
Network Working Group R. Gieben
Internet-Draft Google
Intended status: Informational W. Mekking
Expires: August 7, 2014 NLnet Labs
 February 3, 2014

Authenticated Denial of Existence in the DNS
draft-gieben-auth-denial-of-existence-dns-06

Abstract

 Authenticated denial of existence allows a resolver to validate that
 a certain domain name does not exist. It is also used to signal that
 a domain name exists, but does not have the specific RR type you were
 asking for. When returning a negative DNSSEC response, a name server
 usually includes up to two NSEC records. With NSEC3 this amount is
 three.

 This document provides additional background commentary and some
 context for the NSEC and NSEC3 mechanisms used by DNSSEC to provide
 authenticated denial of existence responses

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 7, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Gieben & Mekking Expires August 7, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Authenticated Denial in DNS February 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 2
2. Denial of Existence . 4
2.1. NXDOMAIN Responses 4
2.2. NODATA Responses . 5

3. Secure Denial of Existence 5
3.1. NXT . 7
3.2. NSEC . 7
3.3. NODATA Responses . 9
3.4. Drawbacks of NSEC . 9

 4. Experimental and Deprecated Mechanisms: NO, NSEC2 and DNSNR . 10
5. NSEC3 . 11
5.1. Opt-Out . 13
5.2. Loading an NSEC3 Zone 14
5.3. Wildcards in the DNS 15
5.4. CNAME Records . 17
5.5. The Closest Encloser NSEC3 Record 18
5.6. Three To Tango . 22

6. Security Considerations 23
7. IANA Considerations . 23
8. Acknowledgments . 23
9. References . 24
9.1. Normative References 24
9.2. Informative References 25

Appendix A. On-line Signing: Minimally Covering NSEC Records . . 26
Appendix B. On-line Signing: NSEC3 White Lies 27
Appendix C. List of Hashed Owner Names 27
Appendix D. Changelog . 28
D.1. -00 . 28
D.2. -01 . 28
D.3. -02 . 28
D.4. -03 . 29
D.5. -04 . 29
D.6. -05 . 29
D.7. -06 . 29

1. Introduction

 DNSSEC can be somewhat of a complicated matter, and there are certain
 areas of the specification that are more difficult to comprehend than
 others. One such area is "authenticated denial of existence".

Gieben & Mekking Expires August 7, 2014 [Page 2]

Internet-Draft Authenticated Denial in DNS February 2014

 Denial of existence is a mechanism that informs a resolver that a
 certain domain name does not exist. It is also used to signal that a
 domain name exists, but does not have the specific RR type you were
 asking for.

 The first is referred to as an NXDOMAIN (non-existent domain)
 ([RFC2308] Section 2.1) and the latter a NODATA ([RFC2308]
 Section 2.2) response. Both are also known as negative responses.

 Authenticated denial of existence uses cryptography to sign the
 negative response. However, if there is no answer, what is it that
 needs to be signed? To further complicate this matter, there is the
 desire to pre-generate negative responses that are applicable for all
 queries for non-existent names in the signed zone. See Section 3 for
 the details.

 In this document, we will explain how authenticated denial of
 existence works. We begin by explaining the current technique in the
 DNS and work our way up to DNSSEC. We explain the first steps taken
 in DNSSEC and describe how NSEC and NSEC3 work. The NXT, NO, NSEC2
 and DNSNR records also briefly make their appearance, as they have
 paved the way for NSEC and NSEC3.

 To complete the picture, we also need to explain DNS wildcards as
 these complicate matters, especially combined with CNAME records.

 Note: In this document, domain names in zone file examples will have
 a trailing dot, in the running text they will not. This text is
 written for people who have a fair understanding of DNSSEC. The
 following RFCs are not required reading, but they help in
 understanding the problem space.

 o RFC 5155 [RFC5155] - Hashed Authenticated Denial of Existence;

 o RFC 4592 [RFC4592] - The Role of Wildcards in the DNS.

 And these provide some general DNSSEC information.

 o RFC 4033, RFC 4034, RFC 4035 [RFC4033], [RFC4034], [RFC4035] -
 DNSSEC Specification;

 o RFC 4956 [RFC4956] - DNS Security (DNSSEC) Opt-In. This RFC has
 experimental status, but is a good read.

 These three drafts give some background information on the NSEC3
 development.

 o The NO record [I-D.ietf-dnsext-not-existing-rr];

https://datatracker.ietf.org/doc/html/rfc2308#section-2.1
https://datatracker.ietf.org/doc/html/rfc2308#section-2.2
https://datatracker.ietf.org/doc/html/rfc2308#section-2.2
https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc4592
https://datatracker.ietf.org/doc/html/rfc4592
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc4956
https://datatracker.ietf.org/doc/html/rfc4956

Gieben & Mekking Expires August 7, 2014 [Page 3]

Internet-Draft Authenticated Denial in DNS February 2014

 o The NSEC2 record [I-D.laurie-dnsext-nsec2v2];

 o The DNSNR record [I-D.arends-dnsnr].

2. Denial of Existence

 We start with the basics and take a look at NXDOMAIN handling in the
 DNS. To make it more visible we are going to use a small DNS zone,
 with 3 names ("example.org", "a.example.org" and "d.example.org") and
 3 types (SOA, A and TXT). For brevity, the class is not shown
 (defaults to IN) and the SOA record is shortened, resulting in the
 following zone file:

 example.org. SOA (...)
 example.org. NS a.example.org.
 a.example.org. A 192.0.2.1
 TXT "a record"
 d.example.org. A 192.0.2.1
 TXT "d record"

 Figure 1: The unsigned "example.org" zone.

2.1. NXDOMAIN Responses

 If a resolver asks for the TXT type belonging to "a.example.org" to
 the name server serving this zone, it sends the following question:
 "a.example.org TXT"

 The name server looks in its zone data and generates an answer. In
 this case a positive one: "Yes it exists and this is the data",
 resulting in this reply:

 ;; status: NOERROR, id: 28203

 ;; ANSWER SECTION:
 a.example.org. TXT "a record"

 ;; AUTHORITY SECTION:
 example.org. NS a.example.org.

 The "status: NOERROR" signals that everything is OK, "id" is an
 integer used to match questions and answers. In the ANSWER section,
 we find our answer. The AUTHORITY section holds the names of the
 name servers that have information concerning the "example.org" zone.
 Note that including this information is optional.

 If a resolver asks for "b.example.org TXT" it gets an answer that
 this name does not exist:

Gieben & Mekking Expires August 7, 2014 [Page 4]

Internet-Draft Authenticated Denial in DNS February 2014

 ;; status: NXDOMAIN, id: 7042

 ;; AUTHORITY SECTION:
 example.org. SOA (...)

 In this case, we do not get an ANSWER section and the status is set
 to NXDOMAIN. From this the resolver concludes that "b.example.org"
 does not exist. The AUTHORITY section holds the SOA record of
 "example.org" that the resolver can use to cache the negative
 response.

2.2. NODATA Responses

 It is important to realize that NXDOMAIN is not the only type of
 does-not-exist. A name may exist, but the type you are asking for
 may not. This occurrence of non-existence is called a NODATA
 response. Let us ask our name server for "a.example.org AAAA", and
 look at the answer:

 ;; status: NOERROR, id: 7944

 ;; AUTHORITY SECTION:
 example.org. SOA (...)

 The status NOERROR shows that the "a.example.org" name exists, but
 the reply does not contain an ANSWER section. This differentiates a
 NODATA response from an NXDOMAIN response, the rest of the packet is
 very similar. The resolver has to put these pieces of information
 together and conclude that "a.example.org" exists, but it does not
 have an "AAAA" record.

