
Workgroup: ALTO

Internet-Draft:

draft-giraltyellamraju-alto-bsg-

requirements-03

Published: 23 September 2022

Intended Status: Informational

Expires: 27 March 2023

Authors: J. Ros-Giralt

Qualcomm

S. Yellamraju

Qualcomm

Q. Wu

Huawei

L.M. Contreras

Telefonica

R. Yang

Yale University

K. Gao

Sichuan University

Supporting Bottleneck Structure Graphs in ALTO: Use Cases and

Requirements

Abstract

This document proposes an extension to the base Application-Layer

Traffic Optimization (ALTO) protocol to support bottleneck

structures as an efficient representation of the state of a network.

Bottleneck structures are efficient computational graphs that allow

network operators and application service providers to optimize

application performance in a variety of communication problems

including routing, flow control, flow scheduling, bandwidth

prediction, and network slicing, among others. This document

introduces a new abstraction called Bottleneck Structure Graph (BSG)

and the necessary requirements to integrate it into the ALTO

standard.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

giralt.github.io/draft-ietf-alto-gradient-graph/draft-

giraltyellamraju-alto-bsg-requirements.html. Status information for

this document may be found at https://datatracker.ietf.org/doc/

draft-giraltyellamraju-alto-bsg-requirements/.

Discussion of this document takes place on the WG Working Group

mailing list (mailto:alto@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/alto/.

Source for this draft and an issue tracker can be found at https://

github.com/giralt/draft-ietf-alto-gradient-graph.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

¶

¶

¶

¶

¶

¶

https://giralt.github.io/draft-ietf-alto-gradient-graph/draft-giraltyellamraju-alto-bsg-requirements.html
https://giralt.github.io/draft-ietf-alto-gradient-graph/draft-giraltyellamraju-alto-bsg-requirements.html
https://giralt.github.io/draft-ietf-alto-gradient-graph/draft-giraltyellamraju-alto-bsg-requirements.html
https://datatracker.ietf.org/doc/draft-giraltyellamraju-alto-bsg-requirements/
https://datatracker.ietf.org/doc/draft-giraltyellamraju-alto-bsg-requirements/
mailto:alto@ietf.org
https://mailarchive.ietf.org/arch/browse/alto/
https://mailarchive.ietf.org/arch/browse/alto/
https://github.com/giralt/draft-ietf-alto-gradient-graph
https://github.com/giralt/draft-ietf-alto-gradient-graph

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Brief Introduction to Bottleneck Structures

3.1. Example of Bottleneck Structure

3.2. Propagation Properties

3.3. Forces of Interaction among Flows and Links

3.4. Ripple Effects in a Communication Network

3.5. Not all Bottleneck Links Are Born Equal

3.6. Quantifying the Ripple Effects

3.7. Types of Bottleneck Structures

3.8. Computing Optimized Network Reconfigurations

3.9. Types of Network Reconfigurations

4. ALTO Bottleneck Structure Service Use Cases

4.1. Application Rate Limiting for CDN and Edge Cloud

Applications

4.2. Time-bound Constrained Flow Acceleration for Large Data Set

Transfers

4.3. Application Performance Optimization Through AI Modeling

4.4. Optimized Joint Routing and Congestion Control

4.5. Service Placement for Edge Computing

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

4.6. Training Neural Networks and AI Inference for Edge Clouds,

Data Centers and Planet-Scale Networks

4.7. 5G Network Slicing

5. Example: Application Layer Traffic Optimization using Bottleneck

Structures

6. Requirements

6.1. Requirement 1: Bottleneck Structure Graph (BSG) Abstraction

6.2. Requirement 2: Information Received from the Network

6.3. Requirement 3: Information Passed to the Application

6.4. Requirement 4: Features Needed to Support the Use Cases

7. Security Considerations

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

Bottleneck structures have been recently introduced in [G2-SIGCOMM]

and [G2-SIGMETRICS] as efficient computational graphs that embed

information about the topology, routing and flow information of a

network. These computational graphs allow network operators and

application service providers to compute network derivatives that

can be used to make traffic optimization decisions. For instance,

using the bottleneck structure of a network, a real-time

communication (RTC) application can efficiently infer the multi-hop

end-to-end available bandwidth, and use that information to tune the

encoder's transmission rate and optimize the user's Quality of

Experience (QoE). Bottleneck structures can be used by the

application to address a wide variety of communication optimization

problems, including routing, flow control, flow scheduling,

bandwidth prediction, and network slicing, among others.

This document introduces a new abstraction called Bottleneck

Structure Graph (BSG) and the necessary requirements to integrate it

into the existing ALTO services (Network Map, Cost Map, Entity

Property Map and Endpoint Cost Map) exposing the properties of the

bottleneck structure to help optimize application performance. Use

cases are also introduced to motivate the relevancy of bottleneck

structures in the context of the ALTO standard and support the

description of the integration requirements.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Brief Introduction to Bottleneck Structures

[G2-SIGMETRICS] and [G2-SIGCOMM] introduce a new mathematical

framework to optimize network performance called the Quantitative

Theory of Bottleneck Structures (QTBS). The core building block of

QTBS is a computational graph called bottleneck structure, which

allows to qualify and quantify the forces of interactions that flows

and bottleneck links exert on each other. QTBS builds the bottleneck

structure by assuming that flows in a network aim at maximizing

throughput while ensuring fairness. This general principle holds for

all the relevant congestion control algorithms used in IP networks

(e.g., TCP Cubic, BBR, QUIC, etc.).

3.1. Example of Bottleneck Structure

Consider as an example the following network configuration:

¶

¶

¶

Figure 1: Network configuration example.

Each link li is represented by a squared box and has a capacity ci.

For instance, link l1 is represented by the top most squared box and

has a capacity of c1=25 units of bandwidth. In addition, each flow

is represented by a line that passes through the set of links it

traverses. For instance, flow f6 traverses links l1, l2 and l3.

The bottleneck structure of this network corresponds to the

following digraph (see [G2-TREP] for details on how a bottleneck

structure is computed):

 f3 f6 f1

 | | |

 | | |

 +--+-+-+---+

 | | | | |

 | | | +---+--- l1

 | | | | c1=25

 | | | |

 +--+-+-----+

 | |

 | | +----- f2

 | | |

 +--+-+-+---+

 | | | | |

 ----+--+ | | | l2

 | | | | c2=50

 f4 ----+--+ | | |

 | | | |

 +--+-+-+---+

 | | |

 | | +-----

 | |

 +--+-+-----+

 | | | |

 ----+--+ +-----+---- l3

 | | c3=100

 ----+----+ |

 | | |

 +----+-----+

 |

 |

 +----+-----+

 | | | l4

 f5 ---+----+ | c4=75

 | |

 | |

 +----------+

¶

¶

Figure 2: Bottleneck structure of the network in Figure 1.

The bottleneck structure is interpreted as follows:

Links and flows are represented by vertices in the graph.

There is a directed edge from a link l to a flow f if and only if

flow f is bottlenecked at link l.

There is a directed edge from a flow f to a link l if and only if

flow f traverses link l.

For instance, in Figure 2 we have that flow f3 is bottlenecked at

link l1 (since there is a directed edge from l1 to f3) and it

traverses links l1 and l2 (since there is a directed edge from f3 to

l1 and from f3 to l2). Note that when a flow is bottlenecked at a

link, then the edge connecting them in the bottleneck structure must

necessarily be bidirectional. This is because a flow that is

bottlenecked at a link, must necessarily traverse that link too.

Indeed, in Figure 2 we can see that all the directed edges from a

link to a flow, are in fact bidirectional edges. This is important

to ensure that bottleneck structures correctly model how

 +------+ +------+ +------+

 | | | | | |

 | f1 <--> l1 <---------------> f6 |

 | | | | +------------+ |

 +------+ +--^---+ | +---+--+

 | | |

 | | |

 +--v---+ | |

 | | | |

 | f3 | | |

 | | | |

 +--+---+ | |

 | | |

 | | |

 +--v---+ | +------+ +--v---+ +------+

 | <--+ | | | | | |

 | l2 <---->| f4 +---> l3 | | l4 |

 | | | | | | | |

 +--^---+ +------+ +--^---+ +---^--+

 | | |

 +--v---+ | +------+ |

 | | | | | |

 | f2 | +-> f5 <-+

 | | | |

 +------+ +------+

¶

* ¶

*

¶

*

¶

perturbations in a network propagate, as we explain in the next

section.

