
INTERNET-DRAFT Lewis Girod
Date: March 13, 1998 Benjie Chen
Expires: September 18, 1998 MIT Laboratory for Computer Science
draft-girod-urn-res-using-wire-00.txt John Mallery
 MIT Artificial Intelligence Laboratory

 URN Resolution Using WIRE

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of
the Internet Engineering Task Force (IETF), its areas, and its working
groups. Note that other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and
may be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet- Drafts as reference material or to cite them
other than as "work in progress."

To view the entire list of current Internet-Drafts, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe), munnari.oz.au
(Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West
Coast).

Abstract

The identifier resolution extensions proposed in WIRE [11] add new
mechanisms for redirection and resolver delegation to HTTP. While these
mechanisms are generalized to support resolution of all URIs, they were
designed in part to meet the specific needs of URN resolution systems.

This document describes how the WIRE model maintains consistency with
existing models of URN resolution, how WIRE can be used as a URN resolution
protocol, and how WIRE fits into the existing URN resolution infrastructure,
including NAPTR [8] and THTTP [9].

1 Introduction

This section comprises about half of this document. This lengthy
introduction is an effort to summarize the history of URN resolution,
explain the URN-oriented design rationale behind WIRE, and present a model
for resolution that we have found useful for thinking about URN resolution
while avoiding endless confusion.

The rest of the document is organized as follows: Section 2 describes the
syntax and semantics of URN resolution hints; Section 3 describes some
examples of URN resolution with WIRE; Section 4 describes the caching of URN
resolution responses; Section 5 discusses security issues.

https://datatracker.ietf.org/doc/html/draft-girod-urn-res-using-wire-00.txt

Details about URN syntax, URN resolution architecture, and particular URN
resolution systems are outside the scope of this document. We expect readers
of this document to be familiar with the various URN documents
([7][8][9][10]), HTTP ([4][5]), and WIRE ([11]).

1.1 Background

Uniform Resource Names, or URNs, are identifiers for Internet resources that
have the capability to be maintained persistently for long periods of time.
Each URN is globally unique and fits into a namespace that can be resolved
globally. Rather than specifying a location and a fixed resolution
mechanism, URNs are generally location-independent and are resolved using a
mechanism that can evolve over time. Some URNs are considered to refer to
"conceptual" resources that may have many different versions or may change
dynamically. See [2] for a description of URN properties.

A large database containing resolution data for every URN is not a scalable
approach to URN resolution. Instead, the URN Working Group of the IETF has
been coordinating an effort to engineer a distributed authority model for
URN namespaces. In this model, many resolvers worldwide serve different
parts of a global URN namespace, implementing a federation of diverse
resolution systems and protocols. This architecture enables the global URN
infrastructure to scale to large numbers of URNs, to large volumes of
requests, and to diverse administrative policies. This architecture requires
that a URN resolver not only be able to resolve URNs within its own
namespace, but also delegate spaces of URNs to other resolvers.

Until recently, URN resolution has exclusively been implemented using the
Naming Authority PoinTeR (NAPTR) ([8]) resolution algorithm and the Trivial
HTTP (THTTP) ([9]) convention for URI resolution. The NAPTR algorithm uses
special records in the Domain Name System to achieve flexibility of
delegation. There are two powerful advantages to this approach: first, the
DNS is widely implemented and no significant changes to the server are
required, and second, the DNS is designed with the desired mechanisms for
distributing authority built in. Similarly, the THTTP convention is
advantageous because it defines a simple interface for performing URN
resolution that does can be added to an existing web server through the CGI
interface.

However, early experimentation with the THTTP convention has shown some
weaknesses. For example, it is not always clear how errors should be
reported to the client, and it does not include a well-defined way to invoke
methods other than "GET" on the referenced object. Redirection, which would
be a powerful tool for delegation of URN spaces, is also not well defined by
the convention. No recommendations are made about the behavior of caching
proxies or client side caches.

