
Workgroup: Network Working Group

Internet-Draft:

draft-goldstein-cdni-metadata-model-

extensions-01

Updates: 8006, 8008 (if approved)

Published: 25 October 2021

Intended Status: Standards Track

Expires: 28 April 2022

Authors: G. Goldstein

Lumen Technologies

W. Power

Lumen Technologies

G. Bichot

Broadpeak

A. Siloniz

Telefonica

CDNI Metadata Model Extensions

Abstract

Open Caching architecture is a use case of Content Delivery Networks

Interconnection (CDNI) in which the commercial Content Delivery

Network (CDN) is the upstream CDN (uCDN) and the ISP caching layer

serves as the downstream CDN (dCDN). This document proposed

extensions to the RFC8006 Metadata Model by way of a set of

GenericMetadata objects that address extend the original CDNI

capabilities to meet the more general needs of the CDN and Open

Caching industry. Extensions to RFC8008 are also introduced to allow

a dCDN to advertise support for these extended metadata

capabilities.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8006
https://www.rfc-editor.org/rfc/rfc8008
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Requirements Language

2. CDNI Additonal GenericMetadata Objects

2.1. Auth

2.1.1. HeaderAuth

2.1.2. AWSv4Auth

2.2. AllowCompress

2.3. CachePolicy

2.4. ComputedCacheKey

2.5. CrossoriginPolicy

2.5.1. AllowOrigin

2.6. NegativeCachePolicy

2.7. CacheBypassPolicy

2.8. OcnSelection

2.8.1. OcnDelivery

2.9. PrivateFeatureList

2.9.1. PrivateFeature

2.10. ProcessingStages

2.10.1. StageRules

2.10.2. ExpressionMatch

2.10.3. StageMetadata

2.10.4. RequestTransform

2.10.5. ResponseTransform

2.10.6. SyntheticResponse

2.10.7. HeaderTransform

2.10.8. HttpHeader

2.11. RequestedCapacityLimits

2.12. RequestRouting

2.13. ServiceIDs

2.14. SourceMetadataExtended

2.14.1. SourceExtended

2.14.2. LoadBalanceMetadata

2.15. StaleContentCachePolicy

2.16. TrafficType

3. CDNI Additional FCI Objects

3.1. FCI.AuthTypes

¶

https://trustee.ietf.org/license-info

3.2. FCI.ProcessingStages

3.3. FCI.SourceMetadataExtended

3.4. FCI.RequestRouting

3.5. FCI.PrivateFeatures

3.6. FCI.OcnSelection

3.6.1. OcnDeliveryList

4. Metadata Expression Language

4.1. Expression Variables

4.2. Expression Operators and keywords

4.3. Expression Built-in Functions

4.3.1. Basic Functions: Type Conversions

4.3.2. Basic Functions: String Conversions

4.3.3. Convenience Functions

4.4. Error Handling

4.4.1. Compile Time Errors

4.4.2. Runtime Errors

4.5. Expression Examples

4.5.1. ComputedCacheKey

4.5.2. ExpressionMatch

4.5.3. ResponseTransform

4.5.4. MI.ServiceIDs

5. IANA Considerations

5.1. CDNI Payload Types

6. Security Considerations

7. Acknowledgements

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

The Streaming Video Alliance [SVA] is a global association that

works to solve streaming video challenges in an effort to improve

end-user experience and adoption. The Open Caching Working Group

[OCWG] of the Streaming Video Alliance [SVA] is focused on the

delegation of video delivery requests from commerical CDNs to a

caching layer at the ISP's network. Open Caching architecture is a

specific use case of CDNI where the commercial CDN is the upstream

CDN (uCDN) and the ISP caching layer is the downstream CDN (dCDN).

The interchange of content delivery configuration metadata between

the various entities in the delivery ecosystem is essential for

efficient interoperability. The need for an industry-standard API

and metadata model becomes increasingly important as content and

service providers automate more of their operations, and as

technologies, such as open caching, require coordination of content

delivery configurations. In order to achieve this, the Open Caching

Configuration Interface Specification [OC-CI] defines an interface

contemplating a set of use cases.¶

The following capabilities extend the [RFC8006] Metadata Model:

Open Caching Configuration Metadata

Enhanced Source definitions, with load balancing, failover, and

extended authorization methods Section 2.14

A rich set of Cache Control Policies Section 2.3 and computed

cache keys Section 2.4

Rules for generating Dynamic CORS Headers Section 2.5

Possibility to activate compression in the Edge independent of

the origin content Section 2.2

Traffic Types Section 2.16

ServiceID Metadata Section 2.13

Processing Stage Rules Section 2.10, enabling metadata to be

applied conditionally at various stages in the CDN request/

response pipeline.

Request URI Rewrites

HTTP Header Modifications Section 2.10.8

HTTP Status Modifications Section 2.10.5

Synthetic HTTP Responses Section 2.10.6

An Expression Language for matching rules and synthesis of

dynamic values Section 4

Private Features Section 2.9

For consistency with other CDNI documents this document follows the

CDNI convention of uCDN (upstream CDN) and dCDN (downstream CDN) to

represent the commercial CDN and ISP caching layer respectively.

This document defines and registers CDNI GenericMetadata objects (as

defined in section 4 of [RFC8006]), registers additional CDNI

Payload Types (section 7.1 of [RFC8006]), and adds capability

objects (extending section 5 in [RFC8008])

1.1. Terminology

The following terms are used throughout this document:

API - Application Programming Interface

¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

¶

¶

¶

* ¶

AWS - Amazon Web Services

CDN - Content Delivery Network

CDNi - CDN Interconnect

CORS - Cross-Origin Resource Sharing

CP - Content Provider

dCDN - Downstream CDN

DNS - Domain Name System

FCI - Footprint and Capabilities Advertising Interface

HREF - Hypertext Reference (link)

HTTP - Hypertext Transfer Protocol

IETF - Internet Engineering Task Force

ISP - Internet Service Provider

JSON - JavaScript Object Notation

MEL - Metadata Expression Language

Object - A collection of properties.

OC - Open Caching

OCN - Open Caching Node

PatternMatch - An object which matches a string pattern

UA - User Agent

uCDN - Upstream CDN

URI - Uniform Resource Identifier

URN - Uniform Resource Name

VOD - Video-on-Demand

W3C - World Wide Web Consortium

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Additionally, this document reuses the terminology defined in

[RFC6707], [RFC7336], [RFC8006], [RFC8007], [RFC8008], and

[RFC8804]. Specifically, we use the following CDNI acronyms:

uCDN, dCDN - Upstream CDN and Downstream CDN respectively (see

[RFC7336])

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. CDNI Additonal GenericMetadata Objects

Section 4 of [RFC8006] defines a set of GenericMetadata Object

Types. Below additional GenericMetadata Objects are defined to meet

the more general needs of the CDNs and Open Caching industry.

Note: In the following sections, the term "mandatory-to-specify" is

used to convey which properties MUST be included when serializing a

given capability object. When mandatory-to-specify is defined as

"Yes" for an individual property, it means that if the object

containing that property is included in a message, then the

mandatory-to-specify property MUST also be included.

2.1. Auth

To meet the CDN industry requirements for origin authentication, two

new authentication types are proposed to be registered via the CDNi

Media Type Registration process, as described in [RFC7736].

auth-type: headerauth

Description: Header based authentication is used to pass an

HTTP header secret-name and value secret-value to a uCDN when

requesting content. The header name and value are agreed upon

between parties out of band.

auth-value: HeaderAuth object as defined in Section 2.1.1

auth-type: awsv4auth

Description: Allows for the specification of a set of headers

to be added to requests that are forwarded to an origin to

enable Amazon Web Services AWS authentication as documented by

AWS See Specifications Standards References.

¶

*

¶

¶

¶

¶

¶

¶

-

¶

- ¶

¶

-

¶

auth-value: AWSv4Auth object specifying the access parameters

as defined in Section 2.1.2

2.1.1. HeaderAuth

The HeaderAuth metadata object is used in the auth-value property of

the Auth object, as defined in section 4.2.7 of [RFC8006], and may

be applied to any source by including or referencing it under its

authentication property. This method of authentication provides a

simple capability for a mutually agreed upon header to be added by

the CDN to all requests sent to a specific origin. Note that if a

dynamically generated header value is required, the RequestTransform

capabilities within StageProcessing (See Section 2.10) can be used.

Property: header-name

Description: Name of the authentication header.

Type: String

Mandatory-to-Specify: Yes

Property: header-value

Description: Value of the authentication header typically a

pre-shared key. Note that this value should not be disclosed

it should be protected by some mechanism such as a secret-

sharing API which is outside the scope of this specification.

Type: String

Mandatory-to-Specify: Yes

2.1.2. AWSv4Auth

The AWSv4Auth metadata object is used in the auth-value property of

the Auth object as defined in RFC-8006 section 4.2.7, and may be

applied to any source by including or referencing it under its

authentication property.

AWSv4 authentication causes upstream requests to have a signature

applied, following the method described in [AWSv4Method]. A hash-

based signature is calculated over the request URI and specified

headers, and provided in an Authorization: header on the upstream

-

¶

¶

¶

- ¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

request. The signature is tied to a pre-shared secret key specific

to an AWS service, region, and key ID.

