
Workgroup: TCPM Working Group

Internet-Draft:

draft-gomez-tcpm-ack-rate-request-04

Published: March 2022

Intended Status: Experimental

Expires: 28 September 2022

Authors: C. Gomez

UPC

J. Crowcroft

University of Cambridge

TCP ACK Rate Request Option

Abstract

TCP Delayed Acknowledgments (ACKs) is a widely deployed mechanism

that allows reducing protocol overhead in many scenarios. However,

Delayed ACKs may also contribute to suboptimal performance. When a

relatively large congestion window (cwnd) can be used, less frequent

ACKs may be desirable. On the other hand, in relatively small cwnd

scenarios, eliciting an immediate ACK may avoid unnecessary delays

that may be incurred by the Delayed ACKs mechanism. This document

specifies the TCP ACK Rate Request (TARR) option. This option allows

a sender to request the ACK rate to be used by a receiver, and it

also allows to request immediate ACKs from a receiver.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions used in this document

3. TCP ACK Rate Request Functionality

3.1. Sender behavior

3.2. Receiver behavior

4. Option Format

5. Changing the ACK rate during the lifetime of a TCP connection

6. IANA Considerations

7. Security Considerations

8. Acknowledgments

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

Delayed Acknowledgments (ACKs) were specified for TCP with the aim

to reduce protocol overhead [RFC1122]. With Delayed ACKs, a TCP

delays sending an ACK by up to 500 ms (often 200 ms, with lower

values in recent implementations such as ~50 ms also reported), and

typically sends an ACK for at least every second segment received in

a stream of full-sized segments. This allows combining several

segments into a single one (e.g. the application layer response to

an application layer data message, and the corresponding ACK), and

also saves up to one of every two ACKs, under many traffic patterns

(e.g. bulk transfers). The "SHOULD" requirement level for

implementing Delayed ACKs in RFC 1122, along with its expected

benefits, has led to a widespread deployment of this mechanism.

However, there exist scenarios where Delayed ACKs contribute to

suboptimal performance. We next roughly classify such scenarios into

two main categories, in terms of the congestion window (cwnd) size

and the Maximum Segment Size (MSS) that would be used therein: i)

"large" cwnd scenarios (i.e. cwnd >> MSS), and ii) "small" cwnd

scenarios (e.g. cwnd up to ~MSS).

In "large" cwnd scenarios, increasing the number of data segments

after which a receiver transmits an ACK beyond the typical one (i.e.

2 when Delayed ACKs are used) may provide significant benefits. One

example is mitigating performance limitations due to asymmetric path

¶

¶

¶

capacity (e.g. when the reverse path is significantly limited in

comparison to the forward path) [RFC3449]. Another advantage is

reducing the computational cost both at the sender and the receiver,

and reducing network packet load, due to the lower number of ACKs

involved.

In many "small" cwnd scenarios, a sender may want to request the

receiver to acknowledge a data segment immediately (i.e. without the

additional delay incurred by the Delayed ACKs mechanism). In high

bit rate environments (e.g. data centers), a flow's fare share of

the available Bandwidth Delay Product (BDP) may be in the order of

one MSS, or even less. For an accordingly set cwnd value (e.g. cwnd

up to MSS), Delayed ACKs would incur a delay that is several orders

of magnitude greater than the RTT, severely degrading performance.

Note that the Nagle algorithm may produce the same effect for some

traffic patterns in the same type of environments [RFC8490]. In

addition, when transactional data exchanges are performed over TCP,

or when the cwnd size has been reduced, eliciting an immediate ACK

from the receiver may avoid idle times and allow timely continuation

of data transmission and/or cwnd growth, contributing to maintaining

low latency.

Further "small" cwnd scenarios can be found in Internet of Things

(IoT) environments. Many IoT devices exhibit significant memory

constraints, such as only enough RAM for a send buffer size of 1

MSS. In that case, if the data segment does not elicit an

application-layer response, the Delayed ACKs mechanism unnecessarily

contributes a delay equal to the Delayed ACK timer to ACK

transmission. The sender cannot transmit a new data segment until

the ACK corresponding to the previous data segment is received and

processed.