WIRE [11] is an attempt to integrate functionality necessary for URN
resolution into HTTP and to reduce that functionality to the more general
case of URI resolution. WIRE is an extension of HTTP/1.0 or above that
defines new semantics for resolver delegation. WIRE combines the

functionality of a "terminal" resolution protocol such as THTTP with
redirection and delegation functionality similar to that of the NAPTR
algorithm. WIRE can both act as a gateway to other systems as well as return
delegation responses that can "escape" to arbitrary alternate protocols.

1.2 Requirements

Work in the IETF URN Working Group has led to a set of requirements for URN
resolution infrastructure [2][10]. WIRE was designed with the following
goals in mind:

 1. Enable new resolver implementations to work immediately with the
 existing infrastructure. WIRE must act as a gateway interface to new
 resolution services, while permitting new services to independently
 choose whether to proxy a resolution request or redirect it to another
 resolver.
 2. Permit resolver delegations to reference other protocols or services. A
 resource may be accessible via protocols other than HTTP (e.g. CORBA
 objects). Some resolution protocols may specify local caching resolvers
 (e.g. HTTP clients can be configured to use a caching proxy; a web
 client might use the local DNS server to resolve NAPTR records).
 3. Encourage the development of hint-based mechanisms by defining new data
 structures that bind hint information to URIs. Implement the idea of
 "delegation" as resolution to incremental metadata, and unify that idea
 with "terminal" resolution to resources. Specify mechanisms whereby
 client-side interpretation of metadata can act as a vehicle for
 delegation, redirection, and content negotiation.

URN infrastructure enables persistent references by building flexibility
into URN resolution mechanisms. In order to speed deployment, these
mechanisms need to be incorporated into existing infrastructures. The W3
infrastructure is a particularly appealing choice because of its wide
acceptance and its potential to benefit from persistent naming. A number of
reasons make adding URN resolution to HTTP a viable approach:

 1. HTTP is a very widely deployed protocol. It is simple and human
 readable. It defines proxy semantics that can be used to implement new
 features in a proxy server. WIRE extends HTTP and therefore retains
 those properties.
 2. HTTP has many useful features and semantics that WIRE also inherit.
 These include proxy servers, caching, authentication, etc.
 3. Through the use of resolution hints, WIRE gives clients the power to
 choose methods of resolution. This allows a flexible and scalable
 architecture.

1.3 Resolution Model

One of the recurring problems experienced by the URI community has been a
tendency to get trapped in the cavernous ratholes surrounding references to
resources. WIRE [11] includes a section describing a simplified resolution
model for URI resolution. Here we explain how this model applies to URN

resolution. In doing so we hope to address some of areas that have
historically led to confusion.

Rather than repeat the description in [11], we summarize: to resolve a URN,
ask the right server to resolve it, supplying any appropriate arguments, and
that server will perform the resolution. If that server is not the right
server, it returns a redirection/delegation, or an error message:

 GET | | Standard
 URN[?argument] --->| Right Resolver? | Yes ---> HTTP
 [hint: "hint"] |_____________________| Response
 ^ | No | Error
 | | |
 | v v
 +------- 350 Redirect 400 Bad Request

The resolver in the box can do as much work on the client's behalf as its
local policy allows. Arguments specified in the request can cause particular
methods to be performed on the resource when it is resolved; for example
"resolution services" can be implemented this way. The 350 redirect can
redirect resolution to other protocols, which may in turn provide similar
delegation capabilities. Just as WIRE's resolution model borrows many ideas
from the NAPTR algorithm [8], a similar model could easily be applied to
other resolution protocols.

1.3.1 Popular Modes of Confusion

This model is designed to avoid certain areas of confusion that crop up with
URN resolution. First, it clears up confusion about what a URN resolves to,
by declaring that a URN resolves to typed data, with the type indicated
dynamically by response headers. In this way, the WIRE model rejects the
idea that a URN is constrained to resolve to a particular type (e.g. a
"special" metadata type), instead providing identical semantics to any other
HTTP request. This allows WIRE to be used more readily as a gateway
protocol.