3.2. Propagation Properties

Under the assumption of max-min fairness [GALLAGER], QTBS

demonstrates the following two properties [G2-SIGMETRICS]:

Property 1. Flow perturbation. An infinitesimal change in the

transmission rate of a flow f will have an effect on the

transmission rate of a flow f' if and only if the bottleneck

structure has a directed path from flow f to flow f'.

Property 2. Link perturbation. An infinitesimal change in the

capacity of a link l will have an effect on the transmission rate

of a flow f' if and only if the bottleneck structure has a

directed path from link l to flow f.

The above two properties qualitatively relate to the classic

question in chaos theory: Can the flap of a butterfly's wings in

Brazil set off a tornado in Texas? [LORENZ] Obviously a butterfly

alone cannot create a tornado, but every element is interconnected

in a distributed system, and even the flap of a butterfly's wings in

Brazil will have an effect in Texas. Bottleneck structures are

graphs that characterize and quantify such type of effects in a

communication network. In particular, a bottleneck structure reveals

how a perturbation propagates through the network, describing which

flows will be affected and by what magnitude.

3.3. Forces of Interaction among Flows and Links

Bottleneck structures are powerful computational graphs because they

are able to capture the forces of interaction that flows and

bottleneck links exert on each other. These forces of interaction

are in general non-intuitive, even for a small simple network

configuration like the one in Figure 1. For instance, from Property

2, the bottleneck structure reveals that a small variation in the

capacity of link l2 (e.g., in a wireless network, a variation in the

capacity of a link could be due to a change in the signal to noise

ratio of the communication channel) will propagate through the

network and have an impact on the transmission rate of flows f2, f4

and f5 (since from Property 2, the bottleneck structure has a

directed path from link l2 to each of these flows). However, such a

perturbation will have no effect on the transmission rate of flows

f1, f3 and f6 (since there is no path from l2 to any of these other

flows). Similarly, from property 1, a small perturbation on the rate

of flow f4 (e.g., this could be due to the effect of a traffic

shaper altering the transmission rate of flow f4), will have an

¶

¶

*

¶

*

¶

¶

impact on the rate of flows f2 and f5, but it will have no effect on

the rate of flows f1, f3 and f6.

3.4. Ripple Effects in a Communication Network

As another example, given the network in Figure 1, it is also not

intuitive to foresee that flows f1 and f5 are related to each other

by the forces of interaction inherent to the communication network,

even though they do not traverse any common link. Specifically, flow

f1 traverses link l1, while flow f5 traverses links l3 and l4. In

between both flows, there is an additional hop (link l2) further

separating them. Despite not being directly connected, the

bottleneck structure reveals that a small perturbation on the

performance of flow f1 (i.e., a change in its transmission rate),

will create a ripple effect that will reach flow f5, affecting its

transmission rate. In particular, the perturbation on flow f1 will

propagate through the bottleneck structure and reach flow f5 via the

following two paths:

It is also not intuitive to see that the reverse is not true. That

is, a small perturbation on flow f5, will have no effect on flow f1,

since the bottleneck structure has no direct path from vertex f5 to

vertex f1. In [G2-SIGMETRICS], extensive empirical validation of

these results is presented for a variety congestion-controlled IP

networks.

3.5. Not all Bottleneck Links Are Born Equal

Bottleneck structures also reveal that not all bottleneck links have

the same relevancy. In Figure 2, links at the top of the graph have

a higher impact on the overall performance of the network than links

at the bottom. For instance, consider link l1. A variation on its

capacity will create a ripple effect that will impact the

performance of all the flows in the network, since all flow vertices

are reachable from vertex l1 according to the bottleneck structure.

In contrast, link l3 has a much smaller impact on the overall

performance of the network, since a variation of its capacity will

affect flow f5, but have no impact on any of the other flows. This

information is valuable to network operators and application service

providers as it can be used to make informed network optimization

decisions. For instance, in edge computing, an operator could choose

to place a containerized service (e.g., for extended reality, XR) on

compute nodes that would yield communication paths traversing

bottleneck links with lower impact on the overall performance of the

network (See the use case in Section 4.5 for more details).

¶

¶

f1 -> l1 -> f3 -> l2 -> f4 -> l3 -> f5

f1 -> l1 -> f6 -> l3 -> f5

¶

¶

Similarly, in network slicing (or capacity planning in general),

operators could choose to allocate more bandwidth on those links

that are more influential (i.e., those links that are at lower

levels in the bottleneck structure) according to the expected

traffic pattern in the network slice.

Overall, bottleneck structures provide a mechanism to rank

bottleneck links according to their impact on the overall

performance of the network. This information can be used in a

variety of optimization problems, such as traffic engineering,

routing, capacity planning, or resilience analysis, among others.

3.6. Quantifying the Ripple Effects

Bottleneck structures not only allow network operators to reason

about the qualitative nature of the forces that flows and links

exert on each other, but they also provide a mathematical framework

to quantify such forces. In particular, the Quantitative Theory of

Bottleneck Structures (QTBS) introduced in [G2-TREP] provides a

mathematical framework that uses bottleneck structures as efficient

computational graphs to quantify the impact that perturbations in a

network have on all of its flows.

One of the core building blocks of the QTBS framework is the concept

of link and flow equations, which mathematically characterize how a

perturbation in a network propagates through each of the link and

flow vertices in the bottleneck structure. (See [G2-TREP] for an

exact mathematical formulation.) Because quantifying the effect of a

perturbation on a system is nothing more than computing a derivative

of the system's performance with respect to the parameter that's

been perturbed, bottleneck structures can be used as efficient and

scalable computational graphs to calculate flow and link derivatives

in a communication network.

Consider for instance the computation of the following derivative:

where F() represents the total throughput of the network (the sum of

all flows' throughput) and ri is the transmission rate of flow fi.

For example, this expression can be used to compute the effect of

traffic shaping a flow (slightly reducing its rate) on the total

throughput of the network. Computing this derivative using a

traditional calculus approach is both very complex and costly, since

it requires modeling the congestion control algorithm in the

function F(), for which there is no closed form solution. Using

bottleneck structures, however, the computation of this derivative

is both simple and inexpensive. It is simple because it can be done

by applying an infinitesimal change to the rate of flow fi and then

¶

¶

¶

¶

¶

dF()/dri¶

using the link and flow equations to measure how this perturbation

propagates through the bottleneck structure [G2-TREP], [G2-SIGCOMM].

It is also very efficient because the computation is performed by

applying delta calculations on the bottleneck structure, without

involving links and flows that are not affected by the perturbation.

For instance, in Figure 1, the computation of dF()/df4 only requires

recomputing the transmission rates of flows f2 and f5, without the

need to recompute the rates of f1, f3 and f6, since these other

flows are not affected by the perturbation. In practice, QTBS

provides a methodology to compute network derivatives two or three

orders of magnitude faster than general purpose methods such as

liner programming [G2-SC].

We finish this brief introduction to QTBS by stating the monotonic

bandwidth allocation property that all bottleneck structures

satisfy:

Property 3. Monotonic bandwidth allocation (MBA). Let si be the

transmission rate of the flows bottlenecked at link li. Then, for

any path in the bottleneck structure of the form

we have that

The MBA property is relevant in that it states that bottlenecks

located at higher levels in the bottleneck structure will have more

bandwidth available than those located at lower levels. For

instance, this property indicates that an application requiring high

bandwidth should route its traffic through paths that involve links

at higher levels in the bottleneck structure. We will be using the

MBA property to reason about application performance in some of the

examples described in this document.

3.7. Types of Bottleneck Structures

While QTBS introduces a core definition of bottleneck structure (see

Section 3.1), there exist multiple types of bottleneck structures

that can be computed depending on the level of granularity and

information desired by the operator. Next, we introduce three types

of bottleneck structures that will be used in this document and that

are suitable to optimize application performance in the context of

the ALTO standard:

Flow gradient graph (FGG). This type of bottleneck structure

corresponds to the base definition introduced in Section 3.1. The

FGG has the finest level of granularity, including a vertex in

¶

¶

*

¶

 l1 -> f1 -> l2 -> f2 -> (...) -> ln -> fn¶

¶

 s1 < s2 < (...) < sn¶

¶

¶

*

each graph for each link and flow in the network. Therefore, an

FGG can be relatively large (e.g, with millions of vertices).

