
Network Working Group F. Gont
Internet-Draft SI6 Networks / UTN-FRH
Intended status: Best Current Practice I. Arce
Expires: August 7, 2016 Fundacion Sadosky
 February 4, 2016

Security and Privacy Implications of Numeric Identifiers Employed in
Network Protocols

draft-gont-predictable-protocol-ids-00

Abstract

 This document performs an analysis of the security and privacy
 implications of different types of "numeric identifiers" used in IETF
 protocols, and tries to categorize them based on their
 interoperability requirements and the assoiated failure severity when
 such requirements are not met. It describes a number of algorithms
 that have been employed in real implementations to meet such
 requirements and analyzes their security and privacy properties.
 Additionally, it provides advice on possible algorithms that could be
 employed to satisfy the interoperability requirements of each
 identifier type, while minimizing the security and privacy
 implications, thus providing guidance to protocol designers and
 protocol implementers. Finally, it provides recommendations for
 future protocol specifications regarding the specification of the
 aforementioned numeric identifiers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 7, 2016.

Gont & Arce Expires August 7, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Predictable Numeric IDs February 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may not be modified, and derivative works of it may not
 be created, and it may not be published except as an Internet-Draft.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Issues with the Specification of Identifiers 5

 4. Timeline of Vulnerability Disclosures Related to Some Sample
 Identifiers . 6

4.1. IPv4/IPv6 Identification 6
4.2. TCP Initial Sequence Numbers (ISNs) 7

5. Protocol Failure Severity 8
6. Categorizing Identifiers 9
7. Common Algorithms for Identifier Generation 11
7.1. Category #1: Uniqueness (soft failure) 11
7.1.1. Simple Randomization Algorithm 11
7.1.2. Another Simple Randomization Algorithm 12

7.2. Category #2: uniqueness (hard failure) 13
 7.3. Category #3: Uniqueness, constant within context (soft-
 failure) . 13
 7.4. Category #4: Uniqueness, monotonically increasing within
 context (hard failure) 14

7.4.1. Predictable Linear Identifiers Algorithm 14
7.4.2. Per-context Counter Algorithm 16
7.4.3. Simple Hash-Based Algorithm 18
7.4.4. Double-Hash Algorithm 20
7.4.5. Random-Increments Algorithm 21

8. Common Vulnerabilities Associated with Identifiers 23
8.1. Category #1: Uniqueness (soft failure) 23
8.2. Category #2: uniqueness (hard failure) 23

 8.3. Category #3: Uniqueness, constant within context (soft
 failure) . 23

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Gont & Arce Expires August 7, 2016 [Page 2]

Internet-Draft Predictable Numeric IDs February 2016

 8.4. Category #4: Uniqueness, monotonically increasing within
 context (hard failure) 24

9. Security and Privacy Requirements for Identifiers 26
10. IANA Considerations . 26
11. Security Considerations 26
12. Acknowledgements . 26
13. References . 26
13.1. Normative References 26
13.2. Informative References 27

 Authors' Addresses . 31

1. Introduction

 Network protocols employ a variety of numeric identifiers for
 different protocol entities, ranging from DNS Transaction IDs (TxIDs)
 to transport protocol numbers (e.g. TCP ports) or IPv6 Interface
 Identifiers (IIDs). These identifiers usually have specific
 properties that must be satisfied such that they do not result in
 negative interoperability implications (e.g. uniqueness during a
 specified period of time), and associated failure severities when
 such properties are not met, ranging from soft to hard failures.

 For more than 30 years, a large number of implementations of the TCP/
 IP protocol suite have been subject to a variety of attacks, with
 effects ranging from Denial of Service (DoS) or data injection, to
 information leakage that could be exploited for pervasive monitoring
 [RFC7528]. The root of these issues has been, in many cases, the
 poor selection of identifiers in such protocols, usually as a result
 of an insufficient or misleading specification. While it is
 generally trivial to identify an algorithm that can satisfy the
 interoperability requirements for a given identifier, there exists
 practical evidence that doing so without negatively affecting the
 security and/or privacy properties of the aforementioned protocols is
 prone to error.

 For example, implementations have been subject to security and/or
 privacy issues resulting from:

 o Predictable TCP sequence numbers

 o Predictable transport protocol numbers

 o Predictable IPv4 or IPv6 Fragment Identifiers

 o Predictable IPv6 IIDs

 o Predictable DNS TxIDs

https://datatracker.ietf.org/doc/html/rfc7528

Gont & Arce Expires August 7, 2016 [Page 3]

Internet-Draft Predictable Numeric IDs February 2016

 Recent history indicate that when new protocols are standardized or
 new protocol implementations are produced, the security and privacy
 properties of the associated identifiers tend to be overlooked and
 inappropriate algorithms to generate identifier values are either
 suggested in the specification or selected by implementators. As a
 result, we believe that advice in this area is warranted.

 This document contains a non-exhaustive survey of identifiers
 employed in various IETF protocols, and aims to categorize such
 identifiers based on their interoperability requirements, and the
 associated failure severity when such requirements are not met.
 Subsequently, it analyzes several algorithms that have been employed
 in real implementation to meet such requirements and analyzes their
 security and privacy properties, and provides advice on possible
 algorithms that could be employed to satisfy the interoperability
 requirements of each category, while minimizing the associated
 security and privacy implications. Finally, it provides
 recommendations for future protocol specifications regarding the
 specification of the aforementioned numeric identifiers.

2. Terminology

 Identifier:
 A data object in a protocol specification that can be used to
 definetely distinguish a protocol object (a datagram, network
 interface, transport protocol endpoint, session, etc) from all
 other objects of the same type, in a given context. Identifiers
 are usually defined as a series of bits and represented using
 integer values. We note that different identifiers may have
 additional requirements or properties depending on their specific
 use in a protocol. We use the term "identifier" as a generic term
 to refer to any data object in a protocol specification that
 satisfies the identification property stated above.

 Failure Severity:
 The consequences of a failure to comply with the interoperability
 requirements of a given identifier. Severity considers the worst
 potential consequence of a failure, determined by the system
 damage and/or time lost to repair the failure. In this document
 we define two types of failure severity: "soft" and "hard".

 Hard Failure:
 A hard failure is a non-recoverable condition in which a protocol
 does not operate in the prescribed manner or it operates with
 excessive degradation of service. For example, an established TCP
 connection that is aborted due to an error condition constitutes,
 from the point of view of the transport protocol, a hard failure,

Gont & Arce Expires August 7, 2016 [Page 4]

Internet-Draft Predictable Numeric IDs February 2016

 since it enters a state from which normal operation cannot be
 recovered.