3. Secure Denial of Existence

 The above has to be translated to the security aware world of DNSSEC.
 But there are a few principles DNSSEC brings to the table:

 1. A name server is free to compute the answer and signature(s) on-
 the-fly, but the protocol is written with a "first sign, then
 load" attitude in mind. It is rather asymmetrical, but a lot of
 the design in DNSSEC stems from fact that you need to accommodate
 authenticated denial of existence. If the DNS did not have
 NXDOMAIN, DNSSEC would be a lot simpler, but a lot less useful!

 2. The DNS packet header is not signed. This means that a "status:
 NXDOMAIN" can not be trusted. In fact the entire header may be
 forged, including the AD bit (AD stands for Authentic Data, see

RFC 3655 [RFC3655]), which may give some food for thought;

https://datatracker.ietf.org/doc/html/rfc3655
https://datatracker.ietf.org/doc/html/rfc3655

Gieben & Mekking Expires August 7, 2014 [Page 5]

Internet-Draft Authenticated Denial in DNS February 2014

 3. DNS wildcards and CNAME records complicate matters significantly.
 More about this in later sections (Section 5.3 and Section 5.4).

 The first principle implies that all denial of existence answers need
 to be pre-computed, but it is impossible to pre-compute (all
 conceivable) non-existence answers.

 A generic denial record which can be used in all denial of existence
 proofs is not an option: such a record is susceptible to replay
 attacks. When you are querying a name server for any record that
 actually exists, a man-in-the-middle could replay that generic denial
 record that is unlimited in its scope and it would be impossible to
 tell whether the response was genuine or spoofed. In other words,
 the generic record can be replayed to falsely deny _all_ possible
 responses.

 We could also use the QNAME in the answer and sign that; essentially
 signing an NXDOMAIN response. While this approach could have worked
 technically, it is incompatible with off-line signing.

 The way this has been solved is by introducing a record that defines
 an interval between two existing names. Or to put it another way: it
 defines the holes (non-existing names) in the zone. This record can
 be signed beforehand and given to the resolver. Appendix A and

Appendix B describe on-line signing techniques that are compatible
 with this scheme.

 Given all these troubles, why didn't the designers of DNSSEC go
 for the (easy) route and allowed for on-line signing? Well, at
 that time (pre 2000), on-line signing was not feasible with the
 then current hardware. Keep in mind that the larger servers get
 between 2000 and 6000 queries per second (qps), with peaks up to
 20,000 qps or more. Scaling signature generation to these kind of
 levels is always a challenge. Another issue was (and is) key
 management, for on-line signing to work _each_ authoritative name
 server needs access to the private key(s). This is considered a
 security risk. Hence, the protocol required not to rely on on-
 line signing.

 The road to the current solution (NSEC/NSEC3) was long. It started
 with the NXT (next) record. The NO (not existing) record was
 introduced, but never made it to RFC. Later on, NXT was superseded
 by the NSEC (next secure) record. From there it went through NSEC2/
 DNSNR to finally reach NSEC3 (next secure, version 3) in RFC 5155.

https://datatracker.ietf.org/doc/html/rfc5155

Gieben & Mekking Expires August 7, 2014 [Page 6]

Internet-Draft Authenticated Denial in DNS February 2014

3.1. NXT

 The first attempt to specify authenticated denial of existence was
 NXT (RFC 2535 [RFC2535]). Section 5.1 of that RFC introduces the
 record:

 "The NXT resource record is used to securely indicate that RRs
 with an owner name in a certain name interval do not exist in a
 zone and to indicate what RR types are present for an existing
 name."

 By specifying what you do have, you implicitly tell what you don't
 have. NXT is superseded by NSEC. In the next section we explain how
 NSEC (and thus NXT) works.

3.2. NSEC

 In RFC 3755 [RFC3755] all the DNSSEC types were given new names, SIG
 was renamed RRSIG, KEY became DNSKEY and NXT was renamed to NSEC and
 a minor issue was fixed in the process, namely the type bitmap was
 redefined to allow more than 127 types to be listed ([RFC2535],
 Section 5.2).

 Just as NXT, NSEC is used to describe an interval between names: it
 indirectly tells a resolver which names do not exist in a zone.

 For this to work, we need our "example.org" zone to be sorted in
 canonical order ([RFC4034], Section 6.1), and then create the NSECs.
 We add three NSEC records, one for each name, and each one covers a
 certain interval. The last NSEC record points back to the first as
 required by the RFC, and depicted in Figure 2.

 1. The first NSEC covers the interval between "example.org" and
 "a.example.org";

 2. The second NSEC covers "a.example.org" to "d.example.org";

 3. The third NSEC points back to "example.org", and covers
 "d.example.org" to "example.org" (i.e. the end of the zone).

 As we have defined the intervals and put those in resource records,
 we now have something that can be signed.

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc3755
https://datatracker.ietf.org/doc/html/rfc3755
https://datatracker.ietf.org/doc/html/rfc2535#section-5.2
https://datatracker.ietf.org/doc/html/rfc2535#section-5.2
https://datatracker.ietf.org/doc/html/rfc4034#section-6.1

Gieben & Mekking Expires August 7, 2014 [Page 7]

Internet-Draft Authenticated Denial in DNS February 2014

 example.org
 **
 +-- ** <--+
 (1) / . . \ (3)
 / . . \
 | . . |
 v . . |
 ** (2) **
 a.example.org ** ---------> ** d.example.org

 Figure 2: The NSEC records of "example.org". The arrows represent
 NSEC records, starting from the apex.

 This signed zone is loaded into the name server. It looks like this:

 example.org. SOA (...)
 DNSKEY (...)
 NS a.example.org.
 NSEC a.example.org. NS SOA RRSIG NSEC DNSKEY
 RRSIG(NS) (...)
 RRSIG(SOA) (...)
 RRSIG(NSEC) (...)
 RRSIG(DNSKEY) (...)
 a.example.org. A 192.0.2.1
 TXT "a record"
 NSEC d.example.org. A TXT RRSIG NSEC
 RRSIG(A) (...)
 RRSIG(TXT) (...)
 RRSIG(NSEC) (...)
 d.example.org. A 192.0.2.1
 TXT "d record"
 NSEC example.org. A TXT RRSIG NSEC
 RRSIG(A) (...)
 RRSIG(TXT) (...)
 RRSIG(NSEC) (...)

 Figure 3: The signed and sorted "example.org" zone with the added
 NSEC records (and signatures). For brevity, the class is not shown
 (defaults to IN) and the SOA, DNSKEY and RRSIG records are shortened.

 If a DNSSEC aware resolver asks for "b.example.org", it gets back a
 "status: NXDOMAIN" packet, which by itself is meaningless (remember
 that the DNS packet header is not signed and thus can be forged). To
 be able to securely detect that "b" does not exist, there must also
 be a signed NSEC record which covers the name space where "b" lives.
 The record:

 a.example.org. NSEC d.example.org. A TXT RRSIG NSEC

Gieben & Mekking Expires August 7, 2014 [Page 8]

Internet-Draft Authenticated Denial in DNS February 2014

 does precisely that: "b" should come after "a", but the next owner
 name is "d.example.org", so "b" does not exist.

 Only by making that calculation, is a resolver able to conclude that
 the name "b" does not exist. If the signature of the NSEC record is
 valid, "b" is proven not to exist. We have authenticated denial of
 existence.

