
Workgroup: JMAP

Internet-Draft: draft-gondwana-jmap-blob-02

Updates: 8620 (if approved)

Published: 12 July 2021

Intended Status: Standards Track

Expires: 13 January 2022

Authors: B. Gondwana, Ed.

Fastmail

JMAP Blob management extension

Abstract

The JMAP base protocol (RFC8620) provides the ability to upload and

download arbitrary binary data via HTTP PUT and GET on defined

endpoint. This binary data is called a "Blob".

This extension adds additional ways to create and access Blobs, by

making inline method calls within a standard JMAP request.

This extension also adds a reverse lookup mechanism to discover

where blobs are referenced within other datatypes.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8620
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions Used In This Document

3. Blobs

3.1. Blob/set

3.1.1. create

3.1.2. update

3.1.3. destroy

3.2. Blob/get

3.3. Blob/lookup

4. Security considerations

5. IANA considerations

5.1. JMAP Capability registration for "blob"

5.2. JMAP Error Codes Registration for "unknownDataType"

5.3. Creation of "JMAP Datatypes" Registry

6. Acknowledgements

7. Normative References

8. Informative References

Author's Address

1. Introduction

Sometimes JMAP ([RFC8620]) interactions require creating a Blob and

then referencing it. In the same way that IMAP Literals ([RFC7888])

were extended to reduce roundtrips for simple data, embedding simple

small blobs into the JMAP method stream can reduce roundtrips.

Likewise, when fetching an object, it can be useful to also fetch

the raw content of that object without a separate roundtrip.

Where JMAP is being proxied through a system which applies

additional access restrictions, it can be useful to be able to see

where a blob is referenced in order to decide whether to allow it to

be downloaded.

2. Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

3. Blobs

A blob is a sequence of zero or more octets.

The JMAP base spec [RFC8210] defines the Blob/copy method, which is

unchanged by this specfication.

3.1. Blob/set

This is a standard JMAP set method.

3.1.1. create

Properties:

Any one of:

data:asText: String|null

data:asBase64: String|null

data:asHex: String|null

catenate: [SetObject] list of octet sources in order

Also:

type: String|null

Result is:

id: Id the blobId

type: String|null as given in the creation (if any); or detected

from content; or null

size: UnsignedInt as per RFC8620 - the size of the file in Octets

Any other properties identical to those that would be returned in

the JSON response of the RFC8620 upload endpoint.

SetObject:

Any one of

data:asText: String|null

data:asBase64: String|null

data:asHex: String|null

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

¶

* ¶

*

¶

* ¶

¶

¶

¶

* ¶

* ¶

* ¶

OR a blobId source:

blobId: Id

offset: UnsignedInt|null

length: UnsignedInt|null

3.1.2. update

It is not possible to update a Blob, so any update will result in a

notUpdated response.

3.1.3. destroy

If an uploaded Blob is not referenced by any persistent object, the

server SHOULD destroy the object. Some systems use a content-based

ID for blobs, so the server MAY respond destroyed and yet that

blobId still exist with the same content.

Example:

¶

* ¶

* ¶

* ¶

¶

¶

¶

Method Call:

["Blob/set", {

 "accountId" : "account1",

 "create" : {

 "1": {

 "data:asBase64": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABAQMAAAAl21bKA

 AAAA1BMVEX/AAAZ4gk3AAAAAXRSTlN/gFy0ywAAAApJRE

 FUeJxjYgAAAAYAAzY3fKgAAAAASUVORK5CYII=",

 "type" : "image/png"

 },

 },

}, "R1"]

Response:

["Blob/set", {

 "accountId" : "account1",

 "created" : {

 "1": {

 "id" : "G4c6751edf9dd6903ff54b792e432fba781271beb",

 "type" : "image/png",

 "size" : 95

 },

 },

}, "R1"]

¶

3.2. Blob/get

A standard JMAP get.

Properties:

Any of

data:asText

data:asBase64

data:asHex

data selects data:asText if the content is UTF-8, or

data:asBase64

size

If not given, returns data and size.

QUESTION: do we want to add range operators?

offset: UnsignedInt|null

length: UnsignedInt|null

Returns that range of octets (not characters!) from the blob.

Alternative possible syntax - ranges within the properties, e.g:

data:asText:0:3000

3.3. Blob/lookup

Given a list of blobIds, this method does a reverse lookup in each

of the provided datatypes to find the list of Ids within that

datatype which reference the provided blob.

The definition of reference is somewhat loosely defined, but roughly

means "you could discover this blobId by looking inside this

object", for example if a Mailbox contains an Email which references

the blobId, then it references that blobId. Likewise for a Thread.

Parameters

accountId: "Id"

The id of the account used for the call.

datatypes: [String]

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

¶

¶

* ¶

* ¶

¶

¶

¶

¶

* ¶

¶

* ¶

A list of datatype names from the "JMAP Datatypes" registry for

which "Can Reference Blobs" is "Yes". The capability which defines

each type must also be requested.

If a datatype is not known by the server or the associated

capability has not been included then the server returns an

"unknownDataType" error.

ids: [Id]

A list of blobId values to be looked for.

