
Network Working Group Y. Goland
Internet-Draft BEA
Expires: May 11, 2006 November 7, 2005

SOA-Reliability (SOA-Rity) for HTTP
draft-goland-http-reliability-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 11, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 SOAR-ity is intended to allow for "reliable" (this term is almost
 always a misnomer) messaging over HTTP. It achieves this goal by
 introducing two new request headers, Message-ID which provides a
 unique ID for a message and MsgCreate which contains the date and
 time on which the first instance of the message with the associated
 Message-ID was sent. The purpose of the Message-ID/MsgCreate pair is
 to allow any HTTP request (e.g. any HTTP method can be used) to be
 repeated multiple times with a guarantee that the message will be
 processed no more than one time. In essence it makes any HTTP method

Goland Expires May 11, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

 call idempotent.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Making a Reliable Request over HTTP 4
4. Receiving a Response to a Reliable Request over HTTP 4
5. OPTIONS Support . 7
6. Proxies & Caches . 7
7. Security Considerations 8
8. IANA Considerations . 8
Appendix A. Q&A . 9
Appendix A.1. SOA-Rity?!?!!?!?! 9
Appendix A.2. Why not put the MsgCreate/Message-ID values into

 the URL? . 9
Appendix A.3. Why is there no time window declaration? 9
Appendix A.4. Why introduce the MsgCreate Header? Why not just

 use the HTTP Date header? 10
Appendix A.5. Why use RFC 2234 ABNF instead of RFC 2616 ABNF? . . 11
Appendix A.6. Why not require RFC 2774 Support? 11
Appendix A.7. Why Didn't You Use the Expect Header? 11
Appendix A.8. What about Clockless Systems? 11
Appendix A.9. What about One Ways? 11
9. References . 12
9.1. Normative References 12
9.2. Informative References 12

 Author's Address . 13
 Intellectual Property and Copyright Statements 13

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2774

Goland Expires May 11, 2006 [Page 2]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

1. Introduction

 SOAR-ity is intended to allow for "reliable" (this term is almost
 always a misnomer) messaging over HTTP. It achieves this goal by
 introducing two new request headers, Message-ID which provides a
 unique ID for a message and MsgCreate which contains the date and
 time on which the first instance of the message with the associated
 Message-ID was sent. The purpose of the Message-ID/MsgCreate pair is
 to allow any HTTP request (e.g. any HTTP method can be used) to be
 repeated multiple times with a guarantee that the message will be
 processed no more than one time. In essence it makes any HTTP method
 call idempotent.

 When a SOAR-ity message is recieved the MsgCreate value is checked to
 make sure the time/date is within the resource's current "time
 window". So, for example, if the resource only remembers reliable
 messages for 10 hours then a MsgCreate value that is more than 10
 hours old is outside of the "time window" and has to be rejected. If
 the MsgCreate value is within the time window then the resource will
 check to see if it has a record of the Message-ID value. If it does
 then it will return a cached copy of the response it sent the first
 time it received this request. If the Message-ID value hasn't been
 seen before then the resource will process the request and both send
 and cache its response. It is the cached response that will be used
 if the request is ever repeated.

 The reader may benefit from reviewing both [ExactlyOnce] and
 [SoaReliableMessaging] to get more background on the motivation for
 SOA-Rity's design.

2. Terminology

 The term resource is used in this specification instead of the more
 usual HTTP term server in order to indicated that the behavior
 specified by this specification can change on a resource by resource
 basis.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The HTTP header definitions are given using ABNF as defined in
 [RFC2234].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234

Goland Expires May 11, 2006 [Page 3]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

3. Making a Reliable Request over HTTP

 A reliable HTTP request MUST contain the following two headers:

 Header Name: MsgCreate
 Header Value: MsgCreate = "MsgCreate" ":" rfc1123-date ; the

rfc1123-date production is defined by 3.3.1 of [RFC2616], note
 that when the production is used for the MsgCreate header it MUST
 provide its value in GMT
 Header Description: Specifies the date and time when the first
 instance of a message baring the associated message ID was
 created. This value MUST be reproduced with the same value on
 every instance of the message carrying the associated message ID.

 and

 Header Name: Message-ID
 Header Value: Message-ID = "Message-ID" ":" URI ; the URI production
 is defined by [RFC2396]
 Header Description: A message ID specified as a globally unique URI
 that will make this message unique amongst all messages generated
 across all senders for all time. It is recommended that
 implementers look at [RFC4122] as an easy way to meet the previous
 requirement.