 Soft Failure:
 A soft failure is a recoverable condition in which a protocol does
 not operate in the prescribed manner but normal operation can be
 resumed automatically in a short period of time. For example, a
 simple packet-loss event that is subsequently recovered with a
 retransmission can be considered a soft failure.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Issues with the Specification of Identifiers

 While assessing protocol specifications regarding the use of
 identifiers, we found that most of the issues discussed in this
 document arise as a result of one of the following:

 o Protocol specifications which under-specify the requirements for
 their identifiers

 o Protocol specifications that over-specify their identifiers

 o Protocol implementations that simply fail to comply with the
 specified requirements

 A number of protocol implementations (too many of them) simply
 overlook the security and privacy implications of identifiers.
 Examples of them are the specification of TCP port numbers in
 [RFC0793], the specification of TCP sequence numbers in [RFC0793], or
 the speification of the DNS TxID in [RFC1035].

 On the other hand, there are a number of protocol specifications that
 over-specify some of their associated protocol identifiers. For
 example, [RFC4291] essentially results in link-layer addresses being
 embedded in the IPv6 Interface Identifiers (IIDs) when the
 interoperability requirement of uniqueness could be achieved in other
 ways that do not result in negative security and privacy implications
 [I-D.ietf-6man-ipv6-address-generation-privacy]. Similarly,
 [RFC2460] suggests the use of a global counter for the generation of
 Fragment Identification values, when the interoperability properties
 of uniqueness per {Src IP, Dst IP} could be achieved with other
 algorithms that do not result in negative security and privacy
 implications.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc2460

Gont & Arce Expires August 7, 2016 [Page 5]

Internet-Draft Predictable Numeric IDs February 2016

 Finally, there are protocol implementations that simply fail to
 comply with existing protocol specifications. For example, some
 popular operating systems (notably Microsoft Windows) still fail to
 implement randomization of transport protocol ephemeral ports, as
 specified in [RFC6056].

4. Timeline of Vulnerability Disclosures Related to Some Sample
 Identifiers

 This section contains a non-exhaustive timeline of vulnerability
 disclosures related to some sample identifiers and other work that
 has led to advances in this area. The goal of this timeline is to
 illustrate:

 o That vulnerabilities related to how the values for some
 identifiers are generated and assigned have affected
 implementations for an extremely long period of time.

 o That such vulnerabilities, even when addressed for a given
 protocol version, were later reintroduced in new versions or new
 implementations of the same protocol.

 o That standardization efforts that discuss and provide advice in
 this area can have a positive effect on protocol specifications
 and protocol implementations.

4.1. IPv4/IPv6 Identification

 December 1998:
 [Sanfilippo1998a] finds that predictable IPv4 Identification
 values can be leveraged to count the number of packets sent by a
 target node. [Sanfilippo1998b] explains how to leverage the same
 vulnerability to implement a port-scanning technique known as
 dumb/idle scan. A tool that implements this attack is publicly
 released.

 November 1999:
 [Sanfilippo1999] discusses how to leverage predictable IPv4
 Identification to uncover the rules of a number of firewalls.

 November 1999:
 [Bellovin2002] explains how the IPv4 Identification field can be
 exploited to count the number of systems behind a NAT.

 December 2003:
 [Zalewski2003] explains a technique to perform TCP data injection
 attack based on predictable IPv4 identification values which

https://datatracker.ietf.org/doc/html/rfc6056

Gont & Arce Expires August 7, 2016 [Page 6]

Internet-Draft Predictable Numeric IDs February 2016

 requires less effort than TCP injection attacks performed with
 bare TCP packets.

 November 2005:
 [Silbersack2005] discusses shortcoming in a number of techniques
 to mitigate predictable IPv4 Identification values.

 October 2007:
 [Klein2007] describes a weakness in the pseudo random number
 generator (PRNG) in use for the generation of the IP
 Identification by a number of operating systems.

 June 2011:
 [Gont2011] describes how to perform idle scan attacks in IPv6.

 November 2011:
 Linux mitigates predictable IPv6 Identification values
 [RedHat2011] [SUSE2011] [Ubuntu2011].

 December 2011:
 [I-D.ietf-6man-predictable-fragment-id-08] describes the security
 implications of predictable IPv6 Identification values, and
 possible mitigations.

 May 2012:
 [Gont2012] notes that some major IPv6 implementations still employ
 predictable IPv6 Identification values.

 June 2015:
 [I-D.ietf-6man-predictable-fragment-id-08] notes that some popular
 host and router implementations still employ predictable IPv6
 Identification values.

4.2. TCP Initial Sequence Numbers (ISNs)

 September 1981:
 [RFC0793], suggests the use of a global 32-bit ISN generator,
 whose lower bit is incremented roughly every 4 microseconds.
 However, such an ISN generator makes it trivial to predict the ISN
 that a TCP will use for new connections, thus allowing a variety
 of attacks against TCP.

 February 1985:
 [Morris1985] was the first to describe how to exploit predictable
 TCP ISNs for forging TCP connections that could then be leveraged
 for trust relationship exploitation.

 April 1989:

https://datatracker.ietf.org/doc/html/rfc0793

Gont & Arce Expires August 7, 2016 [Page 7]

Internet-Draft Predictable Numeric IDs February 2016

 [Bellovin1989] discussed the security implications of predictable
 ISNs (along with a range of other protocol-based vulnerabilities).

 February 1995:
 [Shimomura1995] reported a real-world exploitation of the attack
 described in 1985 (ten years before) in [Morris1985].

 May 1996:
 [RFC1948] was the first IETF effort, authored by Steven Bellovin,
 to address predictable TCP ISNs. The same concept specified in
 this document for TCP ISNs was later proposed for TCP ephemeral
 ports [RFC6056], TCP Timestamps, and eventually even IPv6
 Interface Identifiers [RFC7217].

 March 2001:
 [Zalewski2001] provides a detailed analysis of statistical
 weaknesses in some ISN generators, and includes a survey of the
 algorithms in use by popular TCP implementations.

 May 2001:
 Vulnerability advisories [CERT2001] [USCERT2001] are released
 regarding statistical weaknesses in some ISN generators, affecting
 popular TCP/IP implementations.

 March 2002:
 [Zalewski2002] updates and complements [Zalewski2001]. It
 concludes that "while some vendors [...] reacted promptly and
 tested their solutions properly, many still either ignored the
 issue and never evaluated their implementations, or implemented a
 flawed solution that apparently was not tested using a known
 approach". [Zalewski2002].

 February 2012:
 [RFC6528], after 27 years of Morris' original work [Morris1985],
 formally updates [RFC0793] to mitigate predictable TCP ISNs.

 August 2014:
 [I-D.eddy-rfc793bis-04], the upcoming revision of the core TCP
 protocol specification, incorporates the algorithm specified in
 [RFC6528] as the recommended algorithm for TCP ISN generation.

5. Protocol Failure Severity

Section 2 defines the concept of "Failure Severity" and two types of
 failures that we employ throughout this document: soft and hard.

 Our analysis of the severity of a failure is performed from the point
 of view of the protocol in question. However, the corresponding

https://datatracker.ietf.org/doc/html/rfc1948
https://datatracker.ietf.org/doc/html/rfc6056
https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc6528

Gont & Arce Expires August 7, 2016 [Page 8]

Internet-Draft Predictable Numeric IDs February 2016

 severity on the upper application or protocol may not be the same as
 that of the protocol in question. For example, a TCP connection that
 is aborted may or may not result in a hard failure of the upper
 application: if the upper application can establish a new TCP
 connection without any impact on the application, a hard failure at
 the TCP protocol may have no severity at the application level. On
 the other hand, if a hard failure of a TCP connection results in
 excessive degradation of service at the application layer, it will
 also result in a hard failure at the application.

