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Abstract

This document proposes an extension to the base Application-Layer

Traffic Optimization(ALTO) protocol to support the computation of

bottleneck structure graphs 

[I-D.draft-giraltyellamraju-alto-bsg-requirements] under partial

information. A primary application corresponds to the case of multi-

domain networks, whereby each network domain is administered

separately and lacks information about the other domains. A proposed

border protocol is introduced that ensures each domain's independent

convergence to the correct bottleneck substructure graph without the

need to know private flow and topology information from other

domains. Initial discussions are presented on the necessary

requirements to integrate the proposed capability into the ALTO

standard.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

giralt.github.io/draft-ietf-alto-gradientgraph-multidomain/draft-

giraltyellamraju-alto-bsg-multidomain.html. Status information for

this document may be found at https://datatracker.ietf.org/doc/

draft-giraltyellamraju-alto-bsg-multidomain/.

Discussion of this document takes place on the Application-Layer

Traffic Optimization Working Group mailing list

(mailto:alto@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/alto/. Subscribe at https://

www.ietf.org/mailman/listinfo/alto/.
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Source for this draft and an issue tracker can be found at https://

github.com/giralt/draft-ietf-alto-gradientgraph-multidomain.
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1. Introduction

Bottleneck structures have been recently introduced in [G2-SIGCOMM]

and [G2-SIGMETRICS] as efficient computational graphs that embed

information about the topology, routing and flow information of a

network. These computational graphs allow network operators and

application service providers to compute network derivatives that

can be used to make traffic optimization decisions. For instance,

using the bottleneck structure of a network, a real-time

communication (RTC) application can efficiently estimate the multi-

hop end-to-end available bandwidth, and use that information to tune

the encoder's transmission rate and optimize the user's Quality of

Experience (QoE). Bottleneck structures can be used by the

application to address a wide variety of communication optimization

problems, including routing, flow control, flow scheduling,

bandwidth prediction, and network slicing, among others.

The ALTO draft [I-D.draft-giraltyellamraju-alto-bsg-requirements]

introduces a new abstraction called Bottleneck Structure Graph (BSG)

and the necessary initial requirements to integrate it into the

existing ALTO services (Network Map, Cost Map, Entity Property Map

and Endpoint Cost Map) exposing the properties of the bottleneck

structure to help optimize application performance. When the ALTO

server has full visibility of the network (i.e., all of its links,

routes, and flows), the bottleneck structure can be computed using

the algorithm introduced in [G2-SIGCOMM] [G2-SIGMETRICS]. In many

scenarios, however, flows traverse multiple autonomous systems

(ASs), and thus an ALTO server deployed in one AS may not have

access to topological and flow information from the other domains.

In this document, we describe a border protocol that allows ALTO

servers in each AS to share their local path metrics dictionary

(obtained via their local computation of the bottleneck structure

graph) with their neighbouring ASs. Using the algorithm introduced

in this document, this information alone is enough to ensure

independent convergence by each AS to the correct bottleneck

structure. This cooperative solution presents similar properties as

those found in well-known IETF protocols such as BGP, including the

properties of scalability (since metrics only need to be shared on a

per-path rather than per-flow basis, and only between neighboring

ASs) and privacy (since no sensitive flow or topology information

needs to be shared).
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We also present initial discussions on the necessary requirements to

integrate the proposed capability into the ALTO standard.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Distributed Protocol to Compute the Bottleneck Structure of an AS

3.1. Motivation

In many real-world communication problems, data flows need to

traverse multiple network domains, each one administered by a

different operator that is responsible for (1) maintaining its own

(and only its own) domain and (2) ensuring interoperability with the

other domains. The quintessential example of multi-domain networks

is the Internet, designed as a "network of interconnected networks",

commonly known as autonomous systems (ASs).

