
INTERNET DRAFT
David Manning, Richard Bennett, John Boyer,
Sonja McLellan, Michael Mansell
August 1998
Expires: February 04, 1999

Universal Forms Description Language Specification
Version 4.0.1

<draft-gordon-ufdl-spec-02.txt>

Status of this Memo

 This document is an Internet-Draft. Internet Drafts are
 working documents of the Internet Engineering Task Force
 (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum
 of six months and may be updated, replaced, or obsolete
 by other documents at any time. It is inappropriate to use
 Internet-Drafts as reference materials or to cite them
 other than as "work in progress."

 To view the entire list of current Internet-Drafts, please
 check the "1id-abstracts.txt" listing contained in the
 Internet Drafts Shadow Directories on ftp.is.co.za (Africa),
 ftp.nordu.net (Europe), munnari.oz.au (Pacific Rim),
 ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast)

Abstract

 The Universal Forms Description Language (UFDL) describes complex
 business forms for use over the Internet. The objective of the UFDL
 is to enable the creation of cross-platform Internet business forms
 that (1) contain both the complex logic and precise layout that
 administrators require, (2) are simple to maintain and distribute,
 and (3) integrate easily with existing business systems. As more
 and more business is done over the Internet, the need for a form
 description language that incorporates these features grows. HTML
 is designed for Internet pages, and is severely limited as a form
 language. This document specifies the vocabulary, syntax, and
 meaning of the UFDL.

CONTENTS

1. INTRODUCTION
 1.1 Introduction to the UFDL
 1.2 UFDL Documentation
 1.2a How This Document is Organized
 1.2b Other UFDL Documentation

https://datatracker.ietf.org/doc/html/draft-gordon-ufdl-spec-02.txt

 1.3 Requirement Levels for UFDL Elements
 1.4 Implied Semantics for UFDL Viewers
 1.5 Security Considerations
 1.6 Responding to Errors in the Form Description

Universal Forms Description Language [page 1]

2. INTRODUCTION TO THE UNIVERSAL FORMS DESCRIPTION LANGUAGE
 2.1 What is UFDL?
 2.2 Features of UFDL Forms
 2.3 Description of a UFDL Form
 2.3a What is a Page?
 2.3b What is an Item?
 2.3c What is an Option?
 2.3d Including External Files
 2.3e Unrecognized Items and Options
 2.4 Syntax of UFDL
 2.4a Basic Syntax Rules
 2.4b Form Definition
 2.4c Page Definition
 2.4d Item Definition
 2.4e Item Size
 2.4f Item Placement
 2.4g Toolbar Definition
 2.4h Option Definition
 2.4i Literals
 2.4j References to Other Options
 2.4k Relative Page Tags and Item Tags
 2.4l Operations
 2.4m User Events and Changes of State
 2.4n Arrays
 2.4o Defining Tabbing and Paging
 2.4p Including External Files
 2.5 UFDL Language Elements
 2.5a Identifiers
 2.5b Custom Item Types and Custom Option Names
 2.5c Reserved Words
 2.5d Quoted Strings
 2.5e Binary Data
 2.5f Comments
 2.6 Security
 2.7 Filters
 2.8 Processing Forms
 2.8a Include Statements
 2.8b Expressions

3. UFDL GLOBAL AND PAGE SETTINGS
 3.1 Global Settings
 3.2 Page Settings

4. UFDL FORM ITEMS
 4.1 action
 4.2 box
 4.3 button
 4.4 cell
 4.5 check
 4.6 combobox
 4.7 data

 4.8 field
 4.9 help
 4.10 label
 4.11 line

Universal Forms Description Language [page 2]

 4.12 list
 4.13 popup
 4.14 radio
 4.15 signature
 4.16 spacer
 4.17 tablet
 4.18 toolbar
 4.19 <custom item>

5. UFDL FORM OPTIONS
 5.1 activated
 5.2 active
 5.3 bgcolor
 5.4 bordercolor
 5.5 borderwidth
 5.6 coordinates
 5.7 data
 5.8 datagroup
 5.9 delay
 5.10 editstate
 5.11 filename
 5.12 focused
 5.13 fontcolor
 5.14 fontinfo
 5.15 format
 5.16 group
 5.17 help
 5.18 image
 5.19 itemlocation
 5.20 justify
 5.21 label
 5.22 labelbgcolor
 5.23 labelbordercolor
 5.24 labelborderwidth
 5.25 labelfontcolor
 5.26 labelfontinfo
 5.27 mimedata
 5.28 mimetype
 5.29 mouseover
 5.30 next
 5.31 previous
 5.32 printsettings
 5.33 saveformat
 5.34 scrollhoriz
 5.35 scrollvert
 5.36 signature
 5.37 signdatagroups
 5.38 signer
 5.39 signformat
 5.40 signgroups
 5.41 signitemrefs

 5.42 signitems
 5.43 signoptionrefs
 5.44 signoptions
 5.45 size

Universal Forms Description Language [page 3]

 5.46 thickness
 5.47 transmitdatagroups
 5.48 transmitformat
 5.49 transmitgroups
 5.50 transmititemrefs
 5.51 transmititems
 5.52 transmitoptionrefs
 5.53 transmitoptions
 5.54 triggeritem
 5.55 type
 5.56 url
 5.57 value
 5.58 version
 5.59 <custom option>

6. UFDL FORM VIEWER DIRECTIVE
 6.1 #include
 6.2 #optinclude

7. UFDL FUNCTIONS
 7.1 String Functions
 7.1a countLines
 7.1b replace
 7.1c strlen
 7.1d strmatch
 7.1e strpbrk
 7.1f strrstr
 7.1g strstr
 7.1h substr
 7.1i tolower
 7.1j toupper
 7.1k trim
 7.1l URLDecode
 7.1m URLEncode
 7.2 Math Functions
 7.2a abs
 7.2b acos
 7.2c annuity
 7.2d asin
 7.2e atan
 7.2f ceiling
 7.2g compound
 7.2h cos
 7.2i deg2rad
 7.2j exp
 7.2k fact
 7.2l floor
 7.2m ln
 7.2n log
 7.2o mod
 7.2p pi

