
Workgroup: Network Working Group

Internet-Draft:

draft-goessner-dispatch-jsonpath-00

Published: 12 July 2020

Intended Status: Standards Track

Expires: 13 January 2021

Authors: S. Gössner

Fachhochschule Dortmund

C. Bormann, Ed.

Universität Bremen TZI

JSONPath -- XPath for JSON

Abstract

insert abstract here

Contributing

This document picks up the popular JSONPath specification dated

2007-02-21 and provides a more normative definition for it. It is

intended as a submission to the IETF DISPATCH WG, in order to find

the right way to complete standardization of this specification. In

its current state, it is a strawman document showing what needs to

be covered.

Comments and issues can be directed at the github repository insert

repo here as well as (for the time when the more permanent home is

being decided) at the dispatch@ietf.org mailing list.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/


This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1.  Introduction

1.1.  Terminology

1.2.  Inspired by XPath

1.3.  Overview of JSONPath Expressions

2.  JSONPath Examples

3.  Detailed definition

4.  Discussion

5.  IANA considerations

6.  References

6.1.  Normative References

6.2.  Informative References

Appendix A.  Early JSONPath implementations

A.1.  Implementation

A.2.  Usage

A.3.  Parameters

A.4.  Return value

A.5.  JavaScript Example

A.6.  PHP example

A.7.  Results

Acknowledgements

Authors' Addresses

1. Introduction

This document picks up the popular JSONPath specification dated

2007-02-21 [JSONPath-orig] and provides a more normative definition

for it. It is intended as a submission to the IETF DISPATCH WG, in

order to find the right way to complete standardization of this

specification. In its current state, it is a strawman document

showing what needs to be covered.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info


Data Item:

Object:

Query:

Argument:

Output Path:

Position:

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The grammatical rules in this document are to be interpreted as

described in [RFC5234].

The terminology of [RFC8259] applies.

A structure complying to the generic data model of JSON,

i.e., composed of containers such as arrays and maps (JSON

objects), and of atomic data such as null, true, false, numbers,

and text strings.

Used in its generic sense, e.g., for programming language

objects. When a JSON Object as defined in [RFC8259] is meant, we

specifically say JSON Object.

Short name for JSONPath expression.

Short name for the JSON data item a JSONPath expression

is applied to.

A simple form of JSONPath expression that identifies a

Position by providing a query that results in exactly that

position. Similar to, but syntactically different from, a JSON

Pointer [RFC6901].

A JSON data item identical to or nested within the JSON

data item to which the query is applied to, expressed either by

the value of that data item or by providing a JSONPath Output

Path.

1.2. Inspired by XPath

A frequently emphasized advantage of XML is the availability of

plenty tools to analyse, transform and selectively extract data out

of XML documents. [XPath] is one of these powerful tools.

In 2007, the need for something solving the same class of problems

for the emerging JSON community became apparent, specifically for:

Finding data interactively and extracting them out of [RFC8259]

data items without special scripting.

Specifying the relevant parts of the JSON data in a request by a

client, so the server can reduce the data in the server response,

minimizing bandwidth usage.

So how does such a tool look like when done for JSON? When defining

a JSONPath, how should expressions look like?

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶



The XPath expression

looks like

or

in popular programming languages such as JavaScript, Python and PHP,

with a variable x holding the JSON data item. Here we observe that

such languages already have a fundamentally XPath-like feature built

in.

The JSONPath tool in question should:

be naturally based on those language characteristics.

cover only essential parts of XPath 1.0.

be lightweight in code size and memory consumption.

be runtime efficient.

1.3. Overview of JSONPath Expressions

JSONPath expressions always apply to a JSON data item in the same

way as XPath expressions are used in combination with an XML

document. Since a JSON data item is usually anonymous and doesn't

necessarily have a "root member object", JSONPath used the abstract

name $ to refer to the top level object of the data item.