In multi-domain networking environments, the operator in each domain

only has visibility of its own network. In particular, the operator

may know with precision the topology, the capacity of each link, the

classes of quality of service (QoS) to serve, and the flows

currently active in their network, but usually has no knowledge

about the structure and state of any other network in the multi-

domain environment. For instance, a data flow may need to cross two

network domains, one operated by Operator O1 and another one

operated by Operator O2. O1 has no visibility into the network

operated by O2, while O2 has no visibility into the network operated

by O1. Yet both networks need to cooperate in order to ensure the

end-to-end QoS required by the flow.

Bottleneck structures ([G2-SIGCOMM], [G2-SIGMETRICS]) are

computational graphs that characterize the state of a communication

network allowing human operators and machines to compute network

derivatives very fast. These derivatives are core building blocks

that enable the optimization of networks in a variety of problems

including traffic engineering, routing, flow scheduling, capacity

planning, resilience analysis and network design. In order to

compute the bottleneck structure of a network, information of the

set of links traversed by each flow and the capacity of the links is

required. In a multi-domain networking environment, however, such

information is only known partially. For instance, in the example

above, operator O1 can know the set of links traversed by a flow

that reside in its own network, but may not know the set of links
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traversed by a flow that reside in the operator O2 network.

Moreover, in many cases, such information is considered confidential

for security, privacy and competitiveness reasons.

In this document, we introduce a distributed protocol that addresses

the above problem, enabling the computation of bottleneck structures

under the scenario of partial information. In particular, an

algorithm to compute the bottleneck structure of a network domain--

referred as the bottleneck substructure--is introduced that only

requires a simple, scalable, and secure cooperative exchange of a

path metric between neighboring autonomous systems to ensure global

convergence to the correct state. Because network operators do have

the ability to cooperate (provided that the exchange is simple,

secure and guarantees privacy), the algorithm provides a practical

methodology to optimize system-wide flow performance in a multi-

domain network.

3.2. Base Protocol Definitions

In this section, we briefly state the basic definition of bottleneck

structure and introduce a few simple additional definitions that are

necessary to understand the proposed protocol. For a more thorough

description of the bottleneck structure framework, please refer to 

[I-D.draft-giraltyellamraju-alto-bsg-requirements].

Let L and F be the set of links and flows of a network,

respectively. Its bottleneck structure is defined as follows:

Links and flows are represented by vertices in the graph.

There is a directed edge from a link l to a flow f if and only if

flow f is bottlenecked at link l.

There is a directed edge from a flow f to a link l if and only if

flow f traverses link l.

Since the above definition corresponds to a graph, we use the terms 

bottleneck structure and bottleneck structure graph (BSG)

interchangeably.

As shown in [I-D.draft-giraltyellamraju-alto-bsg-requirements], the

BSG explains how perturbations in a network (e.g., the arrival or

departure of a flow, the change in link capacity of a network, a

link failure, etc.) propagate through the network. Mathematically,

these perturbations can be understood as network derivatives.

Because these derivates can be computed in the graph as simple delta

calculations, the BSG enables a computationally scalable mechanism

to optimize a network for a variety of use cases such as optimal

path computation, bandwidth prediction, service placement, or
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network topology reconfiguration, among others ([G2-SIGCOMM], 

[G2-SIGMETRICS]).

To achieve scalability, the protocol proposed in this document uses

a version of the bottleneck structure graph called Path Gradient

Graph (PGG) (see 

[I-D.draft-giraltyellamraju-alto-bsg-requirements]). The PGG

significantly reduces the size of the bottleneck structure graph by

collapsing all the vertices of the flows that follow the same path

into a single vertex called the path vertex. This technique leads to

a more compact representation of the bottleneck structure graph

(thus, significantly reducing computational complexity and memory

storage) without affecting its accuracy.

The following table introduces additional conventions and

definitions that are used in the description of the distributed

protocol in the next section:

Notation Description

A The set of autonomous systems (ASs).

A_i An AS in A, for i = 1, ..., |A|.