Path gradient graph (PGG). One technique to reduce the size of

the bottleneck structure without affecting its accuracy is to

collapse all the vertices of the flows that follow the same path

into a single vertex called a path vertex. The resulting

bottleneck structure is called the path gradient graph (PGG). A

PGG usually has 2 or 3 orders of magnitude less vertices than the

FGG.

QoS-Path gradient graph (Q-PGG). Some networks assign different

types of traffic to different QoS classes. A Q-PGG can model QoS

by collapsing all the vertices of the flows that follow the same

path and have the same QoS class into a single vertex called a Q-

path vertex. A Q-PGG is slightly larger than a PGG (with about |

Q| times more vertices, where |Q| is the number of QoS classes

supported by the network) but still significantly smaller than

the FGG.

For most of the applications, it is recommended to use a PGG, or a

Q-PGG if the network supports QoS classes, since these bottleneck

structures are significantly smaller and faster to process than an

FGG, and it is often the case that the operator does not need to

know flow-level information in order to make proper application

performance optimization decisions. Note also that the PGG and the

Q-PGG provide the additional security advantage of hiding flow-level

information from the graph. This can be important to operators that

are sensitive about security and privacy.

3.8. Computing Optimized Network Reconfigurations

A central element to the theory of bottleneck structures is the

ability to efficiently compute derivatives on a network. Derivatives

are a core building block of the optimization framework, as they

reveal the directions (gradients) in the feasible set that can help

bring the network to a higher level of performance. In this

document, we will refer to these directions in the feasible set as

network reconfigurations, since that's what they effectively are in

the physical world.

For instance, an example of network reconfiguration can be the

action of rate limiting a flow carrying XR traffic to match the

available bandwidth along its path with the goal to improve its QoE.

Another example of network reconfiguration is the action of

rerouting traffic through a new path in order to accelerate the

transfer of a large backup data set between two cloud data centers.

A third example can be the deployment of a new network slice in a 5G

network in order to ensure the QoS of a V2X service. In each of

¶

*

¶

*

¶

¶

¶

these actions, the network configuration is moved along a direction

(a gradient, if the change maximally improves the performance

objective) within the feasible set of possible configurations.

While derivatives describe how the performance of a network changes

when a very small (infinitesimal) change is applied to its

configuration, network reconfigurations can accept changes to the

network that are arbitrarily large. For instance, traffic shaping a

set of flows to reduce their rates by 10 Mbps is a network

reconfiguration that is not infinitesimal. We note that bottleneck

structures can also be used to compute optimized network

reconfigurations consisting of non-infinitesimal changes in the

network. This can be done by first computing derivatives using the

bottleneck structure to find a direction (gradient) in the feasible

set, and then reconfiguring the network by following that direction.

This process can be repeated iteratively until a final optimized

reconfiguration is achieved. (See for example [G2-SIGCOMM] and [G2-

TREP] for examples of algorithms using this technique.)

In the next section, we summarize some of the network

reconfigurations that can be optimized by using bottleneck

structures.

3.9. Types of Network Reconfigurations

The following is a list of some of the network reconfigurations that

can be efficiently computed and optimized using bottleneck

structures:

Flow routing. Both the operation of routing a new flow or

rerouting an existing flow on a network can be modeled as a

perturbation, whose impact can be efficiently measured using

bottleneck structures. In particular, QTBS can be used to resolve

the joint congestion control and routing optimization problem for

individual flows (see Section 3.1 in [G2-TREP]).

Traffic shaping. Traffic shaping a flow corresponds to the action

of taking a derivative with respect to the rate of the flow.

Bottleneck structures can be used by network operators and

application service providers to compute such perturbations. For

instance, to accelerate a large scale data transfer, an

application can use bottleneck structures to identify optimal

traffic shaping configurations (see Section 3.3 in [G2-TREP]).

Bandwidth enforcement. In high-performance networks that target

close to 100% link utilization such as Google's B4 network [B4-

SIGCOMM], a centralized SDN controller is used collect the state

of the network and compute an optimized multipath bandwidth

allocation vector. The solution is then deployed at the edge of

¶

¶

¶

¶

*

¶

*

¶

*

the network using a technique known as bandwidth enforcement [BE-

SIGCOMM]. By using bottleneck structures to efficiently compute

changes in the bandwidth allocated to each flow path, operators

can efficiently derive improved bandwidth allocation vectors.

Flow scheduling. When a flow initiates transmitting data on a

network, it uses bandwidth along its path, creating a ripple

effect that impacts the performance of other flows in the

network. Similarly, the termination of a flow frees bandwidth

along its path, creating another perturbation that propagates

through the network. Bottleneck structures can efficiently model

and compute the effect of flow arrival and departure in a

communication network by using simple delta calculations

according to the link and flow equations (see Section 3.6 and

[G2-SIGCOMM]). This information can be used by applications that

need to perform bulk data transfer to decide when to schedule a

flow. More in particular, it can be used to enhance the ALTO Cost

Calendar service [RFC8896].

Service placement. Deploying application services in a network

requires deciding the location of the compute and storage

resources needed to run the service. For instance, in edge

computing, an extended reality (XR) server could be deployed at

the distributed unit (DU), the central unit (CU), the mobile core

(MC) or the central cloud [PETERSON]. Bottleneck structures can

be used to measure the effect of placing a service on each of the

candidate locations, helping the application service provider to

make optimized decisions.

Multi-job scheduling. Running a job on a network implies a number

of flows will be initiated and terminated throughout the

execution of the job. the ripple effects generated from the

execution of a job can also be measured using bottleneck

structures. This can be used to decide when to optimally launch

one or more jobs. For instance, in a data center, bottleneck

structure analysis can help the application decide how to

optimally schedule multiple AI training or inference jobs that

are sharing the same interconnect [G2-SIGCOMM].

Link capacity upgrades. In capacity planning, operators often

have a fixed budget and need to decide how to optimally add

capacity to a network in order to maximize its performance. The

effect of a link upgrade operation can be computed as a

derivative with respect to a change (an increase) in the capacity

of a link. Through the processing of historical flow information

from the network (e.g., NetFlow logs), bottleneck structures can

efficiently compute the effect of each link upgrade and identify

those that yield maximal performance.

¶

*

¶

*

¶

*

¶

*

¶

Path shortcuts. Operators in wide area networks need to decide

whether a communication path should be set up as purely optical

(bypassing layer 3 routing) or undergo an optical-to-electrical-

to-optical (OEO) conversion at certain routers in order to

perform layer 3 routing [SH-SIGCOMM]. The trade-off is one of

cost-efficiency versus better routing control of the network.

Bottleneck structures can be used to search for paths that are

optimally suitable for being offloaded to a purely optical path.

These are also known in the literature as path shortcuts [SH-

SIGCOMM].

4. ALTO Bottleneck Structure Service Use Cases

Applications of bottleneck structure analysis expand through a broad

class of optimization problems that include traffic engineering,

routing, flow scheduling, resiliency analysis, network slicing,

service level agreement (SLA) management, network design and

capacity planning, to name only a few. In this section, we briefly

describe some of the use cases that relate to the objectives of the

IETF ALTO Standard.

4.1. Application Rate Limiting for CDN and Edge Cloud Applications

In applications such as CDN, XR or gaming, it is important to

throttle the transmission rate of flows to match the true available

capacity along their communication path. Transmitting at a lower

rate than the available bandwidth leads to lower quality of

experience (QoE). Transmitting at a higher rate increases packet

losses, which wastes network resources and also leads to a lower

QoE.

Estimating the available bandwidth for a flow is complex because it

depends on multiple factors including the network topology, the

routing configuration and the set of dynamic flows using the network

resources. Bottleneck structures capture in a single digraph these

three factors, creating a model that allows to estimate the

performance of each flow. See for instance Sections 3.1 and 3.2 in

[G2-TREP] for examples on how bottleneck structures can be used to

estimate the available bandwidth of an application.

An ALTO server could help the application service provider obtain

the available bandwidth on a given path by exposing the bottleneck

structure of the network. With this information alone, the provider

could directly obtain the available bandwidth. Alternatively, the

application service could query the ALTO server by passing the path

for which the available bandwidth needs to be computed, and the ALTO

server could return this value without the need to share the

complete bottleneck structure.

