
Workgroup: Network Working Group

Internet-Draft:

draft-goldstein-cdni-metadata-model-

extensions-02

Updates: 8006, 8008 (if approved)

Published: 7 March 2022

Intended Status: Standards Track

Expires: 8 September 2022

Authors: G. Goldstein

Lumen Technologies

W. Power

Lumen Technologies

G. Bichot

Broadpeak

A. Siloniz

Telefonica

CDNI Metadata Model Extensions

Abstract

The Content Delivery Network Interconnection (CDNI) Metadata

interface enables interconnected Content Delivery Networks (CDNs) to

exchange content distribution metadata in order to enable content

acquisition and delivery. To facilitate a wider set of use cases

such as Open Caching, this document describes extensions to the CDNI

Metadata object model and its associated Capabilities model as

documented in "CDNI Metadata" RFC8006 and "CDNI Request Routing:

Footprint and Capabilities Semantics" RFC8008 .

This document is a reflection of the content in the Streaming Video

Alliance specification titled "SVA Configuration Interface: Part 2

Extensions to CDNI Metadata Object Model".

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8006
https://www.rfc-editor.org/rfc/rfc8008
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction and Scope

1.1. Terminology

1.2. Requirements Language

2. CDNI Metadata Model Extensions

2.1. Cache Control Metadata

2.1.1. MI.CachePolicy

2.1.2. MI.NegativeCachePolicy

2.1.3. MI.StaleContentCachePolicy

2.1.4. MI.CacheBypassPolicy

2.1.5. MI.ComputedCacheKey

2.2. Origin Access Metadata

2.2.1. MI.SourceMetadataExtended

2.2.1.1. MI.SourceExtended

2.2.1.2. MI.LoadBalanceMetadata

2.2.2. MI.Auth

2.2.2.1. MI.HeaderAuth

2.2.2.2. MI.AWSv4Auth

2.3. Edge Control Metadata

2.3.1. MI.CrossOriginPolicy

2.3.1.1. MI.AccessControlAllowOrigin

2.3.2. MI.AllowCompress

2.3.3. MI.TrafficType

2.3.4. MI.OcnSelection

2.3.4.1. MI.OcnDelivery

2.4. Processing Stage Metadata

2.4.1. MI.ProcessingStages

2.4.2. MI.StageRules

2.4.3. MI.ExpressionMatch

2.4.4. MI.StageMetadata

2.4.5. MI.RequestTransform

2.4.6. MI.ResponseTransform

2.4.7. MI.SyntheticResponse

¶

¶

https://trustee.ietf.org/license-info

2.4.8. MI.HeaderTransform

2.4.9. MI.HTTPHeader

2.5. General Metadata

2.5.1. MI.ServiceIDs

2.5.2. MI.PrivateFeatureList

2.5.2.1. MI.PrivateFeature

2.5.3. MI.RequestRouting

3. Metadata Expression Language

3.1. Expression Variables

3.2. Expression Operators and keywords

3.3. Expression Built-in Functions

3.3.1. Basic Functions: Type Conversions

3.3.2. Basic Functions: String Conversions

3.3.3. Convenience Functions

3.4. Error Handling

3.4.1. Compile Time Errors

3.4.2. Runtime Errors

3.5. Expression Examples

3.5.1. ComputedCacheKey

3.5.2. ExpressionMatch

3.5.3. ResponseTransform

3.5.4. MI.ServiceIDs

4. CDNI Capabilities Extensions

4.1. FCI Metadata Object

4.2. FCI Model Extensions

4.2.1. FCI.AuthTypes

4.2.2. FCI.ProcessingStages

4.2.3. FCI.SourceMetadataExtended

4.2.4. FCI.RequestRouting

4.2.5. FCI.PrivateFeatures

4.2.5.1. FCI.PrivateFeature

4.2.6. FCI.OcnSelection

5. IANA Considerations

5.1. CDNI Payload Types

6. Security Considerations

7. Conclusion

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction and Scope

The Content Delivery Network Interconnection (CDNI) Metadata

interface enables interconnected Content Delivery Networks (CDNs) to

exchange content distribution metadata in order to enable content

acquisition and delivery. To facilitate a wider set of use cases

encountered in the commercial CDN and Open Caching ecosystems, this

document describes extensions to the CDNI Metadata object model and

its associated Capabilities model.

The objectives of this document are:

Identify the requirements for extending [RFC8006] and [RFC8008]

and specify a set of extensions that realize these

requirements.

Maintain backward compatibility with [RFC8006] and [RFC8008] by

not altering the definitions or semantics of the original

object model. All extensions are defined as new GenericMetadata

Objects.

Define the metadata object model independently of the APIs used

to publish and retrieve metadata.

Scope this document ADDRESSES:

Define and register CDNI GenericMetadata objects, as defined in

section 4 of [RFC8006].

Define and register CDNI Payload Types, as defined in section

7.1 of [RFC8006].

Define Capabilities Objects that facilitate advertisement of a

dCDN's support of these new metadata features, extending

definitions in section 5 of [RFC8008].

Specification of a Metadata Expression Language Section 3 used

within the metadata object model extensions.

Provide JSON examples illustrating real-world CDN and Open

Caching use cases.

Scope this document DOES NOT ADDRESS:

Metadata object model definitions already specified in

[RFC8006].

Interface API definitions for publishing and retrieving

configuration metadata. The Metadata Interface (MI) as defined

in [RFC8006] can be used to retrieve metadata. To enable more

sophisticated metadata configuration publishing workflows, the

Streaming Video Alliance (SVA) Open Caching API [OC-CI], as

documented in the SVA Configuration Interface Part 3 (Simple

API) and Part 4 (Advanced API) specifications can be used.

¶

¶

1.

¶

2.

¶

3.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

1.

¶

2.

¶

1.1. Terminology

For consistency with other CDNI documents this document follows the

CDNI convention of uCDN (upstream CDN) and dCDN (downstream CDN). It

should be noted, however, that uCDN and dCDN are roles that can be

played by a variety of entities in the distribution ecosystem. A

Content Provider, for example, can play the roles of a uCDN, while a

commercial CDN or Open Caching system can play either the roles of a

uCDN or dCDN. Additionally, this document reuses the terminology

defined in [RFC6707],[RFC7336], [RFC8006], [RFC8007] and [RFC8804].

The following terms are used throughout this document:

API - Application Programming Interface

AWS - Amazon Web Services

CDN - Content Delivery Network

CDNi - CDN Interconnect

CORS - Cross-Origin Resource Sharing

CP - Content Provider

dCDN - Downstream CDN

DNS - Domain Name System

FCI - Footprint and Capabilities Advertising Interface

HREF - Hypertext Reference (link)

HTTP - Hypertext Transfer Protocol

IETF - Internet Engineering Task Force

ISP - Internet Service Provider

JSON - JavaScript Object Notation

MEL - Metadata Expression Language

Object - A collection of properties.

OC - Open Caching

OCN - Open Caching Node

PatternMatch - An object which matches a string pattern

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

UA - User Agent

uCDN - Upstream CDN

URI - Uniform Resource Identifier

URN - Uniform Resource Name

VOD - Video-on-Demand

W3C - World Wide Web Consortium

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. CDNI Metadata Model Extensions

This section details extensions to the CDNI Metadata model as

defined in Section 4 of [RFC8006], expressed as a set of new

GenericMetadata objects. To preserve backward compatibility with

[RFC8006], no changes are proposed to the original set of

GenericMetadata.

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

Figure 1: CDNI Metadata Model with Extensions

The remainder of this section presents the extended set of

GenericMetadata objects organized by the categories in the above

diagram.

Note: In the following sections, the term "mandatory-to-specify" is

used to convey which properties MUST be included when serializing a

given capability object. When mandatory-to-specify is defined as

"Yes" for an individual property, it means that if the object

containing that property is included in a message, then the

mandatory-to-specify property MUST also be included.

2.1. Cache Control Metadata

In addition to the cache control policies currently specified by

CDNI metadata, content providers often need more fine-grained

 +---------+ +---------+ +------------+

 |HostIndex++(*)+>+HostMatch++(1)+>+HostMetadata+------+(*)+-----+

 +---------+ +---------+ +------+-----+ |

 + |

 (*) +

 + V

 +-> Contains or references V *****************

 (1) One and only one +---------+ *GenericMetadata*

 (*) Zero or more +--->+PathMatch| * Objects *<+

 | +----+---++ ***************** |

 + + + ^ |

 (*) (1) (1) +------------+ | |

 + + +->+PatternMatch| | |

 | V +------------+ | |

 | +------------+ | |

 +--+PathMetadata+------+(*)+-----+ |

 +------------+ |

 |

 |

 |

 +---------------------------------------+

 |

 +

 New GenericMetadata Object by Categories (SVA)

+-------------------+ +-------------------+ +---------------------+

| Cache Control | | Origin Access | |Client Access Control|

+-------------------+ +-------------------+ +---------------------+

+-------------------+ +-------------------+ +---------------------+

| Edge Control | | Processing Stages | | General Metadata |

+-------------------+ +-------------------+ +---------------------+

¶

¶

control over CDN caching, including scenarios where it is desirable

to override or adjust cache-control headers from the origin.

The following additional capabilities are needed for general CDN and

open caching use cases:

Positive Cache Control - Allows the uCDN to specify internal

caching policies for the dCDN and external caching policies

advertised to clients of the dCDN, overriding any cache control

policy set in the response from the uCDN.

Negative Cache Control - Allows the specification of caching

policies based on error response codes received from the

origin, allowing for fine-grained control of the downstream

caching of error responses. For example, it may be desirable to

cache error responses at the dCDN for a short period of time to

prevent an overwhelmed origin service or uCDN from being

flooded with requests.

Cache Bypass Control - Allows content providers to bypass CDN

caching when needed (typically for testing or performance

benchmarking purposes).

Stale Content Policies - Allows control over how the dCDN

should process requests for stale content. For example, this

policy allows the content provider to specify that stale

content be served from cache for a specified time period while

refreshes from the origin occur asynchronously.

Dynamically Constructed Cache Keys - While the properties

provided by the standard CDNI metadata Cache object provide

some simple control over the construction of the cache key, it

is typical in advanced CDN configurations to generate cache

keys that are dynamically constructed via lightweight

processing of various properties of the HTTP request and/or

response. As an example, an origin may specify a cache key as a

value returned in a specific HTTP response header. A rich

expression language is provided to allow for such advanced

cache key construction.

2.1.1. MI.CachePolicy

CachePolicy is a new GenericMetadata object that allows for the uCDN

to specify internal caching policies for the dCDN, as well as

external caching policies advertised to clients of the dCDN

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

(overriding any cache control policy set in the response from the

uCDN).

Property: internal

Description: Specifies the internal cache control policy to be

used by the dCDN.

Type: Number in seconds encoded as string (e.g. 5 is a five

second cache) and/or a list of Enumeration [as-is|no-cache|

no-store]

Mandatory-to-Specify: No. The default is to use the cache

control policy specified in the response from the uCDN.

Property: external

Description: Specifies the external cache control policy to be

used by clients of this dCDN.

Type: Number in seconds encoded as string (e.g. 5 is a five

second cache) and/or a list of Enumeration [as-is|no-cache|

no-store]

Mandatory-to-Specify: No. The default is to use the cache

control policy specified in the response from the uCDN.

Property: force

Description: If set to True, the metadata interface cache

policy defined in the MI.CachePolicy will override any cache

control policy set in the response from the uCDN. If set to

False, the MI.CachePolicy is only used if there is no cache

control policy provided in the response from the uCDN.

Type: Boolean

Mandatory-to-Specify: No. The default is "False", which will

apply the MI.CachePolicy only if no policy is provided in the

response from the uCDN.

Example 1: An MI.CachePolicy that sets the internal cache control

policy to five seconds. The external cache policy is set to 'no-

cache':

¶

¶

-

¶

-

¶

-

¶

¶

-

¶

-

¶

-

¶

¶

-

¶

- ¶

-

¶

¶

Example 2: An MI.CachePolicy that sets the internal cache control

policy to "as-is" (keep the policy set in the response from the

uCDN). The external cache policy is set to 'no-cache:

Example 3: An MI.CachePolicy in the context of the processing stages

model that sets a caching policy only if the HTTP status code

received from the origin is a 200. In this example, the internal

cache control policy is set to five seconds. The external cache

policy is set to 'no-cache'. Force is set to 'False', indicating

that the MI.CachePolicy only applies if there is no cache policy in

the response from the uCDN.