6. Categorizing Identifiers

 This section includes a non-exhaustive survey of identifiers, and
 proposes a number of categories that can accommodate these
 identifiers based on their interoperability requirements and their
 failure modes (soft or hard)

 +------------+--------------------------------------+---------------+
 | Identifier | Interoperability Requirements | Failure |
 | | | Severity |
 +------------+--------------------------------------+---------------+
 | IPv6 Frag | Uniqueness (for IP address pair) | Soft/Hard (1) |
 | ID | | |
 +------------+--------------------------------------+---------------+
 | IPv6 IID | Uniqueness (and constant within IPv6 | Soft (3) |
 | | prefix) (2) | |
 +------------+--------------------------------------+---------------+
 | TCP SEQ | Monotonically-increasing | Hard (4) |
 +------------+--------------------------------------+---------------+
 | TCP eph. | Uniqueness (for connection ID) | Hard |
 | port | | |
 +------------+--------------------------------------+---------------+
 | IPv6 Flow | Uniqueness | None (5) |
 | L. | | |
 +------------+--------------------------------------+---------------+
 | DNS TxID | Uniqueness | None (6) |
 +------------+--------------------------------------+---------------+

 Table 1: Survey of Identifiers

 Notes:

 (1)
 While a single collision of Fragment ID values would simply lead
 to a single packet drop (and hence a "soft" failure), repeated
 collisions at high data rates might trash the Fragment ID space,
 leading to a hard failure [RFC4963].

https://datatracker.ietf.org/doc/html/rfc4963

Gont & Arce Expires August 7, 2016 [Page 9]

Internet-Draft Predictable Numeric IDs February 2016

 (2)
 While the interoperability requirements are simply that the
 Interface ID results in a unique IPv6 address, for operational
 reasons it is typically desirable that the resulting IPv6 address
 (and hence the corresponding Interface ID) be constant within each
 network [I-D.ietf-6man-default-iids] [RFC7217].

 (3)
 While IPv6 Interface IDs must result in unique IPv6 addresses,
 IPv6 Duplicate Address Detection (DAD) [RFC4862] allows for the
 detection of duplicate Interface IDs/addresses, and hence such
 Interface ID collisions can be recovered.

 (4)
 In theory there are no interoperability requirements for TCP
 sequence numbers, since the TIME-WAIT state and TCP's "quiet time"
 take care of old segments from previous incarnations of the
 connection. However, a widespread optimization allows for a new
 incarnation of a previous connection to be created if the Initial
 Sequence Number (ISN) of the incoming SYN is larger than the last
 sequence number seen in that direction for the previous
 incarnation of the connection. Thus, monotonically-increasing TCP
 sequence numbers allow for such optimization to work as expected
 [RFC6528].

 (5)
 The IPv6 Flow Label is typically employed for load sharing
 [RFC7098], along with the Source and Destination IPv6 addresses.
 Reuse of a Flow Label value for the same set {Source Address,
 Destination Address} would typically cause both flows to be
 multiplexed into the same link. However, as long as this does not
 occur deterministically, it will not result in any negative
 implications.

 (6)
 DNS TxIDs are employed, together with the Source Address,
 Destination Address, Source Port, and Destination Port, to match
 DNS requests and responses. However, since an implementation
 knows which DNS requests were sent for that set of {Source
 Address, Destination Address, Source Port, and Destination Port,
 DNS TxID}, a collision of TxID would result, if anything, in a
 small performance penalty (the response would be discarded when it
 is found that it does not answer the query sent in the
 corresponding DNS query).

 Based on the survey above, we can categorize identifiers as follows:

https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc7098

Gont & Arce Expires August 7, 2016 [Page 10]

Internet-Draft Predictable Numeric IDs February 2016

 +-----+---------------------------------------+---------------------+
 | Cat | Category | Sample Proto IDs |
 | # | | |
 +-----+---------------------------------------+---------------------+
 | 1 | Uniqueness (soft failure) | IPv6 Flow L., DNS |
 | | | TxIDs |
 +-----+---------------------------------------+---------------------+
 | 2 | Uniqueness (hard failure) | IPv6 Frag ID, TCP |
 | | | ephemeral port |
 +-----+---------------------------------------+---------------------+
 | 3 | Uniqueness, constant within context | IPv6 IIDs |
 | | (soft failure) | |
 +-----+---------------------------------------+---------------------+
 | 4 | Uniqueness, monotonically increasing | TCP ISN |
 | | within context (hard failure) | |
 +-----+---------------------------------------+---------------------+

 Table 2: Identifier Categories

 We note that Category #4 could be considered a generalized case of
 category #3, in which a monotonically increasing element is added to
 a constant (within context) element, such that the resulting
 identifiers are monotonically increasing within a specified context.
 That is, the same algorithm could be employed for both #3 and #4,
 given appropriate parameters.

7. Common Algorithms for Identifier Generation

 The following subsections describe common algorithms found for
 Protocol ID generation for each of the categories above.

7.1. Category #1: Uniqueness (soft failure)

7.1.1. Simple Randomization Algorithm

Gont & Arce Expires August 7, 2016 [Page 11]

Internet-Draft Predictable Numeric IDs February 2016

 /* Ephemeral port selection function */
 id_range = max_id - min_id + 1;
 next_id = min_id + (random() % id_range);
 count = next_id;

 do {
 if(check_suitable_id(next_id))
 return next_id;

 if (next_id == max_id) {
 next_id = min_id;
 } else {
 next_id++;
 }

 count--;
 } while (count > 0);

 return ERROR;

 Note:
 random() is a function that returns a pseudo-random unsigned
 integer number of appropriate size. Note that the output needs to
 be unpredictable, and typical implementations of POSIX random()
 function do not necessarily meet this requirement. See [RFC4086]
 for randomness requirements for security.

 The function check_suitable_id() can check, when possible, whether
 this identifier is e.g. already in use. When already used, this
 algorithm selects the next available protocol ID.

 All the variables (in this and all the algorithms discussed in
 this document) are unsigned integers.

7.1.2. Another Simple Randomization Algorithm

 The following pseudo-code illustrates another algorithm for selecting
 a random identifier in which, in the event the identifier is found to
 be not suitable (e.g., already in use), another identifier is
 selected randomly:

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires August 7, 2016 [Page 12]

Internet-Draft Predictable Numeric IDs February 2016

 id_range = max_id - min_id + 1;
 next_id = min_id + (random() % id_range);
 count = id_range;

 do {
 if(check_suitable_id(next_id))
 return next_id;

 next_id = min_id + (random() % id_range);
 count--;
 } while (count > 0);

 return ERROR;

 This algorithm might be unable to select an identifier (i.e., return
 "ERROR") even if there are suitable identifiers available, when there
 are a large number of identifiers "in use".