JSONPath expressions can use the dot-notation

or the bracket-notation

for paths input to a JSONPath processor. Where a JSONPath processor

uses JSONPath expressions for internal purposes or as output paths,

these will always be converted to the more general bracket-notation.

JSONPath allows the wildcard symbol * for member names and array

indices. It borrows the descendant operator .. from [E4X] and the

¶

/store/book[1]/title¶

¶

x.store.book[0].title¶

¶

x['store']['book'][0]['title']¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

$.store.book[0].title¶

¶

$['store']['book'][0]['title']¶

¶



array slice syntax proposal [start:end:step] [SLICE] from ECMASCRIPT

4.

JSONPath can employ an underlying scripting language, expressions of

which, written in parentheses: (<expr>), can be used as an

alternative to explicit names or indices as in:

The symbol @ is used for the current object. Filter expressions are

supported via the syntax ?(<boolean expr>) as in

Here is a complete overview and a side by side comparison of the

JSONPath syntax elements with its XPath counterparts.

XPath JSONPath Description

/ $ the root object/element

. @ the current object/element

/ . or [] child operator

.. n/a parent operator

// ..
nested descendants. JSONPath borrows this

syntax from E4X.

* *
wildcard. All objects/elements regardless of

their names.

@ n/a
attribute access. JSON data items don't have

attributes.

[] []

subscript operator. XPath uses it to iterate

over element collections and for predicates.

In JavaScript and JSON it is the native

array operator.

| [,]

Union operator in XPath results in a

combination of node sets. JSONPath allows

alternate names or array indices as a set.

n/a [start:end:step] array slice operator borrowed from ES4.

[] ?() applies a filter (script) expression.

n/a ()
script expression, using the underlying

script engine.

() n/a grouping in Xpath

Table 1: Overview over JSONPath, comparing to XPath

XPath has a lot more to offer (location paths in unabbreviated

syntax, operators and functions) than listed here. Moreover there is

¶

¶

$.store.book[(@.length-1)].title¶

¶

$.store.book[?(@.price < 10)].title¶

¶



a significant difference how the subscript operator works in Xpath

and JSONPath:

Square brackets in XPath expressions always operate on the node

set resulting from the previous path fragment. Indices always

start at 1.

With JSONPath, square brackets operate on the object or array

addressed by the previous path fragment. Indices always start at

0.

2. JSONPath Examples

This section provides some more examples for JSONPath expressions.

The examples are based on a simple JSON data item patterned after a

typical XML example representing a bookstore (that also has

bicycles):

¶

*

¶

*

¶

¶



Figure 1: Example JSON data item

The examples in Table 2 presume an underlying script language that

allows obtaining the number of items in an array, testing for the

presence of a map member, and performing numeric comparisons of map

member values with a constant.

XPath JSONPath Result

/store/book/author $.store.book[*].author
the authors of all books

in the store

//author $..author all authors

/store/* $.store.*

all things in store,

which are some books and

a red bicycle.

/store//price $.store..price
the price of everything

in the store.

{ "store": {

    "book": [

      { "category": "reference",

        "author": "Nigel Rees",

        "title": "Sayings of the Century",

        "price": 8.95

      },

      { "category": "fiction",

        "author": "Evelyn Waugh",

        "title": "Sword of Honour",

        "price": 12.99

      },

      { "category": "fiction",

        "author": "Herman Melville",

        "title": "Moby Dick",

        "isbn": "0-553-21311-3",

        "price": 8.99

      },

      { "category": "fiction",

        "author": "J. R. R. Tolkien",

        "title": "The Lord of the Rings",

        "isbn": "0-395-19395-8",

        "price": 22.99

      }

    ],

    "bicycle": {

      "color": "red",

      "price": 19.95

    }

  }

}

¶



XPath JSONPath Result

//book[3] $..book[2] the third book

//book[last()]
$..book[(@.length-1)]

$..book[-1:]
the last book in order.