*

¶

¶

¶

¶

¶

4.2. Time-bound Constrained Flow Acceleration for Large Data Set

Transfers

Bulk data transfer is an important application to both commercial

and government supported networks. For instance, Google's B4 network

supports large-scale data push synchronizing state across multiple

global data centers [B4-SIGCOMM]. Another common use case is found

in science networks, where massive data sets such as those

originated from the Large Hadron Collider at CERN, Switzerland, need

to be shared with scientific labs around the world. In this section,

we show how bottleneck structures can be used to reconfigure a

network towards accelerating a given data transfer with the goal to

meet a certain time constraint.

To illustrate this use case, we will assume the simple bottleneck

structure shown in Figure 3.

¶

¶

Figure 3: Reducing the rate of flow f1 maximally accelerates flow f5.

Suppose our goal is to accelerate flow f5. To achieve this

objective, we will also assume that we are allowed to traffic shape

(reduce) the rate of any of the other flows. Effectively, for each

flow fi different than f5, we need to compute the following

derivative

 +------+

 | |

 | l1 <-----------+

 | | |

 +--^---+ |

 | -1 | +1

 | |

 +--v---+ |

 | | |

 | f1 | |

 | | |

 +------+ |

 |

 +------+ +--v---+

 | | +1 | |

 | l2 <--------+ f2 |

 | | | |

 +--^---+ +--+---+

 | -1 | +1

 | |

 +--v---+ +--v---+

 | | | |

 | f3 | | l3 |

 | | | |

 +--+---+ +--^---+

 | -1 | -1

 | |

 +--v---+ +--v---+

 | | -1 | |

 | l4 <--------+ f4 |

 | | | |

 +--^---+ +------+

 | +2

 |

 +--v---+

 | |

 | f5 |

 | |

 +------+

¶

-dr5/d_ri¶

and then pick the maximum value. Note that in the above expression,

we take the left-derivative (d_), since a traffic shaper reduces the

rate of a flow. We also negate the derivative (-d), since we are

interested in a positive impact induced on flow f5 when reducing the

rate of another flow fi.

Such a calculation can be efficiently performed using the bottleneck

structure. As an example, Figure 3 illustrates how the value of (-

dr5/d_r1) is computed. First, we reduce the rate of flow f1 by 1

unit. This perturbation propagates through the bottleneck structure

reaching flow f5 via two paths:

Using the link and flow equations (Section 3.6), each path simply

flips the sign of the perturbation every time a link vertex is

traversed. (The reason why the sign is flipped at each link vertex

is explained by the link and flow equations that dictate how

perturbations propagate through the bottleneck structure. Further

mathematical descriptions to explain this effect are outside the

scope of this document. For detailed mathematical derivations and

additional examples, please see [G2-TREP]).

When reaching vertex f5, we find that each path contributes 1 unit

of bandwidth. Thus we have:

In fact, it can be seen that this derivative is maximal. That is,

traffic shaping any other flow would yield a smaller increase in the

rate of f5. Thus, an operator can conclude that traffic shaping flow

f1 yields an optimal strategy to maximally accelerate the rate of

flow f5. Note also that in this case, there is a positive multiplier

effect, since reducing flow f1's rate by 1 unit, leads to an

increase on flow f5's rate by more than 1 unit. This is known as a

power gradient [G2-SIGCOMM].

While left outside the scope of this document, bottleneck structures

can also be used to efficiently compute the value of the optimal

traffic shaper (i.e., in our example, to find by how much we should

traffic shape flow f1) and to quantify the impact on the flow being

accelerated. This information can also be used by the application to

estimate the flow's completion time.

An ALTO server could help the application service provider identify

an optimized traffic shaping strategy by exposing the bottleneck

structure of the network. With this information alone, the provider

could efficiently compute an optimized set of traffic shapers.

¶

¶

l1 -> f2 -> l2 -> f3 -> l4 -> f5

l1 -> f2 -> l3 -> f4 -> l4 -> f5

¶

¶

¶

-dr5/d_r1 = 1 + 1 = 2¶

¶

¶

Alternatively, the application service could query the ALTO server

by passing the set of flows that are allowed to be traffic shaped

and the flow that needs to be accelerated, and the ALTO server could

return the set of recommended traffic shapers.

4.3. Application Performance Optimization Through AI Modeling

A relevant and emerging area in the field of application performance

is AI-based network modeling. Several global initiatives are been

undertaken to apply AI to the field of understanding and predicting

network performance. For instance, OpenNetLab [BE-ONL] provides a

distributed networking platform with many collaborative nodes

(universities and companies) and common benchmarking datasets for

researchers to collect real networking data and train their AI

models for various networking environments, including the Internet,

cloud, and wireless networks. There also exist global benchmarks and

challenges to foster innovation in this field, such as the ACM MMSys

Challenge [MMSYS], which focuses on novel AI-based bandwidth

estimation algorithms to enable superior overall QoE on a global

production testbed built for real-time communications (RTC) of video

and audio.

Modeling communication networks using purely AI frameworks such as

deep learning is challenging as it requires very large production

data sets that often times are not available. They also require many

years of intense, global collaborative R&D. To address these

challenges, it has been seen that hybrid models built by combining

AI with a "physics" model of the network can outperform purely AI

models, as they may require less training data to achieve the same

or better performance. For instance, the top two winners of the ACM

MMSys 2021 Bandwidth Prediction Challenge [MMSYS] were based on

hybrid models.

Because bottleneck structures provide a "physics" model of the

network that can both qualify and quantify the forces of

interactions among flows and links, they can be used in combination

with AI to enable better performance than purely AI-based models.

For instance, this area is being discussed in the IETF ALTO WG

(e.g., [BE-ONL]) as a potential use case in the ALTO Standard to

help optimize the performance of RTC applications. In particular, a

key building block to optimize the QoE performance of RTC

applications is the bandwidth estimation module. This module runs on

the endpoint of a real-time video application and aims at

dynamically adapting the video bitrate to stay within the available

network capacity. A limitation in the current algorithms, however,

is their lack of network state visibility. This requires the

algorithms to rely entirely on local indicators such as packet loss

or latency, which leads to poor training and inference performance.

Information provided by the bottleneck structure (which includes

¶

¶

¶

topological, routing and flow information of the network in a single

digraph) exposed via the ALTO service could help unlock a richer set

of machine learning algorithms to optimize application performance.

An ALTO server could help the application service provider implement

AI-assisted prediction algorithms by exposing the bottleneck

structure of the network. Alternatively, ALTO could implement an AI-

assisted prediction module with the help of bottleneck structures.

The application would then query the ALTO server to obtain the

predicted value.

4.4. Optimized Joint Routing and Congestion Control

In traditional IP networks, the problems of flow routing and

congestion control are separately resolved by following a two-step

process: first, a routing protocol is used to determine the path

between any two nodes in a network; then, flows are routed according

to such paths and their transmission rates are regulated using a

congestion control algorithm. This layered and disjoint approach is

known to be scalable but suboptimal because the routing algorithm

identifies paths without taking into account the flow transmission

rates assigned by the congestion control algorithm.

Suppose that an application is trying to launch a new flow between

two endpoints with the goal to maximize the available bandwidth. One

can be tempted to think that, to identify the path with maximal

available bandwidth, it suffices to look at the current state of the

network and find the least congested path offering the highest

capacity. This approach, however, is naive since it does not take

into account the fact that the placement of the new flow onto the

network will itself create a perturbation in the network,

potentially making the chosen path suboptimal or, even more

troublesome, negatively affecting the performance of other priority

flows.

The goal of the joint routing and congestion control problem between

two given endpoints E1 and E2 consists in finding the path from E1

to E2 that will yield the highest throughput after the flow is

placed on the network (i.e., taking into account the effect of

placing the flow).

The solution to this problem is introduced in [G2-TREP] by employing

a strategy that combines the strengths of both the Dijkstra

algorithm and the insights revealed by the bottleneck structure. The

algorithm can both compute the optimal path and measure the overall

network-wide impact of deploying the new flow on the path. It also

enables a framework to identify new good-performing paths that have

a limited negative impact on the rest of the flows in the network.

This allows network and application providers to identify paths that

¶

¶

¶

¶

¶

can both provide good performance to the newly added application

flow while preserving the performance of the existing high-priority

flows.