P(A_i) =

{p_1, ...,

p_|P(A_i)|}

The set of active paths found in A_i. These are paths

for which there exist 0traffic flowing through them.

L(A_i) =

{l_1, ...,

l_|L(A_i)|}

The set of active links found in A_i. These are links

for which there exists traffic flowing through them.

B

The global bottleneck structure graph. The form of

bottleneck structure used by the distributed algorithm

introduced in this document is the Path Gradient Graph 

[I-D.draft-giraltyellamraju-alto-bsg-requirements].

B.BW(p)

The bandwidth available to path p according to the

global bottleneck structure. This is always the globally

correct available bandwidth for path p.

B(A_i)

The bottleneck substructure of A_i, corresponding to the

subgraph of B that includes (1) the vertices

corresponding to the paths in P(A_i), (2) the vertices

corresponding to the links in L(A_i) and (3) all the

edges in B that connect them. If a path p in P(A_i) is

bottlenecked at a link not in L(A_i), then B(P, L)

includes a virtual link v with capacity equal to B.BW(p)

and a directed edge from v to p.

B(A_i).BW(p)

The bandwidth available to path p according to the

bottleneck substructure of A_i. This value is equal to

B.BW(p) when the distributed algorithm terminates.

PL(A_i)

A dictionary mapping every path in P(A_i) with the

subset of links in L(A_i) that it traverses. Note that a

path p can traverse one or more links not in L(A_i).

¶
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Notation Description

This reflects the notion of partial information inherent

to multi-domain networking environments. That is, A_i

may not know all the links traversed by its active

paths; in particular, it only knows the subset of links

that are in A_i.

C(A_i)
A dictionary mapping each link in A_i with its capacity

(in bps).

N(A_i) The set of ASs that are neighbors of A_i.

PM(A_i)(p)

The current bandwidth available to path p as computed by

A_i. This is also known as the path metric of p

according to A_i.

Table 1: Conventions and definitions used in the description of the

distributed protocol.

3.3. Description of The Distributed Protocol

The algorithm run by each autonomous system AS_i, 1 <= i <= |A|,

consists of two independently executed events as follows:

Event: TIMER

Event: PATH_METRIC_EXCHANGE

As shown above, using a PATH_METRIC_ANNOUNCEMENT message, each AS

periodically shares local path metric information with its neighbor

ASs. It can be shown that this information alone is enough to ensure

the convergence of all the participating ASs to their correct

bottleneck substructure. (This is similar to the way BGP [RFC4271]

sends Update Messages to converge to a globally correct routing

table by only exchanging local knowledge between neighbor ASs.)

The procedure COMPUTE_BOTTLENECK_SUBSTRUCTURE is called from the

TIMER event, and it is responsible for computing the bottleneck

substructure. It can be proven that this procedure converges to the

¶

¶

    - Every s seconds, perform the following tasks:

        1. B(A_i) = COMPUTE_BOTTLENECK_SUBSTRUCTURE(L(A_i), PL(A_i), C(A_i), PM(A_i));

        2. PM(A_i)(p) = B(A_i).BW(p), for all p in P(A_i);

        3. For all A_j in N(A_i):

            3.1 Send to A_j a PATH_METRIC_ANNOUNCEMENT message including (AS_i, PM(A_i));

¶

¶

    - Upon receiving a PATH_METRIC_ANNOUNCEMENT from AS_j carrying (AS_j, PM(A_j)):

        1. PM(A_i)(p) = min{PM(A_i)(p), PM(A_j)(p)}, for all p in P(A_i) and p in P(A_j);
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correct bottleneck substructure within a finite number of

PATH_METRIC_ANNOUNCEMENT messages:

Procedure: COMPUTE_BOTTLENECK_SUBSTRUCTURE(L, PL, C, PM):

In the above procedure, the function COMPUTE_BOTTLENECK_STRUCTURE

corresponds to the GradientGraph algorithm introduced in [G2-TREP].