{

 "generic-metadata-type": "MI.CachePolicy",

 "generic-metadata-value": {

 "internal": "5",

 "external": "no-cache",

 "force": "true"

 }

}

¶

¶

{

 "generic-metadata-type": "MI.CachePolicy",

 "generic-metadata-value": {

 "internal": "as-is",

 "external": "no-cache",

 "force": "true"

 }

}

¶

¶

2.1.2. MI.NegativeCachePolicy

NegativeCachePolicy is a new GenericMetadata object that allows for

the specification of caching policies based on error response codes

received from the origin.

Property: error-codes

Description: Array of HTTP response error status codes (See

Sections 6.5 and 6.6 of [RFC7231] , that if returned from the

uCDN, will be cached using the cache policy defined by the

cache-policy property.

Type: Array of HTTP response error status codes

Values: ["404", "503", "504"]

Mandatory-to-Specify: No. The default is to revert to

[RFC8006] behavior.

Property: cache-policy

Description: MI.CachePolicy to apply to the HTTP response

error status codes returned by the uCDN.

{

 "generic-metadata-type": "MI.ProcessingStages",

 "generic-metadata-value": {

 "origin-response": [

 {

 "match": {

 "expression": "resp.status == 200"

 },

 "stage-metadata": {

 "generic-metadata": [

 {

 "generic-metadata-type": "MI.CachePolicy",

 "generic-metadata-value": {

 "internal": "5",

 "external": "no-cache",

 "force": "false"

 }

 }

]

 }

 }

]

 }

}

¶

¶

¶

-

¶

- ¶

- ¶

-

¶

¶

-

¶

Mandatory-to-Specify: Yes

Example: A MI.NegativeCachePolicy that applies to HTTP error codes:

"404", "503", "504" and sets the internal cache control policy to

five seconds and external to 'no-cache'.

2.1.3. MI.StaleContentCachePolicy

MI.StaleContentCachePolicy is a new GenericMetadata object that

allows the uCDN to specify the policy to use by a dCDN when

responding with stale content. For example, this policy allows the

content provider to specify that stale content be served from cache

for a specified time period while refreshes from the origin occur

asynchronously.

Property: stale-while-revalidating

Description: Instructs the dCDN to serve a stale version of a

resource while refreshing the resource with the uCDN. When set

to "True", the dCDN will return a previously cached version of

a resource while the resource is refreshed with the uCDN in

the background.

Type: Boolean

Mandatory-to-Specify: No. The default is False, which waits

for the uCDN to refresh a resource before responding to the

client.

Property: stale-if-error

Description: Instructs the dCDN to serve a stale version of a

resource if an error was received when trying to refresh the

resource with the uCDN. When set, the dCDN will return a

previously cached version of a resource instead of caching the

error response. Per Section 4 of [RFC5861], an error is any

situation that would result in a 500, 502, 503, or 504 HTTP

response status code being returned

- ¶

¶

{

 "generic-metadata-type": "MI.NegativeCachePolicy",

 "generic-metadata-value": {

 "error-codes": ["404", "503", "504"],

 "cache-policy": {

 "internal": "5",

 "external": "no-cache",

 "force": "true"

 }

 }

}

¶

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

Type: Array of HTTP response error status codes. Example: [

"503", "504"]

Mandatory-to-Specify: No. The default is to cache the error

response received from the uCDN.

Property: failed-refresh-ttl

Description: Instructs the dCDN to serve a stale version of a

resource for the number of seconds specified in failed-

refresh-ttl before trying to revalidate the resource with the

uCDN. Use of failed-refresh-ttl allows the load to be reduced

on the uCDN during times of system stress.

Type: Integer

Mandatory-to-Specify: No

Example 1: A MI.StaleContentCachePolicy where stale-while-

revalidating is true, instructing the dCDN to respond with a stale

cached version of the resource while it refreshes the resource with

the uCDN in the background:

Example 2: A MI.StaleContentCachePolicy where stale-if-error

instructs the dCDN to use the stale cached resource if it receives

an error of type 503 or 504 when trying to refresh the resource with

the uCDN.

failed-refresh-ttl instructs the dCDN to use a five second cache TTL

on the resource that receives an error when refreshing from the

uCDN. That is, after five seconds, the dCDN will attempt to refresh

the resource with the uCDN.

Example 3: A MI.StaleContentCachePolicy where stale-while-

revalidating is true, instructing the dCDN to respond with a stale

-

¶

-

¶

¶

-

¶

- ¶

- ¶

¶

{

 "generic-metadata-type": "MI.StaleContentCachePolicy",

 "generic-metadata-value": {

 "stale-while-revalidating": true

 }

}

¶

¶

¶

{

 "generic-metadata-type": "MI.StaleContentCachePolicy",

 "generic-metadata-value": {

 "stale-if-error": ["503", "504"],

 "failed-refresh-ttl": "5"

 }

}

¶

cached version of the resource while it refreshes the resource with

the uCDN in the background.

stale-if-error instructs the dCDN to use the stale cached resource

if it receives an error of type 404, 503, or 504 when trying to

refresh the resource with the uCDN.

failed-refresh-ttl instructs the dCDN to use a five second cache TTL

on the resource that receives an error when refreshing from the

uCDN. That is, after five seconds, the dCDN will attempt to refresh

the resource with the uCDN.

2.1.4. MI.CacheBypassPolicy

CacheBypassPolicy is a new GenericMetadata object that allows a

client request to be set as non-cacheable. It is expected that this

feature will be used to allow clients to bypass cache when testing

the uCDN fill path. Note: CacheBypassPolicy is typically used in

conjunction with a path match or match expression on a header value

or query parameter. Any content previously cached (by client

requests that do not set CacheBypassPolicy) is not evicted.

Property: bypass-cache

Description: A Boolean value that can activate the feature for

a given client request. It is expected that this feature will

be used within ProcessingStages to allow a client request to

be marked to bypass cache.

Type: Boolean

Mandatory-to-Specify: No. The default is False.

Example 1: A MI.CacheBypassPolicy with the client HTTP header of:

CDN-BYPASS: "True":

¶

¶

¶

{

 "generic-metadata-type": "MI.StaleContentCachePolicy",

 "generic-metadata-value": {

 "stale-while-revalidating": "true",

 "stale-if-error": ["404", "503", "504"],

 "failed-refresh-ttl": "5"

 }

}

¶

¶

¶

-

¶

- ¶

- ¶

¶

Example 2: A MI.CacheBypassPolicy that applies to all requests where

the host header is bypass.example.com:

{

 "generic-metadata-type": "MI.ProcessingStages",

 "generic-metadata-value": {

 "client-request": [

 {

 "match": {

 "expression": "req.h.cdn-bypass == 'true'"

 },

 "stage-metadata": {

 "generic-metadata": [

 {

 "generic-metadata-type": "MI.CacheBypassPolicy",

 "generic-metadata-value": {

 "bypass-cache": "true"

 }

 }

]

 }

 }

]

 }

}

¶

¶

{

 "generic-metadata-type": "MI.ProcessingStages",

 "generic-metadata-value": {

 "client-request": [

 {

 "match": {

 "expression": "req.h.host == 'bypass.example.com'"

 },

 "stage-metadata": {

 "generic-metadata": [

 {

 "generic-metadata-type": "MI.CacheBypassPolicy",

 "generic-metadata-value": {

 "bypass-cache": "true"

 }

 }

]

 }

 }

]

 }

}

¶

2.1.5. MI.ComputedCacheKey

While the properties provided by the standard CDNi metadata Cache

object (See Section 4.2.6 of [RFC8006]) provide some simple control

over the construction of the cache key, it is typical in advanced

CDN configurations to generate cache keys that are dynamically

constructed via lightweight processing of various properties of the

HTTP request and/or response. As an example, an origin may specify a

cache key as a value returned in a specific HTTP response header.

ComputedCacheKey is a new GenericMetadata object that allows for the

specification of a cache key using the metadata expression language.

Typical use cases would involve the construction of a cache key from

one or more elements of the HTTP request. In cases where both the

ComputedCacheKey and the Cache object are applied, the

ComputedCacheKey will take precedence.

Property: expression

Description: The expression that specifies how the cache key

shall be constructed.

Type: String. An expression using [CDNI-MEL] to dynamically

construct the cache key from elements of the HTTP request and/

or response.

Mandatory-to-Specify: Yes

Example, using a custom request header as the cache key instead of

the URI path:

2.2. Origin Access Metadata

The CDNI metadata definitions for sources (also known as origins in

the CDN industry), are extended to provide the following

capabilities required:

Designation as to whether a source requires HTTPS access.

Specification of the source's TCP port number.

Web root path specification for the source.

¶

¶

¶

-

¶

-

¶

- ¶

¶

{

 "generic-metadata-type": "MI.ComputedCacheKey",

 "generic-metadata-value": {

 "expression": "req.h.X-Cache-Key"

 }

}

¶

¶

1. ¶

2. ¶

3. ¶

Indication as to whether redirects should be followed.

Support for additional forms of origin authentication.

Multi-origin failover - The ability to specify a list of

origins that can act as fallbacks to the primary origin.

Failure rules can specify types of errors and timeout values

that trigger failover.

Multi-origin load balancing - The ability to specify a list of

origins that can be selected by one of several balancing rules

(round robin, content hash, IP hash).

Specification of SNI configurations required for origin access.

Specification of connection control parameters for origin

access.

2.2.1. MI.SourceMetadataExtended

SourceMetadataExtended is an alternative to the CDNI standard

SourceMetadata object, which adds a property to specify load

balancing across multiple sources, as well as a SourceExtended sub-

object with additional attributes to the CDNI standard Source

object. While both SourceMetadataExtended and SourceMetadata can be

provided for backward compatibility, a dCDN that advertises

capability for SourceMetadataExtended will ignore SourceMetadata if

both are provided for a given host or path match.

Property: sources

Description: Sources from which the dCDN can acquire content,

listed in order of preference.

Type: Array of SourceExtended objects

Mandatory-to-Specify: No. Default is to use static

configuration, out-of-band from the CDNI metadata interface.

Property: load-balance

Description: Specifies load balancing rules for the set of

sources.

Type: LoadBalanceMetadata object

Mandatory-to-Specify: No

Example of a SourceMetadataExtended object with the associated

LoadBalanceMetadata configuration object:

4. ¶

5. ¶

6.

¶

7.

¶

8. ¶

9.

¶

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

- ¶

¶

2.2.1.1. MI.SourceExtended

SourceExtended is an alternative to the CDNI standard Source object

with additional metadata. It contains all the attributes of the

[RFC8006] Source object (acquisition-auth, endpoints, and protocol),

with additions specified below.

Property: acquisition-auth

Description: Authentication method to use when requesting

content from this source. Same as [RFC8006].

Type: Auth (see [RFC8006] Section 4.2.7 and the new MI.Auth

types in this specification)

Mandatory-to-Specify: No. Default is no authentication

required.

Property: endpoints

Description: Origins from which the dCDN can acquire content.

If multiple endpoints are specified, they are all equal, i.e.,

the list is not ordered by preference. Same as [RFC8006].

Type: Array of Endpoint objects (see [RFC8006] Section 4.3.3)

{

 "generic-metadata-type": "MI.SourceMetadataExtended",

 "generic-metadata-value": {

 "sources": [

 {

 "endpoints": [

 "a.service123.ucdn.example",

 "b.service123.ucdn.example"

],

 "protocol": "http/1.1"

 },

 {

 "endpoints": [

 "origin.service123.example"

],

 "protocol": "http/1.1"

 }

],

 "load-balance": {

 "balance-algorithm": "content-hash",

 "balance-path-pattern": "^/prod/(.*)/.*\\.ts$"

 }

 }

}

¶

¶

¶

-

¶

-

¶

-

¶

¶

-

¶

- ¶

Mandatory-to-Specify: Yes..

Property: protocol

Description: Network retrieval protocol to use when requesting

content from this source. Same as [RFC8006].

Type: Protocol (see [RFC8006] Section 4.3.2)

Mandatory-to-Specify: Yes..

Property: origin-host

Description: HTTP host header to pass to the endpoints when

retrieving content from a uCDN. The host MUST conform to the

Domain Name System (DNS) syntax defined in [RFC1034] and

[RFC1123]

Type: String

Mandatory-to-Specify: No. The default is to use the host name

passed by the dCDN.

Property: webroot

Description: The path element that is prepended to a

resource's URI before retrieving content from a uCDN.

Type: String

Mandatory-to-Specify: No. The default is to use the original

URI.

Property: follow-redirects

Description: If the follow-redirects property is set to

"True", HTTP redirect responses returned from a uCDN will be

followed when retrieving content. Otherwise, the HTTP redirect

response is returned to the client.

Type: Boolean

Mandatory-to-Specify: No. The default is "True" (i.e., follow

redirect responses from the uCDN).