 Note that a man-in-the-middle may still replay this NXDOMAIN response
 when you're querying for, say, "c.example.org". But it would not do
 any harm since it is provably the proper response to the query.

3.3. NODATA Responses

 NSEC records are also used in NODATA responses. In that case we need
 to look more closely at the type bitmap. The type bitmap in an NSEC
 record tells which types are defined for a name. If we look at the
 NSEC record of "a.example.org", we see the following types in the
 bitmap: A, TXT, NSEC and RRSIG. So for the name "a" this indicates
 we must have an A, TXT, NSEC and RRSIG record in the zone.

 With the type bitmap of the NSEC record, a resolver can establish
 that a name is there, but the type is not. For example, if a
 resolver asks for "a.example.org AAAA", the reply that comes back is:

 ;; status: NOERROR, id: 44638

 ;; AUTHORITY SECTION:
 example.org. SOA (...)
 example.org. RRSIG(SOA) (...)
 a.example.org. NSEC d.example.org. A TXT RRSIG NSEC
 a.example.org. RRSIG(NSEC) (...)

 The resolver should check the AUTHORITY section and conclude that:

 (1) "a.example.org" exists (because of the NSEC with that owner
 name) and;

 (2) the type (AAAA) does not as it is not listed in the type bitmap.

 The techniques used by NSEC form the basics of authenticated denial
 of existence in DNSSEC.

3.4. Drawbacks of NSEC

 There were two issues with NSEC (and NXT). The first is that it
 allows for zone walking. NSEC records point from one name to
 another, in our example: "example.org", points to "a.example.org"

Gieben & Mekking Expires August 7, 2014 [Page 9]

Internet-Draft Authenticated Denial in DNS February 2014

 which points to "d.example.org" which points back to "example.org".
 So we can reconstruct the entire "example.org" zone, thus defeating
 attempts to administratively block zone transfers ([RFC2065]
 Section 5.5).

 The second issue is that when a large, delegation-centric ([RFC5155],
 Section 1.1), zone deploys DNSSEC, every name in the zone gets an
 NSEC plus RRSIG. So this leads to a huge increase in the zone size
 (when signed). This would in turn mean that operators of such zones
 who are deploying DNSSEC, face up front costs. This could hinder
 DNSSEC adoption.

 These two issues eventually lead to NSEC3 which:

 o Adds a way to garble the owner names, thus thwarting zone walking;

 o Makes it possible to skip names for the next owner name. This
 feature is called Opt-Out (See Section 5.1). It means not all
 names in your zone get an NSEC3 plus ditto signature, making it
 possible to "grow into" your DNSSEC deployment.

 Note that there are other ways to mitigate against zone walking. RFC
4470 [(#RFC4470) prevents zone walking by introducing minimally

 covering NSEC records. This technique is described in Appendix A.

 Before we delve into NSEC3, let us first take a look at its
 predecessors: NO, NSEC2, and DNSNR.

4. Experimental and Deprecated Mechanisms: NO, NSEC2 and DNSNR

 Long before NSEC was defined, the NO record was introduced. It was
 the first record to use the idea of hashed owner names, to fix the
 issue of zone walking that was present with the NXT record. It also
 fixed the type bitmap issue of the NXT record, but not in a space
 efficient way. At that time (around 2000) zone walking was not
 considered important enough to warrant the new record. People were
 also worried that DNSSEC deployment would be hindered by developing
 an alternate means of denial of existence. Thus the effort was
 shelved and NXT remained.

 When the new DNSSEC specification [RFC4034] was written, people were
 still not convinced that zone walking was a problem that should be
 solved. So NSEC saw the light and inherited the two issues from NXT.

 Several years after, NSEC2 was introduced as a way to solve the two
 issues of NSEC. The NSEC2 draft contains the following paragraph:

https://datatracker.ietf.org/doc/html/rfc2065#section-5.5
https://datatracker.ietf.org/doc/html/rfc2065#section-5.5
https://datatracker.ietf.org/doc/html/rfc5155#section-1.1
https://datatracker.ietf.org/doc/html/rfc5155#section-1.1
https://datatracker.ietf.org/doc/html/rfc4470
https://datatracker.ietf.org/doc/html/rfc4470
https://datatracker.ietf.org/doc/html/rfc4470
https://datatracker.ietf.org/doc/html/rfc4034

Gieben & Mekking Expires August 7, 2014 [Page 10]

Internet-Draft Authenticated Denial in DNS February 2014

 "This document proposes an alternate scheme which hides owner
 names while permitting authenticated denial of existence of non-
 existent names. The scheme uses two new RR types: NSEC2 and
 EXIST."

 When an authenticated denial of existence scheme starts to talk about
 EXIST records, it is worth paying extra attention. The EXIST record
 was defined as a record without RDATA that would be used to signal
 the presence of a domain name. From the draft:

 "In order to prove the nonexistence of a record that might be
 covered by a wildcard, it is necessary to prove the existence of
 its closest encloser. This record does that. Its owner is the
 closest encloser. It has no RDATA. If there is another RR that
 proves the existence of the closest encloser, this SHOULD be used
 instead of an EXIST record."

 The introduction of this record led to questions on what wildcards
 actually mean (especially in the context of DNSSEC). It is probably
 not a coincidence that "The Role of Wildcards in the Domain Name
 System" ([RFC4592]) was standardized before NSEC3 was.

 NSEC2 solved the zone walking issue by hashing (with SHA1 and a salt)
 the "next owner name" in the record, thereby making it useless for
 zone walking. But it did not have Opt-Out.

 The DNSNR record was another attempt that used hashed names to foil
 zone walking and it also introduced the concept of opting out (called
 "Authoritative Only Flag") which limited the use of DNSNR in
 delegation-centric zones.

 All these proposals didn't make it, but did provide valuable
 insights. To summarize:

 o The NO record introduced hashing, but this idea lingered in the
 background for a long time;

 o The NSEC2 record made it clear that wildcards were not completely
 understood;

 o The DNSNR record used a new flag field in the RDATA to signal Opt-
 Out;

5. NSEC3

 From the experience gained with NSEC2 and DNSNR, NSEC3 was forged.
 It incorporates both Opt-Out and the hashing of names. NSEC3 solves

https://datatracker.ietf.org/doc/html/rfc4592

Gieben & Mekking Expires August 7, 2014 [Page 11]

Internet-Draft Authenticated Denial in DNS February 2014

 any issues people might have with NSEC, but it introduces some
 additional complexity.

 NSEC3 did not supersede NSEC, they are both defined for DNSSEC. So
 DNSSEC is blessed with two different means to perform authenticated
 denial of existence: NSEC and NSEC3. In NSEC3 every name is hashed,
 including the owner name. This means that NSEC3 chain is sorted in
 hash order, instead of canonical order. Because the owner names are
 hashed, the next owner name for "example.org" is unlikely to be
 "a.example.org". Because the next owner name is hashed, zone walking
 becomes more difficult.