The termination condition of this procedure is found in line 2.2.1:

When the distributed algorithm converges to a final solution, the

invocation of the procedure COMPUTE_BOTTLENECK_SUBSTRUCTURE returns

immediately at this condition, and the path metric dictionaries for

all the autonomous systems (PM(A_i) for 1 <= i <= |A|) no longer

change, provided that the network state does not change. Further,

upon termination, the distributed algorithm ensures that all the

path metric values for all the autonomous systems are in agreement:

¶

¶

    1. i = 0; L_0 = L; PL_0 = PL;

    2. While True:

            2.1. B_i = COMPUTE_BOTTLENECK_STRUCTURE(L_i, PL_i, C);

            2.2. If B_i.BW(p) == PM(p) for all path p in PL_i:

                    2.2.1. Break;

            2.3. For all path p in PL_i such that B_i.BW(p) > PM(p):

                    2.3.1. If PL_i[p] has no virtual link:

                            2.3.1.1. Add a new virtual link v to the set of links PL_i[p];

                            2.3.1.2. Add virtual link v to the set L_i;

                    2.3.2.  Set C(v) = PM(p);

            2.2. i = i + 1;

            2.5. L_i = L_{i-1};

            2.6. PL_i = PL_{i-1};

    3. Return B_i;

¶

¶

¶

    B_i.BW(p) == PM(p) for all path p in PL_i¶

¶

    PM(A_i)(p) == PM(A_j)(p) for all p in A_i, p in A_j, A_i in A and A_j in A¶



We call this the convergence condition, to denote the fact that upon

termination, all the path metrics from all the ASs are in agreement.

3.4. Example: Global Convergence to the Correct Bottleneck

Substructures

Figure 1 shows an example of a multidomain network with two

autonomous systems, AS1 (the upper subdomain) and AS2 (the lower

subdomain). Each link li is represented by a squared box and has a

capacity ci. For instance, link l1 is represented by the top most

squared box and has a capacity of c1=25 units of bandwidth. In

addition, each path is represented by a line that passes through the

set of links it traverses. For instance, path p6 traverses links l1,

l2 and l3.
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Figure 1: Multi-domain network example with two autonomous systems.

The global bottleneck structure of this network corresponds to the

following digraph (see 

[I-D.draft-giraltyellamraju-alto-bsg-requirements] for details on

how a bottleneck structure is computed):

                         p3 p6 p1

                          | | |

                          | | |

                       +--+-+-+---+

                       |  | | |   |

                       |  | | +---+---   l1

                       |  | |     |      c1=25

                       |  | |     |

                       +--+-+-----+

                          | |

                          | | +----- p2

                          | | |

                       +--+-+-+---+

                       |  | | |   |

                   ----+--+ | |   |      l2

                       |    | |   |      c2=50

                p4 ----+--+ | |   |

                       |    | |   |

                       +--+-+-+---+

                          | | |

      AS1                 | | |

     .............................................

      AS2                 | | |

                          | | +-----

                          | |

                       +--+-+-----+

                       |  | |     |

                   ----+--+ +-----+----  l3

                       |          |      c3=100

                   ----+----+     |

                       |    |     |

                       +----+-----+

                            |

                            |

                       +----+-----+

                       |    |     |      l4

                 p5 ---+----+     |      c4=75

                       |          |

                       |          |

                       +----------+

¶



Figure 2: Global bottleneck structure of the network in Figure 1.

Using the definitions introduced in Table 1, we have that the

bottleneck substructure for AS1 and AS2 (that is, B(AS1) and B(AS2))

are as shown in Figure 3 and Figure 4, respectively.