Property: timeout-ms

Description: A timeout (in milliseconds) to apply when

connecting to a uCDN. If the connection is not established

within timeout-ms, this source is abandoned and the next

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

¶

-

source in the MI.SourceMetadataExtended sources array is

tried. Once a connection is established, timeout-ms is used on

subsequent reads of data from the uCDN.

Type: Integer

Mandatory-to-Specify: No. The default is to revert to

[RFC8006] behavior.

Property: failover-errors

Description: Array of HTTP response error status codes

(Section 6 of [RFC7231]), that if returned from the uCDN, will

trigger a failover to the next source in the

MI.SourceMetadataExtended sources array. If the uCDN returns

an HTTP error code that is not in the failover-errors array,

that error code is returned to the client of the dCDN.

Type: Array of HTTP response error status codes.

Mandatory-to-Specify: No. The default is to revert to

[RFC8006] behavior.

Example of a SourceExtended object that describes a pair of

endpoints (servers) that the dCDN can use to acquire content for the

applicable host and/or URI path:

¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

¶

2.2.1.2. MI.LoadBalanceMetadata

The LoadBalanceMetadata object defines how content acquisition

requests are distributed over the SourceExtended objects listed in

the SourceMetadataExtended object.

Property: balance-algorithm

Description: Specifies the algorithm to be used when

distributing content acquisition requests over the sources in

a SourceMetadataExtended object. The available algorithms are

random, content-hash, and ip-hash.

o random: Requests are distributed over the sources in proportion to

their associated weights.

o content-hash: Requests are distributed over the sources in a

consistent fashion, based on the balance-path-pattern property.

{

 "generic-metadata-type": "MI.SourceMetadataExtended",

 "generic-metadata-value": {

 "sources": [

 {

 "endpoints": [

 "a.service123.ucdn.example",

 "b.service123.ucdn.example:8443"

],

 "protocol": "https/1.1",

 "origin-host": "internal.example.com",

 "webroot": "/prod",

 "follow-redirects": false,

 "timeout-ms": 4000,

 "failover-errors": ["502", "503", "504"]

 },

 {

 "endpoints": ["origin.service123.example"],

 "protocol": "http/1.1",

 "webroot": "/prod",

 "follow-redirects": true,

 "timeout-ms": 8000

 }

]

 }

}

¶

¶

¶

-

¶

¶

¶

o ip-hash: Requests are distributed over the sources in a consistent

fashion based on the IP address of the client requestor.

Type: Enumeration [random|content-hash|ip-hash] encoded as a

lowercase string.

Mandatory-to-Specify: No. The default is to use sources in

preference order as defined in the SourceMetadataExtended

object.

Property: balance-weights

Description: This property specifies the relative frequency

that a source is used when distributing requests. For example,

if there are three SourceExtended objects in a

SourceMetadataExtended object with balance-weights [1, 2, 1],

source 1 will receive 1/4 of the requests; source 2 will

receive 2/4 of the requests; source 3 will receive 1/4 of the

requests.

Type: Array of integers

Mandatory-to-Specify: No. The default is to use sources in

preference order as defined in the SourceMetadataExtended

object.

Property: balance-path-pattern

Description: This property specifies a regular expression

pattern to apply to the URI when calculating the content hash

used by the balance-algorithm. For example, "balance-path-

pattern": "^/prod/(.*)/.*\.ts$" would distribute requests

based on the URI but excluding the /prod prefix and the .ts

segment file.

Type: String (regular expression)

Mandatory-to-Specify: No. The default is to use the original

URI.

Example 1: The LoadBalanceMetadata object distributes content

acquisition requests over sources using a content-hash algorithm:

¶

1.

¶

2.

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

¶

{

 "generic-metadata-type": "MI.LoadBalanceMetadata",

 "generic-metadata-value": {

 "balance-algorithm": "content-hash",

 "balance-path-pattern": "^/prod/(.*)/.*\\.ts$"

 }

}

¶

Example 2: The LoadBalanceMetadata object distributes content

acquisition requests over sources using the random algorithm:

2.2.2. MI.Auth

To meet the typical industry requirements for authenticating CDNs to

external origins, two new authentication types are defined.

auth-type: MI.HeaderAuth

Description: Header based authentication is used to pass an

HTTP header (secret-name) and value (secret-value) to a uCDN

when requesting content. The header name and value are agreed

upon between parties out of band.

Note: We may want to add a way to encrypt or separately

communicate the secret; this could be a general capability for

CDNI.

auth-value: MI.HeaderAuth object specifying the header name

and value (secret name, secret key) required for authenticated

access to an origin. For more information, refer to the

MI.HeaderAuth section below.

auth-type: MI.AWSv4Auth

Description: Allows for the specification of a set of headers

to be added to requests that are forwarded to an origin to

enable Amazon Web Services (AWS) authentication, as documented

by AWS (See Specifications & Standards References).

auth-value: MI.AWSv4Auth object specifying the access

parameters. For more information, refer to the MI.AWSv4Auth

section below.

2.2.2.1. MI.HeaderAuth

The HeaderAuth metadata object is used in the auth-value property of

the

Auth object, as defined in [RFC8006] section 4.2.7, and may be

applied to any

¶

{

 "generic-metadata-type": "MI.LoadBalanceMetadata",

 "generic-metadata-value": {

 "balance-algorithm": "random",

 "balance-weights": [1, 2, 1]

 }

}

¶

¶

¶

-

¶

-

¶

-

¶

¶

-

¶

-

¶

¶

¶

source by including or referencing it under its authentication

property. This method of authentication provides a simple capability

for a mutually agreed upon header to be added by the CDN to all

requests sent to a specific origin. Note that if a dynamically

generated header value is required, the RequestTransform

capabilities within StageProcessing can be used.

Property: header-name

Description: Name of the authentication header.

Type: String

Mandatory-to-Specify: Yes

Property: header-value

Description: Value of the authentication header (typically a

pre-shared key). Note that this value SHOULD NOT be disclosed;

it SHOULD be protected by some mechanism such as a secret-

sharing API, which is outside the scope of this specification.

Type: String

Mandatory-to-Specify: Yes

Example Auth object for header authentication:

¶

¶

- ¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

{

 "generic-metadata-type": "MI.SourceMetadataExtended",

 "generic-metadata-value": {

 "sources": [

 {

 "endpoints": ["origin.example.com"],

 "protocol": "http/1.1",

 "acquisition-auth": {

 "generic-metadata-type": "MI.Auth",

 "generic-metadata-value": {

 "auth-type": "MI.HeaderAuth",

 "auth-value": {

 "header-name": "X-Origin-Auth",

 "header-value": "SECRETKEYJKSDHFSIFUI4UFH78HW4NF7"

 }

 }

 }

 }

]

 }

}

¶

2.2.2.2. MI.AWSv4Auth

The AWSv4Auth metadata object is used in the auth-value property of

the Auth object as defined in [RFC8006] section 4.2.7, and may be

applied to any source by including or referencing it under its

authentication property.

AWSv4 authentication causes upstream requests to have a signature

applied, following the method described in [AWSv4Method]. A hash-

based signature is calculated over the request URI and specified

headers, and provided in an Authorization: header on the upstream

request. The signature is tied to a pre-shared secret key specific

to an AWS service, region, and key ID.

We may want to add a way to encrypt or separately communicate

the secret; this could be a general capability for CDNI.

We may want to add optional properties that allow overriding

the default headers to sign.

We may want to add optional properties that allow the signature

to be sent in a way other than with the Authorization: header

(e.g., query strings are also supported).

Property: access-key-id

Description: The preconfigured ID of the pre-shared

authorization secret.

Type: String

Mandatory-to-Specify: Yes

Property: secret-access-key

Description: The pre-shared authorization secret, which is the

basis of building the signature. This is a secret key that

SHOULD NOT be disclosed; it SHOULD be protected by some

mechanism such as a secret-sharing API, which is outside the

scope of this specification.

Type: String

Mandatory-to-Specify: Yes

Property: aws-region

Description: The AWS region name that is hosting the service

and shares the key ID and corresponding pre-shared secret.

¶

¶

1.

¶

2.

¶

3.

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

Type: String

Mandatory-to-Specify: Yes

Property: aws-service

Description: The AWS service name that is serving the upstream

requests.

Type: String

Mandatory-to-Specify: No. It defaults to "s3" if not

specified.

Property: host-name

Description: The host name to use as part of the signature

calculation.

Type: String

Mandatory-to-Specify: No. It defaults to using the value of

the Host: header of the upstream request. This property is

available in case the application needs to override that

behavior.

Example Auth object for AWSv4 authentication:

- ¶

- ¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

¶

{

 "generic-metadata-type": "MI.SourceMetadataExtended",

 "generic-metadata-value": {

 "sources": [

 {

 "endpoints": ["origin.example.com"],

 "protocol": "http/1.1",

 "acquisition-auth": {

 "generic-metadata-type": "MI.Auth",

 "generic-metadata-value": {

 "auth-type": "MI.AWSv4Auth",

 "auth-value": {

 "access-key-id": "MYACCESSKEYID",

 "secret-access-key": "SECRETKEYJKSDHFSIUHKWRGHHF",

 "aws-region": "us-west-1"

 }

 }

 }

 }

]

 }

}

¶

2.3. Edge Control Metadata

CDNs typically require a set of configuration metadata to inform

processing of responses downstream (at the edge and in the user

agent). This section specifies GenericMetadata objects to meet those

requirements.

2.3.1. MI.CrossOriginPolicy

Delegation of traffic between a CDN over an open caching node based

on HTTP redirection does change the domain name in the client

requests. This represents a cross-origin request that must be

managed appropriately using Cross-Origin Resource Sharing (CORS)

headers in the responses.

The dynamic generation of CORS headers is typical in modern HTTP

request processing and avoids CORS validation forwarded to the CDN

origin servers, particularly with the preflight OPTIONS requests.

The CDNI metadata model requires extensions to specify how a CDN or

open caching node should generate and evaluate these headers.

Required capabilities:

Set a default value for CORS response headers independent of

the origin request header value.

Match the origin request header with a list of valid values,

including PatternMatch, to return or not return the CORS

response headers.

Set a list of custom headers that can be exposed to the client

(expose headers).

Support for preflight requests using the OPTIONS method,

including custom header validation, expose headers, and

methods.

Support for credentials validation within CORS.

Simple CORS requests are those where both HTTP method and headers in

the request are included in the safe list defined by the World Wide

Web Consortium [W3C]. The user agent (UA) request can include an

origin header set to the URL domain of the webpage that the player

runs. Depending on the metadata configuration, the logic to apply by

the open caching node (OCN) is:

Validation of the origin header - Metadata can include a list

of valid domains to validate the request origin header. If it

does not match, the CORS header must not be included in the

response.

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

¶

1.

¶

WIldcard usage - Depending on the configuration, the resultant

CORS header to include in the response will be the same as the

request origin header, or a wildcard.

If no validation of request is included in the origin header,

set a default value for CORS response headers independent of

the origin request header value.

When a UA makes a request that includes a method or headers that are

not included in the safe-list, the client will make a CORS preflight

request using the OPTIONS method to the resource including the

origin header. If CORS is enabled and the requests passes the origin

validation, the OCN SHOULD respond with the set of headers that

indicate what is permitted for that resource, including one or more

of the following:

Allowed methods

Allowed credentials

Allowed request headers

Max age that the OPTIONS request is valid

Headers that can be exposed to the client

CrossoriginPolicy is a GenericMetadata object that allows for the

specification of dynamically generated CORS headers.

Property: allow-origin

Description: Validation of simple CORS requests.

Type: Object MI.AccessControlAllowOrigin

Values: One element for each of the following properties.

Mandatory-to-Specify: Yes

Property: expose-headers

Description: A list of values the OCN will include in the

Access-Control-Expose-Headers response header to a preflight

request.

Type: Array of strings

Mandatory-to-Specify: No

2.

¶

3.

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

¶

¶

- ¶

- ¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

Property: allow-methods

Description: A list of values the OCN will include in the

Access-Control-Allow-Methods response header to a preflight

request.

Type: Array of strings

Mandatory-to-Specify: No

Property: allow-headers

Description: A list of values the OCN will include in the

Access-Control-Allow-Headers response header to a preflight

request.

Type: Array of strings

Mandatory-to-Specify: No

Property: allow-credentials

Description: The value the OCN will include in the Access-

Control-Allow-Credentials response header to a preflight

request.

Type: Boolean

Mandatory-to-Specify: No

Property: max-age

Description: The value the OCN will include in the Access-

Control-Max-Age response header to a preflight request.

Type: Integer

Mandatory-to-Specify: No

2.3.1.1. MI.AccessControlAllowOrigin

The MI.AccessControlAllowOrigin object has the following properties:

Property: allow-list

Description: List of valid URLs that will be used to match the

request origin header. The Origin header is a HTTP extension.