7.2. Category #2: uniqueness (hard failure)

 One of the most trivial approaches for achieving uniqueness for an
 identifier (with a hard failure mode) is to implement a linear
 function. As a result, all of the algorithms described in

Section 7.4 are of use for complying the requirements of this
 identifier category.

7.3. Category #3: Uniqueness, constant within context (soft-failure)

 Here we should describe a generic version of RFC7217, and state that
 it is essentially the algorithm in Section 7.4.3 without a counter.

 The goal of this algorithm is to produce identifiers that are
 constant for a given context, but that change when the aforementioned
 context changes.

 Keeping one value for each possible "context" may in many cases be
 considered too onerous in terms of memory requirements. As a
 workaround, the following algorithm employs a calculated technique
 (as opposed to keeping state in memory) to maintain the constant
 identifier for each given context.

 In the following algorithm, the function F() provides (statelessly) a
 constant identifier for each given context.

https://datatracker.ietf.org/doc/html/rfc7217

Gont & Arce Expires August 7, 2016 [Page 13]

Internet-Draft Predictable Numeric IDs February 2016

 /* Protocol ID selection function */
 id_range = max_id - min_id + 1;

 counter = 0;

 do {
 offset = F(CONTEXT, counter, secret_key);
 next_id = min_id + (offset % id_range);

 if(check_suitable_id(next_id))
 return next_id;

 counter++;

 } while (counter <= MAX_RETRIES);

 return ERROR;

 The function F() provides a "per-CONTEXT" constant identifier for a
 given context. 'offset' may take any value within the storage type
 range since we are restricting the resulting identifier to be in the
 range [min_id, max_id] in a similar way as in the algorithm described
 in Section 7.1.1. Collisions can be recovered by incrementing the
 'counter' variable and recomputing F().

 The function F() should be a cryptographic hash function like SHA-256
 [FIPS-SHS]. Note: MD5 [RFC1321] is considered unacceptable for F()
 [RFC6151]. CONTEXT is the concatenation of all the elements that
 define a given context. For example, if this algorithm is expected
 to produce identifiers that are unique per network interface card
 (NIC) and SLAAC autoconfiguration prefix, the CONTEXT should be the
 concatenation of e.g. the interface index and the SLAAC
 autoconfiguration prefix (please see [RFC7217] for an implementation
 of this algorithm for the generation of IPv6 IIDs).

 The secret should be chosen to be as random as possible (see
 [RFC4086] for recommendations on choosing secrets).

7.4. Category #4: Uniqueness, monotonically increasing within context
 (hard failure)

7.4.1. Predictable Linear Identifiers Algorithm

 One of the most trivial ways to achieve uniqueness with a low
 identifier reuse frequency is to produce a linear sequence. This
 obviously assumes that each identifier will be used for a similar
 period of time.

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires August 7, 2016 [Page 14]

Internet-Draft Predictable Numeric IDs February 2016

 For example, the following algorithm has been employed in a number of
 operating systems for selecting IP fragment IDs, TCP ephemeral ports,
 etc.

 /* Initialization at system boot time. Could be random */
 next_id = min_id;
 id_inc= 1;

 /* Identifier selection function */
 count = max_id - min_id + 1;

 do {
 if (next_id == max_id) {
 next_id = min_id;
 }
 else {
 next_id = next_ifd + id_inc;
 }

 if (check_suitable_id(next_id))
 return next_id;

 count--;

 } while (count > 0);

 return ERROR;

 Note:
 check_suitable_id() is a function that checks whether the
 resulting identifier is acceptable (e.g., whether its in use,
 etc.).

 For obvious reasons, this algorithm results in predicable sequences.
 If a global counter is used (such as "next_id" in the example above),
 a node that learns one protocol identifier can also learn or guess
 values employed by past and future protocol instances. On the other
 hand, when the value of increments is known (such as "1" in this
 case), an attacker can sample two values, and learn the number of
 identifiers that were generated in-between.

 Where identifier reuse would lead to a hard failure, one typical
 approach to generate unique identifiers (while minimizing the
 security and privacy implications of predictable identifiers) is to
 obfuscate the resulting protocol IDs by either:

 o Replace the global counter with multiple counters (initialized to
 a random value)

Gont & Arce Expires August 7, 2016 [Page 15]

Internet-Draft Predictable Numeric IDs February 2016

 o Randomizing the "increments"

 Avoiding global counters essentially means that learning one
 identifier for a given context (e.g., one TCP ephemeral port for a
 given {src IP, Dst IP, Dst Port}) is of no use for learning or
 guessing identifiers for a different context (e.g., TCP ephemeral
 ports that involve other peers). However, this may imply keeping one
 additional variable/counter per context, which may be prohibitive in
 some environments. The choice of id_inc has implications on both the
 security and privacy properties of the resulting identifiers, but
 also on the corresponding interoperability properties. On one hand,
 minimizing the increments (as in "id_inc = 1" in our case) generally
 minimizes the identifier reuse frequency, albeit at increased
 predictability. On the other hand, if the increments are randomized
 predictability of the resulting identifiers is reduced, and the
 information leakage produced by global constant increments is
 mitigated.

7.4.2. Per-context Counter Algorithm

 One possible way to achieve similar (or even lower) identifier reuse
 frequency while still avoiding predictable sequences would be to
 employ a per-context counter, as opposed to a global counter. Such
 an algorithm could be described as follows:

Gont & Arce Expires August 7, 2016 [Page 16]

Internet-Draft Predictable Numeric IDs February 2016

 /* Initialization at system boot time. Could be random */
 id_inc= 1;

 /* Identifier selection function */
 count = max_id - min_id + 1;

 if(lookup_counter(CONTEXT) == ERROR){
 create_counter(CONTEXT);
 }

 next_id= lookup_counter(CONTEXT);

 do {
 if (next_id == max_id) {
 next_id = min_id;
 }
 else {
 next_id = next_id + id_inc;
 }

 if (check_suitable_id(next_id)){
 store_counter(CONTEXT, next_id);
 return next_id;
 }

 count--;

 } while (count > 0);

 store_counter(CONTEXT, next_id);
 return ERROR;

 NOTE:
 lookup_counter() returns the current counter for a given context,
 or an error condition if such a counter does nto exist.

 create_counter() creates a counter for a given context, and
 initializes such counter to a random value.

 store_counter() saves (updates) the current counter for a given
 context.

 check_suitable_id() is a function that checks whether the
 resulting identifier is acceptable (e.g., whether its in use,
 etc.).

 Essentially, whenever a new identifier is to be selected, the
 algorithm checks whether there there is a counter for the

Gont & Arce Expires August 7, 2016 [Page 17]

Internet-Draft Predictable Numeric IDs February 2016

 corresponding context. If there is, such counter is incremented to
 obtain the new identifier, and the new identifier updates the
 corresponding counter. If there is no counter for such context, a
 new counter is created an initialized to a random value, and used as
 the new identifier.

 This algorithm produces a per-context counter, which results in one
 linear function for each context. Since the origin of each "line" is
 a random value, the resulting values are unknown to an off-path
 attacker.

