
TCPM Working Group C. Gomez
Internet-Draft UPC
Intended status: Experimental J. Crowcroft
Expires: May 7, 2020 University of Cambridge
 November 4, 2019

TCP ACK Pull
draft-gomez-tcpm-ack-pull-01

Abstract

 Delayed Acknowledgments (ACKs) allow reducing protocol overhead in
 many scenarios. However, in some cases, Delayed ACKs may
 significantly degrade network and device performance in terms of link
 utilization, latency, memory usage and/or energy consumption. This
 document defines the TCP ACK Pull (AKP) mechanism, which allows a
 sender to request the ACK for a data segment to be sent without
 additional delay by the receiver. AKP makes use of one of the
 reserved bits in the TCP header, which is defined in this
 specification as the AKP flag.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Gomez & Crowcroft Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TCP ACK Pull November 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions used in this document 4
3. ACK Pull Mechanism . 4
4. The ACK Pull Flag . 4
5. IANA Actions . 4
6. Security Considerations 5
7. Acknowledgments . 5
8. Annex: Alternative approaches 5
9. References . 6
9.1. Normative References 6
9.2. Informative References 6

 Authors' Addresses . 7

1. Introduction

 Delayed Acknowledgments (ACKs) were specified with the aim to reduce
 protocol overhead [RFC1122]. With Delayed ACKs, a TCP delays sending
 an ACK by up to 500 ms (often 200 ms, with lower values such as ~50
 ms also reported), and typically sends an ACK for at least every
 second segment received in a stream of full-sized segments. This
 allows combining several segments into a single one (e.g. the
 application layer response to an application layer data message, and
 the corresponding ACK), and it also saves up to one of every two ACKs
 under many traffic patterns (e.g. bulk transfers). The "SHOULD"
 requirement level for implementing Delayed ACKs in RFC 1122, along
 with its expected benefits, has led to a widespread deployment of
 this mechanism.

 However, there exist traffic patterns and scenarios for which Delayed
 ACKs can actually be detrimental to performance. When a segment
 carrying a message of a size up to one Maximum Segment Size (MSS) is
 transferred, if the message does not elicit an application-layer
 response, and a second data segment is not transferred earlier than
 the Delayed ACK timeout, the ACK is unnecessarily delayed, with a
 number of negative consequences.

 When the Nagle algorithm is used, in some cases the sender may be
 prevented from sending more data while awaiting the Delayed ACK. In
 some high bit rate environment (e.g. Gigabit Ethernet) use cases,
 such a delay may be very large, and link utilitzation may be

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122

Gomez & Crowcroft Expires May 7, 2020 [Page 2]

Internet-Draft TCP ACK Pull November 2019

 dramatically reduced, as the Delayed ACK timeout is several orders of
 magnitude greater than the Round Trip Time (RTT) [RFC8490].

 Delayed ACKs are also detrimental in Internet of Things (IoT)
 scenarios, where TCP is being increasingly used
 [I-D.ietf-lwig-tcp-constrained-node-networks]. Many IoT devices,
 such as sensors, transfer small messages (e.g. containing sensor
 readings) rather infrequently, therefore if the receiver uses Delayed
 ACKs, the ACK will often be unnecessarily delayed. The sender cannot
 release the memory resources associated to a transferred data segment
 until the ACK is received and processed. This may be a problem for
 many IoT devices, which are typically memory-constrained, and may
 even lead to subsequent packet drops if their scarce memory resources
 are blocked while awaiting an ACK. Moreover, if the IoT device uses
 a radio interface for communication, in some scenarios Delayed ACKs
 will lead to increased energy consumption (e.g. with the radio
 interface of the device staying in receive mode while awaiting the
 ACK). Since many IoT devices run on small batteries, the device
 lifetime may be significantly decreased. Furthermore, the delay
 suffered by the ACK may interact negatively with layer two
 mechanisms, especially in wireless network technologies where devices
 remain in low-power states for long intervals [RFC 8352], potentially
 leading to a further exacerbated delay (by even one or more orders of
 magnitude).

 One approach that cannot be recommended as a general solution to
 solve the described problems is disabling Delayed ACKs at the
 receiving TCP. In fact, the latter may interact with a wide variety
 of devices and many of those may still benefit from the advantages of
 Delayed ACKs. In addition, in some cases, a sender may offer a mixed
 traffic pattern comprising single data segments that will lead to
 unnecessarily delayed ACKs, with other data segments upon which
 Delayed ACKs will act as intended. Therefore, the solution has to be
 provided at a per-segment granularity.