Its value is a version of the Referer header in some specific

requests, and used for Cross Origin requests. . Permitted

values are schema://hostname[:port]

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

¶

-

¶

Type: Array of PatternMatch objects

Mandatory-to-Specify: Yes

Property: wildcard-return

Description: If "True", the OCN will include a wildcard (*) in

the Access-Control-Allow-Origin response header. If "False",

the OCN will reflect the request origin header in the Access-

Control-Allow-Origin response header.

Type: Boolean

Mandatory-to-Specify: Yes

The examples below demonstrate how to configure response headers

dynamically for CORS validation.

Example 1: A simple CORS validation configuration:

Example 2: Validation of a preflight request when some of the

headers included in the subsequent object request are not included

in the CORS specification safelist:

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

¶

{

 "generic-metadata-type": "MI.CrossoriginPolicy",

 "generic-metadata-value": {

 "allow-origin": {

 "allow-list": [

 {

 "pattern": "*"

 }

],

 "wildcard-return": true

 }

 }

}

¶

¶

2.3.2. MI.AllowCompress

Downstream CDNs often have the ability to compress HTTP response

bodies in cases where the client has declared that it can accept

compressed responses (via an Accept-Encoding header), but the

source/origin has returned an uncompressed response.

The specific compression algorithm used by the dCDN is negotiated by

the client's Accept-Encoding header according to [RFC7694]

(including q= preferences) and the compression capabilities

available on the dCDN.

In addition, HeaderTransform allows the uCDN to normalize, or

modify, the Accept-Encoding header to allow for fine-grain control

over the selection of the compression algorithm (e.g., gzip,

compress, deflate, br, etc.).

AllowCompress is a new GenericMetadata object that allows the dCDN

to compress content before sending to the client.

Property: allow-compress

Description: If set to "True", then the dCDN will try to

compress the response to the client based on the Accept-

Encoding request header.

Type: Boolean

Values: True or False

Mandatory-to-Specify: No. The default is "False".

{

 "generic-metadata-type": "MI.CrossoriginPolicy",

 "generic-metadata-value": {

 "allow-origin": {

 "allow-list": [

 {

 "pattern": "*://sourcepage.example.com"

 },

 "wildcard-return": false

 },

 "allow-methods": ["GET", "POST"],

 "allow-credentials": true,

 "allow-headers": ["X-PINGOTHER", "Content-Type"],

 "expose-headers": ["X-User", "Authorization"],

 "max-age": 3600

 }

 }

}

¶

¶

¶

¶

¶

¶

-

¶

- ¶

- ¶

- ¶

Example 1: An MI.AllowCompress that allows manifests (*.m3u8) to be

compressed by the dCDN:

Example 2: An MI.AllowCompress that allows manifests (*.m3u8) to be

compressed by the dCDN but normalizing the client's Accept-Encoding

header:

2.3.3. MI.TrafficType

Content delivery networks often apply different infrastructure,

network routes, and internal metadata for different types of

traffic. Delivery of large static objects (such as software

downloads), may, for example, use different network routes than

video stream delivery. In an HTTP adaptive bitrate video service,

every video title corresponds to a set of video files and

descriptors according to different video protocols, and this is

¶

{

 "match": {

 "expression": "req.h.uri *= '*.m3u8'"

 },

 "stage-metadata": {

 "generic-metadata": [

 {

 "generic-metadata-type": "MI.AllowCompress",

 "generic-metadata-value": {

 "allow-compress": "true"

 }

 }

]

 }

}

¶

¶

{

 "match": {

 "expression": "req.h.accept-encoding *= '*gzip*'"

 },

 "stage-metadata": {

 "generic-metadata": [

 {

 "generic-metadata-type": "MI.AllowCompress",

 "generic-metadata-value": {

 "allow-compress": "true"

 }

 }

]

 }

}

¶

independent of the type of service (Video-on-Demand, Live, Catch-up,

etc.).

The way the video service is consumed by the user agents can vary.

For instance, a segment that belongs to a Video-on-Demand (VoD)

title can be requested for every moment the content is available for

the user agents to consume, while a segment of live content will be

only requested as long as the time-shift duration is configured for

that service. Knowing those differences, a CDN or OCN provider can

implement specific strategies that will maximize performance and

thereby provide more available capacity to the upstream provider. It

should be noted that the dCDNs handling of the traffic types is

implementation-specific and not prescribed here.

TrafficType metadata defines a set of descriptors that characterize

either the type or usage of the traffic, enabling CDNs and OCNs to

apply any internal configuration rules without exposing an

unnecessary number of internal details. Note that the interpretation

of these traffic types and application of rules such as rate

limiting or delivery pacing are implementation specific.

Property: traffic-type

Description: A literal that defines the traffic type. uCDN

will use the literal that is most representative of the

traffic being delegated.

Type: Enumeration [vod, live, object-download] encoded as

lowercase string

Mandatory-to-Specify: Yes

Property: hints

Description: Other traffic characteristics that the uCDN can

indicate to the dCDN as suggestions for service optimization.

Accepts free-form unconstrained values.

Type: Array of strings

Mandatory-to-Specify: No

A TrafficType definition example for HostMetadata:

¶

¶

¶

¶

-

¶

-

¶

- ¶

¶

-

¶

- ¶

- ¶

¶

2.3.4. MI.OcnSelection

Configuration metadata is required to permit several levels of OCN

selection policies. For example, in a mobile network, several

physical locations are possible (i.e., candidates) for hosting the

OCN that will take charge in the delegation for the uCDN. This is

the case when the cache is virtualized and deployed dynamically.

Depending on the OCN selection policy (which may be a cost driver),

the dCDN may attempt to favor certain types of caches at the edge,

for example. The default OCN selection policy might be "best-

effort". Another one might be linked to the network characteristics

like "Edge" or ("average latency< 10ms").

OcnSelection is a new GenericMetadata object that allows the uCDN to

indicate to the dCDN a preference in terms of OCN selection.

Property: ocn-delivery

Description: Instructs the dCDN to perform delegation

operating a particular medium and/or a transport arrangement.

Type: Object MI.OcnDelivery

Mandatory-to-Specify: No. At least one of the two properties,

ocn-type or ocn-delivery, must be present.

Property: ocn-type

Description: Instructs the dCDN to perform delegation

operating the type of open caching nodes.

Type: A string corresponding to one of the open caching node

types announced by the dCDN through the FCI interface.

Mandatory-to-Specify: No. At least one of the two properties,

ocn-type or ocn-delivery, must be present.

Property: ocn-selection

Description: This property enforces the selection of OCNs,

considering the ocn-type and/or the ocn-delivery properties.

"False" means best-effort.

{

 "generic-metadata-type": "MI.TrafficType",

 "generic-metadata-value": {

 "traffic-type": "vod",

 "hints": ["low-latency", "catch-up"]

 }

}

¶

¶

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

-

¶

-

¶

¶

-

¶

Type: string. "attempt-or-failed" and "attempt-or-besteffort"

mean that the delegation must be attempted considering the

ocn-type and/or the ocn-delivery properties. If not possible,

it is considered as an error and either fails (configuration

failure) or the dCDN continues with a best-effort procedure.

Last, "best effort" means the dCDN tries its best to fulfil

the requested ocn-selection policy.

Mandatory-to-Specify: No. Best-effort is the default OCN

selection policy.

2.3.4.1. MI.OcnDelivery

An ocn-delivery object contains the following properties:

Property: ocn-medium

Description: Instructs the dCDN to perform delegation

operating a particular medium. The following values are

specified: "SATELLITE".

Type: String

Mandatory-to-Specify: No. Either the ocn-medium property or

the ocn-transport property must be present.

Property: ocn-transport

Description: Instructs the dCDN to perform delegation

operating a particular transport arrangement. The following

values are specified: "MABR".

Type: String

Mandatory-to-Specify: No. At least one of the two properties

(ocn-medium or ocn-transport) must be present.

2.4. Processing Stage Metadata

It is typical in CDN configurations to define matching rules and

metadata that are to be applied at specific stages in the request

processing pipeline. For example, it may be required to append a

host header prior to forwarding a request to an origin, or modify

the response returned from an origin prior to storing in the cache.

-

¶

-

¶

¶

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

-

¶

¶

Figure 2: Processing stages

Processing stages:

clientRequest - Rules run on the client request prior to

further processing.

originRequest - Rules run prior to making a request to the

origin.

originResponse - Rules run after a response is received from

the origin and before being placed in the cache.

clientResponse - Rules run prior to sending the response to the

client. If the response is from the cache, rules are applied to

the response retrieved from the cache prior to sending to the

client.

Requirements:

Header Matching - While CDNI metadata defines some basic

matching rules for host names and pattern patching on paths,

CDN and open caching use cases often require matching on

specific fields in Hypertext Transfer Protocol (HTTP) request

and response headers to set metadata. A typical example may be

matching on a user agent string to set access controls or

matching on a mime-type header to set caching rules. A rich

expression matching syntax that allows matching on any

combination of host, path, and header values covers most

typical use cases.

Expression Matching - Header matching alone is not always

sufficient for identifying a set of requests or responses that

require specific metadata. CDN and open caching systems often

require a rich set of matching rules, with full regular

expressions and Boolean combinations of matching parameters for

host, path, and header elements of a request. In typical CDN

implementations, this capability is provided by a rich

expression language that can be embedded in the metadata

configurations.

 +-------+ +---------------+ +--------+

 | +--->|A B+--->| |

 | | | | | uCDN |

 | UA | | dCDN | | |

 | | | | | Source |

 | |<---+D C|<---+ |

 +-------+ +---------------+ +--------+

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

1.

¶

2.

¶

URI Modifications - In processing HTTP requests, modifications

to the request Uniform Resource Identifier (URI) are often

required for uses such as collapsing multiple paths to a common

cache key or normalizing file extension naming conventions

before making a request to the origin. In cases where the

modified URI needs to be constructed dynamically, an expression

language is provided that allows elements of requests and

responses to be concatenated with string literals.

Header Modifications - In processing HTTP requests, it is often

required to modify HTTP request or response headers at one of

the processing stages, requiring CDNI metadata to have the

capability to update any field in an HTTP request or response

header. It should be noted that certain HTTP headers (such as

Set-Cookie) have multiple occurrences in a request or response,

thereby requiring that we allow for add and replace

designations for header modification. In cases where a header

value needs to be constructed dynamically, an expression

language is provided that allows elements of requests and

responses to be concatenated with string literals. All of the

following capabilities are required at each processing stage:

Add Request Header Field - Add a header name/value to the

request, along with any headers of the same name that may

already be present.

Replace Request Header Field - Add a header name/value to the

request, replacing any headers of the same name that may

already be present.

Delete Request Header Field - Delete all occurrences of the

named header from the request.

Add Response Header Field - Add a header name/value to the

response, along with any headers of the same name that may

already be present.

Replace Response Header Field - Add a header name/value to the

response, replacing any headers of the same name that may

already be present.

Delete Response Header Field - Delete all occurrences of the

named header from the response.

Synthetic Responses - It is quite common in CDN configurations

to specify a synthetic response be generated based on

inspection of aspects of the original request or the origin

response. The synthetic response capability allows for the

specification of a set of response headers, a status code, and

a response body. In cases where a header value or the synthetic

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

9.

¶

10.

¶

11.

response body needs to be constructed dynamically, an

expression language is provided that allows elements of

requests and responses to be concatenated with string literals.

2.4.1. MI.ProcessingStages

A ProcessingStages object is a new GenericMetadata which describes

the matching rules, metadata, and transformations to be applied at

specific stages in the request processing pipeline. The processing

rules and transformations are defined as a child data model

referenced within a ProcessingStages object, as defined below.

¶

¶

Figure 3: CDNi ProcessingStages metadata model with contained objects

 +----------------+

 |ProcessingStages|

 +----------------+

 (*)

 |

 +----------------+-------+---------+----------------+

 | | | |

 v v v v

+-------------+ +-------------+ +--------------+ +--------------+

|ClientRequest| |OriginRequest| |OriginResponse| |ClientResponse|

+-------------+ +-------------+ +--------------+ +--------------+

 (*) (*) (*) (*)

 | | | |

 +---------------+----------------+----------------+

 |

 | +---------------+

 | +-------->|ExpressionMatch|

 | | +---------------+

 | |

 | | *****************

 | (*) +--->*GenericMetadata*

 | +----------+ +-------------+ | * Objects *

 +--->+StageRules+--->|StageMetadata+(*)-+ *****************

 +----------+ +-------------+

 (*) (*)

 | |

 +-------+ +-----------+

 | |

 v v

 +----------------+ +-----------------+

 |RequestTransform|(*)-+ +-(*)|ResponseTransform|

 +----------------+ | | +-----------------+

 (*) | |

 | | |

 | v v

 | +---------------+

 | |HeaderTransform|(*)-+

 | +---------------+ |

 | |

 v |

 +-----------------+ |

 |SyntheticResponse|(*)--+ v

 +-----------------+ | +----------+

 +----->|HTTPHeader|

 +----------+

Each of the four processing stages is represented by an array of

StageRules objects, with each StageRules object defining criteria

along with metadata that MUST be applied if the match applies to

"True". It should be noted that the StageRules objects in the array

are evaluated and processed in order. A possible future extension to

this processing model could allow for an if-else structure, where

processing for a stage is halted upon the first match of a

StageRules expression.