 Example:

 POST /resource/foo HTTP/1.1
 Host: www.example.com
 Content-Type: text/xml
 MsgCreate: 14 Oct 2005 16:20:00 GMT
 Message-ID: urn:uuid:72dfcac0-3d09-11da-8cd6-0800200c9a66
 ...

4. Receiving a Response to a Reliable Request over HTTP

 The SOARITY response header is used in responses in the manner
 specified in the rest of this section.

 Header Name: SOARITY
 Header Value: SOARITY = "SOARITY" ":" ("supported" / "unsupported" /
 "MsgCreate/Message-ID Rejected")
 Header Description: Provides information about the resource's
 support for SOA-Rity. The "supported" value is returned on all
 successful responses to confirm to the receiver that the resource
 has honored the SOA-Rity headers. "Unsupported" appears on
 rejections to confirm that the receiver does not support SOA-Rity

https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc4122

Goland Expires May 11, 2006 [Page 4]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

 for that sender at that time. The "MsgCreate/Message-ID Rejected"
 value specifies that the combination of the submitted MsgCreate
 and Message-ID values have been rejected, the request SHOULD NOT
 be repeated with those values.

 If a resource receives a request with the MsgCreate header but not
 with the Message-ID header then the request MUST be rejected with a
 400 (Bad Request) response that MAY contain the SOARITY header with
 an appropriate (e.g. "supported" or "unsupported") value. It is,
 however, legal to send a request with a Message-ID header but without
 a MsgCreate header, in that case the request MUST NOT be treated as
 requesting reliable delivery. The reason for the difference in
 treatment is that the MsgCreate header is only intended for reliable
 messaging usage while the Message-ID header has potential utility
 outside of reliable messaging.

 If a resource receives a request with the SOA-Rity headers but
 chooses not to honor those headers (for whatever reason) then the
 resource MUST return a 412 (precondition failed) response with the
 SOARITY header set to the value "unsupported". Clients who wish to
 make sure that their requests cannot be mistakenly processed
 unreliably on a request that included a demand for reliability by
 resources that do not support this specification should investigate
 [RFC2774]. Note, however, that this specification does not require
 that resources support [RFC2774].

 If the resource does support the SOA-Rity headers then the resource
 MUST first validate that the date/time specified in the MsgCreate
 header is not beyond the resource's time window for remembering IDs.
 If the value is beyond the resource's time window then the message
 MUST be rejected with a 403 (Forbidden) response with the SOARITY
 header set to "MsgCreate/Message-ID Rejected".

 If a request contains a MsgCreate and Message-ID header where the
 Message-ID has been seen previously but with a MsgCreate value that
 resolved to a different time/date then, assuming the MsgCreate value
 is within the current time window, the request MUST be rejected with
 a 403 (Forbidden) response with the SOARITY header set to "MsgCreate/
 Message-ID Rejected".

 The resource MAY assume that if it receives a message with a
 MsgCreate/Message-ID header combination it has seen before then the
 new request is identical to the previous request with the same
 MsgCreate/Message-ID values. In other words if a client makes a
 mistake and repeats a MsgCreate/Message-ID pair on two different
 requests then the resource is under no obligation to detect this
 error. Still, well behaved resources should at least validate that
 the HTTP method is the same (e.g. a GET and POST with the same

https://datatracker.ietf.org/doc/html/rfc2774
https://datatracker.ietf.org/doc/html/rfc2774

Goland Expires May 11, 2006 [Page 5]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

 MsgCreate/Message-ID values should be rejected) as well as the
 request body and key headers. If a resource does choose to remember
 information about a request other than its MsgCreate/Message-ID pair
 then it MUST send a 400 (Bad Request) to any clients who use the same
 MsgCreate/Message-ID pair twice on two materially different messages.

 The term 'materially different' in the previous sentence is intended
 to indicate that not all headers need to be the same for two requests
 with the same MsgCreate/Message-ID values to be treated as identical.
 For example, the Date request header, the If-* headers, the Range
 header, the user-agent header, etc. could all be different on
 repeated requests but these differences are not 'material' in terms
 of stating that the repeated request with a specific MsgCreate/
 Message-ID pair is the same as the original request.

 A MsgCreate/Message-ID pair MUST be constrained to only apply to a
 specific authenticated requester when authentication is in use.