Response

list: [BlobInfo]

A list of BlobInfo objects.

BlobInfo Object

id: Id

The Blob Identifier.

datatypes: DataType[Id List]

A map from datatype to list of Ids of that datatype (e.g. the

datatype "Email" maps to a list of emailIds)

e.g.

Response:

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

* ¶

¶

¶

["Blob/lookup", {

 "datatypes": ["Mailbox", "Thread", "Email"],

 "ids": ["Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",

 "G6f954bcb620f7f50fc8f21426bde3669da3d9067"]

}, "R1"]

¶

¶

4. Security considerations

TO BE IMPROVED:

JSON parsers are not all consistent in handling non-UTF-8 data. JMAP

requires that all JSON data be UTF-8 encoded, so servers MUST either

return data:asBase64 or isEncodingProblem: true and modify the data

to be UTF-8 safe.

Servers MUST apply any access controls such that if the

authenticated user would be unable to discover the blobId by making

queries, then this fact can't be discovered via a Blob/lookup. For

example, if an Email exists in a Mailbox which the authenticated

user does not have access to see, then that emailId MUST not be

returned in a lookup for a blob which is referenced by that email.

If a blob is not visible to a user at all, then the server SHOULD

return that blobId in the notFound array, however it may also return

an empty list for each datatype, as it may not be able to know if

other datatypes do reference that blob.

5. IANA considerations

5.1. JMAP Capability registration for "blob"

IANA is requested to register the "blob" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:blob

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

["Blob/lookup", {

 "list": [

 {

 "id": "Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",

 "datatypes": {

 "Mailbox": ["M54e97373", Mcbe6b662"],

 "Thread": ["T1530616e"],

 "Email": ["E16e70a73eb4", "E84b0930cf16"]

 }

 }

],

 "notFound": ["G6f954bcb620f7f50fc8f21426bde3669da3d9067"]

}, "R1"]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

5.2. JMAP Error Codes Registration for "unknownDataType"

IANA is requested to register the "unknownDataType" JMAP Error Code

as follows:

JMAP Error Code: unknownDataType

Intended use: common

Change Controller: IETF

Reference: this document

Description: The server does not recognise this data type, or the

capability to enable it was not present.

5.3. Creation of "JMAP Datatypes" Registry

IANA is requested to create a new registry "JMAP Datatypes" with the

initial content:

Datatype name

Can

Reference

Blobs

Can

use

for

State

Change

Capability Reference

Core No No urn:ietf:params:jmap:core [RFC8620]

PushSubscription No No urn:ietf:params:jmap:core [RFC8620]

Mailbox Yes Yes urn:ietf:params:jmap:mail [RFC8621]

Thread Yes Yes urn:ietf:params:jmap:mail [RFC8621]

Email Yes Yes urn:ietf:params:jmap:mail [RFC8621]

EmailDelivery No Yes urn:ietf:params:jmap:mail [RFC8621]

SearchSnippet No No urn:ietf:params:jmap:mail [RFC8621]

Identity No Yes urn:ietf:params:jmap:submission [RFC8621]

EmailSubmission No Yes urn:ietf:params:jmap:submission [RFC8621]

VacationResponse No Yes urn:ietf:params:jmap:vacationresponse [RFC8621]

MDN No No urn:ietf:params:jmap:mdn [RFC9007]

Table 1

6. Acknowledgements

TBD

7. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC8174]

[RFC8210]

[RFC7888]

[RFC8620]

[RFC8621]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bush, R. and R. Austein, "The Resource Public Key

Infrastructure (RPKI) to Router Protocol, Version 1", RFC

8210, DOI 10.17487/RFC8210, September 2017, <https://

www.rfc-editor.org/info/rfc8210>.

8. Informative References

Melnikov, A., Ed., "IMAP4 Non-synchronizing Literals",

RFC 7888, DOI 10.17487/RFC7888, May 2016, <https://

www.rfc-editor.org/info/rfc7888>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July

2019, <https://www.rfc-editor.org/info/rfc8620>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP) for Mail", RFC 8621, DOI 10.17487/

RFC8621, August 2019, <https://www.rfc-editor.org/info/

rfc8621>.

Author's Address

Bron Gondwana (editor)

Fastmail

Level 2, 114 William St

Melbourne VIC 3000

Australia

Email: brong@fastmailteam.com

URI: https://www.fastmail.com

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8210
https://www.rfc-editor.org/info/rfc8210
https://www.rfc-editor.org/info/rfc7888
https://www.rfc-editor.org/info/rfc7888
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc8621
https://www.rfc-editor.org/info/rfc8621
mailto:brong@fastmailteam.com
https://www.fastmail.com

	JMAP Blob management extension
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used In This Document
	3. Blobs
	3.1. Blob/set
	3.1.1. create
	3.1.2. update
	3.1.3. destroy

	3.2. Blob/get
	3.3. Blob/lookup

	4. Security considerations
	5. IANA considerations
	5.1. JMAP Capability registration for "blob"
	5.2. JMAP Error Codes Registration for "unknownDataType"
	5.3. Creation of "JMAP Datatypes" Registry

	6. Acknowledgements
	7. Normative References
	8. Informative References
	Author's Address