Property: client-request

Description: Allows for the specification of conditional

metadata to be applied at the client request processing

stages, as defined in the Rule Processing Stages section. The

StageRules in the array are evaluated in order.

Type: Array of StageRules objects

Mandatory-to-Specify: No

Property: origin-request

Description: Allows for the specification of conditional

metadata to be applied at origin request processing stages, as

defined in the Rule Processing Stages section. The StageRules

in the array are evaluated in order.

Type: Array of StageRules objects

Mandatory-to-Specify: No

Property: origin-response

Description: Allows for the specification of conditional

metadata to be applied at origin response processing stages,

as defined in the Rule Processing Stages section. The

StageRules in the array are evaluated in order.

Type: Array of StageRules objects

Mandatory-to-Specify: No

Property: client-response

Description: Allows for the specification of conditional

metadata to be applied at client response processing stages,

as defined in the Rule Processing Stages section. The

StageRules in the array are evaluated in order.

Type: Array of StageRules objects

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

Mandatory-to-Specify: No

Example specifying all four processing stages. In this example, the

client-request stage has two StageRules, appling one set of metadata

if "ExpressionMatch1" evaluates to "True" and applying another set

of metadata if "ExpressionMatch2" evaluates to "True".

2.4.2. MI.StageRules

A StageRules object is used within the context of ProcessingStages

to define elements in a list of match rules and stage-specific

metadata and transformations that MUST be applied conditionally on a

rich expression match.

Property: match

Description: An ExpressionMatch object encapsulating a rich

expression using the CDNI Metadata Expression Language [CDNI-

MEL] to evaluate aspects of the HTTP request and/or response.

The stage-metadata rules are only applied if the match

evaluates to "True" or if no match expression is provided

- ¶

¶

{

 "generic-metadata-type": "MI.ProcessingStages",

 "generic-metadata-value": {

 "client-request" : [

 {

 "match" : < ExpressionMatch1 for conditional metadata >

 "stage-metadata" : <StageMetadata1 for clientRequest stage>,

 },

 {

 "match" : <Additional ExpressionMatch2 for conditional metadata >

 "stage-metadata" : <StageMetadata2 for clientRequest stage>,

 }

],

 "origin-request" : [{

 "match" : <Optional ExpressionMatch for conditional metadata >

 "stage-metadata" : <StageMetadata for originRequest stage>,

 }],

 "origin-response" : [{

 "match" : <Optional ExpressionMatch for conditional metadata >

 "stage-metadata" : <StageMetadata for originResponse stage>,

 }],

 "client-response" : [{

 "match" : <Optional ExpressionMatch for conditional metadata >

 "stage-metadata" : <StageMetadata for clientResponse stage>,

 }]

 }

}

¶

¶

¶

-

¶

Type: ExpressionMatch object

Mandatory-to-Specify: No. The stage-metadata rules are always

applied if no match expression is provided. This would be the

case when stage-metadata should be applied unconditionally

within the context of the higher-level host and path matches.

Property: stage-metadata

Description: Specifies the set of StageMetadata to be applied

at the processing stage if the match expression evaluates to

"True" or is not present.

Type: Array of StageMetadata objects, applied in order.

Mandatory-to-Specify: Yes

An example of StageRules that are applied just after responses are

received from the origin. In this example, receipt of a response

status code of 304 from the origin indicates that CachePolicy

metadata SHOULD be applied (as specified via an external HREF), and

that response headers SHOULD be modified (X-custom-response-header

added and ETag deleted).

- ¶

-

¶

¶

-

¶

- ¶

- ¶

¶

{

 "match": {

 "expression": "resp.status == 304"

 },

 "stage-metadata": {

 "generic-metadata": [

 {

 "type": "MI.CachePolicy",

 "href": "https://metadata.ucdn.example/origin_response_cache"

 }

],

 "response-transform": {

 "headers": {

 "add": [

 {

 "name": "X-custom-response-header",

 "value": "header-value"

 }

],

 "delete": ["ETag"]

 }

 }

 }

}

¶

2.4.3. MI.ExpressionMatch

The ExpressionMatch object contains the rich expression that must

evaluate to "True" for the StageMetadata to be applied for the

specific StageRules. Defining expressions as stand-alone objects

allows for sets of reusable match expressions to be reused via

metadata reference linking.

Property: expression

Description: A rich expression using CDNI-MEL to evaluate

aspects of the HTTP request and/or response. See documentation

on the Metadata Expression Language for details on the

expression of matching variables and syntax.

Type: String, using CDNI-MEL syntax. See the METADATA

EXPRESSION LANGUAGE (CDNI-MEL) section.

Mandatory-to-Specify: Yes

Example of ExpressionMatch on the referrer and user agent request

headers:

2.4.4. MI.StageMetadata

The StageMetadata object contains GenericMetadata and HTTP request/

response transformations that MUST be applied for a StageRules

match. The following table defines the processing stages where

request and response transformations are possible:

Stage request-transform response-transform

clientRequest yes yes

originRequest yes yes

originResponse no yes

clientResponse no yes

Table 1: StageMetadata stages

Note that for the stages where both request and response

transformations are allowed, it is possible to specify both. This

may be the case if, for example, the request URI needs alteration

¶

¶

-

¶

-

¶

- ¶

¶

{

 "expression" : "req.h.user-agent *= '*Safari*' and req.h.referrer == 'www.myhost.com'"

}

¶

¶

for cache-key generation and the response headers need to be

manipulated.

Property: generic-metadata

Description: Specifies the set of GenericMetadata to be

applied for a StageRules match. A typical use case would be

the application of a CachePolicy or TimeWindowACL

conditionally on matching HTTP headers. Support for this

capability is optional and can be advertised via feature-flags

in the FCI interface.

Type: Array of GenericMetadata, applied in order. Note that

not all GenericMetadata object types may be applicable at all

processing stages.

Mandatory-to-Specify: No. The generic-metadata property would

not be needed when StageMetadata is used to only specify

request or response transformations, such as modifications of

HTTP headers.

Property: request-transform

Description: Specifies a transformation to be applied to the

HTTP request for a StageRules match. The transformation can be

the modification of any request header and/or the modification

of the URI. Modifications are applied such that downstream

processing stages receive the modified HTTP request as their

input. Support for this capability is optional and can be

advertised via feature-flags in the FCI interface.

Type: RequestTransform object

Mandatory-to-Specify: No

Property: response-transform

Description: Specifies a transformation to be applied to the

HTTP response for a StageRules match. The transformation can

be the modification of any response header, HTTP response

status code, or the generation of a synthetic response.

Modifications are applied such that downstream processing

stages receive the modified HTTP response as their input.

Support for this capability is optional and can be advertised

via feature-flags in the FCI interface.

Type: ResponseTransform object

Mandatory-to-Specify: No

¶

¶

-

¶

-

¶

-

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

Example of a StageMetadata object:

2.4.5. MI.RequestTransform

The RequestTransform object contains metadata for transforming the

HTTP request for a specific StageRules object. The transformation

can be the modification of any request header and/or the

modification of the URI. Modifications are applied such that

downstream processing stages receive the modified HTTP request as

their input.

Property: headers

Description: A HeaderTransform object specifying HTTP request

headers to add, replace, or delete.

Type: HeaderTransform object

Mandatory-to-Specify: No

Property: uri

Description: Replacement value for the HTTP request.

Type: String. Either a literal (static string) or an

expression using CDNI-MEL to dynamically construct a URI value

from elements of the HTTP request and/or response.

Mandatory-to-Specify: No

Property: uri-is-expression

Description: Flag to signal whether the URI is a static string

literal or a CDNI-MEL expression that needs to be dynamically

evaluated.

¶

{

 "generic-metadata" : [{

 < Optional list of generic metadata to apply at this stage >

 }],

 "request-transform" : {

 "headers" : { <list of request headers to add/replace/delete> },

 "uri" : < URI rewrite, either static or dynamically constructed>

 }

 "response-transform" : {

 "headers" : { <list of response headers to add/replace/delete> },

 "response-status" : <Status either static or dynamically constructed >

 }

}

¶

¶

¶

-

¶

- ¶

- ¶

¶

- ¶

-

¶

- ¶

¶

-

¶

Type: Boolean

Mandatory-to-Specify: No. The default is "False", indicating

that the URI is a string literal and does not need to be

evaluated.

Example of a RequestTransform object illustrating a dynamically

constructed URI rewrite:

2.4.6. MI.ResponseTransform

The ResponseTransform object contains metadata for transforming the

HTTP response for a StageRules match. The transformation can be the

modification of any response header, HTTP response status code, or

the generation of a synthetic response. Modifications are applied

such that downstream processing stages receive the modified HTTP

response as their input.

Property: headers

Description: A HeaderTransform object specifying HTTP response

headers to add, replace, or delete.

Type: HeaderTransform object

Mandatory-to-Specify: No

Property: response-status

Description: Replacement value for the HTTP response status

code.

Type: Integer. Either a static integer or an expression using

CDNI-MEL that evaluates to an integer to dynamically generate

an HTTP status code based on elements of the HTTP request and/

or response. Expressions that do not evaluate to an integer

shall be considered invalid and result in no override of

origin-provided response status.

Mandatory-to-Specify: No

- ¶

-

¶

¶

{

 "request-transform" : {

 "headers" : { <Optional list of request headers to add/replace/delete> },

 "uri" : "req.uri.path",

 "uri-is-expression" : true

 }

¶

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

-

¶

- ¶

Property: status-is-expression

Description: Flag to signal whether the response-status is a

static integer or a CDNI-MEL expression that needs to be

dynamically evaluated to generate an HTTP response status

code.

Type: Boolean

Mandatory-to-Specify: No. The default is "False", indicating

that the response-status is a static integer and does not need

to be evaluated.

Property: synthetic

Description: Specification of a complete replacement of any

HTTP response that may have been generated in an earlier

processing stage with a synthetic response. Use of this

property to specify a synthetic response would override any

response transformations or status codes specified by other

properties.

Type: SyntheticResponse object

Mandatory-to-Specify: No

Example of a ResponseTransform object, illustrating a dynamically

constructed header value that uses the expression language to

concatenate the user agent and host header, and forces a 403 HTTP

response status code:

2.4.7. MI.SyntheticResponse

The SyntheticResponse object allows for the specification of a

synthetic response to be generated in response to the HTTP request

¶

-

¶

- ¶

-

¶

¶

-

¶

- ¶

- ¶

¶

{

 "response-transform": {

 "headers": {

 "add": [

 {

 "name": "X-custom-response-header",

 "value": "req.h.user-agent . ‘-‘ . req.h.host",

 "value-is-expressions": true

 }

]

 },

 "response-status": "403"

 }

}

¶

being processed. The synthetic response can contain a set of

response headers, a status code, and a response body, and is a

complete replacement for any HTTP response elements generated in an

earlier processing stage.

A dynamically generated Content-Length HTTP response header is

generated based on the length of the generated response body.

Property: headers

Description: An array of HTTP header objects that specify the

full set of headers to be applied to the synthetic response.

Type: Array of HTTP header objects

Mandatory-to-Specify: No, although it would be unusual to not

specify minimal standard response headers, such as Content-

Type.

Property: response-status

Description: HTTP response status code.

Type: Integer. Either a static integer or an expression using

CDNI-MEL that evaluates to an integer to dynamically generate

an HTTP status code based on elements of the upstream HTTP

request and/or response. Expressions that do not evaluate to

an integer shall be considered invalid and result in a 500

status for the synthetic response.

Mandatory-to-Specify: Yes

Property: status-is-expression

Description: Flag to signal whether the response-status is a

static integer or a CDNI-MEL expression that needs to be

dynamically evaluated to generate an HTTP response status

code.

Type: Boolean

Mandatory-to-Specify: No. The default is "False", indicating

that the response-status is a static integer and does not need

to be evaluated.

Property: body

Description: Body for the synthetic HTTP response. The

response body can either be static or dynamically constructed

from a rich expression.