 7.2q power
 7.2r rad2deg
 7.2s rand
 7.2t round

Universal Forms Description Language [page 4]

 7.2u sin
 7.2v sqrt
 7.2w tan
 7.3 Utility Functions
 7.3a applicationName
 7.3b applicationVersion
 7.3c applicationVersionNum
 7.3d decimal
 7.3e formatString
 7.3f isValidFormat
 7.3g set
 7.3h toggle
 7.4 Time and Date Functions
 7.4a date
 7.4b dateToSeconds
 7.4c day
 7.4d dayOfWeek
 7.4e endOfMonth
 7.4f hour
 7.4g minute
 7.4h month
 7.4i now
 7.4j second
 7.4k time
 7.4l year

APPENDIX A: QUICK REFERENCE TABLES
 A.1 Table of Items and Form and Page Characteristics
 A.2 Table of Options

APPENDIX B: DEFAULT SIZES

APPENDIX C: UFDL FOR C AND C++ PROGRAMMERS
 C.1 Procedural vs. State Language
 C.2 Globals and Functions (Pages)
 C.3 References and Dynamic Option Reference
 C.4 Arrays
 C.5 Assignment

APPENDIX D: GLOSSARY

AUTHOR CONTACT INFORMATION

1. INTRODUCTION

 1.1 Introduction to the UFDL

 This document specifies the Universal Forms Description Language
 (UFDL), which describes complex business forms for use over the
 Internet. The objective of the UFDL is to enable the creation of

 cross-platform Internet business forms that (1) contain both the
 complex logic and precise layout that administrators require, (2)
 are simple to maintain and distribute, and (3) integrate easily with
 existing business systems. This document specifies the vocabulary,

Universal Forms Description Language [page 5]

 syntax, and meaning of the UFDL.

 Since more and more business is being done over the Internet, the
 need for a form description language that incorporates the
 complexities of business systems is growing. Typically, an
 electronic business form is part of a process-intensive
 administration system. Users or server modules populate forms with
 data, the forms are distributed according to a work flow plan, and
 the data is stored in a database (or, in departments that have no
 complete electronic solution, the form is printed for storage). The
 forms, which can contain hundreds of input items, need to validate
 the data they receive, perform calculations and other logical
 operations, and integrate with existing data management systems.
 Today, most Internet forms are inadequate and are being created with
 HTML.

 HTML is designed for the easy display of Internet pages. As a
 result, HTML is very good at creating the layout for web sites and
 has become the standard for web pages. Web designers and IS
 organizations are now trying to push HTML beyond what it was
 intended to do. HTML forms work well for collecting basic
 information over the Internet. However, most business forms are much
 more complex than the typical HTML order form.

 HTML was not designed to collect, validate, manipulate, or store
 information. In order to build significant intelligence into an HTML
 form, a developer has to use JavaScript. Business forms also may
 need to travel through nodes in distribution chains, being viewed or
 changed by people along the way. HTML forms submit merely the data
 they've collected-the user interface and intelligence don't
 accompany it, and so make it difficult to create a workflow system
 for the form. HTML forms also have a fairly inflexible layout, and
 it's impossible to create precise, complex HTML forms and print them
 the way people are used to.

 The UFDL was designed specifically for Internet business forms. It
 describes all components of a complex form: user interface,
 intelligent features, and input data. A UFDL form can be transmitted
 whole or in part from node to node in a distribution chain. The
 UFDL's precise layout specifications allow users to create and print
 forms that replicate the paper forms they're used to. The UFDL
 includes complex business logic so that intelligent features like
 user-input checking, calculations, and in-form decisions are part of
 the form itself, rather than a separate script, and travel with the
 form to the next user. The UFDL allows developers to extend the
 language to interface with other applications by adding their own
 customized information to forms. The syntax of the UFDL is
 high-level and easy to learn, but at the same time incorporates the
 logic needed for business transactions. C and Java programmers will
 recognize many features of the syntax.

 1.2 UFDL Documentation

 This section outlines how this document is organized, and directs

Universal Forms Description Language [page 6]

 readers to other documents on the Universal Forms Description
 Language for further information.

 1.2a How This Document is Organized

 The UFDL Specification is intended both for an academic audience
 and for form developers and people writing applications that use
 UFDL forms.

 For an introduction to the language and its elements, see Part 2:
 Introduction to the Universal Forms Description Language. It
 explains the concepts behind the UFDL and specifies the components
 of a UFDL form. It delineates the UFDL syntax and explains the
 language elements.

 For a full description of form global settings, form items, form
 options, and directives for form viewers, see parts 2, 3, 4, and 5.

 For the Backus-Naur Form (BNF) of the UFDL, see 'Appendix A:
 Grammar of the UFDL'. C Programmers may find it useful to review
 'Appendix C: UFDL for C and C++ Programmers'.

 1.2b Other UFDL Documentation

 Those who want to find out more about the grammar behind the UFDL
 may want to view or download the Lexical and Syntactical
 Specification for the UFDL.