//

book[position()<3]

$..book[0,1]

$..book[:2]
the first two books

//book[isbn] $..book[?(@.isbn)]
filter all books with

isbn number

//book[price<10] $..book[?(@.price<10)]
filter all books

cheapier than 10

//* $..*

all Elements in XML

document. All members of

JSON data item.

Table 2: Example JSONPath expressions applied to the example JSON data

item

3. Detailed definition

[TBD: This section needs to be fleshed out in detail. The text given

here is intended to give the flavor of that detail, not to be the

actual definition that is to be defined.]

JSONPath expressions, "queries" for short in this specification, are

character strings, represented in UTF-8 unless otherwise required by

the context in which they are used.

When applied to a JSON data item, a query returns a (possibly empty)

list of "positions" in the data item that match the JSONPath

expression.

¶

¶

¶

JSONPath = root *(step)

root = "$"

step = ".." name ; nested descendants

     / "." name ; child (dot notation)

     / "[" value-expression *("," value-expression) "]"

        ; child[ren] (bracket notation)

     / "[" value-expression *2(":" value-expression) "]"  ; (slice)

value-expression = *DIGIT / name

                 / script-expression / filter-expression

name = "'" text "'"

     / "*" ; wildcard

script-expression = "(" script ")"

filter-expression = "?(" script ")"

script = <To be defined in the course of standardization>

text = <any text, restrictions to be defined>

DIGIT = %x30-39



[RFC2119]

[RFC5234]

Figure 2: ABNF definition for JSONPath

Within a script, @ stands for the position under consideration.

[TBD: define underlying scripting language, if there is to be a

standard one]

[TBD: define handling of spaces]

A JSONPath starts at the root of the argument; the "current list" of

positions is initialized to that root. Each step applies the

semantics of that step to each of the positions in the "current

list", returning another list; the "current list" is replaced by the

concatenation of all these returned lists, and the next step begins.

When all steps have been performed, the "current list" is returned,

depending on the choices of the context either as a list of data

items or as a list of output paths. [TBD: define the order of that

list]

[TBD: Define all the steps]

[TBD: Define details of Output Path]

4. Discussion

Currently only single quotes allowed inside of JSONPath

expressions.

Script expressions inside of JSONPath locations are currently not

recursively evaluated by jsonPath. Only the global $ and local @

symbols are expanded by a simple regular expression.

An alternative for jsonPath to return false in case of no match

may be to return an empty array in future. [This is already done

in the above.]

5. IANA considerations

TBD: Define a media type for JSON Path expressions.

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119


[RFC8174]

[RFC8259]

[E4X]

[JSON-PHP]

[JSONPath-impl]

[JSONPath-orig]

[RFC6901]

[SLICE]

[XPath]

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>. 

6.2. Informative References

ISO, "Information technology -- ECMAScript for XML (E4X)

specification", ISO/IEC 22537:2006 , 2006. 

"JSON-PHP", January 2005, <http://mike.teczno.com/

json.html>. 

"jsonpath (Downloads)", n.d., <https://

code.google.com/archive/p/jsonpath/downloads>. 

Gössner, S., "JSONPath - XPath for JSON", 21

February 2007, <https://goessner.net/articles/JsonPath/>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed., 

"JavaScript Object Notation (JSON) Pointer", RFC 6901, 

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/info/rfc6901>. 

"Slice notation", n.d., <https://github.com/tc39/

proposal-slice-notation>. 

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.,

Kay, M., Robie, J., and J. Simeon, "XML Path Language

(XPath) 2.0 (Second Edition)", World Wide Web Consortium

Recommendation REC-xpath20-20101214, 14 December 2010, 

<http://www.w3.org/TR/2010/REC-xpath20-20101214>. 