 To make it even more difficult to retrieve the original names, the
 hashing can be repeated several times each time taking the previous
 hash as input. To prevent the reuse of pre-generated hash values
 between zones a (per zone) salt can also be added. In the NSEC3 for
 "example.org" we have hashed the names thrice ([RFC5155], Section 5)
 and use the salt "DEAD". Lets look at typical NSEC3 record:

 15bg9l6359f5ch23e34ddua6n1rihl9h.example.org. (
 NSEC3 1 0 2 DEAD A6EDKB6V8VL5OL8JNQQLT74QMJ7HEB84
 NS SOA RRSIG DNSKEY NSEC3PARAM)

 On the first line we see the hashed owner name:
 "15bg9l6359f5ch23e34ddua6n1rihl9h.example.org", this is the hashed
 name of the fully qualified domain name (FQDN) "example.org" encoded
 as Base32 ([RFC4648]). Note that even though we hashed
 "example.org", the zone's name is added to make it look like a domain
 name again. In our zone, the basic format is
 "Base32(SHA1(FQDN)).example.org". The next hashed owner name
 "A6EDKB6V8VL5OL8JNQQLT74QMJ7HEB84" (line 2) is the hashed version of
 "d.example.org", represented as Base32. Note that "d.example.org" is
 used are the next owner name, because in the hash ordering, its hash
 comes after the hash of the zone's apex. Also note that
 ".example.org" is not added to the next hashed owner name, as this
 name always falls in the current zone.

 The "1 0 2 DEAD" section of the NSEC3 states:

 o Hash Algorithm = 1 (SHA1, this is the default, no other hash
 algorithms are currently defined for use in NSEC3);

 o Opt-Out = 0 (disabled);

 o Hash Iterations = 2, this yields three iterations, as a zero value
 is already one iteration;

 o Salt = "DEAD".

https://datatracker.ietf.org/doc/html/rfc5155#section-5
https://datatracker.ietf.org/doc/html/rfc4648

Gieben & Mekking Expires August 7, 2014 [Page 12]

Internet-Draft Authenticated Denial in DNS February 2014

 At the end we see the type bitmap, which is identical to NSEC's
 bitmap, that lists the types present at the original owner name.
 Note that the type NSEC3 is absent from the list in the example
 above. This is due to the fact that the original owner name
 ("example.org") does not have the NSEC3 type. It only exists for the
 hashed name.

 Names like "1.h.example.org" hash to one label in NSEC3,
 "1.h.example.org" becomes:
 "117gercprcjgg8j04ev1ndrk8d1jt14k.example.org" when used as an owner
 name. This is an important observation. By hashing the names you
 lose the depth of a zone - hashing introduces a flat space of names,
 as opposed to NSEC.

 The name used above ("1.h.example.org") creates an empty non-
 terminal. Empty non-terminals are domain names that have no RRs
 associated with them, and exist only because they have one or more
 sub-domains that do ([RFC5155], Section 1.3). The record:

 1.h.example.org. TXT "1.h record"

 creates two names:

 1. "1.h.example.org" that has the type: TXT;

 2. "h.example.org" which has no types. This is the empty non-
 terminal.

 An empty non-terminal will get an NSEC3 record, but not an NSEC
 record. In Section 5.5 is shown how the resolver uses these NSEC3
 records to validate the denial of existence proofs.

 Note that NSEC3 might not always be useful. For example, highly
 structures zones, like the reverse zones ip6.arpa and in-addr.arpa,
 can be walked even with NSEC3 due to their structure. Also the names
 in small, trivial zones can be easily guessed. In these cases, it
 does not help to defend against zone walking, but does add the
 computational load on authoritative servers and validators.

5.1. Opt-Out

 Hashing mitigates the zone walking issue of NSEC. The other issue,
 the high costs of securing a delegation to an insecure zone, is
 tackled with Opt-Out. When using Opt-Out, names that are an insecure
 delegation (and empty non-terminals that are only derived from
 insecure delegations) don't require an NSEC3 record. For each
 insecure delegation, the zone size can be decreased (compared with a
 fully signed zone without using Opt-Out) with at least two records:

https://datatracker.ietf.org/doc/html/rfc5155#section-1.3

Gieben & Mekking Expires August 7, 2014 [Page 13]

Internet-Draft Authenticated Denial in DNS February 2014

 one NSEC3 record and one corresponding RRSIG record. If the insecure
 delegation would introduce empty non-terminals, even more records can
 be omitted from the zone.

 Opt-Out NSEC3 records are not able to prove or deny the existence of
 the insecure delegations. In other words, those delegation do not
 benefit from the cryptographic security that DNSSEC provides.

 A recently discovered corner case ([RFC5155-errata3441]) shows that
 not only those delegations remain insecure, also the empty non-
 terminal space that is derived from those delegations are insecure.
 Because the names in this empty non-terminal space do exist according
 to the definition in [RFC4592], the server should respond to queries
 for these names with a NODATA response. However, the validator
 requires an NSEC3 record proving the NODATA response ([RFC5155],
 Section 8.5):

 "The validator MUST verify that an NSEC3 RR that matches QNAME is
 present and that both the QTYPE and the CNAME type are not set in
 its Type Bit Maps field."

 A way to resolve this contradiction in the specification is to always
 provide empty non-terminals with an NSEC3 record, even if it is only
 derived from an insecure delegation.

5.2. Loading an NSEC3 Zone

 Whenever an authoritative server receives a query for a non-existing
 record, it has to hash the incoming query name to determine into
 which interval between two existing hashes it falls. To do that it
 needs to know the zone's specific NSEC3 parameters (hash iterations
 and salt).

 One way to learn them is to scan the zone during loading for NSEC3
 records and glean the NSEC3 parameters from them. However, it would
 need to make sure that there is at least one complete set of NSEC3
 records for the zone using the same parameters. Therefore, it would
 need to inspect all NSEC3 records.

 A more graceful solution was designed. The solution was to create a
 new record, NSEC3PARAM, which must be placed at the apex of the zone.
 Its role is to provide a fixed place where an authoritative name
 server can directly see the NSEC3 parameters used, and by putting it
 in the zone it allows for easy transfer to the secondaries. If NSEC3
 were designed in the early days of DNS (+/- 1984) this information
 would probably have been put in the SOA record.

https://datatracker.ietf.org/doc/html/rfc4592
https://datatracker.ietf.org/doc/html/rfc5155#section-8.5
https://datatracker.ietf.org/doc/html/rfc5155#section-8.5

Gieben & Mekking Expires August 7, 2014 [Page 14]

Internet-Draft Authenticated Denial in DNS February 2014

5.3. Wildcards in the DNS

 So far, we have only talked about denial of existence in negative
 responses. However, denial of existence may also occur in positive
 responses, i.e., where the ANSWER section of the response is not
 empty. This can happen because of wildcards.

 Wildcards have been part of the DNS since the first DNS RFCs. They
 allow to define all names for a certain type in one go. In our
 "example.org" zone we could for instance add a wildcard record:

 *.example.org. TXT "wildcard record"

 For completeness, our (unsigned) zone now looks like this:

 example.org. SOA (...)
 example.org. NS a.example.org.
 *.example.org. TXT "wildcard record"
 a.example.org. A 192.0.2.1
 TXT "a record"
 d.example.org. A 192.0.2.1
 TXT "d record"

 Figure 4: The example.org zone with a wildcard record.

 If a resolver asks for "z.example.org TXT", the name server will
 respond with an expanded wildcard, instead of an NXDOMAIN:

 ;; status: NOERROR, id: 13658

 ;; ANSWER SECTION:
 z.example.org. TXT "wildcard record"

 Note however that the resolver can not detect that this answer came
 from a wildcard. It just sees the answer as-is. How will this
 answer look with DNSSEC?

 ;; status: NOERROR, id: 51790

 ;; ANSWER SECTION:
 z.example.org. TXT "wildcard record"
 z.example.org. RRSIG(TXT) (...)

 ;; AUTHORITY SECTION:
 d.example.org. NSEC example.org. A TXT RRSIG NSEC
 d.example.org. RRSIG(NSEC) (...)

 Figure 5: A response with an expanded wildcard and with DNSSEC.