Property: access-key-id

Description: The preconfigured ID of the pre-shared

authorization secret.

Type: String

Mandatory-to-Specify: Yes

Property: secret-access-key

Description: The pre-shared authorization secret which is the

basis of building the signature. This is a secret key that

should not be disclosed it should be protected by some

mechanism such as a secret-sharing API which is outside the

scope of this specification.

Type: String

Mandatory-to-Specify: Yes

Property: aws-region

Description: The AWS region name that is hosting the service

and shares the key ID and corresponding pre-shared secret.

Type: String

Mandatory-to-Specify: Yes

Property: aws-service

Description: The AWS service name that is serving the upstream

requests.

Type: String

Mandatory-to-Specify: No. It defaults to s3 if not specified.

Property: host-name

Description: The host name to use as part of the signature

calculation.

Type: String

Mandatory-to-Specify: No. It defaults to using the value of

the Host: header of the upstream request. This property is

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

-

available in case the application needs to override that

behavior.

2.2. AllowCompress

Downstream CDNs often have the ability to compress HTTP response

bodies in cases where the client has declared that it can accept

compressed responses (via an Accept-Encoding header), but the

source/origin has returned an uncompressed response

The specific compression algorithm used by the dCDN is negotiated by

the client's Accept-Encoding header according to [RFC7694]

(including q= preferences) and the compression capabilities

available on the dCDN.

MI.AllowCompress is a new GenericMetadata object that allows the

uCDN to control the activation of response compression in the dCDN

directly, and allows content providers to disable compression in

cases where compressed responses are not handled properly by certain

streaming devices. This can be achieved using a match expression on

the user agent.

In addition, HeaderTransform allows the uCDN to normalize, or

modify, the Accept-Encoding header to allow for fine-grain control

over the selection of the compression algorithm (e.g., gzip,

compress, deflate, br, etc.).

Properties of AllowCompress object are:

Property: allow-compress

Description: If set to True then the dCDN will try to compress

the response to the client based on the Accept-Encoding

request header.

Type: Boolean

Mandatory-to-Specify: No. The default is False.

2.3. CachePolicy

MI.CachePolicy is a new GenericMetadata object that allows for the

uCDN to specify internal caching policies for the dCDN and external

caching policies advertised to clients of the dCDN. overriding any

cache control policy set in the response from the uCDN

Property: internal

Description: Specifies the internal cache control policy to be

used by the dCDN.

¶

¶

¶

¶

¶

¶

¶

-

¶

- ¶

- ¶

¶

¶

-

¶

Type: Number in seconds encoded as string (e.g. 5 is a five

second cache) and/or a list of Enumeration [as-is|no-cache|

no-store]

Mandatory-to-Specify: No. The default is to use the cache

control policy specified in the response from the uCDN.

Property: external

Description: Specifies the external cache control policy to be

used by clients of this dCDN.

Type: Number in seconds encoded as string (e.g. 5 is a five

second cache) and/or a list of Enumeration [as-is|no-cache|

no-store]

Mandatory-to-Specify: No. The default is to use the cache

control policy specified in the response from the uCDN.

Property: force

Description: If set to True the metadata interface cache

policy defined in the MI.CachePolicy will override any cache

control policy set in the response from the uCDN. If set to

False the MI.CachePolicy is only used if there is no cache

control policy provided in the response from the uCDN.

Type: Boolean

Mandatory-to-Specify: No. The default is False which will

apply the MI.CachePolicy only if no policy is provided in the

response from the uCDN.

2.4. ComputedCacheKey

While the properties provided by the standard CDNi metadata Cache

object (See Section 4.2.6 [RFC8006]) provide some simple control

over the construction of the cache key, it is typical in advanced

CDN configurations to generate cache keys that are dynamically

constructed via lightweight processing of various properties of the

HTTP request and/or response. As an example, an origin may specify a

cache key as a value returned in a specific HTTP response header.

MI.ComputedCacheKey is a new GenericMetadata object that allows for

the specification of a cache key using the metadata expression

language. See Section 4. Typical use cases would involve the

construction of a cache key from one or more elements of the HTTP

-

¶

-

¶

¶

-

¶

-

¶

-

¶

¶

-

¶

- ¶

-

¶

¶

request. In cases where both the ComputedCacheKey and the Cache

object are applied, the ComputedCacheKey will take precedence.

Property: expression

Description: The expression that specifies how the cache key

shall be constructed.

Type: String. An expression using CDNI-MEL (Section 4) to

dynamically construct the cache key from elements of the HTTP

request and/or response.

Mandatory-to-Specify: Yes

2.5. CrossoriginPolicy

Delegation of traffic between an uCDN over a dCDN based on HTTP

redirection does change the domain name in the client requests. This

represents a cross-origin request that must be managed appropriately

using Cross-Origin Resource Sharing (CORS) headers in the responses

in the dCDN.

The dynamic generation of CORS headers is typical in modern HTTP

request processing and avoids CORS validation forwarded to the uCDN

origin servers, particularly with the preflight OPTIONS requests.

The CDNI metadata model requires extensions to specify how a dCDN

should generate and evaluate these headers.

Simple CORS requests are those where both HTTP method and headers in

the request are included in the safe list defined by the World Wide

Web Consortium [W3C]. The user agent request can include an origin

header set to the URL domain of the webpage where a player runs.

Depending on the metadata configuration, the logic to apply by the

dCDN is:

Validation of the origin header

Wildcard usage

Set a default value for CORS response headers

When a UA makes a request that includes a method or headers that are

not included in the safe-list, the client will make a CORS preflight

request using the OPTIONS method to the resource including the

origin header. If CORS is enabled and the requests passes the origin

validation, the OCN should respond with the set of headers that

indicate what is permitted for that resource, including one or more

of the following:

Allowed methods

¶

¶

-

¶

-

¶

- ¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

¶

1. ¶

Allowed credentials

Allowed request headers

max-age that the OPTIONS request is valid

Headers that can be exposed to the client

CrossoriginPolicy allows for the specification of dynamically

generated CORS headers.

Property: allow-origin

Description: Validation of simple CORS requests.

Type: Object

Values: One element for each of the following properties.

Mandatory-to-Specify: Yes

2.5.1. AllowOrigin

The AllowOrigin object has the following properties:

Property: allow-list

Description: List of valid URLs only scheme and host name that

will be used to match the request origin header.

Type: Array of PatternMatch objects (Section 4.1.5 of

[RFC8006])

Mandatory-to-Specify: Yes

Property: wildcard-return

Description: If True the dCDN will include a wildcard in the

Access-Control-Allow-Origin response header. If False the dCDN

will reflect the request origin header in the Access-Control-

Allow-Origin response header.

Type: Boolean

Mandatory-to-Specify: Yes

Property: expose-headers

Description: A list of values the dCDN will include in the

Access-Control-Expose-Headers response header to a preflight

request.

2. ¶

3. ¶

4. ¶

5. ¶

¶

¶

- ¶

- ¶

- ¶

- ¶

¶

¶

-

¶

-

¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

Type: Array of strings

Mandatory-to-Specify: No

Property: allow-methods

Description: A list of values the dCDN will include in the

Access-Control-Allow-Methods response header to a preflight

request.

Type: Array of strings

Mandatory-to-Specify: No

Property: allow-headers:

Description: A list of values the dCDN will include in the

Access-Control-Allow-Headers response header to a preflight

request.

Type: Array of strings

Mandatory-to-Specify: No

Property: allow-credentials

Description: The value the dCDN will include in the Access-

Control-Allow-Credentials response header to a preflight

request.

Type: Boolean

Mandatory-to-Specify: No

Property: max-age

Description: The value the dCDN will include in the Access-

Control-Max-Age response header to a preflight request.

Type: Integer

Mandatory-to-Specify: No

2.6. NegativeCachePolicy

MI.NegativeCachePolicy is a new GenericMetadata object that allows

for the specification of caching policies based on error response

codes received from the origin, allowing for fine-grained control of

the downstream caching of error responses. For example, it may be

desirable to cache error responses at the uCDN for a short period of

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

time to prevent an overwhelmed origin service from being flooded

with requests

Property: error-codes

Description: Array of HTTP response error status codes (See

Sextions 6.5 and 6.6 of [RFC7231]) that if returned from the

uCDN will be cached using the cache policy defined by the

cache-policy property.

Type: Array of HTTP response error status codes

Mandatory-to-Specify: No. The default is to revert to

[RFC8006] behavior.

Property: cache-policy

Description: MI.CachePolicy to apply to the HTTP response

error status codes returned by the uCDN.

Mandatory-to-Specify: Yes

2.7. CacheBypassPolicy

MI.CacheBypassPolicy is a new GenericMetadata object that allows a

client request to be set as non cacheable. It is expected that this

feature will be used to allow clients to bypass cache when testing

the uCDN fill path. Note, CacheBypassPolicy only applies to the

current request. In addition, any content previously cached (by

client requests that do not set CacheBypassPolicy) is not evicted.