¶

¶

¶

-

¶

- ¶

-

¶

¶

- ¶

-

¶

- ¶

¶

-

¶

- ¶

-

¶

¶

-

¶

Type: String. Either a literal (static string) or an

expression using CDNI-MEL to dynamically construct a response

body from elements of the HTTP request and/or response.

Mandatory-to-Specify: No. If absent, an empty HTTP response

with a zero-value Content-Length header is generated.

Property: body-is-expression

Description: Flag to signal whether the synthetic response

body is a static string literal or a CDNI-MEL expression that

needs to be dynamically evaluated.

Type: Boolean

Mandatory-to-Specify: No. The default is "False", indicating

that the body is a string literal and does not need to be

evaluated.

Example of a SyntheticResponse object illustrating a dynamically

constructed response body that uses the expression language to

combine the request URI with static text and forces a 405 HTTP

response status code:

2.4.8. MI.HeaderTransform

The HeaderTransform object specifies how HTTP headers MUST be added,

replaced, or deleted from HTTP requests and responses.

Property: add

Description: List of HTTP headers (name/value pairs) that MUST

be added to the HTTP request or response. Note that any

existing headers in the request or response with the same

-

¶

-

¶

¶

-

¶

- ¶

-

¶

¶

{

 "headers": [

 {

 "name": "content-type",

 "value": "text/plain"

 },

 {

 "name": "X-custom-response-header",

 "value": "some static value"

 }

],

 "response-status": "405",

 "response-body": "'Sorry, Access to resource '.req.uri.' not allowed'",

 "body-is-expression": false

}

¶

¶

¶

-

names of those added are not affected, resulting in multiple

headers with the same name.

Type: Array of HTTPHeader objects containing header name/value

pairs

Mandatory-to-Specify: No

Property: replace

Description: List of HTTP headers (name/value pairs) that MUST

be added to the HTTP request or response, replacing any

previous headers with the same name.

Type: Array of HTTPHeader objects containing header name/value

pairs

Mandatory-to-Specify: No

Property: delete

Description: List of names of HTTP headers that MUST be

deleted from the

HTTP request or response. If a named header appears multiple

times, all occurrences are deleted.

Type: Array of strings, with each string naming an HTTP header

to delete

Mandatory-to-Specify: No

Example of a HeaderTransform object illustrating the addition of two

customer headers, the replacement of any previously provided Accept-

Encoding header, and the removal of any previously provided

Authorization or Accept-Language headers:

¶

-

¶

- ¶

¶

-

¶

-

¶

- ¶

¶

-

¶

-

¶

-

¶

- ¶

¶

2.4.9. MI.HTTPHeader

The HTTPHeader object contains a name/value pair for an HTTP header

to add or replace in a request or response. The CDNI-MEL expression

language can be used to dynamically generate response values.

Property: name

Description: Name of the HTTP header.

Type: String

Mandatory-to-Specify: Yes

Property: value

Description: New value of the named HTTP header.

Type: String. Either a static string or an expression using

[CDNI-MEL] to dynamically construct a header value from

elements of the HTTP request and/or response.

Mandatory-to-Specify: Yes

{

 "add": [

 {

 "name": "X-custom-header1",

 "value": "header-value 1"

 },

 {

 "name": "X-custom-header2",

 "value": "header-value 2"

 }

],

 "replace": [

 {

 "name": "Accept-Encoding",

 "value": "gzip,deflate,br"

 }

],

 "delete": [

 "Authorization",

 "Accept-Language"

]

}

¶

¶

¶

- ¶

- ¶

- ¶

¶

- ¶

-

¶

- ¶

Property: value-is-expression

Description: Flag to signal whether the value is a static

string literal or a [CDNI-MEL] expression that needs to be

dynamically evaluated.

Type: Boolean

Mandatory-to-Specify: No. The default is "False", indicating

that the value is a string literal and does not need to be

evaluated.

Example of an HTTPHeader illustrating a dynamically constructed

header value that equals the session parameter from the query

string:

2.5. General Metadata

This section documents a set of general purpose GenericMetadata

objects whose use and interpretation may be specific to a CDN or

Open Caching system's implementation, enabling extensibility and

service differentiation for providers.

2.5.1. MI.ServiceIDs

CDN configurations typically have multiple tiers of identifiers that

group configurations by customer account to facilitate logging,

billing, and support operations. This structure supports two tiers

of identifiers (a serviceID which typically identifies a high level

customer's service, and a propertyID which typically represents a

logical grouping of a set of hosts within a customers' service. It

should be noted, however, that the interpretation of ServiceID and

PropertyID are implementation-specific, and may not be used by all

CDNs and Open Caching systems.

This metadata model extension allows for the association service

identifier metadata to a host or path match and to allow for these

IDs to be dynamically generated via an expression language. For

example, it may be necessary to extract a portion of the Request URI

path to derive a service identifier (e.g.: /news/* maps to one

propertyID and /movies/* maps to a different propertyID). When

processing the MI.ServiceIDs metadata for a request, implementations

SHOULD override any previously assigned service identifiers with

those specified by this metadata.

¶

-

¶

- ¶

-

¶

¶

{

 "name": "X-custom-response-header",

 "value": "req.uri.query.session",

 "value-is-expression": true

}

¶

¶

¶

¶

MI.ServiceIDs is a new GenericMetadata object that allows for the

specification of the two tiers of CDN-specific service identifiers

and service names.

Property: service-id

Description: A provider-specific identifier for the service

(typically a customer account identifier).

Type: String. Either a literal (static string) or an

expression using CDNI-MEL to dynamically construct the ID from

elements of the HTTP request and/or response.

Mandatory-to-Specify: No

Property: service-id-is-expression

Description: Flag to signal whether the service-id is a static

string literal or a CDNI-MEL expression that needs to be

dynamically evaluated.

Type: Boolean

Mandatory-to-Specify: No. The default is "False", indicating

that the service-id is a string literal and does not need to

be evaluated.

Property: service-name

Description: Human-readable name for the service-id.

Type: String

Mandatory-to-Specify: No

Property: property-id

Description: A provider-specific identifier for the property

(typically identifies a child configuration within the parent

service-id).

Type: String. Either a literal (static string) or an

expression using CDNI-MEL to dynamically construct the ID from

elements of the HTTP request and/or response.

Mandatory-to-Specify: No

¶

¶

-

¶

-

¶

- ¶

¶

-

¶

- ¶

-

¶

¶

- ¶

- ¶

- ¶

¶

-

¶

-

¶

- ¶

Property: property-id-is-expression

Description: Flag to signal whether the property-id is a

static string literal or a CDNI-MEL expression that needs to

be dynamically evaluated.

Type: Boolean

Mandatory-to-Specify: No. The default is "False", indicating

that the property-id is a string literal and does not need to

be evaluated.

Property: property-name

Description: Human-readable name for the property-id.

Type: String

Mandatory-to-Specify: No

Example illustrating the assignment of a literal service-id along

with a dynamically computed property-id that is extracted from the

root element of the request URI path.

2.5.2. MI.PrivateFeatureList

The dCDN may gather a certain number of private features (i.e., not

[yet] adopted by SVA or considered marginal) that it may want to

expose to the content provider and/or the uCDN. Although private,

the announcement, selection, and configuration of this private

feature could be done through the OC API.

One example could be the support in OCNs of a new protocol that

allows the ability to get additional insight about the user agent

status (e.g., CTA Wave CMCD).

As another example, Broadpeak has developed a feature called

S4Streaming, and would like to give the opportunity to control that

feature to the uCDN.

¶

-

¶

- ¶

-

¶

¶

- ¶

- ¶

- ¶

¶

{

 "generic-metadata-type": "MI.ServiceIDs",

 "generic-metadata-value": {

 "service-id": "12345",

 "service-name": "My Streaming Service",

 "property-id": "path_element(req.uri, 1)",

 "property-id-is-expression": true

 }

}

¶

¶

¶

¶

PrivateFeatureListis a GenericMetadata configuration object as a

base generic object that permits the control of private features.

Property: features

Description: The list of feature configuration objects.

Type: List (array) of MI.PrivateFeature objects .

Mandatory-to-Specify: Yes

2.5.2.1. MI.PrivateFeature

MI.PrivateFeature object contains the following properties:

Property: feature-oid

Description: The owner/organization that has specified that

feature.

Type: String

Mandatory-to-Specify: Yes

Property: feature-type

Description: Indicates the type/name of the private feature

configuration object.

Type: String

Mandatory-to-Specify: Yes

Property: feature-value

Description: Feature configuration object.

Type: Format/type is defined by the value of the feature-type

property above.

Mandatory-to-Specify: Yes

Note that the private features exposed by the dCDN can be advertised

through a dedicated FCI object.

Example, illustrating the Broadpeak S4 Streaming feature:

¶

¶

- ¶

- ¶

- ¶

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

- ¶

-

¶

- ¶

¶

¶

2.5.3. MI.RequestRouting

The uCDN requires the ability to indicate whether HTTP redirect, DNS

redirect, and manifest rewrite are allowed, and indicate which is

preferable. This is required in cases where the uCDN would like to

delegate the traffic relying on the iterative method but knows the

client will not support HTTP redirect. In that case, the uCDN needs

a means to force the dCDN to perform request routing based on DNS

redirect (or manifest rewrite).

This configuration possibility is useful only if the dCDN can

advertise the mode of redirection it supports. There is an ongoing

discussion in the IETF CDNI group to understand the semantics behind

the redirection modes currently in Footprint & Capabilities

Advertising Interface (I-DNS and I-HTTP). It is not clear whether

this indicates that the dCDN supports one or both delegation modes

(the request routing performed by the uCDN can only be based on DNS

redirect or HTTP redirect or both), or whether it indicates that the

dCDN supports, as its own request routing mode, DNS redirect and/or

HTTP redirect. The latter is required for this new configuration

object to be valid.

MI.RequestRouting is a new GenericMetadata object that allows the

uCDN to force the dCDN request routing mode(s) to be applied when

working in iterative redirection mode. The list of redirection modes

supported by the dCDN is advertised through the FCI.RedirectionMode

{

 "generic-metadata-type": "MI.PrivateFeatureList",

 "generic-metadata-value": {

 "feature": {

 "feature-oid": "Broadpeak",

 "feature-type": "S4Streaming",

 "feature-value": {

 "footprint": {

 "footprint-type": "ipv4cidr",

 "footprint-value": [

 "192.0.2.0/24",

 "198.51.100.0/24"

]

 },

 "activation": "ON",

 "mode": "transparent",

 "policy": "bandwidth-max"

 }

 }

 }

}

¶

¶

¶

object. The list of request routing modes supported by the dCDN is

advertised through the FCI.RequestRoutingMode object.

Property: request-routing-modes

Description: Instructs the dCDN to perform request routing

according to one or more preferred modes among those supported

and advertised by the dCDN through the FCI.RequestRouting

object. One must understand that forcing (instead of letting

the dCDN request router select) one particular request routing

mode may trigger some inefficiency in the request routing

process.

Type: List (array) of iterative request routing modes

Values: "DNS", "HTTP", "MANIFEST_REWRITE"

Mandatory-to-Specify: No. By default, all request routing

modes supported by the dCDN can be used by the dCDN as part of

its request routing process.

Example, illustrating the uCDN forcing the dCDN to use DNS or HTTP

as the method for request routing in case the uCDN performs an

iterative delegation (i.e., iterative redirection mode):

3. Metadata Expression Language

The CDNI Metadata Expression Language provides a syntax with a rich

set of variables, operators, and built-in functions to facilitate

use cases within the extended CDNi metadata model.

Enables expression matching to dynamically determine if

StageMetadata (Section 2.4) should be applied at a StageRules

match.

Enables the dynamic construction of a value to be used in

scenarios such as constructing a service identifier or cache key,

setting an HTTP header, rewriting a request URI, setting a

response status code, or dynamically generating a response body

for a SyntheticResponse.

Expressions can evaluate to a Boolean, string, or integer, depending

on the use case:

¶

¶

-

¶

- ¶

- ¶

-

¶

¶

{

 "generic-metadata-type": "MI.RequestRouting",

 "generic-metadata-value": {

 "request-routing-modes": ["DNS", "HTTP"]

 }

}

¶

¶

¶

¶

¶

Usage Description
Evaluation

Results

ExpressionMatch.expression

Dynamically

determines if

StageMetadata

should be applied

at a specific

StageRules.

Boolean.

Expressions that

do not evaluate

to True or False

shall be

considered as

False.

RequestTransform.uri

Rewrites request

URI that will be

presented to all

downstream stages.

String

ResponseTransform.response-

status

Dynamically sets a

response status

code to replace

the status-code

returned by the

origin.

Integer (HTTP

status code)

SyntheticResponse.response-

status

Dynamically sets a

response status

code for a

synthetically

constructed

response.

Integer (HTTP

status code)

SyntheticResponse.body

Dynamically

constructs a

response body.

