INTERNET-DRAFT Lewis Girod

Date: March 13, 1998 Benjie Chen
Expires: September 18, 1998 MIT Laboratory for Computer Science
draft-girod-w3-id-res-ext-00.txt Henrik Frystyk

World wWide Web Consortium
John Mallery
MIT Artificial Intelligence Laboratory

WIRE - W3 Identifier Resolution Extensions
Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of
the Internet Engineering Task Force (IETF), its areas, and its working
groups. Note that other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and
may be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet- Drafts as reference material or to cite them
other than as "work in progress."

To view the entire list of current Internet-Drafts, please check the
"lid-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe), munnari.oz.au
(Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West
Coast).

Note: This is a very rough draft suitable only for experimental
implementations. It is expected to change in the near future.

Abstract

WIRE extends HTTP with a new type of redirect response that permits a
resolver to explicitly delegate a resolution to other resolvers and
protocols. WIRE is an effort to make delegation more explicit, redirection
more flexible, and resolution processes more efficient through the use of
hints. This document defines WIRE and describes the expected behaviors of
resolvers and clients using WIRE. WIRE is an extension of the HyperText
Transfer Protocol (HTTP), and is intended to be compatible with HTTP/1.0 and
above [4][5].

WIRE encourages use of long-lived URIs and at the same time supports
protocol evolution without having to change currently deployed URIs or URI
schemes. The extension is based on a simple URI resolution model that allows
an application to dynamically request metadata describing where and how to
access a resource. The model can use any generic metadata description
language (e.g. RDF) and as the metadata itself is interpreted as a first
class resource, metadata resources are no different than any other resource
on the Web.

https://datatracker.ietf.org/doc/html/draft-girod-w3-id-res-ext-00.txt

1 Introduction
1.1 Terminology

A resolver is an application that translates a URI into another URI or in
case it is the authoritative resolver, directly to the requested resource.

A resolution process is the sequenced set of operations performed by a set
of one or more resolvers is a nested set of operations that eventually will
result in an entity being generated and returned to the requestor.

1.2 Resolution Model

URI resolution models have been a perennial source of confusion. In this
section we present a new, clearer resolution model.

The WIRE model of URI resolution is fairly simple: to resolve a URI, ask the
right server to resolve it, supplying any appropriate arguments or hints.
The following diagram and discussion shows how this works for the "GET"
method (other methods apply the same resolution process, differing only in
the processing at the origin server):

GET | | Standard
URI[?argument] --->| Right Resolver? | Yes ---> HTTP
[hint: "hint"] | | Response
A | No | Error
I I I
[\Y \Y
to------ 350 Redirect 400 Bad Request

If the location of the "right" resolver is unknown, the client sends a
request to a favored or local resolver, optionally including a hint. This
resolver will do some amount of work on the client's behalf, and will either
return one of the following responses:

* A standard HTTP response, indicating that the resolver is authoritative
for that URI and that resolution is complete

* A 350 redirect indicating that the resolution process is not done yet

* A 400 response, indicating that a failure occurred in the resolution
infrastructure, and no further authoritative data can be obtained

A 200 response returns a view of the URI, or in the case of a query
containing an argument, a view resulting from a method call on the resource
identified by the URI. A 350 response returns hint information intended to
help the client continue the resolution process. The hint information might
describe resolvers that can further resolve the URI in question, or it might
list alternate URIs that also resolve to the resource named by the original
URI.

To understand this model it is important to have a broader understanding of

URI resolution. First, completion of resolution is largely in the eye of the
beholder; the data one client resolves might be interpreted by another
client as metadata that can be used to continue resolving the URI. In one
sense a 350 redirect from an initial attempt at resolution is a view of the
URI; in another sense it is simply metadata containing a hint for continued
resolution at another site. When thinking about URI resolution it is
important to keep this contextual information in mind. Second, the final
step of resolution is performed by the resource itself, although in current
implementations this activity is coordinated by the "server" process.