 Since the presented problem is about low performance in various
 scenarios, another requirement for the solution is to provide a
 sender with a mechanism to request an immediate ACK for a data
 segment without incurring overhead in terms of header size increase
 or additional packets sent. For example, in IoT scenarios, every
 additional communicated byte consumes scarce resources (e.g. energy,
 bandwidth, computational resources); even further, each additional
 communicated packet may involve significant energy overhead.

 This document defines the TCP ACK Pull (AKP) mechanism and an AKP
 flag in the TCP header. AKP allows a sender to request an ACK to be
 sent by a receiving TCP without additional delay upon reception of a
 data segment, by setting the AKP flag in that data segment. The AKP

https://datatracker.ietf.org/doc/html/rfc8490
https://datatracker.ietf.org/doc/html/rfc8352

Gomez & Crowcroft Expires May 7, 2020 [Page 3]

Internet-Draft TCP ACK Pull November 2019

 flag uses one of the reserved bits in the TCP header. More
 specifically, the AKP flag uses bit 6 of byte 13 of the TCP header.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. ACK Pull Mechanism

 When a TCP sender needs a data segment to be acknowledged by the
 receiving TCP without additional delay, the sender sets the AKP flag
 of the data segment TCP header. A receiving TCP conforming to this
 specification MUST process the AKP flag of a received segment. If
 the AKP flag is set, the receiving TCP MUST send an ACK without
 additional delay, regardless of whether the receiving TCP uses the
 Delayed ACKs mechanism.

4. The ACK Pull Flag

 The AKP flag is defined as bit number 6 of the 13th byte of the TCP
 header. Figure 1 illustrates bytes 13 and 14 of the TCP header,
 including the AKP flag.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | A | R | C | E | U | A | P | R | S | F |
 | Header Length |Reservd| K | v | W | C | R | C | S | S | Y | I |
 | | | P | d | R | E | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 1: Definition of the AKP field within bytes 13 and 14 of the
 TCP Header.

 (Note: as of the writing, bit 7 in the above figure is reserved,
 although this may change with the publication of
 [I-D.ietf-tcpm-accurate-ecn].)

5. IANA Actions

 This document assigns bit 6 of the TCP header flags to the AKP flag.
 This flag will be defined as shown in Figure 2:

https://datatracker.ietf.org/doc/html/rfc2119

Gomez & Crowcroft Expires May 7, 2020 [Page 4]

Internet-Draft TCP ACK Pull November 2019

 +-----+-------------------+-----------+
 | Bit | Name | Reference |
 +-----+-------------------+-----------+
 | 6 | AKP (ACK Pull) | RFC XXXX |
 +-----+-------------------+-----------+

 Figure 2

 [TO BE REMOVED: IANA is requested to update the existing entry in the
 Transmission Control Protocol (TCP) Header Flags registration
 (https://www.iana.org/assignments/tcp-header-flags/tcp-header-

flags.xhtml#tcp-header-flags-1) for Bit 6 to 'AKP (ACK Pull)'.]

6. Security Considerations

 TCP ACK Pull introduces a possible Denial of Service (DoS) attack on
 a resource-constrained receiver. An attacker might send a large
 number of messages to a victim node, requesting an immediate ACK in
 response to each one of them. This attack is easily avoided by
 ignoring the TCP ACK Pull flag.

7. Acknowledgments

 Stuart Cheshire, Ted Lemon, Michael Scharf, and Christoph Paasch
 participated in a discussion that was seminal to this document.

 Carles Gomez has been funded in part by the Spanish Government
 (Ministerio de Ciencia, Innovacion y Universidades) through the Jose
 Castillejo grant CAS18/00170 and by European Regional Development
 Fund (ERDF) and the Spanish Government through project
 TEC2016-79988-P, AEI/FEDER, UE. His contribution to this work has
 been carried out during his stay as a visiting scholar at the
 Computer Laboratory of the University of Cambridge.

8. Annex: Alternative approaches

 Several mechanisms that have been proposed in the past allow
 increasing the amount of ACKs sent by the receiver. Some examples
 are Acknowledgment Congestion Control (AckCC) [RFC5690] and Tail Loss
 Probe (TLP) [I-D.ietf-tcpm-rack].