 Both of these documents are available at http://www.uwi.com/UFDL

 1.3 Requirement Levels for UFDL Elements

 This specification does not contain extraneous material, and
 therefore most implementers of the UFDL will want to include all
 elements specified here. However, not all elements are required,
 though all are suggested.
 This section specifies which elements are REQUIRED, RECOMMENDED, and
 OPTIONAL in an implementation. The criterion for determining whether
 an element of the language is REQUIRED is whether the exclusion of
 the element would prevent people from filling and transmitting the
 form.
 Unless specified in the list below, all elements are REQUIRED. An
 implementation that does not include an element MUST interoperate
 with another implementation that does include the element (though
 perhaps with reduced functionality). In the same vein, an
 implementation that does include the element MUST interoperate
 with one that does not (except, of course, for the feature the
 element provides). Also, before deciding to ignore an element that
 is RECOMMENDED, an implementor must understand the implications
 of not including the element.

http://www.uwi.com/UFDL

 RECOMMENDED Elements (Elements that implementors SHOULD include)
 - bgcolor option
 - fontcolor option

Universal Forms Description Language [page 7]

 - labelbgcolor option
 - labelfontcolor option
 - next option
 - previous option
 - printsettings option
 OPTIONAL Elements (Elements that implementors MAY include)
 - help item

 - bordercolor option
 - borderwidth option
 - help option
 - labelbordercolor option
 - labelborderwidth option

 - #include directive
 Note: For a definition of the words REQUIRED, RECOMMENDED, OPTIONAL,
 MUST, SHOULD, and MAY as used in this section, see RFC 2119.

 1.4 Implied Semantics for UFDL Viewers

 There are a few behaviors that are "implied" but not explicit in
 the UFDL, and that are defining features of the UFDL. This section
 outlines those behaviors, and should be considered part of the UFDL
 Specification.
 Temporary Files
 A viewer that uses UFDL forms may create temporary files in the
 following locations:
 - web browser's temp directory
 - Windows temp directory
 - viewer's temp directory
 A viewer MUST NOT create temporary files in any other location
 on a user's computer. This prevents system files or permanent
 user files from being at risk if they're not in temp directories.
 A viewer may delete files from the three temporary directories
 listed above at its discretion, but it MUST delete ONLY files that
 are older than the last reboot of the operating system, or that it
 can positively identify as one of its own temporary files.
 The following UFDL form events may cause a UFDL viewer to create
 and/or delete temporary files: Opening a form; Closing a form;
 Submitting a form (a transaction of type "submit" or "done");
 Emailing a form (if a viewer supports emailing forms); Enclosing
 files; Displaying enclosures.
 Permanent Files
 Certain UFDL form operations require a viewer to read or create
 permanent files. They are: Enclosing a File; Extracting a File;
 and Saving a form. Only button and cell items can initiate these
 operations. Automatic actions MUST NOT initiate actions that
 create permanent files on a user's computer.

 When a viewer performs an enclose, extract, or save operation, it
 MUST conform to the restrictions that follow.

https://datatracker.ietf.org/doc/html/rfc2119

 Enclosures: When the user activates an enclose button or cell, the
 viewer must prompt the user with a file browser so that the user
 can choose which file to enclose. This file browser must allow the

Universal Forms Description Language [page 8]

 user to cancel the enclose transaction without writing the
 enclosure into the form. Users may choose to enclose any files to
 which their operating system gives them access.

 Extractions: When the user activates an extract button or cell,
 the viewer must prompt the user with a file browser so that the
 user may choose both a location and a name for the file that's
 being extracted. Other than the usual restrictions on file names
 that the user's operating system imposes, the viewer must not
 restrict the file name the user chooses. If the user specifies a
 file name that already exists, then the viewer must warn the user
 that it exists, and ask the user whether to overwrite the existing
 file. The user must be able to cancel the extract operation before
 the viewer has written the permanent file.

 Saves: When the user activates a save button or cell, the viewer
 must prompt the user with a file browser so that the user may
 choose both a location and a name for the saved form. (Save acts
 like "Save As".) Other than the usual restrictions on file names
 that the user's operating system imposes, the viewer must not
 restrict the file name the user chooses. If there is already a
 file with the file name that the user specifies, then the viewer
 must warn the user that it exists, and ask the user whether to
 overwrite the existing file. The viewer must allow the user to
 cancel the save operation before the viewer has written the
 permanent file.

 These rules have been created in order to allow users to perform the
 enclosures, extractions, and saves necessary when completing
 business forms, while at the same time protecting their computers by
 (a) limiting temporary files to temp directories, and (b) preventing
 uploads and downloads that users are not aware of.

 1.5 Security Considerations

 The UFDL specifies the description of a form, but not the transport
 protocol for transmitting it. Any trasmission security issues that
 exist for the transport protocol submitting the form (for example,
 those used by mail programs and web browsers) exist when
 transmitting a UFDL form. (Note, however, that UFDL forms can be
 compressed using a compression algorithm before they are submitted.
 For more information, see the transmitformat option description.)

 UFDL forms cannot invoke programs on local computer drives. In
 addition, a UFDL viewer must save temporary files to standard
 temp directories only, as outlined in '1.4 Implied Semantics' above.
 A UFDL Viewer may only read and write permament files under strict
 conditions and then only with the user's knowledge (through
 presenting a file browser); see '1.4 Implied Semantics' for more
 information.

 1.6 Responding to Errors in the Form Description

 Any UFDL form interpreter must parse a UFDL form for non-compliance
 to the UFDL specification. This debugger should treat

Universal Forms Description Language [page 9]

 non-compliances in the following manner:

 Flag as Warnings - All item types and option types that are not part
 of the UFDL. These must be flagged as warnings and not as errors
 because the UFDL allows developers to create custom items and
 options for inserting application-specific information into forms.
 Forms containing non-compliances that generate warning messages may
 still be displayed. The non-compliances must be ignored when
 displaying the form, and the defaults used instead (if applicable).
 A UFDL Viewer may implement a mechanism that allows users to turn
 off the warning messages.