Property: error-codes

Description: Array of HTTP response error status codes (See

Sextions 6.5 and 6.6 of [RFC7231]) that if returned from the

uCDN will be cached using the cache policy defined by the

cache-policy property.

Type: Array of HTTP response error status codes

Mandatory-to-Specify: No. The default is to revert to

[RFC8006] behavior.

Property: cache-policy

Description: MI.CachePolicy to apply to the HTTP response

error status codes returned by the uCDN.

Mandatory-to-Specify: Yes

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

2.8. OcnSelection

MI.OcnSelection is a new GenericMetadata object that allows the uCDN

to indicate to the dCDN a preference in terms of OCN selection.

Property: ocn-delivery

Description: Instructs the dCDN to perform delegation

operating a particular medium and/or a transport arrangement.

Type: An OcnDeliver yObject as defined in Section 2.8.1

2.8.1. OcnDelivery

An OcnDelivery object contains the following properties:

Property: ocn-medium

Description: Instructs the dCDN to perform delegation

operating a particular medium. The following values are

specified: SATELLITE.

Type: String

Mandatory-to-Specify: No. Either the ocn-medium property or

the ocn-transport property must be present.

Property: ocn-transport

Description: Instructs the dCDN to perform delegation

operating a particular transport arrangement. The following

values are specified: MABR.

Type: String

Mandatory-to-Specify: No. Either the ocn-medium property or

the ocn-transport property must be present.

Mandatory-to-Specify: No. At least one of the two

properties ocn-type or ocn-delivery must be present.

Property: ocn-type

Description: Instructs the dCDN to perform delegation

operating the type of open caching nodes.

Type: A string corresponding to one of the open caching

node types announced by the dCDN through the FCI interface.

¶

¶

-

¶

- ¶

¶

- ¶

o

¶

o ¶

o

¶

- ¶

o

¶

o ¶

o

¶

o

¶

- ¶

o

¶

o

¶

Mandatory-to-Specify: No. At least one of the two

properties ocn-type or ocn-delivery must be present.

Property: ocn-selection

Description: This property enforces the selection of OCNs

considering the ocn-type and/or the ocn-delivery

properties. False means best-effort.

Type: string. attempt-or-failed and attempt-or-besteffort

mean that the delegation must be attempted considering the

ocn-type and/or the ocn-delivery properties. If not

possible it is considered as an error and either fails

configuration failure or the dCDN continues with a best-

effort procedure. Last best effort means the dCDN tries its

best to fulfill the requested ocn-selection policy.

Mandatory-to-Specify: No. Best-effort is the default OCN

selection policy.

2.9. PrivateFeatureList

MI.PrivateFeatureList is a new GenericMetadata configuration object

as a base generic object that permits the control of private

features. Note that the private features exposed by the dCDN can be

advertised through a dedicated FCI object.

Property: features

Description: The list of feature configuration objects.

Type: List array of MI.PrivateFeature objects .

Mandatory-to-Specify: Yes

2.9.1. PrivateFeature

A MI.PrivateFeature object contains the following properties:

Property: feature-oid

Description: The owner organization that has specified that

feature.

Type: String

Mandatory-to-Specify: Yes

o

¶

- ¶

o

¶

o

¶

o

¶

¶

¶

- ¶

- ¶

- ¶

¶

- ¶

o

¶

o ¶

o ¶

Property: feature-type

Description: Indicates the typename of the private feature

configuration object.

Type: String

Mandatory-to-Specify: Yes

Property: feature-value

Description: Feature configuration object.

Type: Format type is defined by the value of the feature-

type property above.

Mandatory-to-Specify: Yes

2.10. ProcessingStages

A ProcessingStages object is a type of GenericMetadata that

describes the matching rules, metadata, and transformations to be

applied at specific stages in the request processing pipeline.

It is typical in CDN configurations to define matching rules and

metadata that are to be applied at specific stages in the request

processing pipeline. For example, it may be required to append a

host header prior to forwarding a request to an origin, or modify

the response returned from an origin prior to storing in the cache.

The following four processing stages are defined:

Figure 1: Rule stages

clientRequest - Rules run on the client request prior to

further processing.

originRequest - Rules run prior to making a request to the

origin.

originResponse - Rules run after a response is received from

the origin and before being placed in the cache.

- ¶

o

¶

o ¶

o ¶

- ¶

o ¶

o

¶

o ¶

¶

¶

 +-------+ +---------------+ +--------+

 | +--->|A B+--->| |

 | | | | | uCDN |

 | UA | | dCDN | | |

 | | | | | Source |

 | |<---+D C|<---+ |

 +-------+ +---------------+ +--------+

a.

¶

b.

¶

c.

¶

clientResponse - Rules run prior to sending the response to the

client. If the response is from the cache, rules are applied to

the response retrieved from the cache prior to sending to the

client.

Each of the four processing stages is represented by an array of

StageRules objects, with each StageRules object defining match

criteria along with metadata that should be applied if the match

applies to true. It should be noted that all of the StageRules

objects in the array are evaluated and processed in order. A

possible future extension to this processing model could allow for

an if-else structure, where processing for a stage is halted upon

matching of a StageRule match expression.

d.

¶

¶

Figure 2: CDNi ProcessingStages metadata model with contained objects

 +----------------+

 |ProcessingStages|

 +----------------+

 (*)

 |

 +----------------+-------+---------+----------------+

 | | | |

 v v v v

+-------------+ +-------------+ +--------------+ +--------------+

|ClientRequest| |OriginRequest| |OriginResponse| |ClientResponse|

+-------------+ +-------------+ +--------------+ +--------------+

 (*) (*) (*) (*)

 | | | |

 +---------------+----------------+----------------+

 |

 | +---------------+

 | +-------->|ExpressionMatch|

 | | +---------------+

 | |

 | | *****************

 | (*) +--->*GenericMetadata*

 | +----------+ +-------------+ | * Objects *

 +--->+StageRules+--->|StageMetadata+(*)-+ *****************

 +----------+ +-------------+

 (*) (*)

 | |

 +-------+ +-----------+

 | |

 v v

 +----------------+ +-----------------+

 |RequestTransform|(*)-+ +-(*)|ResponseTransform|

 +----------------+ | | +-----------------+

 (*) | |

 | | |

 | v v

 | +---------------+

 | |HeaderTransform|(*)-+

 | +---------------+ |

 | |

 v |

 +-----------------+ |

 |SyntheticResponse|(*)--+ v

 +-----------------+ | +----------+

 +----->|HTTPHeader|

 +----------+

Each of the four processing stages is represented by an array of

StageRules objects, with each StageRules object defining criteria

along with metadata that should be applied if the match applies to

True. It should be noted that the StageRules objects in the array

are evaluated and processed in order. A possible future extension to

this processing model could allow for an if-else structure, where

processing for a stage is halted upon the first match of a

StageRules expression.

Property: client-request

Description: Allows for the specification of conditional

metadata to be applied at the client request processing stages

as defined in the Rule Processing Stages section. The

StageRules in the array are evaluated in order.

Type: Array of StageRules objects

Mandatory-to-Specify: No

Property: origin-request

Description: Allows for the specification of conditional

metadata to be applied at origin request processing stages as

defined in the Rule Processing Stages section. The StageRules

in the array are evaluated in order.

Type: Array of StageRules objects

Mandatory-to-Specify: No

Property: origin-response

Description: Allows for the specification of conditional

metadata to be applied at origin response processing stages as

defined in the Rule Processing Stages section. The StageRules

in the array are evaluated in order.

Type: Array of StageRules objects

Mandatory-to-Specify: No

Property: client-response

Description: Allows for the specification of conditional

metadata to be applied at client response processing stages as

defined in the Rule Processing Stages section. The StageRules

in the array are evaluated in order.

Type: Array of StageRules objects

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

Mandatory-to-Specify: No

2.10.1. StageRules

A StageRules object is used within the context of ProcessingStages

to define elements in a list of match rules and stage-specific

metadata and transformations that should be applied conditionally on

a rich expression match.

Property: match

Description: An ExpressionMatch object encapsulating a rich

expression using the CDNi Metadata Expression Language CDNI-

MEL to evaluate aspects of the HTTP request and/or response.

The stage-metadata rules are only applied if the match

evaluates to True or if no match expression is provided

Type: ExpressionMatch object

Mandatory-to-Specify: No. The stage-metadata rules are always

applied if no match expression is provided. This would be the

case when stage-metadata should be applied unconditionally

within the context of the higher-level host and path matches.

Property: stage-metadata

Description: Specifies the set of StageMetadata to be applied

at the processing stage if the match expression evaluates to

True or is not present.

Type: Array of StageMetadata objects applied in order.

Mandatory-to-Specify: Yes

2.10.2. ExpressionMatch

CDN and open caching systems often require a rich set of matching

rules, with full regular expressions and Boolean combinations of

matching parameters for host, path, and header elements of a

request. In typical CDN implementations, this capability is provided

by a rich expression language that can be embedded in the metadata

configurations

The ExpressionMatch object contains the rich expression that must

evaluate to True for the StageMetadata to be applied for the

specific StageRules. Defining expressions as stand-alone objects

- ¶

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

- ¶

¶

allows for sets of reusable match expressions to be reused via

metadata reference linking.