 This algorithm has the following drawbacks:

 o If, as a result of resource management, the counter for a given
 context must be removed, the last identifier value used for that
 context will be lost. Thus, if subsequently an identifier needs
 to be generated for such context, that counter will need to be
 recreated and reinitialized to random value, thus possibly leading
 to reuse/collistion of identifiers.

 o If the identifiers are predictable by the destination system
 (e.g., the destination host represents the context), a vulnerable
 host might possibly leak to third parties the identifiers used by
 other hosts to send traffic to it (i.e., a vulnerable Host B could
 leak to Host C the identifier values that Host A is using to send
 packets to Host B). Appendix A of [RFC7739] describes one
 possible scenario for such leakage in detail.

7.4.3. Simple Hash-Based Algorithm

 The goal of this algorithm is to produce monotonically-increasing
 sequences, with a randomized initial value, for each given context.
 For example, if the identifiers being generated must be unique for
 each {src IP, dst IP} set, then each possible combination of {src IP,
 dst IP} should have a corresponding "next_id" value.

 Keeping one value for each possible "context" may in many cases be
 considered too onerous in terms of memory requirements. As a
 workaround, the following algorithm employs a calculated technique
 (as opposed to keeping state in memory) to maintain the random offset
 for each possible context.

 In the following algorithm, the function F() provides (statelessly) a
 random offset for each given context.

https://datatracker.ietf.org/doc/html/rfc7739#appendix-A

Gont & Arce Expires August 7, 2016 [Page 18]

Internet-Draft Predictable Numeric IDs February 2016

 /* Initialization at system boot time. Could be random. */
 counter = 0;

 /* Protocol ID selection function */
 id_range = max_id - min_id + 1;
 offset = F(CONTEXT, secret_key);
 count = id_range;

 do {
 next_id = min_id +
 (counter + offset) % id_range;

 counter++;

 if(check_suitable_id(next_id))
 return next_id;

 count--;

 } while (count > 0);

 return ERROR;

 The function F() provides a "per-CONTEXT" fixed offset within the
 identifier space. Both the 'offset' and 'counter' variables may take
 any value within the storage type range since we are restricting the
 resulting identifier to be in the range [min_id, max_id] in a similar
 way as in the algorithm described in Section 7.1.1. This allows us
 to simply increment the 'counter' variable and rely on the unsigned
 integer to wrap around.

 The function F() should be a cryptographic hash function like SHA-256
 [FIPS-SHS]. Note: MD5 [RFC1321] is considered unacceptable for F()
 [RFC6151]. CONTEXT is the concatenation of all the elements that
 define a given context. For example, if this algorithm is expected
 to produce identifiers that are monotonically-increasing for each set
 (Source IP Address, Destination IP Address), the CONTEXT should be
 the concatenation of these two values.

 The secret should be chosen to be as random as possible (see
 [RFC4086] for recommendations on choosing secrets).

 It should be noted that, since this algorithm uses a global counter
 ("counter") for selecting identifiers, if an attacker could, e.g.,
 force a client to periodically establish a new TCP connection to an
 attacker-controlled machine (or through an attacker-observable
 routing path), the attacker could substract consecutive source port

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires August 7, 2016 [Page 19]

Internet-Draft Predictable Numeric IDs February 2016

 values to obtain the number of outgoing TCP connections established
 globally by the target host within that time period (up to wrap-
 around issues and five-tuple collisions, of course).

7.4.4. Double-Hash Algorithm

 A trade-off between maintaining a single global 'counter' variable
 and maintaining 2**N 'counter' variables (where N is the width of the
 result of F()) could be achieved as follows. The system would keep
 an array of TABLE_LENGTH integers, which would provide a separation
 of the increment of the 'counter' variable. This improvement could
 be incorporated into the algorithm from Section 7.4.3 as follows:

 /* Initialization at system boot time */
 for(i = 0; i < TABLE_LENGTH; i++)
 table[i] = random();

 id_inc = 1;

 /* Protocol ID selection function */
 id_range = max_id - min_id + 1;
 offset = F(CONTEXT, secret_key1);
 index = G(CONTEXT, secret_key2);
 count = id_range;

 do {
 next_id = min_id + (offset + table[index]) % id_range;
 table[index] = table[index] + id_inc;

 if(check_suitable_id(next_id))
 return next_id;

 count--;

 } while (count > 0);

 return ERROR;

 'table[]' could be initialized with random values, as indicated by
 the initialization code in pseudo-code above. The function G()
 should be a cryptographic hash function. It should use the same
 CONTEXT as F(), and a secret key value to compute a value between 0
 and (TABLE_LENGTH-1). Alternatively, G() could take an "offset" as
 input, and perform the exclusive-or (XOR) operation between all the
 bytes in 'offset'.

Gont & Arce Expires August 7, 2016 [Page 20]

Internet-Draft Predictable Numeric IDs February 2016

 The array 'table[]' assures that successive identifiers for a given
 context will be monotonically-increasing. However, the increments
 space is separated into TABLE_LENGTH different spaces, and thus
 identifier reuse frequency will be (probabilistically) lower than
 that of the algorithm in Section 7.4.3. That is, the generation of
 identifier for one given context will not necessarily result in
 increments in the identifiers for other contexts.

 It is interesting to note that the size of 'table[]' does not limit
 the number of different identifier sequences, but rather separates
 the *increments* into TABLE_LENGTH different spaces. The identifier
 sequence will result from adding the corresponding entry of 'table[]'
 to the variable 'offset', which selects the actual identifier
 sequence (as in the algorithm from Section 7.4.3).

 An attacker can perform traffic analysis for any "increment space"
 into which the attacker has "visibility" -- namely, the attacker can
 force a node to generate identifiers where G(offset) identifies the
 target "increment space". However, the attacker's ability to perform
 traffic analysis is very reduced when compared to the predictable
 linear identifiers (described in Section 7.4.1) and the hash-based
 identifiers (described in Section 7.4.3). Additionally, an
 implementation can further limit the attacker's ability to perform
 traffic analysis by further separating the increment space (that is,
 using a larger value for TABLE_LENGTH) and/or by randomizing the
 increments.

7.4.5. Random-Increments Algorithm

 This algorithm offers a middle ground between the algorithms that
 select ephemeral ports randomly (such as those described in Sections

Section 7.1.1 and Section 7.1.2), and those that offer obfuscation
 but no randomization (such as those described in Sections

Section 7.4.3 and Section 7.4.4).

Gont & Arce Expires August 7, 2016 [Page 21]

Internet-Draft Predictable Numeric IDs February 2016

 /* Initialization code at system boot time. */
 next_id = random(); /* Initialization value */
 id_inc = 500; /* Determines the trade-off */

 /* Identifier selection function */
 id_range = max_id - min_id + 1;

 count = id_range;

 do {
 /* Random increment */
 next_id = next_id + (random() % id_increment) + 1;

 /* Keep the identifier within acceptable range */
 next_id = min_id + (next_id % id_range);

 if(check_suitable_id(next_id))
 return next_id;

 count--;
 } while (count > 0);

 return ERROR;

 This algorithm aims at producing a monotonically increasing sequence
 of identifiers, while avoiding the use of fixed increments, which
 would lead to trivially predictable sequences. The value "id_inc"
 allows for direct control of the trade-off between the level of
 obfuscation and the ID reuse frequency. The smaller the value of
 "id_inc", the more similar this algorithm is to a predicable, global
 monotonically-increasing ID generation algorithm. The larger the
 value of "id_inc", the more similar this algorithm is to the
 algorithm described in Section 7.1.1 of this document.