 Flag as Errors - Anything that might (but also might not) adversely
 affect the appearance or functionality of the form. Forms that
 contain non-compliances that might affect the appearance or
 functionality of the form may be displayed. The non-compliances
 must be ignored, and the defaults (if applicable) must be used
 when displaying the form.

 Flag as Fatal Errors - Anything that will adversely affect the
 appearance or functionality of the form. Forms containing
 non-compliances that generate fatal error messages must not be
 displayed.

 In addition, the UFDL debugger must check the version number of the
 form it parses. The version number denotes which version of the UFDL
 specification the form complies with. The parser must check for
 non-compliances based on the version of the UFDL that the form was
 written with. This provides backwards compatibility.

2. Introduction to the Universal Forms Description Language

 2.1 What is UFDL?

 Summary

 The Universal Forms Description Language (UFDL) is a language that
 describes complex Internet business forms much the way HTML
 describes web pages. It is cross-platform, easy to learn, and its
 features are tailored to business needs.
 Note: Because UFDL version 4.0 includes the start value element
 in an option name, any code written to work with the UFDL BNF
 version 3.3.1 or earlier will not be able to parse a version 4.0
 form.

 Details
 UFDL is a platform-independent, high-level language that
 describes Internet business forms. It was designed specifically
 for creating forms that are capable of replacing paper forms

 systems. That is, it creates forms that:
 - Create auditable records, by viewing a form as an object that

Universal Forms Description Language [page 10]

 includes layout instructions and data, and that can be passed
 whole from node to node in a distribution chain, archived, and
 retrieved later for verification.
 - Let users work offline or online.
 - Perform logical operations, functions, and other behavioral
 changes based on user events.
 - Give users editing and error checking tools.
 - Allow users to digitally sign the whole form or parts of the
 form.
 - Appear the same on any platform and under any screen resolution
 and system font size.
 - Interface with other applications.

 UFDL incorporates the following design concepts:

 Familiar Syntax
 UFDL is easy to pick up, because it is syntactically similar to
 two industry standard programming languages: C++ and Java. Here
 is the description of a very simple UFDL form:

 version = "3.2.0";
 bgcolor = ["ivory"];
 page_1 = new page
 {
 body_label = new label
 {
 value = "This is a UFDL form.";
 }
 }

 Essentially, the form consists of one or more pages. A page
 contains zero or more items, like the label item in the example
 above. The items can be made from item types that are part of UFDL
 (labels, buttons, fields, automatic actions and so on), or from
 item types form designers create themselves. Pages and item types
 have certain default characteristics that form developers can
 modify by specifying various options.

 Declarative Language

 Statements in a UFDL form description are always maintained as
 being true, much as formula fields in a spreadsheet are maintained
 as true. The simplest example of this is a total field that adds up
 the contents of various dollar fields in a form. If one of the
 dollar fields changes, so does the total field.

 What makes UFDL different from languages like C++ and Java in this
 respect is that the constant evaluation of dependencies is inherent
 in the language. A UFDL form requires no special procedures to be
 written in order to run evaluations; the evaluations run
 automatically whenever dependent data changes.

 Extensible Syntax

 UFDL was designed to be easily extensible for both form developers
 and the creators of UFDL.

Universal Forms Description Language [page 11]

 - Form developers can create their own item and option types
 within forms (although currently they cannot set up inherited
 attributes for each type they create).
 - The authors of UFDL can add new features to each new version of
 UFDL.

 Open Protocol

 UFDL is an open protocol. This gives developers the freedom to
 manipulate UFDL forms any way they want. Scripts can be written to
 dynamically create forms, modify forms, or extract specific
 information from forms. UFDL forms can themselves make requests to
 databases and populate themselves with the information returned.
 This flexibility allows developers to integrate UFDL forms into any
 application.

 People with knowledge of C or C++ may wish to refer to Appendix D:
 UFDL for C and C++ Programmers. This appendix outlines UFDL's
 similarities to those languages.

 2.2 Features of UFDL Forms

 A UFDL form looks and behaves just the way you imagine an
 electronic form should. It can contain graphical elements,
 modifiable fields, and action items. You can organize a UFDL form
 into pages similar to the pages in a paper form and you can include
 navigational aids such as toolbars, tabbing instructions, and
 scroll bars. In addition, you can code the form to make logical
 decisions, to interface with other applications, and to
 automatically format and check user's entries.

 A desktop form viewer application displays the forms. This UFDL
 form viewer allows users to enter input, enclose and view external
 files, and print and save forms. When it is convenient, the user
 can perform a simple action, such as pressing a button, to submit
 the completed form to an application for processing.

 Some of the features that make UFDL forms ideal for every-day
 business use are outlined here.

 Versatile Form Design

 UFDL is very versatile. It provides many features you can use to
 customize both the appearance and functionality of your form.

 Absolute and Relational Positioning Schemes

 UFDL supports both an absolute positioning scheme and a relational
 positioning scheme. The absolute positioning scheme allows a form
 designer to place visible form items in fixed locations on a form.
 This is useful for beginners and for GUI design applications that

 use a drag-and-drop method for designing forms. But an absolute
 positioning scheme is not a cross-platform solution. Used in
 conjunction with relational positioning, however, it can create
 modularized blocks of a form that can be easily moved around.

Universal Forms Description Language [page 12]

 UFDL's relational positioning scheme allows designers to create
 forms that appear the same on any platform. It aligns visual
 elements in relation to other visual elements on the form, ensuring
 forms look consistent on all computers and at all screen
 resolutions. If an item changes size-either to accommodate a
 dynamically created value or a system font size-items aligned to it
 will shift in relation to it. This relational positioning scheme is
 flexible, giving developers freedom to create original layouts.