With the aim to provide a tool for performance improvement in both

"large" and "small" cwnd scenarios, this document specifies the TCP

ACK Rate request (TARR) option. This option allows a sender to

request the ACK rate to be used by a receiver, and it also allows to

request immediate ACKs from a receiver.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. TCP ACK Rate Request Functionality

A TCP endpoint announces that it supports the TARR option by

including the TARR option format (with the appropriate Length value,

see Section 4) in packets that have the SYN bit set.

¶

¶

¶

¶

¶

¶

Upon reception of a SYN segment carrying the TARR option, a TARR-

option-capable endpoint MUST include the TARR option in the SYN-ACK

segment sent in response.

The next two subsections define the sender and receiver behaviors

for devices that support the TARR option, respectively.

3.1. Sender behavior

A TCP sender MUST NOT include the TARR option in TCP segments to be

sent if the TCP receiver does not support the TARR option.

A TCP sender MAY request a TARR-option-capable receiver to modify

the ACK rate of the latter to one ACK every R data segments received

from the sender. This request is performed by the sender by

including the TARR option in the TCP header of a segment. The TARR

option carries the R value requested by the sender (see section 4).

When a TCP sender needs a data segment to be acknowledged

immediately by a TARR-option-capable receiving TCP, the sender

includes the TARR option in the TCP header of the data segment, with

a value of R equal to 1.

A TCP segment carrying retransmitted data is not required to include

a TARR option.

3.2. Receiver behavior

A receiving TCP conforming to this specification MUST process a TARR

option present in a received segment.

A TARR-option-capable receiving TCP SHOULD modify its ACK rate to

one ACK every R received data segments from the sender. If a TARR-

option-capable TCP receives a segment carrying the TARR option with

R=1, the receiving TCP SHOULD send an ACK immediately.

If packet reordering occurs, a TARR-option-capable receiver should

send a duplicate ACK immediately when an out-of-order segment

arrives [RFC5681]. After sending a duplicate ACK, the receiver MAY

send the next non-duplicate ACK after R data segments received. Note

also that the receiver might be unable to send ACKs at the requested

rate (e.g., due to lack of resources); on the other hand, the

receiver might opt not to fulfill a request for security reasons

(e.g., to avoid or mitigate an attack by which a large number of

senders request disabling delayed ACKs simultaneously and send a

large number of data segments to the receiver).

The request to modify the ACK rate of the receiver holds until the

next segment carrying a TARR option is received.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4. Option Format

The TARR option presents two different formats that can be

identified by the corresponding format length. For packets that have

the SYN bit set, the TARR option has the format shown in Fig. 1.

Figure 1: TCP ACK Rate Request option format for packets that have the

SYN bit set.

Kind: The Kind field value is TBD.

Length: The Length field value is 4 bytes.

ExID: The experiment ID field size is 2 bytes, and its value is

0x00AC.

For packets that do not have the SYN bit set, the TARR option has

the format and content shown in Fig. 2.

Figure 2: TCP ACK Rate Request option format.

Kind: The Kind field value is TBD.

Length: The Length field value is 5 bytes.

ExID: The experiment ID field size is 2 bytes, and its value is

0x00AC.

R: The size of this field is 7 bits. The field carries the ACK rate

requested by the sender. The minimum value of R is 1.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Kind | Length | ExID |

 +-+

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Kind | Length | ExID |

 +-+

 | R |V|

 +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

Note: there are currently two options being considered regarding the

semantics of the R field:

OPTION 1: the R field corresponds to the binary encoding of the

requested ACK rate. The maximum value of R is 127. A receiver MUST

ignore an R field with all bits set to zero. (TO-DO: if OPTION 1 is

selected, see how to handle all bits of R being equal to zero.)

OPTION 2: the R field is composed of two subfields: the 5 leftmost

bits represent a mantissa (m) and the 2 rightmost bits represent an

exponent (e). The value of the requested ACK rate is obtained as R =

(m+1)*2^(2*e). The maximum value of R is 2048.