 If the MsgCreate is within the local time window then the resource
 MUST determine if this request has been answered previously. If so
 then the resource MUST return the same response as the one it
 originally sent. Note however that the term 'same' only applies to
 the response code and the body, the value of the headers may need to
 be altered in some cases although the default behavior should be to
 return the same header values as on the original response.

 If, for whatever reason, the resource cannot honor the requirement to
 return the same response then the resource MUST either return a 403
 (Forbidden) response with the SOARITY header set to "MsgCreate/
 Message-ID Rejected" (if the condition is permanent) or a 503
 (Service Unavailable) with a SOARITY header value of "supported" (if
 the condition is temporary).

 If-* and Range headers on repeated requests should be honored
 following the resource's normal policies (in the case of range) and
 HTTP's requirements (in the case of If-*). Although these headers on
 a repeated request can cause a different response to be received than
 what was sent in response to the original request the alterations
 only affect the response body and not the original outcome of the
 method's processing. In other words, if a client submits a POST
 using the SOA-Rity headers which generates a HTTP response body and
 then later repeats the POST but includes a Range request then the
 returned body (assuming the resource honors Range) would contain only
 the subset of the original response specified by the range. But, the
 repeated response would just be a copy of the original HTML response,
 no new processing would occur and SOA-Rity's idempotent promise would
 be honored.

Goland Expires May 11, 2006 [Page 6]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

 If a resource that supports SOA-Rity receives a message whose
 MsgCreate is within the current time window and with a Message-ID
 that the resource has not previously seen then the response MUST
 respond normally to the request but the response MUST contain the
 SOARITY header set to "supported".

 The logic regarding the MsgCreate header requires that the clocks at
 the client and resource be reasonably synchronized. As such to be
 compliant with this specification both a client and resource MUST
 have clocks and MUST take 'reasonable' actions to ensure those clocks
 are accurate. Deploying and properly configuring a Network Time
 Protocol (NTP) client [RFC958] is an example of a 'reasonable' action
 to ensure a clock is accurate. Note however that clocks, even with
 NTP, can still skew and messages can be delayed for non-trivial
 periods of time during network transmission, especially if
 intermediaries are involved. Therefore resources are encouraged to
 be generous in the size of their time windows and clients are
 encouraged to be stingy in their expectations of how large the
 windows will be.

 Example:

 HTTP/1.1 200 It's all cool
 SOARITY: supported
 ...

5. OPTIONS Support

 A resource that supports this specification MUST return the SOARITY
 header on an OPTIONS response with the value of either "supported" or
 "unsupported" depending on the resource's support for SOA-Rity for
 the particular client who made the request (assuming authentication
 is involved). In other words, it is perfectly legal for a resource
 to send a SOARITY header with "supported" to one authenticated client
 and "unsupported" to a different authenticated client.

6. Proxies & Caches

 Successful responses to reliable requests SHOULD include the HTTP 1.1
 Vary header with values that point to the Message-ID and MsgCreate
 headers. Please refer to section 14.8 of [RFC2616] for details of
 how caching and shared caches interact in order to make sure that a
 private response is not inadvertently cached by a shared cached.

https://datatracker.ietf.org/doc/html/rfc958
https://datatracker.ietf.org/doc/html/rfc2616#section-14.8

Goland Expires May 11, 2006 [Page 7]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

7. Security Considerations

 It is, in theory, possible for a client to repeat a request made by
 some other client but using the same Message-ID and MsgCreate values.
 If successful such an attempt would allow one client to see the
 response sent to another client. A simple way to prevent such an
 attack is to authenticate all requesters and, when recording
 MsgCreate/Message-ID values, to also record the identity of the
 requester. In the future if a request is received with the same
 Message-ID/MsgCreate values it will only be honored if the client is
 authenticated as the original sender.

 The provision of reliable messaging can entail the use of a non-
 trivial amount of resources. As such large numbers of reliable
 messaging requests can constitute a denial of service attack.
 Therefore it is reasonable to only provide SOA-Rity support to
 authenticated requesters or to use other mechanisms to rate limit who
 can make requests.

8. IANA Considerations

 The following HTTP headers are submitted for provisional message
 header field registration per [RFC3864].

 Header Field Name: MsgCreate
 Applicable Protocol: http
 Status: provisional
 Author/Change controller:
 Name: Yaron Y. Goland
 Email: soarityietfsubmission@goland.org
 Home Page URI: http://www.goland.org
 Defined In: Section 3 of this document.

 Header Field Name: Message-ID
 Applicable Protocol: http
 Status: provisional
 Author/Change controller:
 Name: Yaron Y. Goland
 Email: soarityietfsubmission@goland.org
 Home Page URI: http://www.goland.org
 Defined In: Section 3 of this document.