Gieben & Mekking Expires August 7, 2014 [Page 15]

Internet-Draft Authenticated Denial in DNS February 2014

 The RRSIG of the "z.example.org" TXT record indicates there is a
 wildcard configured. The RDATA of the signature lists a label count

[RFC4034], Section 3.1.3., of two (not visible in the answer above),
 but the owner name of the signature has three labels. This mismatch
 indicates there is a wildcard "*.example.org" configured.

 An astute reader may notice that it appears as if a
 "z.example.org" RRSIG(TXT) is created out of thin air. This is
 not the case. The signature for "z.example.org" does not exist.
 The signature you are seeing is the one for "*.example.org" which
 does exist, only the owner name is switched to "z.example.org".
 So even with wildcards, no signatures have to be created on the
 fly.

 The DNSSEC standard mandates that an NSEC (or NSEC3) is included in
 such responses. If it wasn't, an attacker could mount a replay
 attack and poison the cache with false data: Suppose that the
 resolver has asked for "a.example.org TXT". An attacker could modify
 the packet in such way that it looks like the response was generated
 through wildcard expansion, even though there exists a record for
 "a.example.org TXT".

 The tweaking simply consists of adjusting the ANSWER section to:

 ;; status: NOERROR, id: 31827

 ;; ANSWER SECTION:
 a.example.org. TXT "wildcard record"
 a.example.org. RRSIG(TXT) (...)

 Figure 6: A forged response without the expanded wildcard.

 Note the subtle difference from Figure 5 in the owner name. In this
 response we see a "a.example.org TXT" record, for which a record with
 different RDATA (See Figure 4) exist in the zone.

 Which would be a perfectly valid answer if we would not require the
 inclusion of an NSEC or NSEC3 record in the wildcard answer response.
 The resolver believes that "a.example.org TXT" is a wildcard record,
 and the real record is obscured. This is bad and defeats all the
 security DNSSEC can deliver. Because of this, the NSEC or NSEC3 must
 be present.

 Another way of putting this is that DNSSEC is there to ensure the
 name server has followed the steps as outlined in [RFC1034],
 Section 4.3.2 for looking up names in the zone. It explicitly lists
 wildcard look up as one of these steps (3c), so with DNSSEC this must
 be communicated to the resolver: hence the NSEC(3) record.

https://datatracker.ietf.org/doc/html/rfc4034#section-3.1.3
https://datatracker.ietf.org/doc/html/rfc1034#section-4.3.2
https://datatracker.ietf.org/doc/html/rfc1034#section-4.3.2

Gieben & Mekking Expires August 7, 2014 [Page 16]

Internet-Draft Authenticated Denial in DNS February 2014

5.4. CNAME Records

 So far, the maximum number of NSEC records a response will have is
 two: one for the denial of existence and another for the wildcard.
 We say maximum, because sometimes a single NSEC can prove both. With
 NSEC3, this is three (as to why, we will explain in the next
 section).

 When we take CNAME wildcard records into account, we can have more
 NSEC(3) records. For every wildcard expansion, we need to prove that
 the expansion was allowed. Lets add some CNAME wildcard records to
 our zone:

 example.org. SOA (...)
 example.org. NS a.example.org.
 *.example.org. TXT "wildcard record"
 a.example.org. A 192.0.2.1
 TXT "a record"
 *.a.example.org. CNAME w.b
 *.b.example.org. CNAME w.c
 *.c.example.org. A 192.0.2.1
 d.example.org. A 192.0.2.1
 TXT "d record"
 w.example.org. CNAME w.a

 Figure 7: A wildcard CNAME chain added to the "example.org" zone.

 A query for "w.example.org A" will result in the following response:

 ;; status: NOERROR, id: 4307

 ;; ANSWER SECTION:
 w.example.org. CNAME w.a.example.org.
 w.example.org. RRSIG(CNAME) (...)
 w.a.example.org. CNAME w.b.example.org.
 w.a.example.org. RRSIG(CNAME) (...)
 w.b.example.org. CNAME w.c.example.org.
 w.b.example.org. RRSIG(CNAME) (...)
 w.c.example.org. A 192.0.2.1
 w.c.example.org. RRSIG(A) (...)

 ;; AUTHORITY SECTION:
 *.a.example.org. NSEC *.b.example.org. CNAME RRSIG NSEC
 *.a.example.org. RRSIG(NSEC) (...)
 *.b.example.org. NSEC *.c.example.org. CNAME RRSIG NSEC
 *.b.example.org. RRSIG(NSEC) (...)
 *.c.example.org. NSEC d.example.org. A RRSIG NSEC
 *.c.example.org. RRSIG(NSEC) (...)

Gieben & Mekking Expires August 7, 2014 [Page 17]

Internet-Draft Authenticated Denial in DNS February 2014

 The NSEC record "*.a.example.org" proves that wildcard expansion to
 "w.a.example.org" was appropriate: "w.a." falls in the gap "*.a" to
 "*.b". Similar, the NSEC record "*.b.example.org" proves that there
 was no direct match for "w.b.example.org" and "*.c.example.org"
 denies the direct match for "w.c.example.org".

 DNAME records and wildcard names should not be used as reiterated in
[RFC6672] Section 3.3.

5.5. The Closest Encloser NSEC3 Record

 We can have one or more NSEC3 records that deny the existence of the
 requested name and one NSEC3 record that deny wildcard synthesis.
 What do we miss?

 The short answer is that, due to the hashing in NSEC3 you loose the
 depth of your zone: Everything is hashed into a flat plane. To make
 up for this loss of information you need an extra record.

 To understand NSEC3, we will need two definitions:

 Closest encloser: Introduced in [RFC4592], "The closest encloser is
 the node in the zone's tree of existing domain names that has the
 most labels matching the query name (consecutively, counting from
 the root label downward)." In our example, if the query name is
 "x.2.example.org" then "example.org" is the "closest encloser";

 Next closer name: Introduced in the NSEC3 RFC, this is the closest
 encloser with one more label added to the left. So if
 "example.org" is the closest encloser for the query name
 "x.2.example.org", "2.example.org" is the "next closer name".

 An NSEC3 "closest encloser proof" consists of:

 1. An NSEC3 record that *matches* the "closest encloser". This
 means the unhashed owner name of the record is the closest
 encloser. This bit of information tells a resolver: "The name
 you are asking for does not exist, the closest I have is this".

 2. An NSEC3 record that *covers* the "next closer name". This means
 it defines an interval in which the "next closer name" falls.
 This tells the resolver: "The next closer name falls in this
 interval, and therefore the name in your question does not exist.
 In fact, the closest encloser is indeed the closest I have".

 These two records already deny the existence of the requested name,
 so we do not need an NSEC3 record that covers the actual queried

https://datatracker.ietf.org/doc/html/rfc6672#section-3.3
https://datatracker.ietf.org/doc/html/rfc4592

Gieben & Mekking Expires August 7, 2014 [Page 18]

Internet-Draft Authenticated Denial in DNS February 2014

 name: By denying the existence of the next closer name, you also deny
 the existence of the queried name.

 Note that with NSEC, the existence of all empty non-terminals between
 the two names are denied, hence implicitly contains the closest
 encloser.

 For a given query name, there is one (and only one) place where
 wildcard expansion is possible. This is the "source of synthesis",
 and is defined ([RFC4592], Section 2.1.1 and Section 3.3.1) as:

 <asterisk label>.<closest encloser>

 In other words, to deny wildcard synthesis, the resolver needs to
 know the hash of the source of synthesis. Since it does not know
 beforehand what the closest encloser of the query name is, it must be
 provided in the answer.