Property: expression

Description: A rich expression using CDNI-MEL to evaluate

aspects of the HTTP request and/or response. See documentation

on the Metadata Expression Language for details on the

expression of matching variables and syntax.

Type: String using CDNI-MEL syntax. See Section 4

Mandatory-to-Specify: Yes

2.10.3. StageMetadata

The StageMetadata object contains GenericMetadata and HTTP request/

response transformations that should be applied for a StageRules

match. The following table defines the processing stages where

request and response transformations are possible:

Stage request-transform response-transform

clientRequest Yes Yes

originRequest Yes Yes

originResponse Yes No

clientResponse Yes No

Table 1

Note that for the stages where both request and response

transformations are allowed, it is possible to specify both. This

may be the case if, for example, the request URI needs alteration

for cache-key generation and the response headers need to be

manipulated.

Property: generic-metadata

Description: Specifies the set of GenericMetadata to be

applied for a StageRules match. A typical use case would be

the application of a CachePolicy or TimeWindowACL

conditionally on matching HTTP headers. Support for this

capability is optional and can be advertised via feature-flags

in the FCI interface.

Type: Array of GenericMetadata applied in order. Note that not

all GenericMetadata object types may be applicable at all

processing stages.

Mandatory-to-Specify: No. The generic-metadata property would

not be needed when StageMetadata is used to only specify

¶

¶

-

¶

- ¶

- ¶

¶

¶

¶

-

¶

-

¶

-

request or response transformations such as modifications of

HTTP headers.

Property: request-transform

Description: Specifies a transformation to be applied to the

HTTP request for a StageRules match. The transformation can be

the modification of any request header and/or the modification

of the URI. Modifications are applied such that downstream

processing stages receive the modified HTTP request as their

input. Support for this capability is optional and can be

advertised via feature-flags in the FCI interface.

Type: RequestTransform object

Mandatory-to-Specify: No

Property: response-transform

Description: Specifies a transformation to be applied to the

HTTP response for a StageRules match. The transformation can

be the modification of any response header HTTP response

status code or the generation of a synthetic response.

Modifications are applied such that downstream processing

stages receive the modified HTTP response as their input.

Support for this capability is optional and can be advertised

via feature-flags in the FCI interface.

Type: ResponseTransform object

Mandatory-to-Specify: No

2.10.4. RequestTransform

The RequestTransform object contains metadata for transforming the

HTTP request for a specific StageRules object. The transformation

can be the modification of any request header and/or the

modification of the URI. Modifications are applied such that

downstream processing stages receive the modified HTTP request as

their input.

Property: headers

Description: A HeaderTransform object specifying HTTP request

headers to add replace or delete.

Type: HeaderTransform object

Mandatory-to-Specify: No

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

¶

-

¶

- ¶

- ¶

Property: uri

Description: Replacement value for the HTTP request.

Type: String. Either a literal static string or an expression

using CDNI-MEL to dynamically construct a URI value from

elements of the HTTP request and/or response.

Mandatory-to-Specify: No

Property: uri-is-expression

Description: Flag to signal whether the URI is a static string

literal or a CDNI-MEL expression that needs to be dynamically

evaluated.

Type: Boolean

Mandatory-to-Specify: No. The default is False indicating that

the URI is a string literal and does not need to be evaluated.

2.10.5. ResponseTransform

The ResponseTransform object contains metadata for transforming the

HTTP response for a StageRules match. The transformation can be the

modification of any response header, HTTP response status code, or

the generation of a synthetic response. Modifications are applied

such that downstream processing stages receive the modified HTTP

response as their input.

Property: headers

Description: A HeaderTransform object specifying HTTP response

headers to add replace or delete.

Type: HeaderTransform object

Mandatory-to-Specify: No

Property: response-status

Description: Replacement value for the HTTP response status

code.

Type: Integer. Either a static integer or an expression using

CDNI-MEL that evaluates to an integer to dynamically generate

an HTTP status code based on elements of the HTTP request and/

or response. Expressions that do not evaluate to an integer

shall be considered invalid and result in no override of

origin-provided response status.

¶

- ¶

-

¶

- ¶

¶

-

¶

- ¶

-

¶

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

-

¶

Mandatory-to-Specify: No

Property: status-is-expression

Description: Flag to signal whether the response-status is a

static integer or a CDNI-MEL expression that needs to be

dynamically evaluated to generate an HTTP response status

code.

Type: Boolean

Mandatory-to-Specify: No. The default is False indicating that

the response-status is a static integer and does not need to

be evaluated.

Property: synthetic

Description: Specification of a complete replacement of any

HTTP response that may have been generated in an earlier

processing stage with a synthetic response. Use of this

property to specify a synthetic response would override any

response transformations or status codes specified by other

properties.

Type: SyntheticResponse object

Mandatory-to-Specify: No

2.10.6. SyntheticResponse

It is quite common in CDN configurations to specify a synthetic

response be generated based on inspection of aspects of the original

request or the origin response.

The SyntheticResponse object allows for the specification of a

synthetic response to be generated in response to the HTTP request

being processed. The synthetic response can contain a set of

response headers, a status code, and a response body, and is a

complete replacement for any HTTP response elements generated in an

earlier processing stage.

A dynamically generated Content-Length HTTP response header is

generated based on the length of the generated response body.

Property: headers

Description: An array of HTTP header objects that specify the

full set of headers to be applied to the synthetic response.

Type: Array of HTTP header objects

- ¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

- ¶

¶

¶

¶

¶

-

¶

- ¶

Mandatory-to-Specify: No although it would be unusual to not

specify minimal standard response headers such as Content-

Type.

Property: response-status

Description: HTTP response status code.

Type: Integer. Either a static integer or an expression using

CDNI-MEL that evaluates to an integer to dynamically generate

an HTTP status code based on elements of the upstream HTTP

request and/or response. Expressions that do not evaluate to

an integer shall be considered invalid and result in a 500

status for the synthetic response.

Mandatory-to-Specify: Yes

Property: status-is-expression

Description: Flag to signal whether the response-status is a

static integer or a CDNI-MEL expression that needs to be

dynamically evaluated to generate an HTTP response status

code.

Type: Boolean

Mandatory-to-Specify: No. The default is False indicating that

the response-status is a static integer and does not need to

be evaluated.

Property: body

Description: Body for the synthetic HTTP response. The

response body can either be static or dynamically constructed

from a rich expression.

Type: String. Either a literal static string or an expression

using CDNI-MEL to dynamically construct a response body from

elements of the HTTP request and/or response.

Mandatory-to-Specify: No. If absent an empty HTTP response

with a zero-value Content-Length header is generated.

Property: body-is-expression

Description: Flag to signal whether the synthetic response

body is a static string literal or a CDNI-MEL expression that

needs to be dynamically evaluated.

Type: Boolean

-

¶

¶

- ¶

-

¶

- ¶

¶

-

¶

- ¶

-

¶

¶

-

¶

-

¶

-

¶

¶

-

¶

- ¶

Mandatory-to-Specify: No. The default is False indicating that

the body is a string literal and does not need to be

evaluated.

2.10.7. HeaderTransform

In processing HTTP requests, it is often required to modify HTTP

request or response headers at one of the processing stages,

requiring CDNi metadata to have the capability to update any field

in an HTTP request or response header. It should be noted that

certain HTTP headers (such as Set-Cookie) have multiple occurrences

in a request or response, thereby requiring that we allow for add

and replace designations for header modification.

The HeaderTransform object specifies how HTTP headers should be

added, replaced, or deleted from HTTP requests and responses.

Property: add

Description: List of HTTP headers name/value pairs that should

be added to the HTTP request or response. Note that any

existing headers in the request or response with the same

names of those added are not affected resulting in multiple

headers with the same name.

Type: Array of HTTPHeader objects containing header name/value

pairs

Mandatory-to-Specify: No

Property: replace

Description: List of HTTP headers name/value pairs that should

be added to the HTTP request or response replacing any

previous headers with the same name.

Type: Array of HTTPHeader objects containing header name/value

pairs

Mandatory-to-Specify: No

Property: delete

Description: List of names of HTTP headers that should be

deleted from the

HTTP request or response. If a named header appears multiple

times all occurrences are deleted.

-

¶

¶

¶

¶

-

¶

-

¶

- ¶

¶

-

¶

-

¶

- ¶

¶

-

¶

-

¶

Type: Array of strings with each string naming an HTTP header

to delete

Mandatory-to-Specify: No

2.10.8. HttpHeader

The HTTPHeader object contains a name/value pair for an HTTP header

to add or replace in a request or response. The CDNI-MEL Section 4

expression language can be used to dynamically generate response

values.

Property: name

Description: Name of the HTTP header.

Type: String

Mandatory-to-Specify: Yes

Property: value

Description: New value of the named HTTP header.

Type: String. Either a static string or an expression using

CDNI-MEL to dynamically construct a header value from elements

of the HTTP request and/or response.

Mandatory-to-Specify: Yes

Property: value-is-expression

Description: Flag to signal whether the value is a static

string literal or a CDNI-MEL Section 4 expression that needs

to be dynamically evaluated.