 Header Field Name: SOARITY

https://datatracker.ietf.org/doc/html/rfc3864
http://www.goland.org
http://www.goland.org

Goland Expires May 11, 2006 [Page 8]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

 Applicable Protocol: http
 Status: provisional
 Author/Change controller:
 Name: Yaron Y. Goland
 Email: soarityietfsubmission@goland.org
 Home Page URI: http://www.goland.org
 Defined In: Section 4 of this document.

Appendix A. Q&A

Appendix A.1. SOA-Rity?!?!!?!?!

 O.k. O.k. I know, it's not the best name in the world. Although I
 must admit that people I share it with either laugh or wretch when
 they hear it which is more or less the range of reactions I'm looking
 for. :) I thought about SOA-R but that sounds like sore. I also
 thought about SOA-Ring but that seemed forced. I'm open to better
 ideas.

Appendix A.2. Why not put the MsgCreate/Message-ID values into the URL?

 When I was first designing the HTTP version of this protocol I
 thought of sticking the MsgCreate and Message-ID values directly into
 the URL. E.g. something along the lines of:

 POST /resource/foo?MsgCreate=14Oct200516:20:00GMT&Message-ID=urn:
 uuid:72dfcac0-3d09-11da-8cd6-0800200c9a66 HTTP/1.1
 Host: www.example.com
 Content-Type: text/xml
 ...

 I changed my mind for a number of reasons:

 o In theory URLs are supposed to be of unlimited length but in
 practice there are often size limits and the MsgCreate/Message-ID
 values are not small.
 o There is no standard for how to place arguments on a URL so I
 would, in effect, be telling people "Your URLS MUST support a
 query option and MUST use the '&' character as a delimiter." I
 generally don't like telling people how to form their URLs.
 o I don't think MsgCreate/Message-ID belong in the URL any more than
 an eTag does.

Appendix A.3. Why is there no time window declaration?

 It would be easy to throw in a header that specifies how long a
 service promises to remember messages but I think the value would be

http://www.goland.org

Goland Expires May 11, 2006 [Page 9]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

 so misleading as to be, on balance, a bad idea. First, servers crash
 and forget things (which they shouldn't, but oh well). Second, a
 service may have different windows for different people at different
 times. In truth the window value would at best be a 'rough estimate'
 rather than a real promise. I suspect the best way to present time
 window information is as part of a human readable description of what
 the server is and how it works, this is exactly the sort of thing one
 should get back in an OPTIONS response.

Appendix A.4. Why introduce the MsgCreate Header? Why not just use the
 HTTP Date header?

 It would be easy enough to just re-use the HTTP date header rather
 than introduce the MsgCreate header. The main consequence would
 probably be to create a SOARITY request header to definitively
 identify a request as requiring SOA-Rity support.

 One could even argue that this is the correct path forward since
 [RFC2616] explicitly states that the semantics for the HTTP Date
 header are the same as the [RFC822] orig-date production which is
 used to specify the email Date header. In email the idea of
 resending a message is a common one and two different date headers
 are provided, a Date header reflecting when the message was
 originally created and a separate Resent-Date header to identify when
 the message was retried.

 The problem is that while HTTP may have stated that its Date header
 was to have [RFC822] semantics in practice nobody I'm aware of has
 made it a habit of repeating HTTP requests (even idempotent ones)
 with the same date header as the original request. In fact, I
 suspect if one were to ask most HTTP implementers what they thought
 the meaning of the HTTP Date header was they would probably answer
 "it provides the time the message was sent." The concept that the
 time when the message was sent and the time when it was actually
 generated could be radically different (due to retries) hasn't been
 entertained before in HTTP requests (it is, of course, quite common
 in cached replies however).

 So the question is - if this specification were to replace the
 MsgCreate header with the Date header and simply mandate that all
 SOA-Rity requests MUST include a Date header ([RFC2616] makes them
 optional on requests) as well as a new SOARITY request header would
 anything break? Would this confuse any proxies? Screw up any
 servers?

 I just don't know so I have erred on the side of caution and
 introduced the MsgCreate header.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc2616

Goland Expires May 11, 2006 [Page 10]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

Appendix A.5. Why use RFC 2234 ABNF instead of RFC 2616 ABNF?