 Take the following example. We take our zone, and put two TXT
 records to it. The records added are "1.h.example.org" and
 "3.3.example.org". It is signed with NSEC3, resulting in the
 following unsigned zone.

 example.org. SOA (...)
 example.org. NS a.example.org.
 1.h.example.org. TXT "1.h record"
 3.3.example.org. TXT "3.3 record"

 Figure 8: The added TXT records in example.org. These records create
 two empty non-terminals: h.example.org and 3.example.org.

 The resolver asks the following: "x.2.example.org TXT". This leads
 to an NXDOMAIN response from the server, which contains three NSEC3
 records. A list of hashed owner names can be found in Appendix C.
 Also see Figure 9 the numbers in that figure correspond with the
 following NSEC3 records:

 15bg9l6359f5ch23e34ddua6n1rihl9h.example.org. (
 NSEC3 1 0 2 DEAD 1AVVQN74SG75UKFVF25DGCETHGQ638EK NS SOA RRSIG
 DNSKEY NSEC3PARAM)

 1avvqn74sg75ukfvf25dgcethgq638ek.example.org. (
 NSEC3 1 0 2 DEAD 75B9ID679QQOV6LDFHD8OCSHSSSB6JVQ)

 75b9id679qqov6ldfhd8ocshsssb6jvq.example.org. (
 NSEC3 1 0 2 DEAD 8555T7QEGAU7PJTKSNBCHG4TD2M0JNPJ TXT RRSIG)

https://datatracker.ietf.org/doc/html/rfc4592#section-2.1.1

Gieben & Mekking Expires August 7, 2014 [Page 19]

Internet-Draft Authenticated Denial in DNS February 2014

 If we would follow the NSEC approach, the resolver is only interested
 in one thing. Does the hash of "x.2.example.org" fall in any of the
 intervals of the NSEC3 records it got?

 example.org
 **
 +-- **
 (1) / . ^ . .
 / . | . .
 | . | . .
 v . | . .
 ** | (2) ** ++
 h.example.org ** ----+----> ** 3.example.org ++ 2.example.org
 . / . | .
 . / (5) . | (3) .
 . / . | .
 . / . v .
 1.h.example.org ** ** ++
 ** <--------- ** 3.3.example.org ++ x.2.example.org
 (4)

 Figure 9: x.2.example.org does not exist. The five arrows represent
 the NSEC3 records, the ones numbered (1), (2) and (3) are the NSEC3s
 returned in our answer. 2.example.org is covered by (3) and
 x.2.example.org is covered by (4).

 The hash of "x.2.example.org" is "ndtu6dste50pr4a1f2qvr1v31g00i2i1".
 Checking this hash on the first NSEC3 yields that it does not fall in
 between the interval: "15bg9l6359f5ch23e34ddua6n1rihl9h" and
 "1avvqn74sg75ukfvf25dgcethgq638ek". For the second NSEC3 the answer
 is also negative: the hash sorts outside the interval described by
 "1avvqn74sg75ukfvf25dgcethgq638ek" and
 "75b9id679qqov6ldfhd8ocshsssb6jvq". And the third NSEC3, with
 interval "75b9id679qqov6ldfhd8ocshsssb6jvq" to
 "8555t7qegau7pjtksnbchg4td2m0jnpj" also isn't of any help.

 What is a resolver to do? It has been given the maximum amount of
 NSEC3s and they all seem useless.

 So this is where the closest encloser proof comes into play. And for
 the proof to work, the resolver needs to know what the closest
 encloser is. There must be an existing ancestor in the zone: a name
 must exist that is shorter than the query name. The resolver keeps
 hashing increasingly shorter names from the query name until an owner
 name of an NSEC3 matches. This owner name is the closest encloser.

 When the resolver has found the closest encloser, the next step is to
 construct the next closer name. This is the closest encloser with

Gieben & Mekking Expires August 7, 2014 [Page 20]

Internet-Draft Authenticated Denial in DNS February 2014

 the last chopped label from query name pre-pended to it: "<last
 chopped label>.<closest encloser>". The hash of this name should be
 covered by the interval set in any of the NSEC3 records.

 Then the resolver needs to check the presence of a wildcard. It
 creates the wildcard name by pre-pending the asterisk label to the
 closest encloser: "*.<closest encloser>", and uses the hash of that.

 Going back to our example, the resolver must first detect the NSEC3
 that matches the closest encloser. It does this by chopping up the
 query name, hashing each instance (with the same number of iterations
 and hash as the zone it is querying) and comparing that to the
 answers given. So it has the following hashes to work with:

 x.2.example.org: "ndtu6dste50pr4a1f2qvr1v31g00i2i1", last chopped
 label: "<empty>";

 2.example.org: "7t70drg4ekc28v93q7gnbleopa7vlp6q", last chopped
 label: "x";

 example.org: "15bg9l6359f5ch23e34ddua6n1rihl9h", last chopped label:
 "2";

 Of these hashes only one matches the owner name of one of the NSEC3
 records: "15bg9l6359f5ch23e34ddua6n1rihl9h". This must be the
 closest encloser (unhashed: "example.org"). That's the main purpose
 of that NSEC3 record: tell the resolver what the closest encloser is.

 When using Opt-Out, it is possible that the actual closest encloser
 to the QNAME does not have an NSEC3 record. If so, we will have to
 do with the closest provable encloser, which is the closest enclosing
 authoritative name that does have a NSEC3 record. In the worst case,
 this is the NSEC3 record corresponding to the apex, this name must
 always have an NSEC3 record.

 With the closest (provable) encloser, the resolver constructs the
 next closer, which in this case is: "2.example.org"; "2" is the last
 label chopped, when "example.org" is the closest encloser. The hash
 of this name should be covered in any of the other NSEC3s. And it is,
 "7t70drg4ekc28v93q7gnbleopa7vlp6q" falls in the interval set by:
 "75b9id679qqov6ldfhd8ocshsssb6jvq" and
 "8555t7qegau7pjtksnbchg4td2m0jnpj" (this is our second NSEC3).

 So what does the resolver learn from this?

 o "example.org" exists;

 o "2.example.org" does not exist.

Gieben & Mekking Expires August 7, 2014 [Page 21]

Internet-Draft Authenticated Denial in DNS February 2014

 And if "2.example.org" does not exist, there is also no direct match
 for "x.2.example.org". The last step is to deny the existence of the
 source of synthesis, to prove that no wildcard expansion was
 possible.

 The resolver hashes "*.example.org" to
 "22670trplhsr72pqqmedltg1kdqeolb7" and checks that it is covered: in
 this case by the last NSEC3 (see Figure 9), the hash falls in the
 interval set by "1avvqn74sg75ukfvf25dgcethgq638ek" and
 "75b9id679qqov6ldfhd8ocshsssb6jvq". This means there is no wildcard
 record directly below the closest encloser and "x.2.example.org"
 definitely does not exist.

 When we have validated the signatures, we reached our goal:
 authenticated denial of existence.

5.6. Three To Tango

 One extra NSEC3 record plus additional signature may seem a lot just
 to deny the existence of the wildcard record, but we cannot leave it
 out. If the standard would not mandate the closest encloser NSEC3
 record, but instead required two NSEC3 records: one to deny the query
 name and one to deny the wildcard record. An attacker could fool the
 resolver that the source of synthesis does not exist, while it in
 fact does.