Type: Boolean

Mandatory-to-Specify: No. The default is False indicating that

the value is a string literal and does not need to be

evaluated.

-

¶

- ¶

¶

¶

- ¶

- ¶

- ¶

¶

- ¶

-

¶

- ¶

¶

-

¶

- ¶

-

¶

2.11. RequestedCapacityLimits

MI.RequestedCapacityLimits is a new GenericMetadata object that

allows the uCDN to communicate to the dCDN a desired change in the

advertised traffic delegation limits for a given host and footprint.

Property: requested-limits

Description: A set of requested changes to the dCDNs

advertised FCI.CapacityLimits [capacity-insights-

advertisement].

Type: Array of RequestedCapacityLimit objects

Mandatory-to-Specify: Yes

RequestedCapacityLimit objects contain the following properties:

Property: limit-type

Description: The limit type for which the change is

requested corresponding to the limit types of

FCI.CapacityLimits [capacity-insights-advertisement].

Type: String. One of egress requests storage-size storage-

objects sessions or cache-size

Mandatory-to-Specify: Yes

Property: limit-value

Description: The requested new value for the limit. Units

of this value are dependent upon the limit-type and are

defined in the SVA Capacity Insights Interface

Specification.

Type: Integer

Mandatory-to-Specify: Yes

Property: footprints

Description: dCDN footprints with advertised

FCI.CapacityLimits [capacity-insights-advertisement] for

which this request applies.

Type: List of CDNI footprint objects from the CDNI Metadata

Footprint Types registry of [RFC8006]

Mandatory-to-Specify: Yes

¶

¶

-

¶

- ¶

- ¶

¶

- ¶

o

¶

o

¶

o ¶

- ¶

o

¶

o ¶

o ¶

- ¶

o

¶

o

¶

o ¶

2.12. RequestRouting

MI.RequestRouting is a new GenericMetadata object that allows the

uCDN to force the dCDN request routing mode(s) to be applied when

working in iterative redirection mode. The list of redirection modes

supported by the dCDN is advertised through the FCI.RedirectionMode

object. See Section 5.5 of [RFC8006]. The list of request routing

modes supported by the dCDN is advertised through the

FCI.RequestRouting object (Section 2.12)

Property: request-routing-modes

Description: Instructs the dCDN to perform request routing

according to one or more preferred modes among those supported

and advertised by the dCDN through the FCI.RequestRouting

object. One must understand that forcing instead of letting

the dCDN request router select one particular request routing

mode may trigger some inefficiency in the request routing

process.

Type: List array of iterative request routing modes, defined

as Enumeration of [DNS|HTTP|MANIFESTREWRITE] encoded as an

uppercase string

Mandatory-to-Specify: No. By default all request routing modes

supported by the dCDN can be used by the dCDN as part of its

request routing process.

2.13. ServiceIDs

CDN configurations typically have multiple layers of identifiers

that group configurations by customer account to facilitate logging,

billing, and support operations. The metadata model sis extended to

allow for the association service identifier metadata to a host or

path match and to allow for these IDs to be dynamically generated

via an expression language. For example, it may be necessary to

extract a portion of the Request URI path to derive a service

identifier (e.g.: /news/* maps to one serviceID and /movies/* maps

to a different serviceID)

A MI.ServiceIDs is a new GenericMetadata object that allows for the

specification of two tiers of CDN-specific identifiers and names.

The interpretation of these identifiers is implementation specific.

Property: service-id

Description: A provider-specific identifier for the service

typically a customer account identifier.

¶

¶

-

¶

-

¶

-

¶

¶

¶

¶

-

¶

Type: String. Either a literal static string or an expression

using CDNI-MEL Section 4 to dynamically construct the ID from

elements of the HTTP request and/or response.

Mandatory-to-Specify: No

Property: service-id-is-expression

Description: Flag to signal whether the service-id is a static

string literal or a CDNI-MEL Section 4 expression that needs

to be dynamically evaluated.

Type: Boolean

Mandatory-to-Specify: No. The default is False indicating that

the service-id is a string literal and does not need to be

evaluated.

Property: service-name

Description: Human-readable name for the service-id.

Type: String

Mandatory-to-Specify: No

Property: property-id

Description: A provider-specific identifier for the property

typically identifies a child configuration within the parent

service-id.

Type: String. Either a literal static string or an expression

using CDNI-MEL Section 4 to dynamically construct the ID from

elements of the HTTP request and/or response.

Mandatory-to-Specify: No

Property: property-id-is-expression

Description: Flag to signal whether the property-id is a

static string literal or a CDNI-MEL Section 4 expression that

needs to be dynamically evaluated.

Type: Boolean

Mandatory-to-Specify: No. The default is False indicating that

the property-id is a string literal and does not need to be

evaluated.

-

¶

- ¶

¶

-

¶

- ¶

-

¶

¶

- ¶

- ¶

- ¶

¶

-

¶

-

¶

- ¶

¶

-

¶

- ¶

-

¶

Property: property-name

Description: Human-readable name for the property-id.

Type: String

Mandatory-to-Specify: No

2.14. SourceMetadataExtended

MI.SourceMetadataExtended is an alternative to the CDNi standard

MI.SourceMetadata object (See Section 4.2.1 of [RFC8006]), which

adds a property to specify load balancing across multiple sources,

as well as a SourceExtended sub-object with additional attributes to

the CDNi standard Source object (See Section 4.2.1.1 of [RFC8006]).

While both SourceMetadataExtended and SourceMetadata can be provided

for backward compatibility, a dCDN that advertises capability for

SourceMetadataExtended will ignore SourceMetadata if both are

provided for a given host or path match.

Property: sources

Description: Sources from which the dCDN can acquire content

listed in order of preference.

Type: Array of SourceExtended objects

Mandatory-to-Specify: No. Default is to use static

configuration out-of-band from the CDNI metadata interface.

Property: load-balance

Description: Specifies load balancing rules for the set of

sources.

Type: LoadBalanceMetadata object

Mandatory-to-Specify: No

2.14.1. SourceExtended

SourceExtended is an alternative to the CDNi standard Source

(Section 4.2.1.1 of [RFC8006]) object with additional metadata. Open

Caching use cases requires additional capabilities not covered in

[RFC8006] as:

Web root path specification for the source.

Support for additional forms of origin authentication

¶

- ¶

- ¶

- ¶

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

- ¶

¶

1. ¶

2. ¶

Validate a host header in the request different than the

defined in endpoints

Whether a Source response of HTTP redirect is passed through to

the user agent or followed by the dCDN to acquire a content

It inherits all the attributes of the Source object (acquistion-

auth, endpoints, and protocol), with the following additions:

Property: origin-host

Description: HTTP host header to pass to the endpoints when

retrieving content from a uCDN. The host MUST conform to the

Domain Name System DNS syntax defined in [RFC1034] and

[RFC1123].

Type: String

Mandatory-to-Specify: No. The default is to use the host name

passed by the dCDN.

Property: webroot

Description: The path element that is prepended to a resources

URI before

retrieving content from a uCDN.

Type: String

Mandatory-to-Specify: No. The default is to use the original

URI.

Property: follow-redirects

Description: If the follow-redirects property is set to True

HTTP redirect responses returned from a uCDN will be followed

when retrieving content. Otherwise the HTTP redirect response

is returned to the client.

Type: Boolean

Mandatory-to-Specify: No. The default is True i.e. follow

redirect responses from the uCDN.

Property: timeout-ms

Description: A timeout in milliseconds to apply when

connecting to a uCDN. If the connection is not established

within timeout-ms this source is abandoned and the next source

3.

¶

4.

¶

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

¶

-

in the MI.SourceMetadataExtended sources array is tried. Once

a connection is established timeout-ms is used on subsequent

reads of data from the uCDN.

Type: Integer

Mandatory-to-Specify: No. The default is to revert to RFC-8006

behavior.

Property: failover-errors

Description: Array of HTTP response error status codes (See

Sections 6.5 and 6.6 of [RFC7231]) that if returned from the

uCDN will trigger a failover to the next source in the

MI.SourceMetadataExtended (Section 2.14) sources array. If the

uCDN returns an HTTP error code that is not in the failover-

errors array that error code is returned to the client of the

dCDN.

Type: Array of HTTP response error status codes.

Mandatory-to-Specify: No. The default is to revert to RFC-8006

behavior.

2.14.2. LoadBalanceMetadata

The LoadBalanceMetadata object defines how content acquisition

requests are distributed over the SourceExtended objects listed in

the SourceMetadataExtended object.

It permits the following capabilities:

Multi-origin failover: ability to specify a list of origins

that can act as fallbacks to the primary origin. Failure rules

can specify types of errors and timeout values that trigger

failover

Multi-origin load balancing: The ability to specify a list of

origins that can be selected by one of several balancing rules

(round robin, content hash, IP hash).