 My main reason is that I wanted to use Harald Alvestrand's ABNF
 parser, available at http://www.apps.ietf.org/abnf.html. Near as I
 can tell the choice shouldn't be a big deal because the only
 substantive difference my cursory examination of [RFC2616]'s ABNF
 versus the IETF standard [RFC2234]'s ABNF is that [RFC2616] uses "|"
 to indicate "or" semantics while [RFC2234] uses "/". If it turns out
 it matters then I'll just use the [RFC2616] format.

Appendix A.6. Why not require RFC 2774 Support?

 Because in this case I think it's more trouble than it's likely
 worth. If a client is really worried that the resource it's talking
 to doesn't support SOA-Rity then it can make an OPTIONS request.
 Yes, this still leaves open some race conditions but I just don't
 think they are common enough to justify requiring everyone to support

RFC 2774.

Appendix A.7. Why Didn't You Use the Expect Header?

 Because it's useless. It shows a real failure in the IETF RFC
 vetting process. HTTP/1.1 was explicitly required to be backwards
 compatible with HTTP/1.0 so if a 1.0 resource got a 1.1 request then
 all would be well with the world. But the Expect header's
 functionality is "If you don't have this feature then fail this
 request". Well, duh, HTTP/1.0 didn't have an expect header so a 1.0
 server would just ignore expect all together. So much for
 guaranteeing failure. So anyone who actually takes RFC 2616 at its
 word must conclude that the RFC is, in fact, not backwards compatible
 with HTTP/1.0 and therefore failed in its mission. The right thing
 to do would be to remove the Expect header. RFC 2774 showed the
 right way to support Expect style behavior and retain complete
 backwards compatibility with HTTP/1.0.

Appendix A.8. What about Clockless Systems?

 There are a number of tricks that could be used to make this
 specification work with clockless systems but they all put an extra
 burden on those with clocks that I just don't think can be justified.
 If it should turn out that reliable messaging in clockless systems is
 a real world use case it will always be possible to come out with an
 extension to this protocol.

Appendix A.9. What about One Ways?

 HTTP only knows about request/responses so the spec only addresses
 that. If someone sends a one-way request (at the application level)

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2616
http://www.apps.ietf.org/abnf.html
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2774
https://datatracker.ietf.org/doc/html/rfc2774
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2774

Goland Expires May 11, 2006 [Page 11]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

 then at the HTTP level they still have to send some kind of response.
 The tradition is that the response is just a 200 (O.K.) with no
 response body. It is that 200 response that would be cached by the
 algorithm above. So the point is that from SOA-Rity's perspective it
 doesn't care or need to know if a request is part of a synchronous
 request/response or a one-way at the application level, it all looks
 the same at the HTTP level.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2396, BCP 14, March 1997.

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [RFC2396] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [RFC2616] Fielding, R., Gettys, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer
 Protocol --- HTTP/1.1", RFC 2616, June 1999.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", RFC 3864, BCP 90,
 September 2004.

9.2. Informative References

 [ExactlyOnce]
 Goland, Y., "How Should An Exactly Once SOA Reliable
 Messaging System Be Designed? -

http://www.goland.org/exactlyonce", October 2005.

 [RFC2774] Frystyk, H., Leach, P., and S. Lawrence, "An HTTP
 Extension Framework", RFC 2774, February 2000.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique Identifier (UUID) URN Namespace", RFC 4122,
 July 2005.

 [RFC822] Crocker, D., "STANDARD FOR THE FORMAT OF ARPA INTERNET
 TEXT MESSAGES", RFC 822, August 1982.

https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/bcp90
http://www.goland
https://datatracker.ietf.org/doc/html/rfc2774
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc822

Goland Expires May 11, 2006 [Page 12]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

 [RFC958] Mills, D., "Network Time Protocol (NTP)", RFC 958,
 September 1985.

 [SoaReliableMessaging]
 Goland, Y., "Does SOA Need A Reliable Messaging Protocol?
 - http://www.goland.org/soareliablemessaging",
 October 2005.

Author's Address

 Yaron Y. Goland
 BEA Systems Inc.
 999 North Northlake Way
 Seattle, WA 98103
 US

 Email: soarityietfsubmission@goland.org
 URI: http://www.goland.org

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

https://datatracker.ietf.org/doc/html/rfc958
http://www.goland
http://www.goland.org
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Goland Expires May 11, 2006 [Page 13]

Internet-Draft SOA-Reliability (SOA-Rity) for HTTP November 2005

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

http://www.ietf.org/ipr

Goland Expires May 11, 2006 [Page 14]