 Suppose the wildcard record does exist, so our unsigned zone looks
 like this:

 example.org. SOA (...)
 example.org. NS a.example.org.
 *.example.org. TXT "wildcard record"
 1.h.example.org. TXT "1.h record"
 3.3.example.org. TXT "3.3 record"

 The query "x.2.example.org TXT" should now be answered with:

 x.2.example.org. TXT "wildcard record"

 An attacker can deny this wildcard expansion by calculating the hash
 for the wildcard name "*.2.example.org" and searching for an NSEC3
 record that covers that hash. The hash of "*.2.example.org" is
 "fbq73bfkjlrkdoqs27k5qf81aqqd7hho". Looking through the NSEC3
 records in our zone we see that the NSEC3 record of "3.3" covers this
 hash:

 8555t7qegau7pjtksnbchg4td2m0jnpj.example.org. (
 NSEC3 1 0 2 DEAD 15BG9L6359F5CH23E34DDUA6N1RIHL9H TXT RRSIG)

Gieben & Mekking Expires August 7, 2014 [Page 22]

Internet-Draft Authenticated Denial in DNS February 2014

 This record also covers the query name "x.2.example.org"
 ("ndtu6dste50pr4a1f2qvr1v31g00i2i1").

 Now an attacker adds this NSEC3 record to the AUTHORITY section of
 the reply to deny both "x.2.example.org" and any wildcard expansion.
 The net result is that the resolver determines that "x.2.example.org"
 does not exist, while in fact it should have been synthesized via
 wildcard expansion. With the NSEC3 matching the closest encloser
 "example.org", the resolver can be sure that the wildcard expansion
 should occur at "*.example.org" and nowhere else.

 Coming back to the original question: why do we need up to three
 NSEC3 records to deny a requested name? The resolver needs to be
 explicitly told what the "closest encloser" is and this takes up a
 full NSEC3 record. Then, the next closer name needs to be covered in
 an NSEC3 record, and finally an NSEC3 must say something about
 whether wildcard expansion was possible. That makes three to tango.

6. Security Considerations

 DNSSEC does not protect against denial of service attacks, nor does
 it provide confidentiality. For more general security considerations
 related to DNSSEC, please see RFC 4033, RFC 4034, RFC 4035 and RFC

5155 ([RFC4033], [RFC4034], [RFC4035] and [RFC5155]).

 These RFCs are concise about why certain design choices have been
 made in the area of authenticated denial of existence.
 Implementations that do not correctly handle this aspect of DNSSEC,
 create a severe hole in the security DNSSEC adds. This is
 specifically troublesome for secure delegations: If an attacker is
 able to deny the existence of a DS record, the resolver cannot
 establish a chain of trust, and the resolver has to fall back to
 insecure DNS for the remainder of the query resolution.

 This document aims to fill this "documentation gap" and provide
 would-be implementors and other interested parties with enough
 background knowledge to better understand authenticated denial of
 existence.

7. IANA Considerations

 This document has no actions for IANA.

8. Acknowledgments

 This document would not be possible without the help of Ed Lewis, Roy
 Arends, Wouter Wijngaards, Olaf Kolkman, Carsten Strotmann, Jan-Piet
 Mens, Peter van Dijk, Marco Davids, Esther Makaay, Antoin Verschuren,

https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc5155

Gieben & Mekking Expires August 7, 2014 [Page 23]

Internet-Draft Authenticated Denial in DNS February 2014

 Lukas Wunner, Joe Abley, Ralf Weber, Geoff Huston, Dave Lawrence,
 Tony Finch and Mark Andrews. Also valuable was the source code of
 Unbound. ("validator/val_nsec3.c") [Unbound].

 Extensive feedback for early versions was received from Karst
 Koymans.

9. References

9.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC2065] Eastlake, D. and C. Kaufman, "Domain Name System Security
 Extensions", RFC 2065, January 1997.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, March 1998.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements", RFC

4033, March 2005.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",

RFC 4034, March 2005.

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, March 2005.

 [RFC4592] Lewis, E., "The Role of Wildcards in the Domain Name
 System", RFC 4592, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
 Security (DNSSEC) Hashed Authenticated Denial of
 Existence", RFC 5155, March 2008.

 [RFC6672] Rose, S. and W. Wijngaards, "DNAME Redirection in the
 DNS", RFC 6672, June 2012.

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc2065
https://datatracker.ietf.org/doc/html/rfc2308
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc4592
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc6672

Gieben & Mekking Expires August 7, 2014 [Page 24]

Internet-Draft Authenticated Denial in DNS February 2014

9.2. Informative References

 [I-D.arends-dnsnr]
 Arends, R., "DNSSEC Non-Repudiation Resource Record",

draft-arends-dnsnr-00 (work in progress), July 2004.

 [I-D.ietf-dnsext-not-existing-rr]
 Josefsson, S., "Authenticating denial of existence in DNS
 with minimum disclosure", draft-ietf-dnsext-not-existing-

rr-01 (work in progress), November 2000.

 [I-D.laurie-dnsext-nsec2v2]
 Laurie, B., "DNSSEC NSEC2 Owner and RDATA Format", draft-

laurie-dnsext-nsec2v2-00 (work in progress), December
 2004.

 [RFC2535] Eastlake, D., "Domain Name System Security Extensions",
RFC 2535, March 1999.

 [RFC3655] Wellington, B. and O. Gudmundsson, "Redefinition of DNS
 Authenticated Data (AD) bit", RFC 3655, November 2003.

 [RFC3755] Weiler, S., "Legacy Resolver Compatibility for Delegation
 Signer (DS)", RFC 3755, May 2004.

 [RFC4470] Weiler, S. and J. Ihren, "Minimally Covering NSEC Records
 and DNSSEC On-line Signing", RFC 4470, April 2006.

 [RFC4956] Arends, R., Kosters, M., and D. Blacka, "DNS Security
 (DNSSEC) Opt-In", RFC 4956, July 2007.

 [RFC5155-errata3441]
 Lewis, E., "Technical Errata against RFC 5155 (not
 acknowledged)", January 2013.

 [Unbound] NLnet Labs, "Unbound: a validating, recursive, and caching
 DNS resolver", 2006, <http://unbound.net>.

 [phreebird]
 Kaminsky, D., "Phreebird: a DNSSEC proxy", January 2011,
 <http://dankaminsky.com/phreebird/>.

https://datatracker.ietf.org/doc/html/draft-arends-dnsnr-00
https://datatracker.ietf.org/doc/html/draft-ietf-dnsext-not-existing-rr-01
https://datatracker.ietf.org/doc/html/draft-ietf-dnsext-not-existing-rr-01
https://datatracker.ietf.org/doc/html/draft-laurie-dnsext-nsec2v2-00
https://datatracker.ietf.org/doc/html/draft-laurie-dnsext-nsec2v2-00
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc3655
https://datatracker.ietf.org/doc/html/rfc3755
https://datatracker.ietf.org/doc/html/rfc4470
https://datatracker.ietf.org/doc/html/rfc4956
https://datatracker.ietf.org/doc/html/rfc5155
http://unbound.net
http://dankaminsky.com/phreebird/

Gieben & Mekking Expires August 7, 2014 [Page 25]

Internet-Draft Authenticated Denial in DNS February 2014

Appendix A. On-line Signing: Minimally Covering NSEC Records

 An NSEC record lists the next existing name in a zone, and thus makes
 it trivial to retrieve all the names from the zone. This can also be
 done with NSEC3, but an adversary will then retrieve all the hashed
 names. With DNSSEC on-line signing, zone walking can be prevented by
 faking the next owner name.