 In AckCC, the sender tells the receiver the ACK Ratio R to use, where
 the receiver sends one ACK per R data packets received. AckCC
 defines a 2-byte "TCP ACK Congestion Control Permitted Option" for
 negotiating use of AckCC, whereas it defines a 3-byte "ACK Ratio TCP
 option" to communicate the ACK Ratio value from the sender to the
 receiver.

https://www.iana.org/assignments/tcp-header-flags/tcp-header-flags.xhtml#tcp-header-flags-1
https://www.iana.org/assignments/tcp-header-flags/tcp-header-flags.xhtml#tcp-header-flags-1
https://datatracker.ietf.org/doc/html/rfc5690

Gomez & Crowcroft Expires May 7, 2020 [Page 5]

Internet-Draft TCP ACK Pull November 2019

 TLP is intended to avoid RTO-expiration-based retransmission when
 tail loss occurs by inducing additional ACKs at the receiver. This
 is achieved by sending a probe segment after a probe time-out (PTO)
 when data have been sent but not confirmed.

 Another approach that allows eliciting an immediate ACK after sending
 a data segment is sending a subsequent segment carrying e.g. an
 already sent data byte. Another workaround, which is used in the
 Contiki operating system (a popular operating system for constrained
 devices in IoT scenarios) is to split the data to be sent into two
 segments of smaller size. A standard compliant TCP receiver will
 acknowledge the second MSS of data, which can improve throughput.
 However, this 'split hack' may not always work since a TCP receiver
 is required to acknowledge every second full-sized segment, but not
 two consecutive small segments. Furthermore, the overhead of sending
 two IP packets instead of one is another downside of the 'split
 hack'.

 Note that all the approaches in this Annex involve increasing TCP
 header size of some segments, or involve sending additional packets.
 The main advantage of the AKP mechanism defined in this specification
 is allowing a sender to request an immediate ACK while incurring no
 overhead.

9. References

9.1. Normative References

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [I-D.ietf-lwig-tcp-constrained-node-networks]
 Gomez, C., Crowcroft, J., and M. Scharf, "TCP Usage
 Guidance in the Internet of Things (IoT)", draft-ietf-

lwig-tcp-constrained-node-networks-08 (work in progress),
 June 2019.

https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-tcp-constrained-node-networks-08
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-tcp-constrained-node-networks-08

Gomez & Crowcroft Expires May 7, 2020 [Page 6]

Internet-Draft TCP ACK Pull November 2019

 [I-D.ietf-tcpm-accurate-ecn]
 Briscoe, B., Kuehlewind, M., and R. Scheffenegger, "More
 Accurate ECN Feedback in TCP", draft-ietf-tcpm-accurate-

ecn-09 (work in progress), July 2019.

 [I-D.ietf-tcpm-rack]
 Cheng, Y., Cardwell, N., Dukkipati, N., and P. Jha, "RACK:
 a time-based fast loss detection algorithm for TCP",

draft-ietf-tcpm-rack-06 (work in progress), November 2019.

 [RFC5690] Floyd, S., Arcia, A., Ros, D., and J. Iyengar, "Adding
 Acknowledgement Congestion Control to TCP", RFC 5690,
 DOI 10.17487/RFC5690, February 2010,
 <https://www.rfc-editor.org/info/rfc5690>.

 [RFC8352] Gomez, C., Kovatsch, M., Tian, H., and Z. Cao, Ed.,
 "Energy-Efficient Features of Internet of Things
 Protocols", RFC 8352, DOI 10.17487/RFC8352, April 2018,
 <https://www.rfc-editor.org/info/rfc8352>.

 [RFC8490] Bellis, R., Cheshire, S., Dickinson, J., Dickinson, S.,
 Lemon, T., and T. Pusateri, "DNS Stateful Operations",

RFC 8490, DOI 10.17487/RFC8490, March 2019,
 <https://www.rfc-editor.org/info/rfc8490>.

Authors' Addresses

 Carles Gomez
 UPC
 C/Esteve Terradas, 7
 Castelldefels 08860
 Spain

 Email: carlesgo@entel.upc.edu

 Jon Crowcroft
 University of Cambridge
 JJ Thomson Avenue
 Cambridge, CB3 0FD
 United Kingdom

 Email: jon.crowcroft@cl.cam.ac.uk

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-09
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-09
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rack-06
https://datatracker.ietf.org/doc/html/rfc5690
https://www.rfc-editor.org/info/rfc5690
https://datatracker.ietf.org/doc/html/rfc8352
https://www.rfc-editor.org/info/rfc8352
https://datatracker.ietf.org/doc/html/rfc8490
https://www.rfc-editor.org/info/rfc8490

Gomez & Crowcroft Expires May 7, 2020 [Page 7]