   +------+  +------+               +------+

   |      |  |      |               |      |

   |  p1  <-->  l1  <--------------->  p6  |

   |      |  |      |  +------------+      |

   +------+  +--^---+  |            +---+--+

                |      |                |

                |      |                |

             +--v---+  |                |

             |      |  |                |

             |  p3  |  |                |

             |      |  |                |

             +--+---+  |                |

                |      |                |

                |      |                |

             +--v---+  |  +------+   +--v---+  +------+

             |      <--+  |      |   |      |  |      |

             |  l2  <---->|  p4  +--->  l3  |  |  l4  |

             |      |     |      |   |      |  |      |

             +--^---+     +------+   +--^---+  +---^--+

                |                       |          |

             +--v---+                   | +------+ |

             |      |                   | |      | |

             |  p2  |                   +->  p5  <-+

             |      |                     |      |

             +------+                     +------+

¶



Figure 3: B(AS1): Bottleneck substructure of AS1.

Figure 4: B(AS2): Bottleneck substructure of AS2.

   +------+  +------+               +------+

   |      |  |      |               |      |

   |  p1  <-->  l1  <--------------->  p6  |

   |      |  |      |  +------------+      |

   +------+  +--^---+  |            +------+

                |      |

                |      |

             +--v---+  |

             |      |  |

             |  p3  |  |

             |      |  |

             +--+---+  |

                |      |

                |      |

             +--v---+  |  +------+

             |      <--+  |      |

             |  l2  <---->|  p4  |

             |      |     |      |

             +--^---+     +------+

                |

             +--v---+

             |      |

             |  p2  |

             |      |

             +------+

              +------+               +------+

              |      |               |      |

              |  v1  <--------------->  p6  |

              |      |               |      |

              +------+               +--+---+

                                        |

                                        |

              +------+    +------+   +--v---+  +------+

              |      |    |      |   |      |  |      |

              |  v2  <--->|  p4  +--->  l3  |  |  l4  |

              |      |    |      |   |      |  |      |

              +------+    +------+   +--^---+  +---^--+

                                        |          |

                                        | +------+ |

                                        | |      | |

                                        +->  p5  <-+

                                          |      |

                                          +------+



Note that according to the definition in Table 1, the bottleneck

substructure of each AS corresponds to the subgraph of the global

bottleneck structure B that includes all the vertices and edges in B

that correspond to paths and vertices observed in the AS, plus an

additional virtual link for each path that is bottlenecked outside

the AS. In particular, AS2 has two virtual links v1 and v2

associated with paths p6 and p4, respectively, since these two paths

are bottlenecked outside AS2. Similarly, AS1 has no virtual links

because all of its paths are bottlenecked in its own domain.

The objective consists in computing the bottleneck substructure of

all the ASs in a distributed manner when each AS only has local

information about the state of its links and paths. The distributed

protocol introduced in this document provides a solution to this

problem.

Figure 5 and Figure 6 present the step-by-step execution of the

distributed protocol as run by AS1 and AS2, respectively. For each

iteration of the protocol, the state of the local path metric

dictionary PM(AS) and of the bottleneck substructure B(AS) are

presented.

¶
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Figure 5: Execution of the distributed protocol by AS1.

   Iteration 1:

   ------------

   State of the path metric dictionary PM(AS1):

   +====================+

   | PM(AS1)(p1) = 8.3  |

   +--------------------+

   | PM(AS1)(p2) = 16.6 |

   +--------------------+

   | PM(AS1)(p3) = 8.3  |

   +--------------------+

   | PM(AS1)(p4) = 16.6 |

   +--------------------+

   | PM(AS1)(p6) = 8.3  |

   +====================+

   State of the bottleneck substructure B(AS1):

   +------+  +------+               +------+

   |      |  |      |               |      |

   |  p1  <-->  l1  <--------------->  p6  |

   |      |  |      |  +------------+      |

   +------+  +--^---+  |            +---+--+

                |      |

                |      |

             +--v---+  |

             |      |  |

             |  p3  |  |

             |      |  |

             +--+---+  |

                |      |

                |      |

             +--v---+  |  +------+

             |      <--+  |      |

             |  l2  <---->|  p4  +

             |      |     |      |

             +--^---+     +------+

                |

             +--v---+

             |      |

             |  p2  |

             |      |

             +------+



   Iteration 1:

   ------------

   State of the path metric dictionary PM(AS2):

   +====================+

   | PM(AS2)(p4) = 33.3 |

   +--------------------+

   | PM(AS2)(p5) = 33.3 |

   +--------------------+

   | PM(AS2)(p6) = 33.3 |

   +====================+

   State of the bottleneck substructure B(AS2):

   +------+  +------+   +------+

   |      |  |      |   |      |

   |  p4  <-->  l3  <--->  p6  |

   |      |  |      |   +      |

   +------+  +--^---+   +---+--+

                |

                |

             +--v---+

             |      |

             |  p5  |

             |      |

             +--+---+

                |

                |

             +--v---+

             |      |

             |  l4  |

             |      |

             +------+

   Iteration 2:

   ------------

   State of the path metric dictionary PM(AS2):

   +====================+

   | PM(AS2)(p4) = 16.6 |

   +--------------------+

   | PM(AS2)(p5) = 75   |

   +--------------------+

   | PM(AS2)(p6) = 8.3  |

   +====================+

   State of the bottleneck substructure B(AS2):



   +------+              +------+

   |      |              |      |

   |  v1  <-------------->  p6  |

   |      |              |      |

   +------+              +---+--+

                             |

                             |

   +------+    +------+   +--v---+  +------+

   |      |    |      |   |      |  |      |

   |  v2  <--->|  p4  +--->  l3  |  |  l4  |

   |      |    |      |   |      |  |      |

   +------+    +------+   +--^---+  +---^--+

                             |          |

                             | +------+ |

                             | |      | |

                             +->  p5  <-+

                               |      |

                               +------+



Figure 6: Execution of the distributed protocol by AS2.

Note that at the end of the execution of the distributed algorithm,

the convergence condition

is satisfied, as shown in Table 2.

p PM(A1)(p) PM(A2)(p)

p1 8.3 --

p2 16.6 --

p3 8.3 --

p4 16.6 16.6

p5 -- 75

p6 8.3 8.3

Table 2: Verification of

the convergence condition.

4. Requirements

This section provides a discussion on the necessary requirements to

integrate the proposed distributed protocol into the ALTO standard.

Throughout this discussion, we assume without loss of generality

that each AS is managed by an ALTO server, and that each server only

has visibility of the topology, links and flow state of the AS it is

managing. We also assume that the TIMER and the PATH_METRIC_EXCHANGE

events are executed by each ALTO server. An alternative architecture

could consider executing these events in a separated engine, and

have the ALTO server query this engine to obtain the final

bottleneck structures, decoupling the distributed protocol from the

ALTO standard. While this approach might be desirable in some cases,

we currently omit it from this discussion since it is relatively

simpler from an integration requirements standpoint.

To implement the proposed distributed protocol using ALTO, two broad

requirements are necessary:

Requirement 1: The capability for each ALTO server to compute

bottleneck substructures of its own AS.

Requirement 2: The capability for each ALTO server to communicate

with its neighboring ASs.

4.1. Requirement 1: Computation of Bottleneck Substructures

The requirements for an ALTO server to compute the bottleneck

substructure of its associated AS are the same as the requirements

¶
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to compute the bottleneck structure in the case the network consists

of a single autonomous system. These requirements are discussed in

the Requirements Section of 

[I-D.draft-giraltyellamraju-alto-bsg-requirements]. Refer to this

document for further details.

4.2. Requirement 2: Communication Between Neighboring ASs

The TIMER event executed by each ALTO server needs to periodically

transmit a PATH_METRIC_ANNOUNCEMENT message to its neighboring ASs.

This leads to the following requirement:

Requirement 2.1: ALTO servers managing neighboring ASs need to be

reachable to each other.

Requirement 2.2: The sharing of algorithmic state between ALTO

servers requires extending the base ALTO protocol to support

server-to-server communication semantics.