 Support for User-Defined Objects

 UFDL lets designers define their own form objects. These objects
 have no visible properties and initiate no actions, which means
 that form developers can store specialized information in the form
 without harming its appearance or behavior. A form viewer
 application respects references to custom objects in the form
 definition, allowing a custom object to accumulate information and
 also allowing other elements in the form to be altered according
 to the custom object's contents.

 Input and Format Control

 UFDL permits form designers to specify an item's availability, edit
 state, and input and output formats. This means the form can
 perform much of the data checking and formatting typically
 performed by form processing applications.

 Digital Signatures

 Version 4.0 and higher of UFDL supports digital signatures, for
 secure, tamper-proof documents. Digital signatures are incorporated
 into the description of the form, and allow the developer to
 specify that a user may sign the entire form or parts of the form.
 In addition, multiple users may sign a form.

 Automatic Actions

 UFDL supports automatic timed behavior activated by the form. Forms
 can automatically cancel themselves, submit themselves to a server
 for processing, open new forms, and upload information to a server.

 The ability to perform automatic actions provides a mechanism that
 form designers can use to create stated connections with other
 applications. An application typically requiring a stated
 connection is a database management system.

 Logical Operations and Arithmetic Computations

 UFDL uses a set of options to describe a form object's appearance
 and behavior. For example, the option bgcolor describes an object's
 background color. UFDL permits form designers to use literal values
 or logically computed values (called computations) to determine the

 value of an option.

 These computations are resolved when the form appears. You can nest

Universal Forms Description Language [page 13]

 computations, employ complex mathematical operations, populate and
 use arrays, and make decisions.

 Computations provide designers with a very powerful and
 sophisticated tool for customizing forms to the needs of individual
 users and applications. It takes very little code (one line per
 logical computation) and it allows decisions regarding a form's
 appearance and behavior to occur at run-time.

 Functions

 UFDL functions allow forms to perform procedural logicas well as
 complex operations that would normally require complicated
 conditional statements. For details, see 7: UFDL Functions".
 Stand Alone Definitions

 All aspects of a form's appearance, behavior, and content are
 integral to the form definition. Therefore, unless you specify
 otherwise, the entire form definition and the user data travel with
 the form when a user submits it for processing. Consequently, you
 can transmit any UFDL form to any site with a UFDL-compliant form
 viewer application and the viewer will display the form correctly.

 The only exception to this rule occurs when the form design
 specifies partial submission of forms. UFDL permits form designers
 to specify partial submissions in one of two ways:

 * by specifying which parts to transmit

 * by specifying HTML format

 Partial submissions help reduce network traffic and transmission
 time.

 Context Sensitive Help

 UFDL provides a mechanism whereby form designers can define help
 messages for individual items in the form. Help messages appear in
 a window overlaying the form.

 Enclosures

 Users can enclose external files in UFDL forms. They can organize
 the files into folders, and they can display, copy, or remove the
 files. Enclosed files are encoded using the base64 encoding
 technique.

 UFDL includes a MIME type with an enclosed file's description.
 This allows form viewer applications to choose an appropriate
 viewer (for example, World Wide Web browser, word processor, etc.)
 when displaying enclosures.

 2.3 Description of a UFDL Form

Universal Forms Description Language [page 14]

 A UFDL form is a collection of items (for example, buttons, labels,
 amd fields) organized into pages. There are items to display fixed
 values, items to collect user input, items to initiate actions, and
 items to assist with form navigation. The decision about which
 items to place on a page and how many pages to include in the form
 is application dependent.

 UFDL provides a set of options for assigning characteristics to the
 form and to its pages and items. These include such things as the
 behavior, appearance, and location of an item. UFDL defines default
 settings for many of these options, or you can define your own
 settings in the form.

 The following example describes a simple two-page form:
 version = "4.0.0";
 bgcolor = ["ivory"];

 page_1 = new page
 {
 bgcolor = ["seashell"];

 next_page_button = new button
 {
 value = "Next Page";
 url = ["#page_2.global"];
 }
 }
 page_2 = new page
 {
 fontinfo = ["Helvetica", "14", "plain"];

 hello_label = new label
 {
 value = "Hello, world.";
 }
 }

 For information on the syntax rules of a form description, see
 "2.4-Syntax of UFDL"

 2.3a What is a Page?

 A form page is similar to a page in a paper form. Each page
 consists of its own set of items. You can place any number and type
 of items on a page. The number of items, their sizes, and their
 locations determine the size of the page.

 See the discussions of 'Relational and Absolute Positioning'
 and 'Item Placement' for more information on this topic.

 In some senses, pages act like independent forms. They have their

 own size, appearance, toolbars, and characteristics. As well,
 relational positioning of the page's items is based solely on other
 items on the same page.

Universal Forms Description Language [page 15]

 The following example shows a page containing a label and a button:
 page_1 = new page
 {
 bgcolor = ["seashell"];

 hello_label = new label
 {
 value = "Hello, world.";
 fontcolor = ["blue"];
 }
 next_page_button = new button
 {
 value = "Next Page";
 url = ["#page_2.global"];
 }
 }

 For more information on the syntax rules of a page description, see
 '2.4-Syntax of UFDL'

 Relational and Absolute Positioning

 UFDL supports two positioning schemes for creating a page image:
 relational and absolute positioning. In the relational positioning
 scheme, each item's location depends on the location and size of
 one or more other items on the page. For example, a field might be
 below and slightly to the right of a label. A series of buttons
 might be placed to appear one after the other.

 In the absolute positioning scheme, each visible item is anchored
 to a particular coordinate on the page drawn on the computer
 screen. Each coordinate represents a distance in pixels from the
 top left corner of the page. In addition, a form designer using
 absolute positioning can offset items from other items.