A very important semantic difference between the 350 response and other HTTP
responses has to do with the trust model for a 350 response. Unlike other
HTTP responses, the content of metadata contained within a 350 response is
the responsibility of the resolver that serves it, and is not in any way
linked to the origin server for the resource it describes. If the resolvers
are not trusted there is no guarantee that the metadata is accurate. The
efforts to specify signed RDF metadata should provide methods for correcting
these deficiencies in the future.

1.3 Problems this model does NOT solve

Resolution using WIRE does not guarantee that a resolution process converges
to a resolved resource. It does not guarantee that the resource returned is
the correct or authoritative resource. It does not guarantee that a resolver
understands every URI, nor that the authoritative resolver for any given URI
exists or can be located. It does not guarantee that URIs are maintained in
a persistent fashion or that URIs consistently resolve to resources that are
conceptually equivalent. WIRE is designed to enable the construction of
resolution systems that can provide some or all of these guarantees over
specific namespaces.

1.4 Guide to this Document

This document is organized as follows: Section 2 describes the syntax of
WIRE; Section 3 describes the semantics and behaviors of resolver, clients
and proxies; Section 4 gives a short example; Section 5 discusses the merit
of caching; and Section 6 discusses security issues.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 ([6]). In grammar
definitions, this document uses the same parsing constructs as RFC 1630[1],
RFC 2068 ([5]). In particular, the non-terminals uri is defined in

[11[4]1[5]-
2 Syntax of Extended Headers and Responses

This section introduces the headers and the response code defined by WIRE.
This specification attempts to define minimal syntactical requirements for
WIRE conformance.

2.1 Hints

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1630
https://datatracker.ietf.org/doc/html/rfc2068

URI resolution can be streamlined through the use of resolution hints.
Resolution hints are encoded as URIs. Apart from the URI encoding rules, the
syntax and semantics of resolution hints is specific to the resolution
system indicated by the hint. For the purpose of caching and loop avoidance,
two hints are lexically equivalent if they are octet-by-octet equal after
applying URI normalization rules.

Resolution hints are intended to be processed by both clients and resolvers
during the resolution process. To the client, hints convey resolver
locations and supported protocols and type models. To the resolver indicated
by the hint, hints convey client preferences and tokens important to the
resolution process. For example, it is essential that URN resolvers receive
a hint that includes a token describing a starting point for resolution.
This allows the resolver to skip delegation steps that would otherwise be
necessary to obtain the hint.

2.2 Extended Request Headers
2.2.1 Optional Header

The Optional request-header allows a client to declare itself to support
WIRE. This header is optional. The presence of this header indicates that
the resolver may return WIRE specific responses to the client. In the
absence of this header the resolver must assume the client is not WIRE
compliant. In this case the resolver may complete the resolution of the URI
if it can do so without sending back WIRE specific responses, or it may
reject the request with a 400 response code. Proxy behaviors are discussed
in more detail in section 3.3. See [10] for a description of the use of the
Optional header.

The Optional header has the following grammar:

Optional-Header "Optional"™ ":" WIRE-specification-URN
WIRE-specification-URN = "urn:specs:WIRE/0.0"

2.2.2 Resolution-Hint header

The Resolution-Hint request-header can be used by a client to supply a
resolution hint to the resolver. It has the following grammar:

Resolution-Hint-Header = "Resolution-Hint" ":" hint
hint = quoted-absolute-uri
quoted-absolute-uri = "\"" absolute-uri "\""

The Resolution-Hint header is optional. If this header is absent from a
request, the resolver may either attempt to resolve the URI without a hint
(in many cases this may slow down the resolution process) or reject the
request with a 400 response code.