An ALTO server could help the application service provider optimize

the path selection decision by exposing the bottleneck structure of

the network. With this information alone, the provider could

efficiently compute the optimal path (e.g., using the algorithm

introduced in [G2-TREP]). Alternatively, the application service

could query the ALTO server by passing the information of the two

endpoints that need to be connected, and the ALTO server could

return a list of the top-N paths with the highest throughput and

their expected performance.

4.5. Service Placement for Edge Computing

Determining the proper location to deploy an application service in

the edge cloud is critical to ensure a good quality of experience

(QoE) for its users. Yet the service placement problem is known to

be NP-Hard [JSP-INFOCOM], requiring heuristics to compute good

(albeit suboptimal) solutions.

In [G2-SIGCOMM], it is shown that Bottleneck structures can also be

used as highly scalable network simulators to evaluate the

performance of a network reconfiguration such as the placement of a

new service on a edge cloud. In particular, bottleneck structures

can very efficiently (1) compute the performance of each flow in the

network and (2) quantify the effects of the arrival (departure) of

new (existing) flows to (from) the network. This allows to simulate

the full transmission of an application traffic pattern very

efficiently, three or more orders of magnitude faster than

traditional packet simulators.

Network and application providers can use this capability in two

ways:

Given a set of possible placement strategies, bottleneck

structures can be used to simulate them in real time, helping the

operator select the one that provides the best performance while

guaranteeing the service level agreements (SLAs) of the other

existing applications.

Despite the server placement problem being intractable,

bottleneck structures provide a framework to identify good

candidate solutions. In particular, by capturing the topology,

routing, and flow information in a single computational graph,

they can be used to efficiently explore directions in the

feasible set that yield incrementally better performance. By

moving in these incremental directions, the placement algorithm

¶

¶

¶

¶

¶

*

¶

*

can progress within the enormous feasible set towards the optimal

solution.

An ALTO server could help the application service provider optimize

the placement decision by exposing the bottleneck structure of the

network. With this information alone, the provider could compute the

effect of placing the service in one location versus another.

Alternatively, the application service could query the ALTO server

by passing the information of the possible locations where it can be

placed, and the ALTO server could return an ordered list of the

locations and their expected performance.

4.6. Training Neural Networks and AI Inference for Edge Clouds, Data

Centers and Planet-Scale Networks

Neural network training and inference using distributed computing

systems are the subject of intense research and one of the leading

target applications in today's communication networks. [TOPOOPT-MIT]

[FLEXFLOW-STFORD] [SINGULARITY-MSFT]. To illustrate this use case,

we will focus our discussion on three types of networks: edge

clouds, data centers and planet-scale networks.

5G and Edge Clouds enable for the first time the ability to provide

intelligence at the edge of the network. This capability is

disruptive in that humans and machines will have access to

unprecedented compute power to perform AI inference in real time.

For instance, using augmented reality (AR), humans will be able to

make better informed decisions as they navigate through an

environment by leveraging AI-inference on video and audio signals

captured in real time from their user equipments (UEs). Similarly,

machines such as vehicles or factory robots will be able to use AI

inference to optimize their actions.

Two resources are needed to perform inference: (1) Input data from

the environment (e.g., image and audio signals captured from a video

camera) and (2) compute (typically in the form of GPUs and CPUs).

The input data needs to be transmitted from the location where it is

captured (e.g., a micro-camera running on a human's glasses) to the

location where it is to be processed for inference. The transmission

of the input data requires communication resources, whereas the

inference process requires computing resources. Since computing

resources in the edge cloud (Figure 4) are distributed across the

user equipment (UE), the radio unit (RU), the distributed unit (DU)

and the central unit (CU) [PETERSON], the problem of efficiently

performing AI-inference is one of optimizing the trade-off

communication-compute as follows: compute (communication) power is

more scarce (abundant) if the inference is performed closer to the

UE, and more abundant (scarce) if performed closer to the CU. For

instance, if an AR application running on a UE needs to perform an

¶

¶

¶

¶

inference task at a time when the communication path from the RU to

the DU is highly congested, then it will have an incentive to

perform such a task directly in the UE or in the RU. If instead the

network offers an uncongested path to the DU and the CU, it will

have an incentive to run the inference task on these other nodes

since they offer more compute power.

Figure 4: An AI-inference application in the edge cloud needs to place

the inference task on a compute node location (UE, RU, DU or CU) that

will perform well from both a compute and a communication standpoint.

Using ALTO path vector [I-D.ietf-alto-path-vector] and performance

metrics [I-D.ietf-alto-performance-metrics] features, the

application could retrieve the amount of compute resources located

in the RU, DU and CU. By extending ALTO to support bottleneck

structures, the application would also be able to estimate in real-

time the available bandwidth for the paths UE-RU, UE-RU-DU, and UE-

RU-DU-CU. Further, using bottleneck structure methods described in

[G2-SIGCOMM], the application would be able to estimate the time to

complete the inference task for each of the four possible scenarios

(running in the UE, the RU, the DU or, or the CU) and choose the

configuration with the fastest execution.

Similar joint compute-communication optimization problems appear

when performing neural network training in large-scale data centers.

Large-scale data centers with millions of compute nodes are used to

train gigantic neural networks (with potentially trillions of

parameters). Such a massive task needs to be broken down into

smaller subtasks that are then executed on the nodes. Once again,

compute and communication need to be jointly optimized (see

[TOPOOPT-MIT] and [FLEXFLOW-STFORD]) in order to ensure regions in

the network don't become bottlenecks. By exposing bottleneck

structure information using ALTO, the AI-training application can

make better subtask placement decisions that avoid potential network

bottlenecks.

Finally, AI-training using planet-scale networks generalizes the

same joint compute and communication problem to an Internet level

[SINGULARITY-MSFT], with the need to implement a global scheduler

that is responsible for placing workloads onto clusters of globally-

distributed compute nodes. Here too enabling better network state

¶

 +------+ +------+ +------+ +------+

 | | | | | | | |

 | UE +-------+ RU +-------+ DU +-------+ CU +

 | | | | | | | |

 +------+ Air +------+ +------+ +------+

 Interface Fronthaul Backhaul

¶

¶

visibility using ALTO and bottleneck structure graphs could help the

scheduler make better task placement decisions.

4.7. 5G Network Slicing

Bottleneck structures can also be used by network operators and

application service providers to compute optimized network slices.

In a simplified form, given a network topology consisting of a set

of routers interconnected via links each with a given capacity, the

problem of computing a network slice consists in identifying a

subset of the routers, links, and a fraction of the capacity in each

link, that can cover a certain demand of traffic generated by a

given application service. The slice provides a virtual cut of the

network, enabling isolation and ensuring a fix amount of resources

to the application service. Examples of application services include

a vehicle network service, the Internet of Things, an industrial

logistical service, or the metaverse, to name a few.

[G2-SIGCOMM] shows how bottleneck structures can be used to compute

optimized bandwidth allocations in data centers to optimally meet a

certain traffic demand. Similar frameworks can be used to compute

network slices in a virtualized networking environment.

5. Example: Application Layer Traffic Optimization using Bottleneck

Structures

In this section we provide an example illustrating how bottleneck

structures can be used to optimize application performance. This

example will then be referenced in Section 6 to discuss and

introduce the necessary requirements to integrate the BSG service

into the ALTO standard. It is worth noticing that, as shown in

Section 4, bottleneck structures have numerous applications. This

section provides a complete example for just one of the use cases.

In particular, the focus of the next example is on the joint routing

and congestion control use case Section 4.4.

Figure 5 provides a view of Google's B4 network as presented in [B4-

SIGCOMM], providing connectivity to 12 data centers distributed

across the world (two in Asia, six in America and four in Europe).

¶

¶

¶

¶

¶

Figure 5: Google's B4 network introduced in [B4-SIGCOMM].

The 12 data centeres are connected via a total of 19 links, labeled

l1, l2, ... l19. Table 1 presents the pair of data centers that each

link is connected to.