Origin Shielding Definitions - The ability to designate CDN

origin shield locations associated with a specific origin

Parameters for LoadBalanceMetadata are:

Property: balance-algorithm

Description: Specifies the algorithm to be used when

distributing content acquisition requests over the sources in

¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

-

a SourceMetadataExtended object. The available algorithms are

random content-hash and ip-hash

random: Requests are distributed over the sources in

proportion to their associated weights.

content-hash: Requests are distributed over the sources in

a consistent fashion based on the balance-path-pattern

property.

ip-hash: Requests are distributed over the sources in a

consistent fashion based on the IP address of the client

requestor.

Type: Enumeration [random|content-hash|ip-hash] encoded as a

lowercase string.

Mandatory-to-Specify: No. The default is to use sources in

preference order as defined in the SourceMetadataExtended

object.

Property: balance-weights

Description: This property specifies the relative frequency

that a source is used when distributing requests. For example

if there are three SourceExtended objects in a

SourceMetadataExtended object with balance-weights 1 2 1

source 1 will receive 14 of the requests source 2 will receive

24 of the requests source 3 will receive 14 of the requests.

Type: Array of integers

Mandatory-to-Specify: No. The default is to use sources in

preference order as defined in the SourceMetadataExtended

object.

Property: balance-path-pattern

Description: This property specifies a regular expression

pattern to apply to the URI when calculating the content hash

used by the balance-algorithm. For example balance-path-

pattern: prod...ts would distribute requests based on the URI

but excluding the prod prefix and the .ts segment file.

Type: String regular expression

Mandatory-to-Specify: No. The default is to use the original

URI.

¶

o

¶

o

¶

o

¶

-

¶

-

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

2.15. StaleContentCachePolicy

MI.StaleContentCachePolicy is a new GenericMetadata object that

allows the uCDN to specify the policy how the dCDN should process

requests for stale content. For example, this policy allows the

content provider to specify that stale content be served from cache

for a specified time period while refreshes from the origin occur

asynchronously.

Property: stale-while-revalidating

Description: Instructs the dCDN to serve a stale version of a

resource while refreshing the resource with the uCDN. When set

to True the dCDN will return a previously cached version of a

resource while the resource is refreshed with the uCDN in the

background.

Type: Boolean

Mandatory-to-Specify: No. The default is False which waits for

the uCDN to refresh a resource before responding to the

client.

Property: stale-if-error

Description: Instructs the dCDN to serve a stale version of a

resource if an error was received when trying to refresh the

resource with the uCDN. When set the dCDN will return a

previously cached version of a resource instead of caching the

error response. Per [RFC5861] Section 4 an error is any

situation that would result in a 500 502 503 or 504 HTTP

response status code being returned

Type: Array of HTTP response error status codes

Mandatory-to-Specify: No. The default is to cache the error

response received from the uCDN.

Property: failed-refresh-ttl

Description: Instructs the dCDN to serve a stale version of a

resource for the number of seconds specified in failed-

refresh-ttl before trying to revalidate the resource with the

uCDN. Use of failed-refresh-ttl allows the load to be reduced

on the uCDN during times of system stress.

Type: Integer

Mandatory-to-Specify: No

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

- ¶

2.16. TrafficType

Content delivery networks often apply different infrastructure,

network routes, and internal metadata for different types of

traffic. Knowing those differences, a dCDN provider can implement

specific strategies that will maximize performance and thereby

provide more available capacity to the upstream provider. it should

be noted that the dCDNs handling of the traffic types is

implementation-specific and not prescribed here.

TrafficType metadata defines a set of descriptors that characterize

either the type or usage of the traffic, enabling dCDNs to apply any

internal configuration rules without exposing an unnecessary amount

of internal details.

Property: traffic-type

Description: A literal that defines the traffic type. uCDN

will use the literal that is most representative of the

traffic being delegated. The following literals can be

specified:

vod

live

object-download

Type: String

Mandatory-to-Specify: Yes

Property: hints

Description: Other traffic characteristics that the uCDN can

indicate to the dCDN as suggestions for service optimization.

Accepts free-form unconstrained values.

Type: Array of strings

Mandatory-to-Specify: No

3. CDNI Additional FCI Objects

Section 5 of [RFC8008] describes the FCI Capability Advertisement

Object, which includes a CDNI Capability Object as well as the

capability object type (a CDNI Payload Type). The section also

defines the Capability Objects per such type. Below we define

additional Capability Objects.

¶

¶

¶

-

¶

o ¶

o ¶

o ¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

In most cases, the presence or absence of a GenericMetadata object

name in FCI.Metadata (as described above), is sufficient to convey

support for a capability. There are cases, however, where more fine-

grained capabilities declarations are required. Specifically, a dCDN

may support some, but not all, of the capabilities specified by one

of the new GenericMetadata objects. In these cases, new FCI objects

are created to allow a dCDN to express these fine-grained

capabilities.

Note: In the following sections, the term "mandatory-to-specify" is

used to convey which properties MUST be included when serializing a

given capability object. When mandatory-to-specify is defined as

"Yes" for an individual property, it means that if the object

containing that property is included in an FCI message, then the

mandatory-to-specify property MUST also be included.

3.1. FCI.AuthTypes

This object is used to to indicate the support of authentication

methods to be used for content acquisition (while interacting with

an origin server) and authorization methods to be used for content

delivery.

This documents defines two new authentication methods (See Section

2.1), while there is one other authorization method under

specification in CDNI called URI signing [URI.signing]

Property: authe-types

Description: List of supported authentication methods possibly

required for content acquisition

Type: List of supported authentication methods (e.g. as

defined in Section 2.1)

Mandatory-to-Specify: No. No authentication method is

supported in this case.

Property: autho-types

Description: List of supported authorization methods possibly

required for content delivery

Type: List of supported authorization methods (e.g. URI

signing [URI.signing])

Mandatory-to-Specify: No. No authorization method is supported

in this case.

¶

¶

¶

¶

¶

-

¶

-

¶

-

¶

¶

-

¶

-

¶

-

¶

3.2. FCI.ProcessingStages

This object is used to signal the set of features that are supported

in relation with the ProcessingStages (Section 2.10) configuration

object. Those optional features depend on the CDNI-MEL language

(Section 4) support.

Property: features

Description: List of supported optional processing stages

features. Note that these features all have some dependencies

on support of the CDNi MEL expression language.

Type: Enumeration [ExpressionMatch|RequestTransform|

ResponseTransform] encoded as string

Mandatory-to-Specify: No. None of these optional features are

supported in this case.

3.3. FCI.SourceMetadataExtended

This object is used to signal the supported features related to the

SourceMetadataExtended configuration object.

Property: load-balance

Description: List of supported load balancing algorithms in

relation to the SourceMetadataExtended configuration object

see GenericMetadata: SourceMetadataExtended

Type: Enumeration [random|content-hash|ip-hash] encoded as

lowercase strings

Mandatory-to-Specify: No. load balancing is not supported

among sources.

If the FCI.SourceMetadataExtended object is not exposed neither

advertised or if the load-balance array is empty, the dCDN does

not support the usage of the load-balance property attached to

the SourceMetadataExtended configuration object (see

SourceMetadataExtended (Section 2.14)).

3.4. FCI.RequestRouting

This object is used by the dCDN to signal/announce the supported

request routing modes. This can be optionally used by the uCDN to

¶

¶

-

¶

-

¶

-

¶

¶

¶

-

¶

-

¶

-

¶

¶

further select a subset of those modes when operating one of the

iterative delegation modes. See Section 2.12

Property: request-routing-modes

Description: List of supported request routing modes by the

dCDN. This information is useful when the uCDN decides to

perform a delegation in iterative mode.

Type: Enumeration [DNS|HTTP-R|MANIFESTREWRITE] encoded as

uppercase strings

Mandatory-to-Specify: No. If the dCDN does not advertise the

supported request routing modes they are all supported by

default.

3.5. FCI.PrivateFeatures

This object is used by the dCDN to signal/announce the list of

supported private features. See Section 2.9

Property: features

Description: The list of supported private feature

Type: List array of nested objects each containing the

following properties:

Property: feature-oid

Description: The owner/organization that has specified

the feature.

Type: String

Mandatory-to-Specify: Yes

Property: feature-type

Description: Indicates the typename of the private

feature configuration object.

Type: String

Mandatory-to-Specify: Yes

¶

¶

-

¶

-

¶

-

¶

¶

¶

- ¶

-

¶

o ¶

o

¶

o ¶

o ¶

o ¶

o

¶

o ¶

o ¶

3.6. FCI.OcnSelection

This object is used by the dCDN to signal/announce the supported OCN

types and/or their transport arrangement and/or medium supported by

OCNs.

Property: ocn-delivery-list

Description: List of supported medium and/or transport

arrangements.

Type: List of OcnDeliveryList objects Section 3.6.1

Property: ocn-type-list

oDescription: List of supported OCN types. Examples include:

HOME or EDGE.

oType: Array of strings

oMandatory-to-Specify: No

3.6.1. OcnDeliveryList

Property: ocn-medium

Description: This property lists the supported mediums.

Type: List of strings. The following values are specified:

SATELLITE

Mandatory-to-Specify: No

Property: ocn-transport

Description: Instructs the dCDN to perform delegation

operating a particular transport arrangement. The following

values are specified: MABR.