2.3 Extended Response Code - 350

In order to support distribution of resolution authority, WIRE includes the
350 response, a new response code intended to express delegation and
redirection in the resolution framework. To delegate or redirect the
resolution of a URI, a WIRE resolver may return one or more alternate URIs,
each bound to zero or more resolution hints. The Resolver-Location header in
a 350 response encodes this comma delimited set of bindings. Within each
binding, the list of hints is delimited by semicolons. The Resolver-Location
header has the following grammar:

Resolver-Location-Header = "Resolver-Location" ":" binding *("," binding)
binding = alternate-uri *(";" hint)

alternate-uri = "\"\"" | quoted-relative-uri | quoted-absolute-uri
hint = quoted-absolute-uri

quoted-relative-uri = "\"" relative-uri "\""

As shown above, the alternate URI specified in the binding may appear as an
absolute URI or in two other forms. If the binding applies to the original
request-URI, the empty string ("") may be used instead of repeating the
original request-URI. If a binding applies to a URI that can be expressed
relative to the original request-URI, a relative URI may be quoted in place
of an absolute URI.

A 350 response code may also include an entity containing additional
metadata relevant to the request-URI. Note that the data in the
Resolver-Location header and the optional entity in a 350 response follows
the amended trust model described in section 1.

3 Semantics and Behavior of WIRE
3.1 Resolver Behaviors and Response Semantics

When a resolver receives a resolution request on a URI, the resolver should
attempt to resolve the URI, making use of any supplied hint information. If
the resolver is able to resolve the request-URI, the resolver processes the
request as would a normal HTTP server.

If the resolver fails to make progress towards the resolution of the URI, a
4xx error code may be returned. The 404 error code should only be returned
if the resolver has authority over the request-URI and that URI is not bound
to a resource. Other 4xx codes indicate a temporary or permanent failure in
the resolution infrastructure.

If the resolver makes progress towards resolution of the request-URI, a 350
response may be used to redirect resolution to alternate URIs or to delegate
the resolution of the URI to alternate resolvers. Redirection and delegation
information is conveyed via the Resolver-Location header defined in section
2.3. The client may then attempt to use supplied hints to resolve any of the
alternate URIs listed in the header. The encoding and semantics of the hints
is defined by individual resolution frameworks.

The hints supplied in a 350 response can specify a collection of alternate
protocols or resolution systems. New types of hints, referring to new or

location-specific protocols, can be phased in along with more standard hints
as fallback options. This can add scalability and flexibility to the
resolution framework by providing information about alternate resolution
mechanisms to clients that are aware of those alternate mechanisms.

A resolver may receive both standard HTTP requests and requests from
WIRE-aware clients. Clients indicate awareness of WIRE by including an
Optional request header with the URI of the WIRE specification. A
WIRE-compliant resolver that receives a request without an appropriate
Optional header may either reject the request with a 400 response code or
proxy the resolution of the URI on behalf of the client. In the latter case,
the resolver acts as a delegation proxy (section 3.3).

For caching purposes, a 350 response should also include information on the
life-time of delegation/redirection responses. This information can be
encoded in one of the HTTP caching headers ([4][5]).

3.2 Client Behaviors

When a client makes a resolution request to a resolver, the resolver cannot
guarantee that the URI can be resolved. If the URI is within the authority
of another resolver, a 350 response may be returned to the client. To
continue the resolution process, the client should:

1. Parse the Resolver-Location header in the 350 response.

2. Select one of the alternate URIs, and select one of the resolvers
specified by the hints bound to that URI.

3. Initiate a new request to the specified resolver, using the protocol
and address information specified in the hint.

4. Request the selected URI, optionally including any appropriate hint
information in the Resolution-Hint request header. Some resolvers
require that the hint be forwarded while others do not.

Whenever new resolution hints are returned to a client, there is the
possibility of a "delegation loop", in which a new hint is lexically
equivalent to a hint previously applied in the resolution of the same
request-URI. A "redirection loop" can occur if an alternate URI is lexically
equivalent to a previous URI in a sequence of redirections. To detect
delegation loops, a client should keep for each request-URI a history of
resolution hints previously applied, and should lexically compare new
resolution hints to the history. Detection of redirection loops should
already be performed by web clients.

These methods do not guarantee the detection of delegation or redirection
loops. Malicious resolvers can cause delegation loops by returning
resolution hints that are semantically equivalent to a prior hint but are
not lexically equivalent to any previous hint. Loop detection is only
guaranteed to work for resolvers that recognize only a small set of distinct
resolution hints.