Link Adjacent data centers Link Adjacent data centers

l1 DC1, DC2 l11 DC10, DC12

l2 DC1, DC3 l12 DC4, DC5

l3 DC3, DC4 l13 DC5, DC6

l4 DC2, DC5 l14 DC11, DC12

l5 DC3, DC6 l15 DC4, DC7

l6 DC6, DC7 l16 DC4, DC8

l7 DC7, DC8 l17 DC7, DC8

l8 DC8, DC10 l18 DC9, DC11

l9 DC9, DC10 l19 DC10, DC11

l10 DC7, DC11

Table 1: Link connectivity (adjacency matrix) in the B4

network.

For the sake of illustration, we will assume a simple configuration

consisting of a pair of flows (one for each direction) connecting

every data center in the US with every data center in Europe, with

all flows routed along a shortest path from source to destination.

Since there are six data centers in the US and four in Europe, this

configuration has a total of 48 flows. All links are assumed to have

a capacity of 10 Gbps except for the transatlantic links (DC7-DC11

and DC8-DC10), which are configured at 25 Gbps.

 +-----+ +-----+ +-----+ +-----+ +------+ +------+

 | | | | | | | | | | | |

 | DC1 +---+ DC3 +--+ DC4 +--+ DC7 +---+ DC11 +----+ DC12 |

 | | | | | | | | | | | |

 +---+-+ +--+--+ +--+-++ +----++ +-+--+-+ +----+-+

 | | | | | | | | |

 | +------+ | +----+ | | | +--------+ |

 | | | | | | | | |

 | | | | | | | | |

 | +------|-+ +----|-+ | | +-------|--+

 | | | | | | | | |

 +---+-+ +--+--+ ++---++ ++---++ +-+---++ +-+---+

 | | | | | | | | | | | |

 | DC2 +---+ DC5 +--+ DC6 +--+ DC8 +---+ DC10 +----+ DC9 |

 | | | | | | | | | | | |

 +-----+ +-----+ +-----+ +-----+ +------+ +-----+

 |-----| |-----------------------| |-----------------|

 Asia America Europe

¶

¶

The next Figure presents the bottleneck structure of Google's B4

network with the assumed flow configuration. Please see Section 3.1

for a description of how to interpret the bottleneck structure. (See

also [G2-SC], [G2-TREP] for details on the algorithm used to compute

the bottleneck structure.)

Figure 6: Bottleneck structure of Google's B4 network example.

¶

 +--------+ +--------+

 | | | |

 | l15 | | l7 |

 | | | |

 +-^----^-+ +--^--^--+

 | | | |

 | | | +--------------------------+

 | | | |

 | +---------|------------------+ |

 | | | |

 +-v------+ +--v----+ +---v---+ +---v---+

 | | | | | | | |

 | f1 | | f2 | | f3 | | f10 | (...)

 | | | | | | | |

 +-+-+-+--+ +-+---+-+ +--+--+-+ +-------+

 | | | | | | |

 | | +---------|---|-------------|--|--------------+

 | | | | | | |

 | | +---------+ +-----------+ | | |

 | | | | | | |

 | +-|---------+ +----------|-+ +---------+ |

 | | | | | | |

 | | | | | | |

 +-v---v--+ +-v----v-+ +-v----+ +-v----v-+

 | | | | | | | |

 | l8 | | l10 | | l5 | | l3 |

 | | | | | | | |

 +-^---^--+ +-^---^--+ +------+ +--------+

 | | | |

 | | | +-----------------------+

 | | | |

 | +---------|---------------+ |

 | | | |

 +-v----+ +---v---+ +---v---+ +---v---+

 | | | | | | | |

 | f6 | | f9 | | f23 | | f18 | (...)

 | | | | | | | |

 +------+ +-------+ +-------+ +-------+

For the sake of compactness, Figure 6 only includes the bottleneck

links and a subset of the flow vertices that are part of the

complete bottleneck structure. In particular, out of the 19 links

that are part of B4, six links (l15, l7, l8, l10, l5, l3) are

bottlenecks.

The bottleneck structure graph shows the existence of two bottleneck

levels in our configuration example:

The first level at the top of the bottleneck structure includes

links l15 and l7. Flows f1, f2, f3, f10, etc. are bottlenecked at

this level.

The second level of the bottleneck structure includes links l8,

l10, l5 and l3. Flows f6, f9, f23, f18, etc. are bottlenecked at

this level.

From the MBA Property (Property 3), we know that flows bottlenecked

by a link at level 2 will enjoy higher available bandwidth than

flows bottlenecked at level 2. For instance, consider the following

directed path in the bottleneck structure:

Using the MBA property, we have that since l15 precedes l8, it must

be that s15 < s8, where s15 is the rate of flow f1 bottlenecked at

l15 and s8 is the rate of flow f6 bottlenecked at l8.

Suppose now that an application needs to place a new flow on

Google's B4 network to transfer a large data set from data center 11

(DC11) to data center 4 (DC4). The application needs to select and

configure a path from DC11 to DC4 (for instance, this could be done

by using SR [RFC8402]). The shortest path DC11 -> l10 -> DC7 -> l15

-> DC4 is often used as the default option. Doing so, however,

implies that the flow will be bottlenecked at link l15 at the upper

level of the bottleneck structure, leading to a lower transmission

rate. If instead we choose the non-shortest path DC11 -> l19 -> DC10

-> l8 -> DC8 -> l16 -> DC4, now the flow will be bottlenecked at

link l8 (at the lower level of the bottleneck structure), leading to

a higher transmission rate.

Using QTBS, we can also numerically compute the transmission rate of

the flow on each of the two path options. (See Section 3.1 in [G2-

TREP] for a detailed description of how to compute the transmission

rate assigned to the flow on each of these paths.) In particular, we

obtain that when the application chooses the shortest path

(bottlenecked at level 1 of the bottleneck structure), it gets a

transmission rate of 1.429 Gbps. If instead the application chooses

the slightly longer path (bottlenecked at level 2 of the bottleneck

¶

¶

*

¶

*

¶

¶

l15 -> f1 -> l8 -> f6¶

¶

¶

structure), then it gets a transmission rate of 2.5 Gbps, an

increase of 74.95% with respect to the shortest path solution.

[G2-TREP] introduces also a very efficient routing algorithm that

uses the bottleneck structure to find the maximal throughput path

for a flow in O(V+E*log(V)) steps, where V is the number of routers

and E is the number of links in the network.

Overall, this example illustrates that, equipped with knowledge

about the bottleneck structure of a network, an application can make

better informed decisions on how to route a flow. In the next

sections, we will use this example to support a discussion on the

requirements for integrating the Bottleneck Structure Graph (BSG)

service into the ALTO standard.

6. Requirements

This section provides a discussion on the necessary requirements to

integrate the BSG service into the ALTO standard.

6.1. Requirement 1: Bottleneck Structure Graph (BSG) Abstraction

The first base requirement consists in extending the ALTO server

with the capability to compute bottleneck structures. For instance,

with this capability, given the network configuration in Figure 5,

the ALTO server would be able to compute the bottleneck structure

shown in Figure 6:

Requirement 1A (R1A). The ALTO server MUST compute the bottleneck

structure graph to allow applications optimize their performance

using the BSG service.

We note that the alternative, which would consists in ALTO simply

providing the necessary information for applications to compute

their own bottleneck structures, would not scale due to the

following issues:

Suppose that 1 ALTO server is providing support to N ALTO

clients. Then, requiring each application to compute the

bottleneck structure would imply performing N identical and

redundant computations. By computing the bottleneck structure in

the ALTO server, a one-time computation can be leveraged by all N

clients. We also note that [G2-SC] demonstrates that bottleneck

structures can be efficiently computed in real time by the server

even for large scale networks.

A production-ready high-speed implementation of QTBS is

relatively sophisticated. Requiring the applications to implement

their own QTBS optimization library would impose unnecessary and

(perhaps more importantly) out-of-scope requirements to the

¶

¶

¶

¶

¶

*

¶

¶

*

¶

*

application, which should focus on providing its service rather

than implementing a network optimization math library.

The next requirement focuses on the type of bottleneck structure an

ALTO server must compute:

Requirement 1B (R1B). The ALTO server MUST at least support the

computation of one bottleneck structure type from Section 3.7.

Depending on the network information available (e.g., presence of

QoS class information), the ALTO server MAY support all the three

bottleneck structure types, in which case the ALTO client MAY be

able to choose the bottleneck structure type for retrieval. Also,

it is RECOMMENDED that the ALTO server supports the computation

of the path gradient graph (PGG) as the default bottleneck

structure implementation for retrieval by the ALTO clients.