 To prevent retrieval of the next owner name with NSEC, a different,
 non-existing (according to the existence rules in []#RFC4592,
 Section 2.2) name is used. However, not just any name can be used
 because a validator may make assumptions on the size of the span the
 NSEC record covers. The span must be large enough to cover the
 QNAME, but not too large that it covers existing names.

 [RFC4470] introduces a scheme for generating minimally covering NSEC
 records. These records use a next owner name that is lexically
 closer to the NSEC owner name than the actual next owner name,
 ensuring that no existing names are covered. The next owner name can
 be derived from the QNAME with the use of so-called epsilon
 functions.

 For example, to deny the existence of "b.example.org" in the zone
 from Section 3.2, the following NSEC record could have been
 generated:

 a.example.org. NSEC c.example.org. RRSIG NSEC

 This record also proves that "b.example.org" also does not exist, but
 an adversary _cannot_ use the next owner name in a zone walking
 attack. Note the type bitmap only has the RRSIG and NSEC set,
 because [RFC4470] states:

 The generated NSEC record's type bitmap MUST have the RRSIG and
 NSEC bits set and SHOULD NOT have any other bits set.

 This is because the NSEC records may appear at names that did not
 exist before the zone was signed. In this case however,
 "a.example.org" exists with other RR types and we could have also set
 the A and TXT types in the bitmap.

 Because DNS ordering is very strict, the span should be shortened to
 a minimum. In order to do so, the last character in the leftmost
 label of the NSEC owner name needs to be decremented and the label
 must be filled with octets of value 255 until the label length
 reaches the maximum of 63 octets. The next owner name is the QNAME
 with a leading label with a single null octet added. This gives the
 following minimally covering record for "b.example.org":

https://datatracker.ietf.org/doc/html/rfc4592#section-2.2
https://datatracker.ietf.org/doc/html/rfc4592#section-2.2
https://datatracker.ietf.org/doc/html/rfc4470

Gieben & Mekking Expires August 7, 2014 [Page 26]

Internet-Draft Authenticated Denial in DNS February 2014

 a\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
 \255\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
 \255\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
 \255\255\255\255\255\255\255\255\255\255\255.example.org. (
 NSEC \000.b.example.org. RRSIG NSEC)

Appendix B. On-line Signing: NSEC3 White Lies

 The same principle of minimally covering spans can be applied to
 NSEC3 records. This mechanism has been dubbed "NSEC3 White Lies"
 when it was implemented in Phreebird [phreebird]. Here, the NSEC3
 owner name is the hash of the QNAME minus one and the next owner name
 is the hash of the QNAME plus one.

 The following NSEC3 white lie denies "b.example.org" (recall this
 hashes to "iuu8l5lmt76jeltp0bir3tmg4u3uu8e7"):

 iuu8l5lmt76jeltp0bir3tmg4u3uu8e6.example.org. (
 NSEC3 1 0 2 DEAD IUU815LMT76JELTP0BIR3TMG4U3UU8E8)

 The type bitmap is empty in this case. If the hash of
 "b.example.org" - 1 is a collision with an existing name, the bitmap
 should have been filled with the RR types that exist at that name.
 This record actually denies the existence of the next closer name
 (which is conveniently "b.example.org"). Of course the NSEC3 records
 to match the closest encloser and the one to deny the wildcard are
 still required. These can be generated too:

 # Matching `example.org`: `15bg9l6359f5ch23e34ddua6n1rihl9h`
 15bg9l6359f5ch23e34ddua6n1rihl9h.example.org. (
 NSEC3 1 0 2 DEAD 15BG9L6359F5CH23E34DDUA6N1RIHL9I NS SOA RRSIG
 DNSKEY NSEC3PARAM)

 # Covering `*.example.org`: `22670trplhsr72pqqmedltg1kdqeolb7`
 22670trplhsr72pqqmedltg1kdqeolb6.example.org.(
 NSEC3 1 0 2 DEAD 22670TRPLHSR72PQQMEDLTG1KDQEOLB8)

Appendix C. List of Hashed Owner Names

 The following owner names are used in this document. The origin for
 these names is "example.org".

Gieben & Mekking Expires August 7, 2014 [Page 27]

Internet-Draft Authenticated Denial in DNS February 2014

 +----------------+-------------------------------------+
 | Original Name | Hashed Name |
 +----------------+-------------------------------------+
 | "a" | "04sknapca5al7qos3km2l9tl3p5okq4c" |
 | "1.h" | "117gercprcjgg8j04ev1ndrk8d1jt14k" |
 | "@" | "15bg9l6359f5ch23e34ddua6n1rihl9h" |
 | "h" | "1avvqn74sg75ukfvf25dgcethgq638ek" |
 | "*" | "22670trplhsr72pqqmedltg1kdqeolb7" |
 | "3" | "75b9id679qqov6ldfhd8ocshsssb6jvq" |
 | "2" | "7t70drg4ekc28v93q7gnbleopa7vlp6q" |
 | "3.3" | "8555t7qegau7pjtksnbchg4td2m0jnpj" |
 | "d" | "a6edkb6v8vl5ol8jnqqlt74qmj7heb84" |
 | "*.2" | "fbq73bfkjlrkdoqs27k5qf81aqqd7hho" |
 | "b" | "iuu8l5lmt76jeltp0bir3tmg4u3uu8e7" |
 | "x.2" | "ndtu6dste50pr4a1f2qvr1v31g00i2i1" |
 +----------------+-------------------------------------+

 Table 1: Hashed owner names for "example.org" in hash order.

Appendix D. Changelog

 [This section should be removed by the RFC editor before publishing]

D.1. -00

 1. Initial document.

D.2. -01

 1. Style and language changes;

 2. Figure captions;

 3. Security considerations added;

 4. Fix erroneous NSEC3 RR;

 5. Section on CNAMEs added;

 6. More detailed text on closest encloser proof.

D.3. -02

 1. Lowercase NSEC3 hashed ownernames and add reference to Base32;

 2. Process the comments from Joe Abley and Geoff Huston.

 * Added section about Opt-Out;

Gieben & Mekking Expires August 7, 2014 [Page 28]

Internet-Draft Authenticated Denial in DNS February 2014

 * Move experimental records in their own section;

 * Added DNAME reference with respect to wildcards;

 * Clarify the difference between the wildcard answers;

 * Add more context about the NO record;

 * Elaborate more about the EXIST records and its problems;

 * Added more text about the NSEC3PARAM records;

 * Apply assorted fixes throughout the document;

 * Moved table with hashed owner names to appendix.

D.4. -03

 1. Changed affiliation for R. Gieben;

 2. Some minor updates.

D.5. -04

 1. Added NS record in all zone examples;

 2. Some tweaks in the text regarding on-line signing;

 3. Add more text on a non-working "generic non-existence records".

 4. Add appendix on on-line signing;

 5. Add text on usefulness of NSEC3.

D.6. -05

 1. Minor fixes and adjustments.

D.7. -06

 1. Removed a paragraph that wasn't clear. No other changes.

Authors' Addresses

 R. (Miek) Gieben
 Google

 EMail: miek@google.com

Gieben & Mekking Expires August 7, 2014 [Page 29]

Internet-Draft Authenticated Denial in DNS February 2014

 W. (Matthijs) Mekking
 NLnet Labs
 Science Park 400
 Amsterdam 1098 XH
 NL

 EMail: matthijs@nlnetlabs.nl
 URI: http://www.nlnetlabs.nl/

Gieben & Mekking Expires August 7, 2014 [Page 30]

http://www.nlnetlabs.nl/