Clients that wish to receive 350 responses must include the Optional header

with the URN of the WIRE specification in each resolution request. Older
clients and clients that do not want to receive delegation responses may
omit the Optional header.

3.3 Proxying WIRE Functionalities

WIRE extends the normal HTTP proxy behavior and additionally defines a new
behavior called a delegation proxy. In both of these cases normal HTTP proxy
semantics should be followed in addition to the WIRE specific semantics.

3.3.1 HTTP/WIRE Proxy Behavior

A WIRE resolver used as a proxy may proxy non-local resolution requests
based on local policy decisions. If performing the resolution is contrary to
policy, an appropriate error response should be returned. Otherwise, it
should attempt to resolve the URI with or without a resolution hint, and the
results of that effort to the client. If new resolution hint is supplied,
the resolver should attempt to resolve the URI based on the text of the URI
and global information. If the resolution hint supplied indicates a remote
resolver, the proxy should initiate a request to that resolver.

3.3.2 Delegation Proxy Behavior

If the requesting client is not WIRE compliant, it cannot parse a 350
delegation/redirection response. In this case, a delegation proxy may choose
to perform the entire resolution process on behalf of the client and pass
the result of the resolution back to the original client. A delegation proxy
should follow the guidelines for a WIRE client when performing the
resolution. The first result entity that conforms to standard HTTP should be
returned to the client.

A client requests delegation proxy behavior by omitting the Optional request
header indicating WIRE. If a resolver's policy prohibits this behavior, or
if at any time the resolver decides to abort the resolution, a 400 response
should be returned to the client.

4 Example

A client wishes to resolve the URI urn:cid:9802032044@thebe.lcs.mit.edu. It
sends a resolution request to http://urn.org/

GET urn:cid:9802032044@thebe.lcs.mit.edu HTTP/1.0
Host: urn.org
Optional: "urn:specs:WIRE/0.0"

The resolver at urn.org determines that the URI can be resolved using
another resolver, and sends back

HTTP/1.0 350 Resolution Delegated
Resolver-Location: "";"res-hint:http://thebe.lcs.mit.edu/;scope=urn:cid:"

To continue the resolution process, the client makes another resolution

http://urn.org/

request, this time to http://thebe.lcs.mit.edu/

GET urn:cid:9802032044@thebe.lcs.mit.edu HTTP/1.0

Host: thebe.lcs.mit.edu

Optional: "urn:specs:WIRE/0.0"

Resolution-Hint: "res-hint:http://thebe.lcs.mit.edu/;scope=urn:cid:"

The resolver at thebe.lcs.mit.edu is the authoritative resolver for the URI.
It returns the resolution result

HTTP/1.0 200 OK
<headers>

<entity>
5 Caching

The exact behaviors of URI resolution differ from resolution framework to
resolution framework. For example, ignoring DNS lookups, URL resolutions are
usually a one step process, whereas URN resolutions may take a few
delegations to complete. We hope to realize significant performance gains
for URI resolution frameworks that require more than one delegations through
the caching of 350 responses. To cache a 350 response, both the request URI
and the value of the Resolution-Hint header that was used in the request
must be included in the key that maps to the cached entity. Standard HTTP
headers that restrict or control caching must be heeded.

The need for caching 350 responses stems from the delegation nature of some
URI resolution frameworks. Since the discovery process required to refresh a
cached non-350 HTTP response may be significant, caching the 350 responses
preceding the non-350 HTTP response may result in significant performance
improvements, depending on cache expiration times.

One optimization when caching 350 responses might retain only the response
that has resulted from the longest sequence of delegations, that 1is,
discarding intermediate 350 responses. Applying this optimization,
subsequent requests for the same URI may skip directly to the most specific
delegation. If this optimization is applied, the most restrictive caching
requirements for any response in the sequence must be applied to the most
specific sequence.

A similar optimization would be to cache all the intermediate 350 responses,
and for each subsequent request, re-use a non-expired delegation response
with the longest sequence of delegations. Applying this optimization, most
subsequent requests can skip many delegation steps.