6.2. Requirement 2: Information Received from the Network

To compute a bottleneck structure, two pieces of information are

required:

Topology Object (T). The T Object is a data structure that

includes:

(1) A Topology Graph (V, E), where V is the set of routers and E

is the set of links connecting the routers in the network.

(2) A Capacity Dictionary (C), a key-value table mapping each

link with its capacity (in bps).

Flow Dictionary (F). The F Dictionary is a key-value table

mapping every flow with the set of links it traverses.

As shown in [G2-TREP], the above information is enough to compute

the bottleneck structure. In fact, with only the F and C

dictionaries, one can compute the bottleneck structure. The topology

graph (V, E) is needed to perform optimal routing computations (for

instance, to find new paths in the network that yield higher

throughput, as illustrated in Section 5).

The above discussion leads to the following requirement:

Requirement 2A (R2A). The ALTO server MUST collect information

about (1) the set of routers and links in a network, (2) the

capacity of each link and (3) the set of links traversed by each

flow.

Information about the set of routers, links and link capacity is

typically available from protocols and technologies such as SNMP,

BGP-LS, SDN, or domain specific topology logs. This information is

¶

¶

*

¶

¶

*

¶

¶

¶

*

¶

¶

¶

*

¶

enough to construct the T Object. Information about the set of links

traversed by each flow can be obtained from protocols such as

NetFlow, sFlow, IPFIX, etc. See [FLOWDIR] and [G2-SC] for examples

of how requirement R2A is implemented in real-world production

networks.

6.3. Requirement 3: Information Passed to the Application

The following requirement is necessary so that applications can

optimize their performance using bottleneck structure information:

Requirement 3A (R3A). The ALTO client MUST be able to query the

ALTO server to obtain the current bottleneck structure of the

network, represented as a digraph.

In addition, the current ALTO services can be extended with

additional information obtained from the bottleneck structure:

Requirement 3B (R3B). One or more ALTO services (the Network Map,

the Cost Map, the Entity Property Map or the Endpoint Cost Map)

MUST support reporting to ALTO clients additional network state

information derived from the bottleneck structure to the ALTO

client.

For example, the ALTO Cost Map Service can be extended with a new

cost metric that corresponds to the estimated available bandwidth

between two endpoints according to the bottleneck structure model.

6.4. Requirement 4: Features Needed to Support the Use Cases

Bottleneck structures offer a rich framework to optimize application

performance for a variety of use cases. In addition to the base

requirement to construct the bottleneck structure graph (see R1A),

in this section we enumerate additional capabilities that must be

supported by the ALTO BSG service to ensure it is effective in

helping applications optimize their performance for each of the

supported use cases.

Requirement 4A (R4A). The ALTO BSG service MUST be able to

compute the effect of network reconfigurations using bottleneck

structure analysis and according to the types described in

Section 3.9.

For example, an extended reality (XR) application might need to

choose where to place a containerized instance of the XR service

among a set of possible server racks located in various edge cloud

locations. The application would query the ALTO BSG service to

obtain the projected performance results of placing the new service

instance on each possible location, allowing it to select the one

that would yield the highest performance.

¶

¶

*

¶

¶

*

¶

¶

¶

*

¶

¶

The following requirement is necessary to ensure that the

information provided by the BSG service is not stale:

Requirement 4B (R4B). The BSG service MUST be able to update the

bottleneck structure graph in near-real time, at least once a minute

or less.

In [G2-SC] it is shown that bottleneck structures can be computed in

a fraction of a session for a production US wide network with about

100 routers and 500 links. Thus, the above requirement should be

achievable with a good implementation of the bottleneck structure

algorithm [G2-TREP].

7. Security Considerations

Future versions of this document may extend the base ALTO protocol,

so the Security Considerations [RFC7285] of the base ALTO protocol

fully apply when this proposed extension is provided by an ALTO

server.

The Bottleneck Structure Graph extension requires additional

scrutiny on three security considerations discussed in the base

protocol: Confidentiality of ALTO information (Section 15.3 of

[RFC7285]), potential undesirable guidance from authenticated ALTO

information (Section 15.2 of [RFC7285]), and availability of ALTO

service (Section 15.5 of [RFC7285]).

For confidentiality of ALTO information, a network operator should

be aware that this extension may introduce a new risk: As the

Bottleneck Structure information may reveal more fine-grained

internal network structures than the base protocol, an attacker may

identify the bottleneck link and start a distributed denial-of-

service (DDoS) attack involving minimal flows to conduct in-network

congestion. Given the potential risk of leaking sensitive

information, the BSG extension is mainly applicable in scenarios

where:

The properties of the Bottleneck Structure Graph do not impose

security risks to the ALTO service provider, e.g., by not

carrying sensitive information.

The ALTO server and client have established a reliable trust

relationship, for example, operated in the same administrative

domain, or managed by business partners with legal contracts and

proper authentication and privacy protocols.

The ALTO server implements protection mechanisms to reduce

information exposure or obfuscate the real information.

Implementations involving reduction or obfuscation of the

Bottleneck Structure information SHOULD consider reduction/

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

[I-D.ietf-alto-path-vector]

obfuscation mechanisms that can preserve the integrity of ALTO

information, for example, by using minimal feasible region

compression algorithms [NOVA] or obfuscation protocols RESA

[MERCATOR]. We note that these obfuscation methods are

experimental and their practical applicability to the generic

capability provided by this extension is not fully assessed.

We note that for operators that are sensitive about disclosing flow-

level information (even if it is anonymized), then they SHOULD

consider using the Path Gradient Graph (PGG) or the QoS-Path

Gradient Graph (Q-PGG) since these objects provide the additional

security advantage of hiding flow-level information from the graph.

For undesirable guidance, the ALTO server must be aware that, if

information reduction/obfuscation methods are implemented, they may

lead to potential misleading information from Authenticated ALTO

Information. In such cases, the Protection Strategies described in

Section 15.2.2 of [RFC7285] MUST be considered.

For availability of ALTO service, an ALTO server should be cognizant

that using Bottleneck Structures might have a new risk: frequently

querying the BSG service might consume intolerable amounts of

computation and storage on the server side. For example, if an ALTO

server implementation dynamically computes the Bottleneck Structure

for each request, the BSG service may become an entry point for

denial-of-service attacks on the availability of an ALTO server.

To mitigate this risk, an ALTO server may consider using

optimizations such as precomputation-and-projection mechanisms

[MERCATOR] to reduce the overhead for processing each query. An ALTO

server may also protect itself from malicious clients by monitoring

the behaviors of clients and stopping serving clients with

suspicious behaviors (e.g., sending requests at a high frequency).

8. IANA Considerations

Future versions of this document may register new entries to the

ALTO Cost Metric Registry, the ALTO Cost Mode Registry, the ALTO

Domain Entity Type Registry and the ALTO Entity Property Type

Registry.

9. References

9.1. Normative References

Gao, K., Lee, Y., Randriamasy, S., Yang,

Y. R., and J. Zhang, "An ALTO Extension: Path Vector",

Work in Progress, Internet-Draft, draft-ietf-alto-path-

vector-25, 20 March 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-alto-path-vector-25>.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-alto-path-vector-25
https://datatracker.ietf.org/doc/html/draft-ietf-alto-path-vector-25

[I-D.ietf-alto-performance-metrics]

[RFC2119]

[RFC7285]

[RFC8174]

[RFC8402]

[RFC8896]

[B4-SIGCOMM]

[BE-ONL]

[BE-SIGCOMM]

[FLEXFLOW-STFORD]

Wu, Q., Yang, Y. R., Lee, Y., Dhody, D., Randriamasy, S.,

and L. M. Contreras, "ALTO Performance Cost Metrics",

Work in Progress, Internet-Draft, draft-ietf-alto-

performance-metrics-28, 21 March 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-alto-

performance-metrics-28>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel,

S., Previdi, S., Roome, W., Shalunov, S., and R. Woundy,

"Application-Layer Traffic Optimization (ALTO) Protocol",

RFC 7285, DOI 10.17487/RFC7285, September 2014, <https://

www.rfc-editor.org/rfc/rfc7285>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,

Decraene, B., Litkowski, S., and R. Shakir, "Segment

Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,

July 2018, <https://www.rfc-editor.org/rfc/rfc8402>.