 Absolute positioning is useful for graphic form design programs
 because it allows users to drag and drop items on a form. It is not
 a good cross-platform positioning scheme, although when used
 carefully in conjunction with relational positioning, it can be
 successful.

 Relational positioning provides cross-platform compatibility in
 UFDL form designs, because all visible items are placed relative
 to each other. Therefore, if any item's size changes because of a
 change in font size or a dynamically generated value, other items
 on the form will shift to accommodate it, while maintaining their
 positions relative to each other.

 For more information, see '2.4f-Item Placement'

 Toolbars

 The toolbar is a separate and fixed area at the top of a page.
 It functions much like a toolbar in a word processing application.

Universal Forms Description Language [page 16]

 Typically, you place items in the toolbar that you want users to
 see no matter what portion of the page they are viewing. Toolbars
 are optional and each page has its own toolbar.

 The toolbar and the remainder (or body) of the page operate
 independently of one another. Both are scrollable, and scrolling
 one does not scroll the other. The toolbar can also have different
 characteristics than the page body, and relational positioning of
 toolbar items is based solely on other items on the same toolbar.

 2.3b What is an Item?

 Items are the basic elements of a page. Just as paper forms consist
 of items like lines, boxes, and instructions, UFDL forms consist of
 items like lines, boxes, text fields, labels, buttons, and so on.
 There are two categories of items:

 - external

 - internal or hidden

 A page can include both categories of items.

 See the section 'UFDL Form Items' in section 4.0
 for a description of each item.

 External items occupy space on the page. They can be either visible
 or invisible. Visible items are things users see like labels and
 buttons. Invisible items are things like spacers that create white
 space on the form.

 Internal items are invisible and occupy no space; instead they
 trigger form actions or store data used by other items. Action and
 data items are examples of internal items. An action item initiates
 a transmission, while a data item contains data stored in the form.

 An instance is a particular occurrence of an
 item type. For example, a form may have two
 labels. Each label is an instance of the
 item type 'label'.

 Each type of item has default characteristics. For example, all
 fields will be a certain length and color unless the form developer
 specifies otherwise. A form developer can modify an item's default
 characteristics by adding options to its definition. For example,
 the field described below on the left would have a default
 appearance of 60 characters long and one row high (as well as
 having other default characteristics). On the right, the size
 option added to its description overrides that default size.

 date_field = new field

 {
 }

Universal Forms Description Language [page 17]

 date_field = new field
 {
 size = ["20", "1"];
 }
 Field using default characteristics only
 Modified size overriding the default size

 There are defaults for most item characteristics. If the defaults
 meet your requirements, an item definition may include only the
 instance identifier, a unique item tag. Instance identifiers are
 mandatory. They are critical to the relational positioning scheme.
 For that reason, UFDL incorporates the identifier into the syntax
 of an item definition.

 An item's definition includes:
 - An instance identifier (an item tag that uniquely identifies
 it).
 - An open brace following the item declaration.
 - A close brace at the end of the definition (after the options,
 if there are any).
 - Optional information giving the item characteristics, including
 its position on the page, graphical characteristics and size,
 initial value and edit state, and instructions for handling the
 item when the form is submitted. Because these characteristics
 are optional, the lines that specify them are called options.

 Here is a sample of an item description:

 date_field = new field
 {
 size = ["20", "1"];
 label = "Today's Date";
 format = ["date", "long"];
 value = "*";
 itemlocation = [["after", "name_field"]];
 }

 For more information on the syntax rules of an item's description,
 see '2.4-Syntax of UFDL'

 2.3c What is an Option?
 See the section 'UFDL Form Options' in section

4.0 for a description of each option.

 An option defines one characteristic of a form, a page, or an item.
 There are options to specify each aspect of the appearance and
 behavior of your form. Some options apply to the entire form,
 others apply only to items, and still others apply to pages or
 items. The example below shows options giving characteristics to an

 entire form, to a page, and to a particular item.

 version = "3.2.0";
 bgcolor = ["ivory"];

Universal Forms Description Language [page 18]

 page_1 = new page
 {
 ...
 page_1 = new page
 {
 bgcolor = ["seashell"];

 bar_box = new box
 {
 ...
 bar_box = new box
 {
 bgcolor = ["black"];
 size = ["60", "5"];
 }
 ...

 Options that appear at the top of the form, like the example on the
 far left, are called global settings. They apply to the whole form.

 Options that appear at the top of a page, like the example in the
 center, are called page settings. They apply to the entire page.
 Page settings override any similar global settings-but only for the
 page on which they occur.

 Options within items, like the example on the far right, apply only
 to the item whose description they are in.

 2.3d Including External Files

 See the '#include' section in section 2.8a for a
 description of the '#include' statement.

 The UFDL #include statement allows you to include external files in
 your form definition much as you would include header files in a
 C language source file. The form viewer application replaces the
 #include statement with the contents of the file you specify. The
 included file must reside in a secure include directory accessible
 to the form viewer application.

 2.3e Unrecognized Items and Options

 User-Defined Items and Options and Newer UFDL Items and Options
 As a UFDL form viewer parses a form, it ignores items and options
 it does not recognize. This feature has a number of advantages.

 * It allows a form designer to include items and options for new
 form viewer applications without affecting the form's behavior
 in other viewers.

 * Form processing applications can use the custom items and
 options when processing the form. One example of a custom item
 might be an SQL query item the application uses to populate a

Universal Forms Description Language [page 19]

 response form.

 Unrecognized items and options include:

 * User defined (or custom) items and options.

 * Items and options from releases of UFDL that are newer than the
 user's form viewer application understands.

 2.4 Syntax of UFDL

 2.4a Basic Syntax Rules

 The basic syntax rules of UFDL are:

 * It is case sensitive.

 * It ignores white space around and within statements.

 * It permits multiple line statements.