The notion of "resolution services" [10] tends to further blur the question
of what a URN resolves to. By implementing a resolver that supports a set of
resolution services, in essence this means that the URN resolves to an
object to which resolution services may be applied as method calls on an
object. This is not a problem as long as it remains clear that the object
named by a URN is not the "resource" that might eventually be retrieved
(say, by servicing an "I2R" request) but rather the server-side instance
that provides the resolution services. Historically this distinction has
been the source of no small amount of confusion.

The idea of "metadata" is another source of confusion. It is clear that the
association of metadata with an object is something that we would like to
work into our more advanced and more flexible concept of identifier

resolution. URNs can be mapped to collections of metadata that in turn
reference more concrete resources; this metadata can be used by the client
to do content negotiation, or can be exploited by indexing agents. All of
these ideas stem from the possibility that a URN identifies a "conceptual
resource", a resource that might move or change over time but can retain the
same mapping from name to concept as a result of a flexible URN resolution
mechanism. However, "conceptual resources" are problematic because it
rapidly becomes unclear whether the URN references the metadata that
describes the resource, the whole abstract resource, or any given part of
the resource. Which should a resolution operation return?

1.3.2 An Axiomatic Model of Resolution

To make sense of these problems, we propose a set of axioms that define a
way to think about resolution processes. These axioms look at resolution
processes as a scoped set of processes that can be observed at varying
levels of detail. Often this leads to confusion when there is ambiguity
about which layer of abstraction is in focus and which stage of the
discovery process is in process. The critical idea here is that the same URN
might resolve differently at different layers of abstraction and stages of
discovery. In order to understand how a particular URN should resolve it is
important to keep the relevant contextual information clearly in mind.

 1. In general, outside of the context of a particular resolution
 mechanism, a URI resolves to bits.
 2. Within the context of a particular resolution mechanism, there are
 intermediate resolution steps and a final resolution step. External to
 that mechanism, we can ignore the intermediate steps, and consider the
 final step to be resolution of the URI.
 3. In general, the final resolution step is a method call on some remote
 object, which may be as simple as "GET". The resolution mechanism
 defines whether the results of any given operation are best considered
 to be metadata, or data, or any other type of thing.
 4. Any particular resolution process can be considered to be an
 intermediate step inside a more complex resolution process.
 5. Different resolution mechanisms may resolve the same URI to different
 data. Different resolution mechanisms may consider "resolution"
 complete at different stages of the process.

1.3.3 Some Examples

These ideas are best explained with an example. A user clicks on a link that
contains the text of URN X. The browser performs a sequence of intermediate
steps to resolve URN X, resulting in a displayed HTML page. From the user's
point of view, URN X resolves to that page.

If we zoom in on the browser, we see three intermediate steps, and we see
that at this level X really resolves to metadata:

 1. URN X resolves to bits that the browser understands as metadata
 2. The metadata tells the browser that the English version is accessible

 at URN Y
 3. Since the browser knows that the user wants the English version, it
 resolves URN Y to an HTML page that is in turn displayed.

If we zoom in on step (1), we see three intermediate steps, and we see that
locally X resolves to a 350 response that points to resolver R:

 1. A "GET X" request is sent to a local WIRE resolver.
 2. That resolver returns a 350 redirect pointing to resolver R.
 3. A "GET X" request is sent to resolver R, and a 200 response containing
 metadata is returned.

1.4 Clarification

In previous URN resolution documents ([8][10]) the term "Resolver Discovery
System", or RDS, has been used to describe the interactions of a set of
servers designed solely to locate a resolver, which can then be used to
resolve the URN. In our opinion, this distinction between RDS and resolver
unnecessarily increases the complexity of the model. It also puts an
unnecessary constraint on designers of URN resolution systems: for example,
some systems might include servers that can act both as resolvers and
resolver locators.

In this document, we use the term "resolver" to describe a server that can
either resolve a URN or delegate the resolution authority to another
resolver. This second behavior allows us to use the term "resolver" as a
replacement for "RDS".

2 Resolution Hints

WIRE defines a general form for resolution hints, and leaves the definition
of specific hint schemes to the resolution applications that use them. In
this section we present a hint syntax designed to support URN resolvers.