ReserVed (V): The size of this field is 1 bit. This bit is reserved

for future use.

5. Changing the ACK rate during the lifetime of a TCP connection

In some scenarios, setting the ACK rate once for the whole lifetime

of a TCP connection may be suitable. However, there are also cases

where it may be desirable to modify the ACK rate during the lifetime

of a connection.

The ACK rate to be used may depend on the cwnd value used by the

sender, which can change over the lifetime of a connection. cwnd

will start at a low value and grow rapidly during the slow-start

phase, then settle into a reasonably consistent range for the

congestion-avoidance phase - assuming the underlying bandwidth-delay

product (BDP) remains constant. Phenomena such as routing updates,

link capacity changes or path load changes may modify the underlying

BDP significantly; the cwnd should be expected to change

accordingly, prompting the need for ACK rate updates.

TARR can also be used to suppress Delayed ACKs in order to allow

measuring the RTT of each packet in specific intervals (e.g., during

flow start-up), and allow a different ACK rate afterwards.

A Linux receiver has a heuristic to detect slow start and suppress

Delayed ACKs just for that period. However, some slow start variants

(e.g., HyStart, HyStart++, etc.) may alter the ending of slow start,

thus confusing the heuristics of the receiver. To avoid slow start

sender behavior ossification, an explicit signal such as TARR may be

useful.

Another reason to modify the ACK rate might be reducing the ACK

load. The sender may notice that the ACKs it receives cover more

segments than the ACK rate requested, indicating that ACK decimation

is occurring en route. The sender may then decide to reduce the ACK

frequency to reduce receiver workload and network load up to the ACK

decimation point.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Future TCP specifications may also permit Congestion Experienced

(CE) marks to appear on pure ACKs [I-D.ietf-tcpm-generalized-ecn].

This might involve more frequent ACK rate updates (e.g., once an

RTT), as the sender probes around an operating point.

6. IANA Considerations

This document specifies a new TCP option (TCP ACK Rate Request) that

uses the shared experimental options format [RFC6994], with ExID in

network-standard byte order.

The authors plan to request the allocation of ExID value 0x00AC for

the TCP option specified in this document.

7. Security Considerations

The TARR option opens the door to new security threats. This section

discusses such new threats, and suggests mitigation techniques.

An attacker might be able to impersonate a legitimate sender, and

forge an apparently valid packet intended for the receiver. In such

case, the attacker may mount a variety of harmful actions. By using

TARR, the attacker may intentionally communicate a bad R value to

the latter with the aim to damage communication or device

performance. For example, in a small cwnd scenario, using a too high

R value may lead to exacerbated RTT increase and throughput

decrease. In other scenarios, a too low R value may contribute to

depleting the energy of a battery-operated receiver at a faster rate

or may lead to increased network packet load.

While Transport Layer Security (TLS) [RFC8446] is strongly

recommended for securing TCP-based communication, TLS does not

protect TCP headers, and thus cannot protect the TARR option fields

carried by a segment. One approach to address the problem is using

network-layer protection, such as Internet Protocol Security (IPsec)

[RFC4301]. Another solution is using the TCP Authentication Option

(TCP-AO), which provides TCP segment integrity and protection

against replay attacks [RFC5925].

While it is relatively hard for an off-path attacker to attack an

unprotected TCP session, it is RECOMMENDED for a TARR receiver to

use the guidance and attack mitigation given in [RFC5961]. The TARR

option MUST be ignored on a packet that is deemed invalid.

A TARR receiver might opt not to fulfill a request to avoid or

mitigate an attack by which a large number of senders request

disabling delayed ACKs simultaneously and send a large number of

data segments to the receiver (see Section 3.2).