This requirement constitutes a new capability, since the current

ALTO standard only supports client-to-server communication semantics

[RFC7285].

We note that [I-D.draft-zhang-alto-oam-yang] discusses mechanisms

for cross-ALTO server communication with the objective to facilitate

Operations and Management (OAM) of multi-server deployments. The

distributed protocol proposed in this document could be used as a

use case to help drive the specifications of the inter-server

communication protocol discussed in [I-D.draft-zhang-alto-oam-yang]

or in any future ALTO RFCs that may focus on sharing of algorithmic

state.

5. Security Considerations

Future versions of this document may extend the base ALTO protocol,

so the Security Considerations [RFC7285] of the base ALTO protocol

fully apply when this proposed extension is provided by an ALTO

server.

The Bottleneck Structure Graph extension requires additional

scrutiny on three security considerations discussed in the base

protocol: Confidentiality of ALTO information (Section 15.3 of 

[RFC7285]), potential undesirable guidance from authenticated ALTO

information (Section 15.2 of [RFC7285]), and availability of ALTO

service (Section 15.5 of [RFC7285]).

For confidentiality of ALTO information, a network operator should

be aware that this extension may introduce a new risk: As the

Bottleneck Structure information may reveal more fine-grained

internal network structures than the base protocol, an attacker may
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identify the bottleneck link and start a distributed denial-of-

service (DDoS) attack involving minimal flows to conduct in-network

congestion. Given the potential risk of leaking sensitive

information, the BSG extension is mainly applicable in scenarios

where:

The properties of the Bottleneck Structure Graph do not impose

security risks to the ALTO service provider; e.g., by not

carrying sensitive information.

The ALTO server and client have established a reliable trust

relationship, for example, operated in the same administrative

domain, or managed by business partners with legal contracts and

proper authentication and privacy protocols.

The ALTO server implements protection mechanisms to reduce

information exposure or obfuscate the real information.

Implementations involving reduction or obfuscation of the

Bottleneck Structure information SHOULD consider reduction/

obfuscation mechanisms that can preserve the integrity of ALTO

information, for example, by using minimal feasible region

compression algorithms [NOVA] or obfuscation protocols RESA

[MERCATOR]. We note that these obfuscation methods are

experimental and their practical applicability to the generic

capability provided by this extension is not fully assessed.

We note that for operators that are sensitive about disclosing flow-

level information (even if it is anonymized), then they SHOULD

consider using the Path Gradient Graph (PGG) or the QoS-Path

Gradient Graph (Q-PGG) since these objects provide the additional

security advantage of hiding flow-level information from the graph.

For undesirable guidance, the ALTO server must be aware that, if

information reduction/obfuscation methods are implemented, they may

lead to potential misleading information from Authenticated ALTO

Information. In such cases, the Protection Strategies described in

Section 15.2.2 of [RFC7285] MUST be considered.

For availability of ALTO service, an ALTO server should be cognizant

that using Bottleneck Structures might have a new risk: frequently

querying the BSG service might consume intolerable amounts of

computation and storage on the server side. For example, if an ALTO

server implementation dynamically computes the Bottleneck Structure

for each request, the BSG service may become an entry point for

denial-of-service attacks on the availability of an ALTO server. To

mitigate this risk, an ALTO server may consider using optimizations

such as precomputation-and-projection mechanisms [MERCATOR] to

reduce the overhead for processing each query. An ALTO server may

also protect itself from malicious clients by monitoring the
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[I-D.draft-zhang-alto-oam-yang]

[RFC2119]

[RFC4271]

[RFC7285]

[RFC8174]

behaviors of clients and stopping serving clients with suspicious

behaviors (e.g., sending requests at a high frequency).

6. IANA Considerations

Future versions of this document may register new entries to the

ALTO Cost Metric Registry, the ALTO Cost Mode Registry, the ALTO

Domain Entity Type Registry and the ALTO Entity Property Type

Registry.
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