2.1 Resolution Starting Point

Namespace identifiers, stored in a global registry ([10]), identify URN
namespaces. A namespace can be further divided into subspaces. When a child
subspace and its parent namespace are covered by different resolvers, the
resolution process of a URN in the child subspace must be delegated from the
parent namespace resolver to the subspace resolver.

If a resolver covers more than one subspace, then prior to resolving the
request URN it must first determine to which subspace the URN belongs.
Because the lexical ordering of a URN is not guaranteed to be uniform across
delegation boundaries (see section 4 for an example), a URN's enclosing
subspace cannot be identified syntactically, and can only be reliably
discovered by performing the entire resolution process from the beginning.

This means that in order to make progress in the resolution, the hint passed
to a URN resolver may need to contain a token that tells the resolver which
URN space to begin searching. We call this token a resolution starting

point. A resolution starting point has the following grammar:

resolution-starting-pt = urn

The only syntactical constraint on resolution starting point is that it must
follow the URN syntax ([7]). Its syntax and semantics are defined by the
resolver that receives and interprets it. A child resolver that needs to
receive a specific starting point specifies this to be part of the hint
information served by the resolver of the parent namespace.

2.2 Resolution Hints for Resolving URNs

A resolution hint tells a client how to continue resolving a specific URI.
When a client uses a hint to contact a new WIRE resolver, a derivative of
that hint is included in the request to that resolver. For the purposes of
URN resolution, a hint needs to contain the location and protocol of a
resolver, and it may optionally specify a resolution starting point to be
interpreted by that resolver and a type model pertaining to that resolver.
Resolution hints for URN resolution have the following grammar:

resolution-hint = "res-hint:" url [starting-point] [type-model]
starting-point = ";scope=" resolution-starting-pt
type-model = ";type=" type-specifier * ("+" type-specifier)
type-specifier = urn

Operationally speaking, the URL specified in the resolution hint tells the
client how to contact the resolver. The type model tells the client what
types of object are stored at the target resolver or what services are
provided there. This can allow the client to invoke a particular method on
the object through the '?' construct, if the type model is one that the
client understands. The client can indicate which type(s) it wants to use by
modifying the type parameter in the hint passed along in the request. If it
is included in the original hint, the scope parameter helps the target
resolver perform the search; if present this should be passed along to the
target resolver unchanged.

For example, the resolution hint

res-hint:http://thebe.lcs.mit.edu;scope=urn:cid:;type=urn:type:N2C+urn:type:N2L

states that the URN can be further resolved at thebe.lcs.mit.edu using the
HTTP WIRE extensions. The server expects the starting point "urn:cid:", and
that the object there can perform methods corresponding to both "N2C" and
"N2L" service types.

The protocol scheme of the URL portion of the resolution hint is used to
specify the protocol used by the target resolver. Native resolver protocols
can enable great performance improvements through more effective caching
strategies, smarter cache sharing, and local caching servers. For example,
NAPTR is efficient because the client is configured to query a local DNS
server that can perform transparent caching, as well as numerous other
performance tricks. Resolution hints might refer to the NAPTR client

algorithm or the THTTP terminal resolution protocol:

res-hint:naptr://cid.urn.net
res-hint:thttp://thebe.lcs.mit.edu;type=urn:type:N2C+urn:type:N2L

Clients that understand the NAPTR algorithm could use the first hint to
start following NAPTR records beginning with "cid.urn.net". Clients that
understand THTTP could use the second hint to connect to a resolver and
request either the N2C or N2L services.

The scope attribute in the hint is optional. In many instances it is
unnecessary, for example in hints for servers that serve only a single,
clearly defined subspace. If a resolver requires a scope attribute but it is
missing, the resolver may either return an error or attempt to discover the
URN's subspace beginning with the root URN registry, possibly returning a
350 code as a result.