String

HTTPHeader.value

Dynamically

constructs a

header value.

String

ComputedCacheKey.expression

Dynamically

constructs a cache

key.

String

ServiceIDs.properry-

id,ServiceIDs.service-id

Dynamically

constructs service

and property

identifiers.

String

Table 2: CDNI MEL expressions

3.1. Expression Variables

Variable Meaning

req.h.<name> Request header <name>

req.uri
Request URI (includes query string and

fragment identifier, if any)

Variable Meaning

req.uri.path Request URI path

req.uri.pathquery Request path and query string

req.uri.query Request query string

req.uri.query.<key>
Request query string value associated with

<key>

req.method Request HTTP method (GET, POST, others)

resp.h.<name> Response header <name>

resp.status Response status code

Table 3: CDNI MEL variables

3.2. Expression Operators and keywords

Operator Type
Result

Type
Meaning

== infix Boolean Equality test

!= infix Boolean Inequality test

! infix Boolean Logical NOT operator

> infix Boolean Greater than test

< infix Boolean Less than test

>= infix Boolean Greater than or equal test

<= infix Boolean Less than or equal

*= infix Boolean Glob style match

~= infix Boolean

Regular expression match (see

https://www.pcre.org/ for details

on PCRE RegEx matching)

ipmatch infix Boolean
Match against IP address or CIDR

(IPv4 and IPv6)

+ infix Numeric Addition

- infix Numeric Subtraction

* infix Numeric Multiplication

/ infix Numeric Division

% infix
Unsigned

or Integer
Modulus

. infix String Concatenation

? : ternary *

Conditional operator: <e> ? <v1>

: <v2> Evaluates <v1> if <e> is

true, <v2> otherwise.

() grouping
Used to override precedence and

for function calls.

Table 4: CDNI MEL expression operators

Keyword Meaning

and Logical AND

or Logical OR

not Logical NOT (see also the ! operator)

Keyword Meaning

nil No value (distinct from empty value)

true Boolean constant: true

false Boolean constant: false

Table 5: CDNI MEL expression keywords

3.3. Expression Built-in Functions

3.3.1. Basic Functions: Type Conversions

Function Action Argument(s) Returns

integer(e) Converts expression to integer. 1 integer

real(e) Converts expression to real. 1 real

string(e) Converts expression to string. 1 string

boolean(e) Converts expression to Boolean. 1 Boolean

Table 6: CDNI MEL type conversions

3.3.2. Basic Functions: String Conversions

Function Action Argument(s) Returns

upper(e)

Converts a string to uppercase.

Useful for case-insensitive

comparisons.

1 string

lower(e)

Converts a string to lowercase.

Useful for case-insensitive

comparisons.

1 string

Table 7: CDNI MEL string conversions

3.3.3. Convenience Functions

Function Action Argument(s) Returns

match(string Input,

string Match)

Regular expression

Match is applied to

Input and the matching

element (if any) is

returned. Empty string

is returned if there

is no match. See

https://www.pcre.org/

for details on PCRE

RegEx matching.

2 string

match_replace(string

Input, string Match,

string Replace)

Regular expression

Match is applied to

Input arg and replaced

with the Replace arg

upon successful match.

3 string

Function Action Argument(s) Returns

Returns updated

(replaced) version of

Input.

add_query(string

Input, string q,

string v)

Add query string

element q with value v

to the Input string.

If v is nil, then just

add the query string

element q. The query

element q and value v

must conform to the

format defined in:

https://

datatracker.ietf.org/

doc/html/rfc3986

2 string

remove_query(string

Input, string q)

Remove (all

occurrences of) query

string element q from

the Input string.

2 string

path_element(string

Input, integer n)

Return the path

element n from Input.

-1 returns the last

element.

2 string

path_element(string

Input, integer n,

integer m)

Return the path

elements from position

n to m.

3 string

Table 8: CDNI MEL convenience functions

3.4. Error Handling

3.4.1. Compile Time Errors

To ensure reliable service, all CDNI Metadata configurations MUST be

validated for syntax errors before they are ingested into a dCDN.

That is, existing configurations should be kept as the live running

configuration until the new configuration has passed validation. If

errors are detected in a new configuration, the configuration MUST

be rejected. A HTTP 500 Internal Server Error should be returned

with a message that indicates the source of the error (line number,

and configuration element that caused the error).

Examples of compile-time errors:

Configuration does not parse relative to the CDNI Metadata JSON

schema

Unknown CDNI Metadata object referenced in the configuration

¶

¶

1.

¶

2. ¶

CDNI Metadata object parse error

Missing mandatory CDNI Metadata property

Unknown CDNI Metadata property

Incorrect type for a CDNI Metadata property value

CDNI-MEL

Unknown CDNI-MEL variable name referenced in an expression

Unknown CDNI-MEL operator, key-word, or functions

referenced in an expression

Incorrect number of arguments used in a CDNI-MEL

expression operator or function

Incorrect type of argument used in a CDNI-MEL expression

operator or function

3.4.2. Runtime Errors

If a runtime error is detected when processing a request, the

request should be terminated, and a HTTP 500 'Internal Server Error'

returned to the caller. To avoid security leaks, sensitive

information MUST be removed from the error message before it is

returned to an external client. In addition to returning the HTTP

500 error, the dCDN SHOULD log additional diagnostics information to

assist in troubleshooting.

Examples of runtime errors:

Failure to allocate memory (or other server resources) when

evaluating a CDNI-MEL expression

Incorrect runtime argument type in a CDNI-MEL expression. E.g.,

trying to convert a non-numeric string to a number

3.5. Expression Examples

3.5.1. ComputedCacheKey

Sets the MI.ComputedCacheKey to the value of the X-Cache-Key header

from the client request.

3. ¶

a. ¶

b. ¶

c. ¶

4. ¶

a. ¶

b.

¶

c.

¶

d.

¶

¶

¶

1.

¶

2.

¶

¶

Sets the MI.ComputedCacheKey to the lowercase version of the URI.

3.5.2. ExpressionMatch

ExpressionMatch where the expression is true if the user-agent

(glob) matches *Safari* and the referrer equals www.example.com.

3.5.3. ResponseTransform

Adds X-custom-response-header with a value equal to the value of

user-agent - host header.

Adds a Set-Cookie header with a dynamically computed cookie value

(concatenating user agent and host name) and forces a 403 response.

{

 "generic-metadata-type": "MI.ComputedCacheKey",

 "generic-metadata-value": {

 "expression": "req.h.x-cache-key"

 }

}

¶

¶

{

 "generic-metadata-type": "MI.ComputedCacheKey",

 "generic-metadata-value": {

 "expression": "lower(req.uri)"

 }

}

¶

¶

{

 "expression": "req.h.user-agent *= '*Safari*'

 and req.h.referrer == 'www.example.com'"

}

¶

¶

{

 "response-transform": {

 "headers": {

 "add": [

 {

 "name": "X-custom-response-header",

 "value": "req.h.user-agent . ' - ' . req.h.host",

 "value-is-expression": true

 }

],

 "response-status": "403"

 }

 }

}

¶

¶

3.5.4. MI.ServiceIDs

Extracts the first path element from the URI. For example, if the

URI = /789/second/third/test.txt, property-id is set to the first-

path (789).

4. CDNI Capabilities Extensions

Since not all dCDNs will be capable of supporting all the extensions

proposed in this document, they need the ability to inform uCDNs

about their capabilities. [RFC8008] (the CDNI Footprint &

Capabilities Interface) was designed for this purpose and is

extended here to express these new capabilities.

4.1. FCI Metadata Object

Whenever a capability is represented as a top-level GenericMetadata

object, a dCDN will be able to declare its support simply by

including that object name in the capability-value list of the

standard FCI.Metadata object.

For each of the new GenericMetadata objects documented within the

SVA Configuration Interface, the default assumption should be that

the capability is not supported by the dCDN unless named within the

FCI metadata object.

{

 "response-transform":{

 "headers":{

 "add":[

 {

 "name":"Set-Cookie",

 "value":"req.h.user-agent . ' - ' . req.h.host",

 "value-is-expression":true

 }

]

 }

 }

}

¶

¶

{

 "generic-metadata-type":"MI.ServiceIDs",

 "generic-metadata-value":{

 "service-id":"12345",

 "service-name":"My Streaming Service",

 "property-id":"path_element(req.uri, 1)",

 "property-id-is-expression":true

 }

}

¶

¶

¶

¶

Example: A capabilities object declaring support for several of the

newly defined GenericMetadata types:

4.2. FCI Model Extensions

In most cases, the presence or absence of a GenericMetadata object

name in FCI.Metadata (as described above), is sufficient to convey

support for a capability. There are cases, however, where more fine-

grained capabilities declarations are required. Specifically, a dCDN

may support some, but not all, of the capabilities specified by one

of the new GenericMetadata objects. In these cases, new FCI objects

will be created to allow a dCDN to express these fine-grained

capabilities.

4.2.1. FCI.AuthTypes

The AuthTypes object is used to indicate the support of

authentication methods to be used for content acquisition (while

interacting with an origin server) and authorization methods to be

used for content delivery.

¶

{

 "capabilities": [

 {

 "capability-type": "FCI.Metadata",

 "capability-value": {

 "metadata": [

 "MI.SourceMetadataExtended",

 "MI.ProcessingStages",

 "MI.CrossoriginPolicy",

 "MI.CachePolicy",

 "MI.NegativeCachePolicy",

 "MI.PrivateFeatureList",

 "MI.RequestRouting"

]

 },

 "footprints": [

 < Footprint Objects >

]

 }

]

}

¶

¶

¶

This specification document defines two new authentication methods

(see MI.Auth) while there is one authorization method currently

under specification in CDNI called [URI.signing]

Property: stage-metadata

Description: Specifies the set of StageMetadata to be applied

at the processing stage if the match expression evaluates to

"True" or is not present.

Type: Array of StageMetadata objects, applied in order.

Mandatory-to-Specify: Yes

Property: authe-types

Description: List of supported authentication methods

(possibly required for content acquisition)

Type: Array of strings

Values: "AWSv4Auth", "HeaderAuth"

Mandatory-to-Specify: No. No authentication method is

supported in this case.

Property: autho-types

Description: List of supported authorization methods (possibly

required for content delivery)

Type: Array of strings

Values: "UriSigning"

Mandatory-to-Specify: No. No authorization method is supported

in this case.

FCI.AuthTypes example:

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

-

¶

¶

-

¶

- ¶

- ¶

-

¶

¶

4.2.2. FCI.ProcessingStages

This object is used to signal the set of features that are supported

in relation to the ProcessingStages configuration object (see

MI.ProcessingStages). Those optional features depend on the CDNI-MEL

language support.

Property: features

Description: List of supported optional processing stages

features. Note that these features all have some dependencies

on support of the CDNI MEL expression language.

Type: Array of strings

Values: "ExpressionMatch", "RequestTransform",

"ResponseTransform"

Mandatory-to-Specify: No. None of these optional features are

supported in this case.

Example:

{

 "capabilities": [

 {

 "capability-type": "FCI.AuthTypes",

 "capability-value": {

 "authe-types": [

 "AWSv4Auth",

 "HeaderAuth"

],

 "autho-types": [

 "UriSigning"

]

 }

 }

]

}

¶

¶

¶

-

¶

- ¶

-

¶

-

¶

¶

4.2.3. FCI.SourceMetadataExtended

This object is used to signal the supported features related to the

SourceMetadataExtended configuration object.

Property: load-balance

Description: List of supported load balancing algorithms in

relation to the SourceMetadataExtended configuration object

(see MI.SourceMetadataExtended)

Type: Array of strings

Values: "random", "content-hash", "ip-hash

Mandatory-to-Specify: No. load balancing is not supported

among sources.

If the FCI.SourceMetadtaExtended object is not exposed/advertised or

if the "load-balance" array is empty, the dCDN does not support the

usage of the load-balance property attached to the

SourceMetadataExtended configuration object (see

MI.SourceMetadataExtended).

Example:

{

 "capabilities": [

 {

 "capability-type": "FCI.ProcessingStages",

 "capability-value": {

 "features": [

 "ExpressionMatch",

 "RequestTransform",

 "ResponseTransform"

]

 }

 }

]

}

¶

¶

¶

-

¶

- ¶

- ¶

-

¶

¶

¶

4.2.4. FCI.RequestRouting

This object is used by the dCDN to signal/announce the supported

request routing modes. This can be optionally used by the uCDN to

further select a subset of those modes when operating one of the

iterative delegation modes. See the section on the GenericMetadata

RequestRouting object..

Property: request-routing-modes

Description: List of supported request routing modes by the

dCDN. This information is useful when the uCDN decides to

perform a delegation in iterative mode.