6 Security Considerations

WIRE inherits the HTTP security model at the transport level. That
does not, however, imply the safety and authenticity of the resolution
metadata or resolved data. One possible approach to guarantee safety
and authenticity is to include signed metadata. Those problems

http://thebe.lcs.mit.edu/

require further study and are beyond the scope of this document.

Possible conflicts between the HTTP trust model and the 350 response raise
security concerns, as mentioned in section 1. In short, 350 responses
without security extensions are responses from untrusted resolvers. Measures
such as loop-avoidance should be applied to detect and prevent
denial-of-service attacks.

Implementations of WIRE should follow the security restrictions of the
environment the resolver operates in. For example, Resolvers on firewalls
operating under both single-step and delegation proxy behaviors may be
required to filter out resolution requests from outside the firewall that
intend to use an internal resource. Such requests, in most cases, are not
allowed. However it is quite essential that such proxying resolvers forward
resolution requests from internal clients to the outside world, unless an
organization intend to mirror resolution services over all URI namespaces
internally.

7 Acknowledgments

The motivation leading to this work stemmed from a few directions. John
Mallery's experience with implementing the PDI namespace for URNs indicated
that the THTTP ([8]) spec did not adequately cover error messages and
redirection. Discussions with John Mallery and Henrik Frystyk Nielsen led to
the initial formulation of this protocol specification, in an effort to
rework THTTP into an official HTTP extension. Henrik Frystyk Nielsen also
provided invaluable ideas and feedback on modifying the original design to
fit into the generic ideas of URI resolution.

Karen Sollins and Dorothy Curtis have also provided many insightful ideas
and feedback on the general resolution architecture and on this document.

8. Authors Addresses

Lewis Girod

Benjie Chen

MIT Laboratory for Computer Science
545 Technology Square

Cambridge, MA 02139, USA

Email: {girod,benjie}@lcs.mit.edu

Henrik Frystyk Nielsen

Technical Staff, World Wide Web Consortium
MIT Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139, USA

Email: frystyk@w3.org

John Mallery

MIT Artificial Intelligence Laboratory
545 Technology Square

Cambridge, MA 02139, USA

Email: jcma@ai.mit.edu

References

1. RFC 1630 "Uniform Resource Identifiers in Www", T. Berners-Lee, June
1994

2. REC 1737 "Functional Requirements for Uniform Resource Names" K.
Sollins, L. Masinter, December, 1994.

3. RFC 1738 "Uniform Resource Locators", T. Berners-Lee, L. Masinter, M.
McCahill, December 1994

4, RFC 1945 "Hypertext Transfer Protocol -- HTTP/1.0", T. Berners-Lee, R.
Fielding, H. Frystyk, May, 1996

5. RFC 2068 "Hypertext Transfer Protocol -- HTTP/1.1", R. Fielding, J.
Gettys, J. Mogul, H. Frystyk, T. Berners-Lee, January 1997

6. RFC 2119 "Key words for use in RFCs to Indicate Requirement Levels", S.
Bradner, March 1997

7. REC 2168 "Resolution of Uniform Resource Identifiers using the Domain
Name System", R. Daniel, M. Mealling, June 1997

8. RFC 2169 "A Trivial Convention for using HTTP in URN Resolution", R.
Daniel, June 1997

9. RFC 2276 "Architectural Principles of Uniform Resource Name
Resolution", K. Sollins, September, 1997

10. Internet Draft draft-ietf-http-ext-mandatory-00.txt "Mandatory

Extensions in HTTP", H. Frystyk Nielsen, P. Leach, S. Lawrence, March
1998.

draft-girod-w3-id-res-ext-00.txt Expires: September 18, 1998

https://datatracker.ietf.org/doc/html/rfc1630
https://datatracker.ietf.org/doc/html/rfc1737
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2168
https://datatracker.ietf.org/doc/html/rfc2169
https://datatracker.ietf.org/doc/html/rfc2276
https://datatracker.ietf.org/doc/html/draft-ietf-http-ext-mandatory-00.txt
https://datatracker.ietf.org/doc/html/draft-girod-w3-id-res-ext-00.txt