 * It permits multiple statements per line.

2.4b Form Definition

 The syntax of a UFDL form definition is as follows:

 <version definition statement>*
 <option definitions for the form characteristics>
 <page definition1>
 ...
 <page definitionn>**

 * mandatory statement. See 'version' on page 226 for the syntax of
 this statement.
 ** there is no limit placed on the number of page definitions in a
 form; however, every form must contain at least one page
 definition.

 For example,
 version = "3.2.0";
 bgcolor = ["ivory"];
 fontinfo = ["Helvetica", "10", "plain"];

 //This is page 1
 page_1 = new page
 {
 <option definitions for the page settings>
 <item definitions for items located on page 1>
 }

 //This is page 2
 page_2 = new page

Universal Forms Description Language [page 20]

 {
 <option definitions for the page settings>
 <item definitions for items located on page 2>
 }
 ...

 //This is page 10
 page_10 = new page
 {
 <option definitions for the page settings>
 <item definitions for items located on page 10>
 }

 Defining global settings for the form is optional. It has the
 effect of setting characteristics that apply to the entire form. In
 the previous example, version, bgcolor, and fontcolor are global
 settings. These characteristics override the defaults defined by
 UFDL. Specific pages and items will override these global settings
 if the same option has been defined differently for that page or
 item.

 2.4c Page Definition

 The syntax of a page definition is as follows:
 <page tag> = new page
 {
 <option definitions for the page characteristics>
 <item definition1>
 ...
 <item definitionn>
 }
 Notes:
 i) The braces are mandatory.
 ii) A page definition must begin on a new line.
 iii) Item definitions are optional and there is no limit placed
 on the number of item definitions in a page.

 The page tag uniquely identifies a page instance. No two page tags
 in a form can be the same. See the section 'Identifiers' on page 39
 for tag naming conventions.

 Defining page characteristics is optional. It has the effect of
 setting options that are global to that page. These characteristics
 override the defaults defined by UFDL and any global options set by
 the form characteristics. Specific items will override the page
 settings if the same option has been defined differently for that
 item.

 In the following example, you can see a sample page definition.
 The page tag is Page_one and the page contains a label and a

 button. The page has a background color of cornsilk and each item
 on the page will have a font of Times 14.

 Page_one = new page
 {

Universal Forms Description Language [page 21]

 bgcolor = ["cornsilk"];
 fontinfo = ["Times", "14", "plain"];
 button_label = new label
 {
 <option definitions for the label characteristics>
 }
 save_button = new button
 {
 <option definitions for the button characteristics>
 }
 }

 2.4d Item Definition
 The syntax of an item definition is as follows:
 <item tag> = new <item type>
 {
 <option definition1>
 ...
 <option definitionn>
 }
 Notes:
 i) The braces are mandatory.
 ii) An item definition must begin on a new line.
 iii) Option definitions are optional.
 iv) You cannot assign values to options in other item definitions.

 The item tag uniquely identifies an item instance. No two item tags
 on a page can be the same. See the section '2.5a-Identifiers'
 for tag naming conventions.

 Item type is a name that identifies the type of item. Examples of
 item types are: button, label, field, line, and check. See the
 section 'UFDL Form Items' on page 58 for a description of each item
 type.

 Tip: You can also define and use your own
 item types and options. See the '<custom>'
 item and option descriptions later in this
 manual.

 There is a finite list of UFDL-defined options applicable to each
 type of item. You can code as many or as few from the list as you
 wish. There are default settings for most options (defined by
 UFDL). You may choose to use those defaults or to define your own
 settings. Defining your own settings overrides the defaults.

 You can also create your own item types. A UFDL parser will ignore
 these custom item types, but you can use them to store information
 specific to your application, and then refer to them in other item
 descriptions in the form. For more information on how to refer to

 options in the form, see 'Referring to Other Options' later in this
 section.

 In the following example, you can see a sample button definition.

Universal Forms Description Language [page 22]

 The button has the following characteristics:

 * The item tag is save_button.

 * It will save the form to a file on the user's workstation.

 * The button's label is Save Form.

 * The background color is cyan.

 * The font used for the label is Helvetica 12.

 save_button = new button
 {
 bgcolor = ["cyan"];
 fontinfo = ["Helvetica", "12"];
 type = "save";
 value = "Save Form";
 }

 2.4e Item Size

 Every external item has a characteristic shape. Many items also
 contain data such as text and images. This is the basic item. For
 example, the basic field is a rectangular space where users can
 input text. Buttons are rectangular objects containing a
 descriptive label.

 Items may also contain the following elements:

 * borders

 * an external label

 * scroll bars

 Borders are lines outlining an item's shape. Their use is optional
 and their thickness is variable.

 External labels are part of an item's definition but they occupy
 their own space. An example of an external label is the label you
 define for a field. This label occupies space above the field item.

 Several types of items permit users to scroll the data the item
 contains. Typically, scroll bars appear with these items. Examples
 of items permitting scrolling are fields and lists.

 Size Calculation
 There are two sizes calculated for an item. They are:

 * basic item size

 * the item's bounding box

 The basic item size is composed of the item's characteristic shape

Universal Forms Description Language [page 23]

 and any imbedded data. UFDL defines a set of default basic item
 sizes. You can choose to use these defaults or you can define the
 size using the size option. When deciding whether to define the
 size and what size to specify, you will want to consider any data
 imbedded in the item.

 The bounding box is an unseen rectangular area surrounding each
 item and including all elements of the item. The size of the
 bounding box depends on the sizes of the various elements. UFDL
 calculates this size, taking into account the basic item size and
 the existence and size of the various optional elements. For
 example, if the item definition contains a borderwidth setting
 (meaning the item has a border), then the bounding box size
 encompasses the basic item and the space occupied by the border.