Type: List of strings

Mandatory-to-Specify: No

¶

¶

-

¶

- ¶

¶

-

¶

- ¶

- ¶

¶

- ¶

-

¶

- ¶

¶

-

¶

- ¶

- ¶

4. Metadata Expression Language

The CDNI Metadata Expression Language provides a syntax with a rich

set of variables, operators, and built-in functions to facilitate

use cases within the extended CDNi metadata model.

Enables expression matching to dynamically determine if

StageMetadata (Section 2.10.3) should be applied at a StageRules

match.

Enables the dynamic construction of a value to be used in

scenarios such as constructing a service identifier or cache key,

setting an HTTP header, rewriting a request URI, setting a

response status code, or dynamically generating a response body

for a SyntheticResponse.

Expressions can evaluate to a Boolean, string, or integer, depending

on the use case:

Usage Description
Evaluation

Results

ExpressionMatch.expression

Dynamically

determines if

StageMetadata

should be applied

at a specific

StageRules.

Boolean.

Expressions that

do not evaluate

to True or False

shall be

considered as

False.

RequestTransform.uri

Rewrites request

URI that will be

presented to all

downstream stages.

String

ResponseTransform.response-

status

Dynamically sets a

response status

code to replace

the status-code

returned by the

origin.

Integer (HTTP

status code)

SyntheticResponse.response-

status

Dynamically sets a

response status

code for a

synthetically

constructed

response.

Integer (HTTP

status code)

SyntheticResponse.body

Dynamically

constructs a

response body.

String

HTTPHeader.value String

¶

¶

¶

¶

Usage Description
Evaluation

Results

Dynamically

constructs a

header value.

ComputedCacheKey.expression

Dynamically

constructs a cache

key.

String

ServiceIDs.properry-

id,ServiceIDs.service-id

Dynamically

constructs service

and property

identifiers.

String

Table 2: CDNI MEL expressions

4.1. Expression Variables

Variable Meaning

req.h.<name> Request header <name>

req.uri
Request URI (includes query string and

fragment identifier, if any)

req.uri.path Request URI path

req.uri.pathquery Request path and query string

req.uri.query Request query string

req.uri.query.<key>
Request query string value associated with

<key>

req.method Request HTTP method (GET, POST, others)

resp.h.<name> Response header <name>

resp.status Response status code

Table 3: CDNI MEL variables

4.2. Expression Operators and keywords

Operator Type
Result

Type
Meaning

== infix Boolean Equality test

!= infix Boolean Inequality test

! infix Boolean Logical NOT operator

> infix Boolean Greater than test

< infix Boolean Less than test

>= infix Boolean Greater than or equal test

<= infix Boolean Less than or equal

*= infix Boolean Glob style match

~= infix Boolean

Regular expression match (see

https://www.pcre.org/ for details

on PCRE RegEx matching)

ipmatch infix Boolean

Operator Type
Result

Type
Meaning

Match against IP address or CIDR

(IPv4 and IPv6)

+ infix Numeric Addition

- infix Numeric Subtraction

* infix Numeric Multiplication

/ infix Numeric Division

% infix
Unsigned

or Integer
Modulus

. infix String Concatenation

? : ternary *

Conditional operator: <e> ? <v1>

: <v2> Evaluates <v1> if <e> is

true, <v2> otherwise.

() grouping
Used to override precedence and

for function calls.

Table 4: CDNI MEL expression operators

Keyword Meaning

and Logical AND

or Logical OR

not Logical NOT (see also the ! operator)

nil No value (distinct from empty value)

true Boolean constant: true

false Boolean constant: false

Table 5: CDNI MEL expression keywords

4.3. Expression Built-in Functions

4.3.1. Basic Functions: Type Conversions

Function Action Argument(s) Returns

integer(e) Converts expression to integer. 1 integer

real(e) Converts expression to real. 1 real

string(e) Converts expression to string. 1 string

boolean(e) Converts expression to Boolean. 1 Boolean

Table 6: CDNI MEL type conversions

4.3.2. Basic Functions: String Conversions

Function Action Argument(s) Returns

upper(e)

Converts a string to uppercase.

Useful for case-insensitive

comparisons.

1 string

lower(e) 1 string

Function Action Argument(s) Returns

Converts a string to lowercase.

Useful for case-insensitive

comparisons.

Table 7: CDNI MEL string conversions

4.3.3. Convenience Functions

Function Action Argument(s) Returns

match(string Input,

string Match)

Regular expression

Match is applied to

Input and the matching

element (if any) is

returned. Empty string

is returned if there

is no match. See

https://www.pcre.org/

for details on PCRE

RegEx matching.

2 string

match_replace(string

Input, string Match,

string Replace)

Regular expression

Match is applied to

Input arg and replaced

with the Replace arg

upon successful match.

Returns updated

(replaced) version of

Input.

3 string

add_query(string

Input, string q,

string v)

Add query string

element q with value v

to the Input string.

If v is nil, then just

add the query string

element q. The query

element q and value v

must conform to the

format defined in:

https://

datatracker.ietf.org/

doc/html/rfc3986

2 string

remove_query(string

Input, string q)

Remove (all

occurrences of) query

string element q from

the Input string.

2 string

path_element(string

Input, integer n)

Return the path

element n from Input.

-1 returns the last

element.

2 string

3 string

Function Action Argument(s) Returns

path_element(string

Input, integer n,

integer m)

Return the path

elements from position

n to m.

Table 8: CDNI MEL convenience functions

4.4. Error Handling

4.4.1. Compile Time Errors

To ensure reliable service, all CDNI Metadata configurations MUST be

validated for syntax errors before they are ingested into a dCDN.

That is, existing configurations should be kept as the live running

configuration until the new configuration has passed validation. If

errors are detected in a new configuration, the configuration MUST

be rejected. A HTTP 500 Internal Server Error should be returned

with a message that indicates the source of the error (line number,

and configuration element that caused the error).

Examples of compile-time errors:

Configuration does not parse relative to the CDNI Metadata JSON

schema

Unknown CDNI Metadata object referenced in the configuration

CDNI Metadata object parse error

Missing mandatory CDNI Metadata property

Unknown CDNI Metadata property

Incorrect type for a CDNI Metadata property value

CDNI-MEL

Unknown CDNI-MEL variable name referenced in an expression

Unknown CDNI-MEL operator, key-word, or functions

referenced in an expression

Incorrect number of arguments used in a CDNI-MEL

expression operator or function

Incorrect type of argument used in a CDNI-MEL expression

operator or function

¶

¶

1.

¶

2. ¶

3. ¶

a. ¶

b. ¶

c. ¶

4. ¶

a. ¶

b.

¶

c.

¶

d.

¶

4.4.2. Runtime Errors

If a runtime error is detected when processing a request, the

request should be terminated, and a HTTP 500 'Internal Server Error'

returned to the caller. To avoid security leaks, sensitive

information MUST be removed from the error message before it is

returned to an external client. In addition to returning the HTTP

500 error, the dCDN SHOULD log additional diagnostics information to

assist in troubleshooting.

Examples of runtime errors:

Failure to allocate memory (or other server resources) when

evaluating a CDNI-MEL expression

Incorrect runtime argument type in a CDNI-MEL expression. E.g.,

trying to convert a non-numeric string to a number

4.5. Expression Examples

4.5.1. ComputedCacheKey

Sets the MI.ComputedCacheKey to the value of the X-Cache-Key header

from the client request.

Sets the MI.ComputedCacheKey to the lowercase version of the URI.

4.5.2. ExpressionMatch

ExpressionMatch where the expression is true if the user-agent

(glob) matches *Safari* and the referrer equals www.example.com.

¶

¶

1.

¶

2.

¶

¶

{

 "generic-metadata-type": "MI.ComputedCacheKey",

 "generic-metadata-value": {

 "expression": "$req.h.x-cache-key"

 }

}

¶

¶

{

 "generic-metadata-type": "MI.ComputedCacheKey",

 "generic-metadata-value": {

 "expression": "$lower(req.uri)"

 }

}

¶

¶

{

 "expression": "req.h.user-agent *= '*Safari*'

 and req.h.referrer == 'www.example.com'"

}

¶

4.5.3. ResponseTransform

Adds X-custom-response-header with a value equal to the value of

user-agent - host header.

Adds a Set-Cookie header with a dynamically computed cookie value

(concatenating user agent and host name) and forces a 403 response.

4.5.4. MI.ServiceIDs

Extracts the first path element from the URI. For example, if the

URI = /789/second/third/test.txt, property-id is set to the first-

path (789).

¶

{

 "response-transform": {

 "headers": {

 "add": [

 {

 "name": "X-custom-response-header",

 "value": "$req.h.user-agent - $req.h.host",

 "value-is-expression": true

 }

],

 "response-status": "403"

 }

 }

}

¶

¶

{

 "response-transform":{

 "headers":{

 "add":[

 {

 "name":"Set-Cookie",

 "value":"$req.h.user-agent - $req.h.host",

 "value-is-expression":true

 }

]

 }

 }

}

¶

¶

[capacity-insights-advertisement]

[RFC1034]

[RFC1123]

5. IANA Considerations

5.1. CDNI Payload Types

TBD. Two new auth-types will be introduced for use with

SourceMetadataExtended: AWSv4Auth and HeaderAuth

6. Security Considerations

This specification is in accordance with the CDNI Request Routing:

Footprint and Capabilities Semantics. As such, it is subject to the

security and privacy considerations as defined in Section 8 of

[RFC8006] and in Section 7 of [RFC8008] respectively.