Randriamasy, S., Yang, R., Wu, Q., Deng, L., and N.

Schwan, "Application-Layer Traffic Optimization (ALTO)

Cost Calendar", RFC 8896, DOI 10.17487/RFC8896, November

2020, <https://www.rfc-editor.org/rfc/rfc8896>.

9.2. Informative References

Jain et al, S., "B4: Experience with a Globally-

Deployed Software Defined WAN", ACM SIGCOMM , 2013.

"Bandwidth Estimation on OpenNetLab", IETF Plenary 112,

IETF ALTO WG , 2021, <https://datatracker.ietf.org/

meeting/112/materials/slides-112-alto-bandwidth-

estimation-service-00>.

Kumar et al, A., "BwE: Flexible, Hierarchical Bandwidth

Allocation for WAN Distributed Computing", ACM SIGCOMM ,

2015.

Jia et al, Z., "Beyond Data And Model Parallelism

For Deep Neural Networks", n.d., <https://arxiv.org/pdf/

1807.05358.pdf[>.

https://datatracker.ietf.org/doc/html/draft-ietf-alto-performance-metrics-28
https://datatracker.ietf.org/doc/html/draft-ietf-alto-performance-metrics-28
https://datatracker.ietf.org/doc/html/draft-ietf-alto-performance-metrics-28
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7285
https://www.rfc-editor.org/rfc/rfc7285
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8402
https://www.rfc-editor.org/rfc/rfc8896
https://datatracker.ietf.org/meeting/112/materials/slides-112-alto-bandwidth-estimation-service-00
https://datatracker.ietf.org/meeting/112/materials/slides-112-alto-bandwidth-estimation-service-00
https://datatracker.ietf.org/meeting/112/materials/slides-112-alto-bandwidth-estimation-service-00
https://arxiv.org/pdf/1807.05358.pdf%5B
https://arxiv.org/pdf/1807.05358.pdf%5B

[FLOWDIR]

[G2-SC]

[G2-SIGCOMM]

[G2-SIGMETRICS]

[G2-TREP]

[GALLAGER]

[JSP-INFOCOM]

[LORENZ]

[MERCATOR]

[MMSYS]

Pujol, E., Poese, I., Zerwas, J., Smaragdakis, G., and A.

Feldmann, "Steering Hyper-Giants' Traffic at Scale", ACM

CoNEXT , 2019.

Amsel, N., Ros-Giralt, J., Yellamraju, S., von Hoffe, B.,

and R. Lethin, "Computing Bottleneck Structures at Scale

for High-Precision Network Performance Analysis", IEEE

International Workshop on Innovating the Network for Data

Intensive Science (INDIS), Supercomputing , 2020.

Ros-Giralt, J., Amsel, N., Yellamraju, S., Ezick, J.,

Lethin, R., Jiang, Y., Feng, A., Tassiulas, L., Wu, Z.,

and K. Bergman, "Designing data center networks using

bottleneck structures", ACM SIGCOMM , 2021.

Ros-Giralt, J., Bohara, A., Yellamraju, S., Langston, H.,

Lethin, R., Jiang, Y., Tassiulas, L., Li, J., Tan, Y.,

and M. Veeraraghavan, "On the Bottleneck Structure of

Congestion-Controlled Networks", ACM SIGMETRICS , 2020.

Ros-Giralt, J., Amsel, N., Yellamraju, S., Ezick, J.,

Lethin, R., Jiang, Y., Feng, A., Tassiulas, L., Wu, Z.,

and K. Bergman, "A Quantitative Theory of Bottleneck

Structures for Data Networks", Reservoir Labs (Qualcomm)

Technical Report , 2021.

Gallager, R. and D. Bertsekas, "Data Networks", 1992.

Poularakis et al, D., "Joint Service Placement and

Request Routing in Multi-cell Mobile Edge Computing

Networks", n.d..

Lorenz, E., "Does the flap of a butterfly's wings in

Brazil set off a tornado in Texas?", American Association

for the Advancement of Science, 139th Meeting , 1972.

Xiang, Q., Zhang, J., Wang, X., Guok, C., Le, F.,

MacAuley, J., Newman, H., and Y. Yang, "Toward Fine-

Grained, Privacy-Preserving, Efficient Multi-Domain

Network Resource Discovery", IEEE/ACM IEEE/ACM IEEE

Journal on Selected Areas of Communication 37(8):

1924-1940, 2019, <https://doi.org/10.1109/JSAC.

2019.2927073>.

"Bandwidth Estimation for Real-Time Communications",

2021, <https://2021.acmmmsys.org/rtc_challenge.php>.

https://doi.org/10.1109/JSAC.2019.2927073
https://doi.org/10.1109/JSAC.2019.2927073
https://2021.acmmmsys.org/rtc_challenge.php

[NOVA]

[PETERSON]

[SH-SIGCOMM]

[SINGULARITY-MSFT]

[TOPOOPT-MIT]

Gao, K., Xiang, Q., Wang, X., Yang, Y., and J. Bi, "An

objective-driven on-demand network abstraction for

adaptive applications", IEEE/ACM IEEE/ACM Transactions on

Networking (TON) Vol 27, no. 2 (2019): 805-818., 2019,

<https://doi.org/10.1109/IWQoS.2017.7969117>.

Peterson, L. and O. Sunay, "5G Mobile Networks: A Systems

Approach", Open Networking Foundation , 2020.

Singh et al, R., "Cost-effective capacity provisioning

in wide area networks with Shoofly", ACM SIGCOMM , 2021.

Shukla et al, D., "Singularity: Planet-Scale,

Preemptive and Elastic Scheduling of AI Workloads", n.d.,

<https://arxiv.org/pdf/2202.07848.pdf>.

Wang et al, W., "TOPOOPT: Optimizing the Network

Topology for Distributed DNN Training", n.d., <https://

arxiv.org/pdf/2202.00433.pdf>.

Authors' Addresses

Jordi Ros-Giralt

Qualcomm

Email: jros@qti.qualcomm.com

Sruthi Yellamraju

Qualcomm

Email: yellamra@qti.qualcomm.com

Qin Wu

Huawei

Email: bill.wu@huawei.com

Luis Miguel Contreras

Telefonica

Email: luismiguel.contrerasmurillo@telefonica.com

Richard Yang

Yale University

Email: yry@cs.yale.edu

Kai Gao

Sichuan University

https://doi.org/10.1109/IWQoS.2017.7969117
https://arxiv.org/pdf/2202.07848.pdf
https://arxiv.org/pdf/2202.00433.pdf
https://arxiv.org/pdf/2202.00433.pdf
mailto:jros@qti.qualcomm.com
mailto:yellamra@qti.qualcomm.com
mailto:bill.wu@huawei.com
mailto:luismiguel.contrerasmurillo@telefonica.com
mailto:yry@cs.yale.edu

Email: kaigao@scu.edu.cn

mailto:kaigao@scu.edu.cn

	Supporting Bottleneck Structure Graphs in ALTO: Use Cases and Requirements
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Brief Introduction to Bottleneck Structures
	3.1. Example of Bottleneck Structure
	3.2. Propagation Properties
	3.3. Forces of Interaction among Flows and Links
	3.4. Ripple Effects in a Communication Network
	3.5. Not all Bottleneck Links Are Born Equal
	3.6. Quantifying the Ripple Effects
	3.7. Types of Bottleneck Structures
	3.8. Computing Optimized Network Reconfigurations
	3.9. Types of Network Reconfigurations

	4. ALTO Bottleneck Structure Service Use Cases
	4.1. Application Rate Limiting for CDN and Edge Cloud Applications
	4.2. Time-bound Constrained Flow Acceleration for Large Data Set Transfers
	4.3. Application Performance Optimization Through AI Modeling
	4.4. Optimized Joint Routing and Congestion Control
	4.5. Service Placement for Edge Computing
	4.6. Training Neural Networks and AI Inference for Edge Clouds, Data Centers and Planet-Scale Networks
	4.7. 5G Network Slicing

	5. Example: Application Layer Traffic Optimization using Bottleneck Structures
	6. Requirements
	6.1. Requirement 1: Bottleneck Structure Graph (BSG) Abstraction
	6.2. Requirement 2: Information Received from the Network
	6.3. Requirement 3: Information Passed to the Application
	6.4. Requirement 4: Features Needed to Support the Use Cases

	7. Security Considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