For various purposes such as caching and loop avoidance ([11]), it is often
desirable to determine if two resolution hints are the same. WIRE defines
generic hint equivalence as lexical equivalence after URI normalization. For
clients that understand the "res-hint" scheme, an extended set of
normalization rules can be applied. Two resolution hints are lexically
equivalent if they are octet-by-octet equal after the following
preprocessing:

 1. normalize the case of the leading "res-hint:" token, the ";scope="
 token, and the ";type=" token.
 2. %-escape the url portion using octet encoding rules from [3]
 3. %-escape the urn portions using rules from [7]

2.3 Applications of Resolution Hints

2.3.1 Resolver Behaviors

A resolution hint is said to be "local to a resolver" if and only if the url
portion of the hint identifies that resolver. Otherwise, it is a remote
resolution hint.

If a resolver receives a resolution request with a local resolution hint, it
must try to resolve the URN. If a request contains a remote resolution hint,
the resolver may proxy the resolution request to the remote server
indicated, according to local policy. If proxying the request violates local
policy, the resolver may return a 400 error code.

When resolution is successful, normal HTTP semantics take over. A 404 error
message should ONLY be returned if the resolver is the authoritative
resolver but the URN cannot be resolved. When a resolver cannot resolve a
URN because the URN is under a different subspace, a 350 response or a
non-404 error message should be returned to the client. Encapsulated in this
350 responses are a set of URIs, each bound to zero or more resolution
hints. Note that 350 responses may only be returned to clients that indicate
compliance with WIRE by including the OPTIONAL header in the request. A

resolver that receives a request from a non-WIRE client may choose to proxy
the remainder of the resolution process according to local policy.
Otherwise, a 400 response code must be returned.

When a URN resolver needs to delegate the resolution process, it should use
a 350 response code to return a set of alternate URIs and hints that would
allow the continuation of the current URN. These set should include hints
for resolving the current URN and/or alternate URIs and hints that resolve
to the same resource as the URN, where equivalence is defined by the
authoritative resolver. The client should be able to use any of the URI
bindings to complete the resolution process.

2.3.2 Client Behaviors

When a client receives a 350 response from a URN resolver, it should attempt
to continue the resolution process by parsing the list of URI-hint bindings,
and choose a URI and a resolution hint to use in a follow up request. If the
protocol specified in the resolution hint indicates WIRE, then the followup
request should request the selected URI and should include the hint in the
Resolution-Hint request header. The client may use the type field to
indicate which type or service it is attempting to use. If a protocol other
than WIRE is specified in the hint, the client must follow the specification
of that protocol.

2.3.3 Proxy Behaviors

Proxy resolvers can forward resolution requests with remote resolution hints
to the remote resolver specified in the hint. When a resolver running in
proxy mode receives a resolution request with a remote resolution hint, it
should construct a resolution request using the request URI and the value of
the Resolution-Hint header. That is, the location of the resolver to forward
the request to should be the location specified by the hint. Furthermore,
the Resolution-Hint header should also be forwarded to the remote resolver.

If a proxy resolver receives a URN resolution request without a hint, and
the resolver cannot find an appropriate hint in its cache, it may reject the
request, or it may attempt to discover a resolution hint by starting the
resolution process from the root NID registry.

3 Examples

In this section we describe a few scenarios of URN resolution. In all these
scenarios, we will try to resolve the name
urn:cid:9802032044@thebe.lcs.mit.edu.

3.1 Trivial Example - No Cache

A client (C) would like to resolve the URN by making the following
resolution request to a local URN resolver (R). Note, C does not send the
Optional header, therefore R must assume C is not WIRE compliant.

GET urn:cid:9802032044@thebe.lcs.mit.edu HTTP/1.0

The local URN resolver is not the authoritative resolver, and did not
receive a hint. Therefore it attempts to discover an authoritative resolver,
first using NAPTR. A series of NAPTR lookups is performed by the resolver.
At some point, the resolver receives a "p" record from NAPTR, and the record
contains the resolution hint "http://urn.mit.edu;scope=urn:cid:mit:" The
resolver then makes the following connection to urn.mit.edu

GET urn:cid:9802032044@thebe.lcs.mit.edu HTTP/1.0
Host: urn.mit.edu
Resolution-Hint: res-hint:http://urn.mit.edu;scope=urn:cid:mit:
Optional: "urn:specs:WIRE/0.0"

urn.mit.edu returns back a 350 delegation response:

HTTP/1.0 350 Resolution Delegated
Resolver-Location: "";"res-hint:http://
thebe.lcs.mit.edu/;scope=urn:cid:mit.lcs.thebe:"
Expires: Fri, 13 Mar 1998 17:00:00 GMT

The resolver R parses the Resolver-Location header, and makes a subsequent
request to thebe.lcs.mit.edu

GET urn:cid:9802032044@thebe.lcs.mit.edu HTTP/1.0
Host: thebe.lcs.mit.edu
Resolution-Hint: res-hint:http://thebe.lcs.mit.edu;scope=urn:cid:mit:lcs:thebe:
Optional: "urn:specs:WIRE/0.0"

It turns out that thebe.lcs.mit.edu is the authoritative resolver, and
returns a 200 response.

HTTP/1.0 200 OK

<entity>

The resolver R returns this response to the original client C.

3.2 Effects of Caching

Now that a request for that particular URN has been fulfilled, it is in the
cache of the resolver R. Let's assume that the resolver R does not cache the
final resolved entity, but it does remember the last 350 delegation and its
expiration time. The next time a request from C to R for the same URN can be
fulfilled by directly applying the 350 delegation response from cache. That
is, the resolver R can directly contact the authoritative server at
thebe.lcs.mit.edu, skipping the NAPTR lookups and the first WIRE lookup. Of
course, any resolvers in the resolution sequence in section 3.1 can maintain
their own caches.

3.3 Variation on a protocol

The resolver at thebe.lcs.mit.edu decides that HTTP is not secure enough,

and it would like to use POP+Kerberos to perform resolution on its part of
the cid namespace. In this case, the resolver at urn.mit.edu would have
responded with

HTTP/1.0 350 Resolution Delegated
Resolver-Location: "";"res-hint:pop://
thebe.lcs.mit.edu/;scope=urn:cid:mit.lcs.thebe:;\
 auth-method=kerberos/5"
Expires: Fri, 13 Mar 1998 17:00:00 GMT

If resolver R understands both POP and can perform KERBEROS authentication
for the client, the resolver may perform a pop request and return the client
C the resolved data. If the local resolver R does not understand POP, or if
it cannot perform kerberos authentication for the client, it would have to
return a 400 response to the client, and with an entity explaining the
situation.

This example demonstrates that WIRE allows flexible switching of resolution
protocols.

3.4 How WIRE interacts with NAPTR

Most of existing URN resolvers use the NAPTR ([8]) protocol. To reduce
complexity, we assume any WIRE compliant client that wishes to resolve URNs
also understands NAPTR. That is, it is up to the client to perform NAPTR
lookups when necessary, and keep any internal state information necessary
for NAPTR lookups.

A NAPTR record can point to a WIRE resolver by returning a record that looks
like

;; order pref flags service regexp replacement
 IN NAPTR 100 10 "p" "WIRE+N2R" "" http://urn.mit.edu;scope=urn:cid:mit:

To switching back to NAPTR, we can use a resolution hint that looks like

res-hint:NAPTR://z3950.gatech.edu

4 Caching

URN resolution using WIRE has a great need for caching 350 responses because
of the number of delegations each URN resolution process may involve. URN
resolution using WIRE should follow the same cache semantics as defined for
WIRE ([11]).

It is an unfortunate consequence of the flexibility of URN delegation that
it is presently impossible to specify a generalized form for wildcards that
can describe delegated subsets of URN space. URN delegation generally does
not occur along a single model of hierarchy, for a variety of reasons
including the need to grandfather existing persistent namespaces and the
need to permit delegation structures to evolve and fragment over time.

http://urn.mit

For example, within a single namespace different portions of the syntax can
exhibit different directions of hierarchy. In the following diagram,
consider one possible grandfathered namespace incorporating content-IDs.
(The notation L.R means left-to-right hierarchy delimited by '.', while R@L
means right-to-left hierarchy delimited by '@'.)

 urn:cid:9802030121.AA21353@thebe.lcs.mit.edu
 <-L:R-------------------------------------->
 <-R@L------------------------------>
 <-L.R------------> <-R.L----------->

This means that, with the exception of circumstances where the cache agent
understands the delegation structures involved, it is not possible to cache
information about spaces of URNs.