MORE - TBD

7. Acknowledgements

The authors would like to express their gratitude to the members of

the Streaming Video Alliance Open Caching Working Group for their

guidance / contribution / reviews ...)

8. References

8.1. Normative References

Ryan, A., Rosenblum, B., and N.

Sopher, "CDNI Capacity Insights Capability Advertisment

Extensions", 5 July 2021, <https://www.ietf.org/id/draft-

ryan-cdni-capacity-insights-extensions-00.txt>.

Mockapetris, P., "Domain names - concepts and

facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034,

November 1987, <https://www.rfc-editor.org/info/rfc1034>.

Braden, R., Ed., "Requirements for Internet Hosts -

Application and Support", STD 3, RFC 1123, DOI 10.17487/

RFC1123, October 1989, <https://www.rfc-editor.org/info/

rfc1123>.

{

 "generic-metadata-type":"MI.ServiceIDs",

 "generic-metadata-value":{

 "service-id":"12345",

 "service-name":"My Streaming Service",

 "property-id":"$path_element(req.uri, 1)",

 "property-id-is-expression":true

 }

}

¶

¶

¶

¶

¶

https://www.ietf.org/id/draft-ryan-cdni-capacity-insights-extensions-00.txt
https://www.ietf.org/id/draft-ryan-cdni-capacity-insights-extensions-00.txt
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1123

[RFC2119]

[RFC7231]

[RFC8006]

[RFC8007]

[RFC8008]

[RFC8174]

[RFC8804]

[URI.signing]

[W3C]

[AWSv4Method]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Niven-Jenkins, B., Murray, R., Caulfield, M., and K. Ma,

"Content Delivery Network Interconnection (CDNI)

Metadata", RFC 8006, DOI 10.17487/RFC8006, December 2016,

<https://www.rfc-editor.org/info/rfc8006>.

Murray, R. and B. Niven-Jenkins, "Content Delivery

Network Interconnection (CDNI) Control Interface /

Triggers", RFC 8007, DOI 10.17487/RFC8007, December 2016,

<https://www.rfc-editor.org/info/rfc8007>.

Seedorf, J., Peterson, J., Previdi, S., van Brandenburg,

R., and K. Ma, "Content Delivery Network Interconnection

(CDNI) Request Routing: Footprint and Capabilities

Semantics", RFC 8008, DOI 10.17487/RFC8008, December

2016, <https://www.rfc-editor.org/info/rfc8008>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Finkelman, O. and S. Mishra, "Content Delivery Network

Interconnection (CDNI) Request Routing Extensions", RFC

8804, DOI 10.17487/RFC8804, September 2020, <https://

www.rfc-editor.org/info/rfc8804>.

van Brandenburg, R., Leung, K., and P. Sorber, "URI

Signing for CDN Interconnection (CDNI)", 8 October 2019,

<http://www.ietf.org/internet-drafts/draft-ietf-cdni-uri-

signing-19.txt>.

"Cross-Origin Resource Sharing", <https://www.w3.org/TR/

2020/SPSD-cors-20200602/>.

8.2. Informative References

"Authenticating Requests (AWS Signature Version 4)",

<https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-

authenticating-requests.html>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc8006
https://www.rfc-editor.org/info/rfc8007
https://www.rfc-editor.org/info/rfc8008
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8804
https://www.rfc-editor.org/info/rfc8804
http://www.ietf.org/internet-drafts/draft-ietf-cdni-uri-signing-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-cdni-uri-signing-19.txt
https://www.w3.org/TR/2020/SPSD-cors-20200602/
https://www.w3.org/TR/2020/SPSD-cors-20200602/
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

[OC-CI]

[OCWG]

[RFC5861]

[RFC6707]

[RFC7336]

[RFC7694]

[RFC7736]

[SVA]

Goldstein, G., Ed., Power, W., Bichot, G., and A.

Siloniz, "Open Caching - Configuration Interface

Functional Specification (Parts 1,2,3)", Version 0.1, 2

July 2021.

"Open Caching Home Page", <https://

www.streamingvideoalliance.org/technical-groups/open-

caching/>.

Nottingham, M., "HTTP Cache-Control Extensions for Stale

Content", RFC 5861, DOI 10.17487/RFC5861, May 2010,

<https://www.rfc-editor.org/info/rfc5861>.

Niven-Jenkins, B., Le Faucheur, F., and N. Bitar,

"Content Distribution Network Interconnection (CDNI)

Problem Statement", RFC 6707, DOI 10.17487/RFC6707,

September 2012, <https://www.rfc-editor.org/info/

rfc6707>.

Peterson, L., Davie, B., and R. van Brandenburg, Ed.,

"Framework for Content Distribution Network

Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336,

August 2014, <https://www.rfc-editor.org/info/rfc7336>.

Reschke, J., "Hypertext Transfer Protocol (HTTP) Client-

Initiated Content-Encoding", RFC 7694, DOI 10.17487/

RFC7694, November 2015, <https://www.rfc-editor.org/info/

rfc7694>.

Ma, K., "Content Delivery Network Interconnection (CDNI)

Media Type Registration", RFC 7736, DOI 10.17487/RFC7736,

December 2015, <https://www.rfc-editor.org/info/rfc7736>.

"Streaming Video Alliance Home Page", <https://

www.streamingvideoalliance.org>.

Authors' Addresses

Glenn Goldstein

Lumen Technologies

United States of America

Email: glenng1215@gmail.com

Will Power

Lumen Technologies

United States of America

Email: wrpower@gmail.com

https://www.streamingvideoalliance.org/technical-groups/open-caching/
https://www.streamingvideoalliance.org/technical-groups/open-caching/
https://www.streamingvideoalliance.org/technical-groups/open-caching/
https://www.rfc-editor.org/info/rfc5861
https://www.rfc-editor.org/info/rfc6707
https://www.rfc-editor.org/info/rfc6707
https://www.rfc-editor.org/info/rfc7336
https://www.rfc-editor.org/info/rfc7694
https://www.rfc-editor.org/info/rfc7694
https://www.rfc-editor.org/info/rfc7736
https://www.streamingvideoalliance.org
https://www.streamingvideoalliance.org
mailto:glenng1215@gmail.com
mailto:wrpower@gmail.com

Guillaume Bichot

Broadpeak

France

Email: guillaume.bichot@gmail.com

Alfonso Siloniz

Telefonica

Spain

Email: alfonsosiloniz@gmail.com

mailto:guillaume.bichot@gmail.com
mailto:alfonsosiloniz@gmail.com

	CDNI Metadata Model Extensions
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Requirements Language

	2. CDNI Additonal GenericMetadata Objects
	2.1. Auth
	2.1.1. HeaderAuth
	2.1.2. AWSv4Auth

	2.2. AllowCompress
	2.3. CachePolicy
	2.4. ComputedCacheKey
	2.5. CrossoriginPolicy
	2.5.1. AllowOrigin

	2.6. NegativeCachePolicy
	2.7. CacheBypassPolicy
	2.8. OcnSelection
	2.8.1. OcnDelivery

	2.9. PrivateFeatureList
	2.9.1. PrivateFeature

	2.10. ProcessingStages
	2.10.1. StageRules
	2.10.2. ExpressionMatch
	2.10.3. StageMetadata
	2.10.4. RequestTransform
	2.10.5. ResponseTransform
	2.10.6. SyntheticResponse
	2.10.7. HeaderTransform
	2.10.8. HttpHeader

	2.11. RequestedCapacityLimits
	2.12. RequestRouting
	2.13. ServiceIDs
	2.14. SourceMetadataExtended
	2.14.1. SourceExtended
	2.14.2. LoadBalanceMetadata

	2.15. StaleContentCachePolicy
	2.16. TrafficType

	3. CDNI Additional FCI Objects
	3.1. FCI.AuthTypes
	3.2. FCI.ProcessingStages
	3.3. FCI.SourceMetadataExtended
	3.4. FCI.RequestRouting
	3.5. FCI.PrivateFeatures
	3.6. FCI.OcnSelection
	3.6.1. OcnDeliveryList

	4. Metadata Expression Language
	4.1. Expression Variables
	4.2. Expression Operators and keywords
	4.3. Expression Built-in Functions
	4.3.1. Basic Functions: Type Conversions
	4.3.2. Basic Functions: String Conversions
	4.3.3. Convenience Functions

	4.4. Error Handling
	4.4.1. Compile Time Errors
	4.4.2. Runtime Errors

	4.5. Expression Examples
	4.5.1. ComputedCacheKey
	4.5.2. ExpressionMatch
	4.5.3. ResponseTransform
	4.5.4. MI.ServiceIDs

	5. IANA Considerations
	5.1. CDNI Payload Types

	6. Security Considerations
	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