Type: Array of strings

Values: "DNS", "HTTP-R", "MANIFEST_REWRITE"

Mandatory-to-Specify: No. If the dCDN does not advertise the

supported request routing modes, they are all supported by

default.

Example:

{

 "capabilities": [

 {

 "capability-type": "FCI.SourceMetadataExtended",

 "capability-value": {

 "load-balance": [

 "random",

 "content-hash",

 "ip-hash"

]

 }

 }

]

}

¶

¶

¶

-

¶

- ¶

- ¶

-

¶

¶

4.2.5. FCI.PrivateFeatures

This object is used by the dCDN to signal/announce the list of

supported private features. See the section on the GenericMetadata

PrivateFeatureList object.

Property: features

Description: The list of supported private feature

Type: List nested objects of FCI.PrivateFeature

Example:

{

 "capabilities": [

 {

 "capability-type": "FCI.RequestRouting",

 "capability-value": {

 "request-routing-modes": [

 "DNS",

 "HTTP",

 "MANIFEST_REWRITE"

]

 }

 }

]

}

¶

¶

¶

- ¶

- ¶

¶

{

 "capabilities": [

 {

 "capability-type": "FCI.PrivateFeatures",

 "capability-value": {

 "features": [

 {

 "feature-oid": "Broadpeak",

 "feature-type": "S4Streaming"

 }

]

 }

 }

]

}

¶

4.2.5.1. FCI.PrivateFeature

This object contains the following properties:

Property: feature-oid

Description: The owner/organization that has specified the

feature.

Type: String

Mandatory-to-Specify: Yes

Property: feature-type

Description: Indicates the type/name of the private feature

configuration object.

Type: String

Mandatory-to-Specify: Yes

4.2.6. FCI.OcnSelection

This object is used by the dCDN to signal/announce the supported OCN

types and/or their transport arrangement and/or medium supported by

OCNs.

Property ocn-delivery-list

Description: List of supported medium and/or transport

arrangements.

Type: Array of nested objects, each containing the following

properties:

o Property: ocn-medium

Description: This property lists the supported mediums.

Type: Array of strings. The following values are specified:

"SATELLITE"

Mandatory-to-Specify: No

o Property: ocn-transport

Description: Instructs the dCDN to perform delegation

operating a particular transport arrangement. The following

values are specified: "MABR".

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

¶

1.

¶

2.

¶

¶

- ¶

-

¶

- ¶

¶

-

¶

Type: Array of strings

Mandatory-to-Specify: No

.....Property: ocn-type-list

o Description: List of supported OCN types. Examples include: "HOME"

or "EDGE".

o Type: Array of strings

o Mandatory-to-Specify: No

5. IANA Considerations

5.1. CDNI Payload Types

This document requests the registration of the following entries

under the "CDNI Payload Types" registry hosted by IANA

Payload type Specification

MI.CachePolicy RFCthis

MI.NegativeCachePolicy RFCthis

MI.StaleContentCachePolicy RFCthis

MI.CacheBypassPolicy RFCthis

MI.ComputedCacheKey RFCthis

MI.AllowCompress RFCthis

MI.SourceMetadataExtended RFCthis

MI.SourceExtended RFCthis

MI.LoadBalanceMetadata RFCthis

MI.HeaderAuth RFCthis

MI.AWSv4Auth RFCthis

MI.CrossOriginPolicy RFCthis

MI.AuthTokenMetadata (TBD) RFCthis

MI.CertificateMetadata (TBD) RFCthis

MI.OcnSelection RFCthis

MI.RequestRouting RFCthis

MI.ProcessingStages RFCthis

MI.StageRules RFCthis

MI.ExpressionMatch RFCthis

MI.StageMetadata RFCthis

MI.RequestTransform RFCthis

MI.ResponseTransform RFCthis

MI.SyntheticResponse RFCthis

MI.HeaderTransform RFCthis

MI.HTTPHeader RFCthis

MI.ServiceIDs RFCthis

- ¶

- ¶

¶

¶

¶

¶

¶

[RFC1034]

[RFC1123]

[RFC2119]

[RFC7231]

Payload type Specification

MI.TrafficType RFCthis

MI.LoggingMetadata (TBD) RFCthis

MI.PrivateFeatureList RFCthis

FCI.AuthTypes RFCthis

FCI.ProcessingStages RFCthis

FCI.SourceMetadataExtended RFCthis

FCI.RequestRouting RFCthis

FCI.PrivateFeatures RFCthis

FCI.OcnSelection RFCthis

Table 9: Payload Types

6. Security Considerations

This specification is in accordance with the CDNI Request Routing:

Footprint and Capabilities Semantics. As such, it is subject to the

security and privacy considerations as defined in Section 8 of

[RFC8006] and in Section 7 of [RFC8008] respectively.

7. Conclusion

This document presents requirements and extensions to the CDNI

metadata model to cover typical use cases found in the commercial

CDN and Open Caching ecosystems. By limiting the scope of these

extensions to new GenericMetadata objects, backward compatibility

can be maintained with any existing CDNI Metadata Interface

implementations.

8. References

8.1. Normative References

Mockapetris, P., "Domain names - concepts and

facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034,

November 1987, <https://www.rfc-editor.org/info/rfc1034>.

Braden, R., Ed., "Requirements for Internet Hosts -

Application and Support", STD 3, RFC 1123, DOI 10.17487/

RFC1123, October 1989, <https://www.rfc-editor.org/info/

rfc1123>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

¶

¶

https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC8006]

[RFC8007]

[RFC8008]

[RFC8174]

[RFC8804]

[URI.signing]

[W3C]

[AWSv4Method]

[OC-CI]

[RFC5861]

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Niven-Jenkins, B., Murray, R., Caulfield, M., and K. Ma,

"Content Delivery Network Interconnection (CDNI)

Metadata", RFC 8006, DOI 10.17487/RFC8006, December 2016,

<https://www.rfc-editor.org/info/rfc8006>.

Murray, R. and B. Niven-Jenkins, "Content Delivery

Network Interconnection (CDNI) Control Interface /

Triggers", RFC 8007, DOI 10.17487/RFC8007, December 2016,

<https://www.rfc-editor.org/info/rfc8007>.

Seedorf, J., Peterson, J., Previdi, S., van Brandenburg,

R., and K. Ma, "Content Delivery Network Interconnection

(CDNI) Request Routing: Footprint and Capabilities

Semantics", RFC 8008, DOI 10.17487/RFC8008, December

2016, <https://www.rfc-editor.org/info/rfc8008>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Finkelman, O. and S. Mishra, "Content Delivery Network

Interconnection (CDNI) Request Routing Extensions", RFC

8804, DOI 10.17487/RFC8804, September 2020, <https://

www.rfc-editor.org/info/rfc8804>.

van Brandenburg, R., Leung, K., and P. Sorber, "URI

Signing for CDN Interconnection (CDNI)", 8 October 2019,

<http://www.ietf.org/internet-drafts/draft-ietf-cdni-uri-

signing-19.txt>.

"Cross-Origin Resource Sharing", <https://www.w3.org/TR/

2020/SPSD-cors-20200602/>.

8.2. Informative References

"Authenticating Requests (AWS Signature Version 4)",

<https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-

authenticating-requests.html>.

Goldstein, G., Ed., Power, W., Bichot, G., and A.

Siloniz, "Open Caching - Configuration Interface

Functional Specification (Parts 1,2,3)", Version 0.1, 2

July 2021.

Nottingham, M., "HTTP Cache-Control Extensions for Stale

Content", RFC 5861, DOI 10.17487/RFC5861, May 2010,

<https://www.rfc-editor.org/info/rfc5861>.

https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc8006
https://www.rfc-editor.org/info/rfc8007
https://www.rfc-editor.org/info/rfc8008
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8804
https://www.rfc-editor.org/info/rfc8804
http://www.ietf.org/internet-drafts/draft-ietf-cdni-uri-signing-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-cdni-uri-signing-19.txt
https://www.w3.org/TR/2020/SPSD-cors-20200602/
https://www.w3.org/TR/2020/SPSD-cors-20200602/
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://www.rfc-editor.org/info/rfc5861

[RFC6707]

[RFC7336]

[RFC7694]

[SVA]

Niven-Jenkins, B., Le Faucheur, F., and N. Bitar,

"Content Distribution Network Interconnection (CDNI)

Problem Statement", RFC 6707, DOI 10.17487/RFC6707,

September 2012, <https://www.rfc-editor.org/info/

rfc6707>.

Peterson, L., Davie, B., and R. van Brandenburg, Ed.,

"Framework for Content Distribution Network

Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336,

August 2014, <https://www.rfc-editor.org/info/rfc7336>.

Reschke, J., "Hypertext Transfer Protocol (HTTP) Client-

Initiated Content-Encoding", RFC 7694, DOI 10.17487/

RFC7694, November 2015, <https://www.rfc-editor.org/info/

rfc7694>.

"Streaming Video Alliance Home Page", <https://

www.streamingvideoalliance.org>.

Authors' Addresses

Glenn Goldstein

Lumen Technologies

United States of America

Email: glenng1215@gmail.com

Will Power

Lumen Technologies

United States of America

Email: wrpower@gmail.com

Guillaume Bichot

Broadpeak

France

Email: guillaume.bichot@gmail.com

Alfonso Siloniz

Telefonica

Spain

Email: alfonsosiloniz@gmail.com

https://www.rfc-editor.org/info/rfc6707
https://www.rfc-editor.org/info/rfc6707
https://www.rfc-editor.org/info/rfc7336
https://www.rfc-editor.org/info/rfc7694
https://www.rfc-editor.org/info/rfc7694
https://www.streamingvideoalliance.org
https://www.streamingvideoalliance.org
mailto:glenng1215@gmail.com
mailto:wrpower@gmail.com
mailto:guillaume.bichot@gmail.com
mailto:alfonsosiloniz@gmail.com

	CDNI Metadata Model Extensions
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction and Scope
	1.1. Terminology
	1.2. Requirements Language

	2. CDNI Metadata Model Extensions
	2.1. Cache Control Metadata
	2.1.1. MI.CachePolicy
	2.1.2. MI.NegativeCachePolicy
	2.1.3. MI.StaleContentCachePolicy
	2.1.4. MI.CacheBypassPolicy
	2.1.5. MI.ComputedCacheKey

	2.2. Origin Access Metadata
	2.2.1. MI.SourceMetadataExtended
	2.2.1.1. MI.SourceExtended
	2.2.1.2. MI.LoadBalanceMetadata

	2.2.2. MI.Auth
	2.2.2.1. MI.HeaderAuth
	2.2.2.2. MI.AWSv4Auth

	2.3. Edge Control Metadata
	2.3.1. MI.CrossOriginPolicy
	2.3.1.1. MI.AccessControlAllowOrigin

	2.3.2. MI.AllowCompress
	2.3.3. MI.TrafficType
	2.3.4. MI.OcnSelection
	2.3.4.1. MI.OcnDelivery

	2.4. Processing Stage Metadata
	2.4.1. MI.ProcessingStages
	2.4.2. MI.StageRules
	2.4.3. MI.ExpressionMatch
	2.4.4. MI.StageMetadata
	2.4.5. MI.RequestTransform
	2.4.6. MI.ResponseTransform
	2.4.7. MI.SyntheticResponse
	2.4.8. MI.HeaderTransform
	2.4.9. MI.HTTPHeader

	2.5. General Metadata
	2.5.1. MI.ServiceIDs
	2.5.2. MI.PrivateFeatureList
	2.5.2.1. MI.PrivateFeature

	2.5.3. MI.RequestRouting

	3. Metadata Expression Language
	3.1. Expression Variables
	3.2. Expression Operators and keywords
	3.3. Expression Built-in Functions
	3.3.1. Basic Functions: Type Conversions
	3.3.2. Basic Functions: String Conversions
	3.3.3. Convenience Functions

	3.4. Error Handling
	3.4.1. Compile Time Errors
	3.4.2. Runtime Errors

	3.5. Expression Examples
	3.5.1. ComputedCacheKey
	3.5.2. ExpressionMatch
	3.5.3. ResponseTransform
	3.5.4. MI.ServiceIDs

	4. CDNI Capabilities Extensions
	4.1. FCI Metadata Object
	4.2. FCI Model Extensions
	4.2.1. FCI.AuthTypes
	4.2.2. FCI.ProcessingStages
	4.2.3. FCI.SourceMetadataExtended
	4.2.4. FCI.RequestRouting
	4.2.5. FCI.PrivateFeatures
	4.2.5.1. FCI.PrivateFeature

	4.2.6. FCI.OcnSelection

	5. IANA Considerations
	5.1. CDNI Payload Types

	6. Security Considerations
	7. Conclusion
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