Appendix A. Early JSONPath implementations

This appendix has been copied from the similar section in [JSONPath-

orig], with few changes. It is informative, intended to supply more

examples and give an impression for what could be a typical JSONPath

API.¶

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
http://mike.teczno.com/json.html
http://mike.teczno.com/json.html
https://code.google.com/archive/p/jsonpath/downloads
https://code.google.com/archive/p/jsonpath/downloads
https://goessner.net/articles/JsonPath/
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://github.com/tc39/proposal-slice-notation
https://github.com/tc39/proposal-slice-notation
http://www.w3.org/TR/2010/REC-xpath20-20101214


obj (object|array):

expr (string):

args (object|undefined):

args.resultType ("VALUE"|"PATH"):

(array|false):

A.1. Implementation

JSONPath is implemented in JavaScript for client-side usage and

ported over to PHP for use on the server.

A.2. Usage

All you need to do is downloading either of the files

jsonpath.js [JSONPath-impl]

jsonpath.php [JSONPath-impl]

include it in your program and use the simple API consisting of one

single function.

A.3. Parameters

Object representing the JSON data item.

JSONPath expression string.

Object controlling path evaluation and

output. Currently only one member is supported.

causes the result to be either

matching values (default) or normalized path expressions.

A.4. Return value

Array holding either values or normalized path

expressions matching the input path expression, which can be used

for lazy evaluation. false in case of no match.

A.5. JavaScript Example

A.6. PHP example

We need here to convert the JSON string to a PHP array first. I am

using Michal Migurski's JSON parser [JSON-PHP] for that.

¶

¶

* ¶

* ¶

¶

jsonPath(obj, expr [, args])¶

¶

¶

¶

¶

¶

var o = { /*...*/ },  // the 'store' JSON object from above

    res1 = jsonPath(o, "$..author").toJSONString(),

    res2 = jsonPath(o, "$..author",

                    {resultType:"PATH"}).toJSONString();

¶

¶



A.7. Results

Both JavaScript and PHP example result in the following JSON arrays

(as strings):

Please note that the return value of jsonPath is an array, which is

also a valid JSON data item. So you might want to apply jsonPath to

the resulting data item again or use one of your favorite array

methods as sort with it.

Acknowledgements

This specification is based on Stefan Gössner's original online

article defining JSONPath [JSONPath-orig].

The books example was taken from http://coli.lili.uni-bielefeld.de/

~andreas/Seminare/sommer02/books.xml -- a dead link now.

Authors' Addresses

Stefan Gössner

Fachhochschule Dortmund

Sonnenstraße 96

D-44139 Dortmund

require_once('json.php');      // JSON parser

require_once('jsonpath.php');  // JSONPath evaluator

$json = '{ ... }';  // JSON data item from above

$parser = new Services_JSON(SERVICES_JSON_LOOSE_TYPE);

$o = $parser->decode($json);

$match1 = jsonPath($o, "$..author");

$match2 = jsonPath($o, "$..author",

                   array("resultType" => "PATH"));

$res1 = $parser->encode($match1);

$res2 = $parser->encode($match2);

¶

¶

res1:

[ "Nigel Rees",

  "Evelyn Waugh",

  "Herman Melville",

  "J. R. R. Tolkien"

]

res2:

[ "$['store']['book'][0]['author']",

  "$['store']['book'][1]['author']",

  "$['store']['book'][2]['author']",

  "$['store']['book'][3]['author']"

]

¶

¶

¶

¶



Germany

Email: stefan.goessner@fh-dortmund.de

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

mailto:stefan.goessner@fh-dortmund.de
tel:+49-421-218-63921
mailto:cabo@tzi.org

	JSONPath -- XPath for JSON
	Abstract
	Contributing
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Inspired by XPath
	1.3. Overview of JSONPath Expressions

	2. JSONPath Examples
	3. Detailed definition
	4. Discussion
	5. IANA considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Early JSONPath implementations
	A.1. Implementation
	A.2. Usage
	A.3. Parameters
	A.4. Return value
	A.5. JavaScript Example
	A.6. PHP example
	A.7. Results
	Acknowledgements
	Authors' Addresses