 When the identifiers wrap, there is the risk of collisions of
 identifiers (i.e., identifier reuse). Therefore, "id_inc" should be
 selected according to the following criteria:

 o It should maximize the wrapping time of the identifier space.

 o It should minimize identifier reuse frequency.

 o It should maximize obfuscation.

 Clearly, these are competing goals, and the decision of which value
 of "id_inc" to use is a trade-off. Therefore, the value of "id_inc"

Gont & Arce Expires August 7, 2016 [Page 22]

Internet-Draft Predictable Numeric IDs February 2016

 should be configurable so that system administrators can make the
 trade-off for themselves.

8. Common Vulnerabilities Associated with Identifiers

 This section analyzes common vulnerabilities associated with the
 generation of identifiers for each of the categories identified in

Section 6.

8.1. Category #1: Uniqueness (soft failure)

 Possible vulnerabilities associated with identifiers of this category
 are:

 o Use of trivial algorithms (e.g. global counters) that generate
 predictable identifiers

 o Use of flawed PRNGs.

 Since the only interoperability requirement for these identifiers is
 uniqueness, the obvious approach to generate them is to employ a
 PRNG. An implementer should consult [RFC4086] regarding randomness
 requirements for security, and consult relevant documentation when
 employing a PRNG provided by the underlying system.

 Use algorithms other than PRNGs for generating identifiers of this
 category is discouraged.

8.2. Category #2: uniqueness (hard failure)

 As noted in Section 7.2 this category typically employs the same
 algorithms as Category #4, since a monotonically-increasing sequence
 tends to minimize the identifier reuse frequency. Therefore, the
 vulnerability analysis of Section 8.4 applies to this case.

8.3. Category #3: Uniqueness, constant within context (soft failure)

 There are two main vulnerabilities that may be associated with
 identifiers of this category:

 1. Use algorithms or sources that result in predictable identifiers

 2. Employing the same identifier across contexts in which constantcy
 is not required

 At times, an implementation or specification may be tempted to employ
 a source for the identifier which is known to provide unique values.
 However, while unique, the associated identifiers may have other

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires August 7, 2016 [Page 23]

Internet-Draft Predictable Numeric IDs February 2016

 properties such as being predictable or leaking information about the
 node in question. For example, as noted in
 [I-D.ietf-6man-ipv6-address-generation-privacy], embedding link-layer
 addresses for generating IPv6 IIDs not only results in predictable
 values, but also leaks information about the manufacturer of the
 network interface card.

 On the other hand, using an identifier across contexts where
 constantcy is not required can be leveraged for correlation of
 activities. On of the most trivial examples of this is the use of
 IPv6 IIDs that are constant across networks (such as IIDs that embed
 the underlying link-layer address).

8.4. Category #4: Uniqueness, monotonically increasing within context
 (hard failure)

 A simple way to generalize algorithms employed for generating
 identifiers of Category #4 would be as follows:

 /* Identifier selection function */
 count = max_id - min_id + 1;

 do {
 linear(CONTEXT)= linear(CONTEXT) + increment();
 next_id= offset(CONTEXT) + linear(CONTEXT);

 if(check_suitable_id(next_id))
 return next_id;

 count--;
 } while (count > 0);

 return ERROR;

 Essentially, an identifier (next_id) is generated by adding a linear
 function (linear()) to an offset value, which is unknown to the
 attacker, and constant for given context.

 The following aspects of the algorithm should be considered:

 o For the most part, it is the offset() function that results in
 identifiers that are unpredictable by an off-path attacker. While
 the resulting sequence will be monotonically-increasing, the use
 of an offset value that is unknown to the attacker makes the
 resulting values unknown to the attacker.

Gont & Arce Expires August 7, 2016 [Page 24]

Internet-Draft Predictable Numeric IDs February 2016

 o The most straightforward "stateless" implementation of offset
 would be that in which offset() is the result of a
 cryptographically-secure hash-function that takes the values that
 identify the context and a "secret" (not shown in the figure
 above) as arguments.

 o Another possible (but stateful) approach would be to simply
 generate a random offset and store it in memory, and then look-up
 the corresponding context when a new identifier is to be selected.
 The algorithm in Section 7.4.2 is essentially an implementation of
 this type.

 o The linear function is incremented according to increment(). In
 the most trivial case increment() could always return the constant
 "1". But it could also possibly return small integers such the
 increments are randomized.

 Considering the generic algorithm illustrated above we can identify
 the following possible vulnerabilities:

 o If the offset value spans more than the necessary context,
 identifiers could be unnecessarily predictable by other parties,
 since the offset value would be unnecessarily leaked to them. For
 example, an implementation that means to produce a per-destination
 counter but replaces offset() with a constant number (i.e.,
 employs a global counter), will unnecessarily result in
 predictable identifiers.

 o The function linear() could be seen as representing the number of
 identifiers that have so far been generated for a given context.
 If linear() spans more than the necessary context, the
 "increments" could be leaked to other parties, thus disclosing
 information about the number of identifiers that have so far been
 generated. For example, an implementation in which linear() is
 implemented as a single global counter will unnecessarily leak
 information the number of identifiers that have been produced.

 o increment() determines how the linear() is incremented for each
 identifier that is selected. In the most trivial case,
 increment() will return the integer "1". However, an
 implementation may have increment() return a "small" integer value
 such that even if the current value employed by the generator is
 guessed (see Appendix A of [RFC7739]), the exact next identifier
 to be selected will be slightly harder to identify.

https://datatracker.ietf.org/doc/html/rfc7739#appendix-A

Gont & Arce Expires August 7, 2016 [Page 25]

Internet-Draft Predictable Numeric IDs February 2016

9. Security and Privacy Requirements for Identifiers

 Protocol specifications that specify identifiers should:

 1. Clearly specify the interoperability requirements for selecting
 the aforementioned identifiers.

 2. Provide a security and privacy analysis of the aforementioned
 identifiers.

 3. Recommend an algorithm for generating the aforementioned
 identifiers that mitigates security and privacy issues, such as
 those discussed in Section 8.

10. IANA Considerations

 There are no IANA registries within this document. The RFC-Editor
 can remove this section before publication of this document as an
 RFC.

11. Security Considerations

 The entire document is about the security and privacy implications of
 identifiers.