5 Security Considerations

WIRE security considerations are discussed in [11].

6 Acknowledgments

The requirements for URN resolution that this protocol intends to address
have been discussed and developed in meetings of the IETF URN Working Group,
as well as in separate conversations among its many members. The emphasis on
extensibility and delegation via metadata in 350 redirects is an
implementation of RDS switching ideas that are described in the URN
architecture document, RFC 2276 [10]. This in turn has its roots in the
"Knoxville Compromise" which defined a basic architecture for URN
resolution.

A great deal of the design of this protocol and the accompanying participant
behaviors is inherited directly from the NAPTR algorithm and record format.
The design of the metadata response format includes similar notions of
preference and order; the service request header copies the syntax for
specifying services in NAPTR. Following the example of NAPTR, this protocol
treats URN resolution as a discovery process, emphasizing that throughout
the discovery process some portion of a URN is opaque and does not have a
strict syntax imposed from above.

Henrik Frystk Nielson provided invaluable feedback and comments on an
original version of this document. Discuss with Henrik on the concept of
resolution and the generic URI resolution model led to the current versions
of this document and the WIRE specification.

Last but not the least, Karen Sollins and Dorothy Curtis have provided many
insightful ideas and feedback on the general URN resolution architecture and
on this document.

7. Authors Addresses

Lewis Girod
Benjie Chen

https://datatracker.ietf.org/doc/html/rfc2276

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139, USA
Email: {girod,benjie}@lcs.mit.edu

John Mallery
MIT Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA 02139, USA
Email: jcma@ai.mit.edu

References

 1. RFC 1630 "Uniform Resource Identifiers in WWW", T. Berners-Lee, June
 1994
 2. RFC 1737 "Functional Requirements for Uniform Resource Names" K.
 Sollins, L. Masinter, December, 1994.
 3. RFC 1738 "Uniform Resource Locators", T. Berners-Lee, L. Masinter, M.
 McCahill, December 1994
 4. RFC 1945 "Hypertext Transfer Protocol -- HTTP/1.0", T. Berners-Lee, R.
 Fielding, H. Frystyk, May, 1996
 5. RFC 2068 "Hypertext Transfer Protocol -- HTTP/1.1", R. Fielding, J.
 Gettys, J. Mogul, H. Frystyk, T. Berners-Lee, January 1997
 6. RFC 2119 "Key words for use in RFCs to Indicate Requirement Levels", S.
 Bradner, March 1997
 7. RFC 2141 "URN Syntax", R. Moats. May 1997
 8. RFC 2168 "Resolution of Uniform Resource Identifiers using the Domain
 Name System", R. Daniel, M. Mealling, June 1997
 9. RFC 2169 "A Trivial Convention for using HTTP in URN Resolution", R.
 Daniel, June 1997
 10. RFC 2276 "Architectural Principles of Uniform Resource Name
 Resolution", K. Sollins, September, 1997
 11. Internet Draft draft-girod-w3-id-res-ext-00 "WIRE: W3 Identifier
 Resolution Extensions", L. Girod, B. Chen, H. Frystyk, J. Mallery,
 March 1998 (work in progress)
 12. Internet Draft draft-ietf-urn-resolution-services-05 "URI Resolution
 Services Necessary for URN Resolution" M. Mealling, March, 1998 (work
 in progress)

draft-girod-urn-res-using-wire-00.txt Expires: September 18, 1998

https://datatracker.ietf.org/doc/html/rfc1630
https://datatracker.ietf.org/doc/html/rfc1737
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2141
https://datatracker.ietf.org/doc/html/rfc2168
https://datatracker.ietf.org/doc/html/rfc2169
https://datatracker.ietf.org/doc/html/rfc2276
https://datatracker.ietf.org/doc/html/draft-girod-w3-id-res-ext-00
https://datatracker.ietf.org/doc/html/draft-ietf-urn-resolution-services-05
https://datatracker.ietf.org/doc/html/draft-girod-urn-res-using-wire-00.txt