¶

¶

¶

¶

¶

¶

¶

¶

[RFC1122]

[RFC2119]

[RFC5681]

[RFC5925]

[RFC5961]

[RFC6994]

[I-D.ietf-tcpm-generalized-ecn]

8. Acknowledgments

Bob Briscoe, Jonathan Morton, Richard Scheffenegger, Neal Cardwell,

Michael Tuexen, Yuchung Cheng, Matt Mathis, Jana Iyengar, Gorry

Fairhurst, Stuart Cheshire, Yoshifumi Nishida, Michael Scharf, Ian

Swett, and Martin Duke provided useful comments and input for this

document. Jana Iyengar suggested including a field to allow a sender

communicate its tolerance to reordering. Jonathan Morton and Bob

Briscoe provided the main input for Section 5.

Carles Gomez has been funded in part by the Spanish Government

through project PID2019-106808RA-I00, and by Secretaria

d'Universitats i Recerca del Departament d'Empresa i Coneixement de

la Generalitat de Catalunya 2017 through grant SGR 376.

9. References

9.1. Normative References

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

<https://www.rfc-editor.org/info/rfc5681>.

Touch, J., Mankin, A., and R. Bonica, "The TCP

Authentication Option", RFC 5925, DOI 10.17487/RFC5925,

June 2010, <https://www.rfc-editor.org/info/rfc5925>.

Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's

Robustness to Blind In-Window Attacks", RFC 5961, DOI

10.17487/RFC5961, August 2010, <https://www.rfc-

editor.org/info/rfc5961>.

Touch, J., "Shared Use of Experimental TCP Options", RFC

6994, DOI 10.17487/RFC6994, August 2013, <https://

www.rfc-editor.org/info/rfc6994>.

9.2. Informative References

Bagnulo, M. and B. Briscoe, "ECN++:

Adding Explicit Congestion Notification (ECN) to TCP

¶

¶

https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc5961
https://www.rfc-editor.org/info/rfc5961
https://www.rfc-editor.org/info/rfc6994
https://www.rfc-editor.org/info/rfc6994

[RFC3449]

[RFC4301]

[RFC8446]

[RFC8490]

Control Packets", Work in Progress, Internet-Draft,

draft-ietf-tcpm-generalized-ecn-09, 31 January 2022,

<https://www.ietf.org/archive/id/draft-ietf-tcpm-

generalized-ecn-09.txt>.

Balakrishnan, H., Padmanabhan, V., Fairhurst, G., and M.

Sooriyabandara, "TCP Performance Implications of Network

Path Asymmetry", BCP 69, RFC 3449, DOI 10.17487/RFC3449,

December 2002, <https://www.rfc-editor.org/info/rfc3449>.

Kent, S. and K. Seo, "Security Architecture for the

Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,

December 2005, <https://www.rfc-editor.org/info/rfc4301>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Bellis, R., Cheshire, S., Dickinson, J., Dickinson, S.,

Lemon, T., and T. Pusateri, "DNS Stateful Operations",

RFC 8490, DOI 10.17487/RFC8490, March 2019, <https://

www.rfc-editor.org/info/rfc8490>.

Authors' Addresses

Carles Gomez

UPC

C/Esteve Terradas, 7

08860 Castelldefels

Spain

Email: carlesgo@entel.upc.edu

Jon Crowcroft

University of Cambridge

JJ Thomson Avenue

Cambridge

United Kingdom

Email: jon.crowcroft@cl.cam.ac.uk

https://www.ietf.org/archive/id/draft-ietf-tcpm-generalized-ecn-09.txt
https://www.ietf.org/archive/id/draft-ietf-tcpm-generalized-ecn-09.txt
https://www.rfc-editor.org/info/rfc3449
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8490
https://www.rfc-editor.org/info/rfc8490
mailto:carlesgo@entel.upc.edu
mailto:jon.crowcroft@cl.cam.ac.uk

	TCP ACK Rate Request Option
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions used in this document
	3. TCP ACK Rate Request Functionality
	3.1. Sender behavior
	3.2. Receiver behavior

	4. Option Format
	5. Changing the ACK rate during the lifetime of a TCP connection
	6. IANA Considerations
	7. Security Considerations
	8. Acknowledgments
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