12. Acknowledgements

 The authors would like to thank (in alphabetical order) [TBD] for
 providing valuable comments on earlier versions of this document.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence
 Number Attacks", RFC 6528, DOI 10.17487/RFC6528, February
 2012, <http://www.rfc-editor.org/info/rfc6528>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc6528
http://www.rfc-editor.org/info/rfc6528

Gont & Arce Expires August 7, 2016 [Page 26]

Internet-Draft Predictable Numeric IDs February 2016

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <http://www.rfc-editor.org/info/rfc2460>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <http://www.rfc-editor.org/info/rfc4862>.

 [RFC5722] Krishnan, S., "Handling of Overlapping IPv6 Fragments",
RFC 5722, DOI 10.17487/RFC5722, December 2009,

 <http://www.rfc-editor.org/info/rfc5722>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <http://www.rfc-editor.org/info/rfc6151>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <http://www.rfc-editor.org/info/rfc7217>.

 [RFC7098] Carpenter, B., Jiang, S., and W. Tarreau, "Using the IPv6
 Flow Label for Load Balancing in Server Farms", RFC 7098,
 DOI 10.17487/RFC7098, January 2014,
 <http://www.rfc-editor.org/info/rfc7098>.

13.2. Informative References

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <http://www.rfc-editor.org/info/rfc1321>.

 [RFC7528] Higgs, P. and J. Piesing, "A Uniform Resource Name (URN)
 Namespace for the Hybrid Broadcast Broadband TV (HbbTV)
 Association", RFC 7528, DOI 10.17487/RFC7528, April 2015,
 <http://www.rfc-editor.org/info/rfc7528>.

https://datatracker.ietf.org/doc/html/rfc2460
http://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc4291
http://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4862
http://www.rfc-editor.org/info/rfc4862
https://datatracker.ietf.org/doc/html/rfc5722
http://www.rfc-editor.org/info/rfc5722
https://datatracker.ietf.org/doc/html/rfc6151
http://www.rfc-editor.org/info/rfc6151
https://datatracker.ietf.org/doc/html/rfc7217
http://www.rfc-editor.org/info/rfc7217
https://datatracker.ietf.org/doc/html/rfc7098
http://www.rfc-editor.org/info/rfc7098
https://datatracker.ietf.org/doc/html/rfc1321
http://www.rfc-editor.org/info/rfc1321
https://datatracker.ietf.org/doc/html/rfc7528
http://www.rfc-editor.org/info/rfc7528

Gont & Arce Expires August 7, 2016 [Page 27]

Internet-Draft Predictable Numeric IDs February 2016

 [RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks",
RFC 1948, DOI 10.17487/RFC1948, May 1996,

 <http://www.rfc-editor.org/info/rfc1948>.

 [CPNI-TCP]
 Gont, F., "Security Assessment of the Transmission Control
 Protocol (TCP)", United Kingdom's Centre for the
 Protection of National Infrastructure (CPNI) Technical
 Report, 2009, <http://www.gont.com.ar/papers/

tn-03-09-security-assessment-TCP.pdf>.

 [Zalewski2001]
 Zalewski, M., "Strange Attractors and TCP/IP Sequence
 Number Analysis", 2001,
 <http://lcamtuf.coredump.cx/oldtcp/tcpseq.html>.

 [Zalewski2002]
 Zalewski, M., "Strange Attractors and TCP/IP Sequence
 Number Analysis - One Year Later", 2001,
 <http://lcamtuf.coredump.cx/newtcp/>.

 [Bellovin1989]
 Bellovin, S., "Security Problems in the TCP/IP Protocol
 Suite", Computer Communications Review, vol. 19, no. 2,
 pp. 32-48, 1989, <https://www.cs.columbia.edu/~smb/papers/

ipext.pdf>.

 [Joncheray1995]
 Joncheray, L., "A Simple Active Attack Against TCP", Proc.
 Fifth Usenix UNIX Security Symposium, 1995.

 [Morris1985]
 Morris, R., "A Weakness in the 4.2BSD UNIX TCP/IP
 Software", CSTR 117, AT&T Bell Laboratories, Murray Hill,
 NJ, 1985, <https://pdos.csail.mit.edu/~rtm/

papers/117.pdf>.

 [USCERT2001]
 US-CERT, , "US-CERT Vulnerability Note VU#498440: Multiple
 TCP/IP implementations may use statistically predictable
 initial sequence numbers", 2001,
 <http://www.kb.cert.org/vuls/id/498440>.

 [CERT2001]
 CERT, , "CERT Advisory CA-2001-09: Statistical Weaknesses
 in TCP/IP Initial Sequence Numbers", 2001,
 <http://www.cert.org/advisories/CA-2001-09.html>.

https://datatracker.ietf.org/doc/html/rfc1948
http://www.rfc-editor.org/info/rfc1948
http://www.gont.com.ar/papers/tn-03-09-security-assessment-TCP.pdf
http://www.gont.com.ar/papers/tn-03-09-security-assessment-TCP.pdf
http://lcamtuf.coredump.cx/oldtcp/tcpseq.html
http://lcamtuf.coredump.cx/newtcp/
https://www.cs.columbia.edu/~smb/papers/ipext.pdf
https://www.cs.columbia.edu/~smb/papers/ipext.pdf
https://pdos.csail.mit.edu/~rtm/papers/117.pdf
https://pdos.csail.mit.edu/~rtm/papers/117.pdf
http://www.kb.cert.org/vuls/id/498440
http://www.cert.org/advisories/CA-2001-09.html

Gont & Arce Expires August 7, 2016 [Page 28]

Internet-Draft Predictable Numeric IDs February 2016

 [Shimomura1995]
 Shimomura, T., "Technical details of the attack described
 by Markoff in NYT", Message posted in USENET's
 comp.security.misc newsgroup Message-ID:
 <3g5gkl$5j1@ariel.sdsc.edu>, 1995,
 <http://www.gont.com.ar/docs/post-shimomura-usenet.txt>.

 [I-D.eddy-rfc793bis-04]
 Eddy, W., "Transmission Control Protocol Specification",

draft-eddy-rfc793bis-04 (work in progress), August 2014.

 [RFC6056] Larsen, M. and F. Gont, "Recommendations for Transport-
 Protocol Port Randomization", BCP 156, RFC 6056,
 DOI 10.17487/RFC6056, January 2011,
 <http://www.rfc-editor.org/info/rfc6056>.

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927,
 DOI 10.17487/RFC5927, July 2010,
 <http://www.rfc-editor.org/info/rfc5927>.

 [I-D.gont-6man-flowlabel-security]
 Gont, F., "Security Assessment of the IPv6 Flow Label",

draft-gont-6man-flowlabel-security-03 (work in progress),
 March 2012.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC7739] Gont, F., "Security Implications of Predictable Fragment
 Identification Values", RFC 7739, DOI 10.17487/RFC7739,
 February 2016, <http://www.rfc-editor.org/info/rfc7739>.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963,
 DOI 10.17487/RFC4963, July 2007,
 <http://www.rfc-editor.org/info/rfc4963>.

 [Bellovin2002]
 Bellovin, S., "A Technique for Counting NATted Hosts",
 IMW'02 Nov. 6-8, 2002, Marseille, France, 2002.

