamp-otn-topo-yang]

[I-D.ietf-teas-actn-poi-applicability]

Acknowledgments

The authors of this document would like to thank the authors of [I-D.ietf-teas-actn-poi-applicability] for having identified the gap and requirements to trigger this work.

This document was prepared using kramdown.

Contributors

Daniel King
Old Dog Consulting
Email: daniel@olddog.co.uk

Authors' Addresses
Italo Busi
Huawei Technologies
Email: italo.busi@huawei.com

Aihua Guo
Futurewei Technologies
Email: aihuaguo.ietf@gmail.com

Sergio Belotti
Nokia
Email: sergio.belotti@nokia.com