 [Fyodor2004]
 Fyodor, , "Idle scanning and related IP ID games", 2004,
 <http://www.insecure.org/nmap/idlescan.html>.

http://www.gont.com.ar/docs/post-shimomura-usenet.txt
https://datatracker.ietf.org/doc/html/draft-eddy-rfc793bis-04
https://datatracker.ietf.org/doc/html/bcp156
https://datatracker.ietf.org/doc/html/rfc6056
http://www.rfc-editor.org/info/rfc6056
https://datatracker.ietf.org/doc/html/rfc5927
http://www.rfc-editor.org/info/rfc5927
https://datatracker.ietf.org/doc/html/draft-gont-6man-flowlabel-security-03
https://datatracker.ietf.org/doc/html/rfc1035
http://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/rfc7739
http://www.rfc-editor.org/info/rfc7739
https://datatracker.ietf.org/doc/html/rfc4963
http://www.rfc-editor.org/info/rfc4963
http://www.insecure.org/nmap/idlescan.html

Gont & Arce Expires August 7, 2016 [Page 29]

Internet-Draft Predictable Numeric IDs February 2016

 [Sanfilippo1998a]
 Sanfilippo, S., "about the ip header id", Post to Bugtraq
 mailing-list, Mon Dec 14 1998,
 <http://seclists.org/bugtraq/1998/Dec/48>.

 [Sanfilippo1998b]
 Sanfilippo, S., "Idle scan", Post to Bugtraq mailing-list,
 1998, <http://www.kyuzz.org/antirez/papers/dumbscan.html>.

 [Sanfilippo1999]
 Sanfilippo, S., "more ip id", Post to Bugtraq mailing-
 list, 1999,
 <http://www.kyuzz.org/antirez/papers/moreipid.html>.

 [Silbersack2005]
 Silbersack, M., "Improving TCP/IP security through
 randomization without sacrificing interoperability",
 EuroBSDCon 2005 Conference, 2005,
 <http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.91.4542&rep=rep1&type=pdf>.

 [Zalewski2003]
 Zalewski, M., "A new TCP/IP blind data injection
 technique?", 2003,
 <http://lcamtuf.coredump.cx/ipfrag.txt>.

 [Klein2007]
 Klein, A., "OpenBSD DNS Cache Poisoning and Multiple O/S
 Predictable IP ID Vulnerability", 2007,
 <http://www.trusteer.com/files/OpenBSD_DNS_Cache_Poisoning

_and_Multiple_OS_Predictable_IP_ID_Vulnerability.pdf>.

 [Gont2011]
 Gont, F., "Hacking IPv6 Networks (training course)", Hack
 In Paris 2011 Conference Paris, France, June 2011.

 [RedHat2011]
 RedHat, , "RedHat Security Advisory RHSA-2011:1465-1:
 Important: kernel security and bug fix update", 2011,
 <https://rhn.redhat.com/errata/RHSA-2011-1465.html>.

 [Ubuntu2011]
 Ubuntu, , "Ubuntu: USN-1253-1: Linux kernel
 vulnerabilities", 2011,
 <http://www.ubuntu.com/usn/usn-1253-1/>.

http://seclists.org/bugtraq/1998/Dec/48
http://www.kyuzz.org/antirez/papers/dumbscan.html
http://www.kyuzz.org/antirez/papers/moreipid.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.4542&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.4542&rep=rep1&type=pdf
http://lcamtuf.coredump.cx/ipfrag.txt
http://www.trusteer.com/files/OpenBSD_DNS_Cache_Poisoning_and_Multiple_OS_Predictable_IP_ID_Vulnerability.pdf
http://www.trusteer.com/files/OpenBSD_DNS_Cache_Poisoning_and_Multiple_OS_Predictable_IP_ID_Vulnerability.pdf
https://rhn.redhat.com/errata/RHSA-2011-1465.html
http://www.ubuntu.com/usn/usn-1253-1/

Gont & Arce Expires August 7, 2016 [Page 30]

Internet-Draft Predictable Numeric IDs February 2016

 [SUSE2011]
 SUSE, , "SUSE Security Announcement: Linux kernel security
 update (SUSE-SA:2011:046)", 2011,
 <http://lists.opensuse.org/

opensuse-security-announce/2011-12/msg00011.html>.

 [Gont2012]
 Gont, F., "Recent Advances in IPv6 Security", BSDCan 2012
 Conference Ottawa, Canada. May 11-12, 2012, May 2012.

 [I-D.ietf-6man-predictable-fragment-id-08]
 Gont, F., "Security Implications of Predictable Fragment
 Identification Values", draft-ietf-6man-predictable-

fragment-id-08 (work in progress), June 2015.

 [I-D.ietf-6man-default-iids]
 Gont, F., Cooper, A., Thaler, D., and S. LIU,
 "Recommendation on Stable IPv6 Interface Identifiers",

draft-ietf-6man-default-iids-09 (work in progress),
 January 2016.

 [I-D.ietf-6man-ipv6-address-generation-privacy]
 Cooper, A., Gont, F., and D. Thaler, "Privacy
 Considerations for IPv6 Address Generation Mechanisms",

draft-ietf-6man-ipv6-address-generation-privacy-08 (work
 in progress), September 2015.

 [I-D.ietf-opsec-ipv6-host-scanning]
 Gont, F. and T. Chown, "Network Reconnaissance in IPv6
 Networks", draft-ietf-opsec-ipv6-host-scanning-08 (work in
 progress), August 2015.

 [FIPS-SHS]
 FIPS, , "Secure Hash Standard (SHS)", Federal Information
 Processing Standards Publication 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

Authors' Addresses

http://lists.opensuse.org/opensuse-security-announce/2011-12/msg00011.html
http://lists.opensuse.org/opensuse-security-announce/2011-12/msg00011.html
https://datatracker.ietf.org/doc/html/draft-ietf-6man-predictable-fragment-id-08
https://datatracker.ietf.org/doc/html/draft-ietf-6man-predictable-fragment-id-08
https://datatracker.ietf.org/doc/html/draft-ietf-6man-default-iids-09
https://datatracker.ietf.org/doc/html/draft-ietf-6man-ipv6-address-generation-privacy-08
https://datatracker.ietf.org/doc/html/draft-ietf-opsec-ipv6-host-scanning-08
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Gont & Arce Expires August 7, 2016 [Page 31]

Internet-Draft Predictable Numeric IDs February 2016

 Fernando Gont
 SI6 Networks / UTN-FRH
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Phone: +54 11 4650 8472
 Email: fgont@si6networks.com
 URI: http://www.si6networks.com

 Ivan Arce
 Fundacion Dr. Manuel Sadosky
 Av. Cordoba 744 Piso 5 Oficina I
 Ciudad Autonoma de Buenos Aires, Buenos Aires C1054AAT
 Argentina

 Phone: +54 11 4328 5164
 Email: stic@fundacionsadosky.org.ar
 URI: http://www.fundacionsadosky.org.ar

http://www.si6networks.com
http://www.fundacionsadosky.org.ar

Gont & Arce Expires August 7, 2016 [Page 32]