 See 'Appendix B: Default Sizes' for the default item
 and bounding box sizes.

 Altering Size Dynamically
 You can dynamically alter the bounding box size, and thus the basic
 item size and the space available for the external label. The
 itemlocation option contains various directives permitting you to
 do this.

 An item's vertical center is halfway between
 the top and bottom edges. The horizontal
 center is halfway between the left and right
 edges.

 A bounding box has six edges: left, right, top, bottom, vertical
 center, and horizontal center. You can align any of these edges
 with the edge of another item's bounding box (called a reference
 item in this context). Once you have aligned one edge, you can
 expand the bounding box until the far edge aligns with another
 location. In this manner, you override the bounding box length in
 that direction.

 Aligning horizontal centers Expanding right edge to right edge

 For example, you can align the left edge with the horizontal center
 of one reference item. You can then expand the right edge until it
 aligns with the right edge of the original reference item or a
 second reference item. This pair of directives sets the bounding
 box width.

 2.4f Item Placement

 UFDL supports two different positioning schemes to place external
 items on a page: relational positioning and absolute positioning.

 Relational positioning means an item's location depends on the
 location and size of one or more other items on the page. This
 feature is similar to the mechanism used for dynamic sizing.

Universal Forms Description Language [page 24]

 Relational positioning uses the bounding boxes of the other items
 as reference points. Items align relative to these bounding boxes.
 You must define the location of the other items before you can use
 them as reference points.

 The itemlocation option provides various directives you can use to
 specify an item's location. For example, you might place an image
 before a radio and expand its bottom edge to the bottom edge of
 the radio button.

 Positioning the image before radio buttons
 Expanding the bottom of the image to the bottom of the radio
 buttons.

 The only items whose placement is not affected by relational
 positioning are the first item in the toolbar and the first item in
 the body of the page. The first item assigned to the toolbar goes
 in the top left corner of the toolbar. The first item not assigned
 to the toolbar goes in the top left corner of the body.

 Absolute positioning places an item in an absolute position on the
 page, anchoring it to a particular coordinate. This coordinate is
 a pair of pixel measurements defining the item's distance from the
 top left corner of the page.

 Absolute positioning also allows items to be offset from their
 original position, in order to make layout with an absolute
 positioning scheme more flexible. When offsetting an item, the form
 developer first places the item on the page and then specifies how
 far it should be offset from that position.

 The absolute positioning scheme's advantage is that it makes
 designing a drag-and-drop form designer easy. Absolute positioning
 is not a good cross-platform solution, however, and in order to
 ensure that forms appear consistent on all platforms, developers
 should use either strictly the relational positioning scheme, or a
 careful combination of relational and absolute positioning.

 For more information, see the itemlocation option description in
section 5.19.

 2.4g Toolbar Definition

 A toolbar is a section that stretches across the top of a page in
 which items can be placed for quick access. If a user scrolls down
 on a page, the toolbar remains visible.

 A user defines a toolbar using the toolbar item. Each page can have
 one toolbar, and the toolbar will appear on only that page. Place
 items in the toolbar by using the within modifier of the

 itemlocation option.

 The following example shows the definition of a toolbar with two

Universal Forms Description Language [page 25]

 items: a label and a close button.
 p1_toolbar = new toolbar
 {
 bgcolor = ["cyan"];
 }
 title_label = new label
 {
 value = "Student Registration Form";
 fontinfo = ["Helvetica", "16", "bold"];
 itemlocation = [["within", "p1_toolbar"]];
 }
 close_button = new button
 {
 type = "close";
 value = "Close Form";
 itemlocation = [["within", "p1_toolbar"], ["below", "title_label"],
 ["alignhorizc2c", "title_label"]];
 }

 2.4h Option Definition

 An option definition is an assignment statement that assigns one
 characteristic to an item, a page, or to the whole form. The
 expression on the right hand side of the equal sign contains the
 option's setting. The syntax of an option definition statement is
 as follows:

 <option identifier> = <expression>;
 Note: The semicolon is mandatory and terminates the statement.

 For example:
 value = "Submit Form";
 fontinfo = ["Helvetica", 16", "bold"];
 url = global.global.db_address

 Explanation of Syntax
 Option identifier is a name that identifies the type of option. It
 can be a UFDL-defined option or a user-defined option. Examples of
 option identifier are: bgcolor, fontinfo, itemlocation, and size.
 See the section 'UFDL Form Options' in section 5 for a description
 of each option and its possible values.

 An expression specifies a value. An expression can be any of the
 following:

 * a literal
 (for example, the right hand side of
 value = "Submit Form";)
 * a reference to another option definition in the form
 (for example, the right hand side of

 url = global.global.db_address;)
 * an operation
 (for example, the right hand side of
 value = total_field.value + "3400";)

Universal Forms Description Language [page 26]

 * an array specification
 (for example, the right hand side of
 fontinfo = ["Helvetica", "16", "bold"];)

 2.4i Literals

 Specify a literal as a quoted string. This is true even for
 operands of an operation. Examples of using literals are:
 "V3.2.0" - yields "V3.2.0"
 "1" + "2"- yields "3"
 "UFDL\\" +. "form1"- yields "UFDL\\form1"

 2.4j References to Other Options

 In order to copy information from one place in the form to another,
 or to make a decision based on the contents of items in the form, a
 developer needs to refer to one or more other options in the form.

 This is done using an option reference. The referenced option
 definition can exist anywhere in the form definition, including
 after the current statement.

 For examples of option references, see the paragraphs following the
 box below.

 An option reference has several possible formats:

 1.for options in the current item definition use one of the
 following:*
 * <option reference>
 * <option reference>-><option reference>
 2.for options in another item definition use one of the following:*
 * <item reference>.<option reference>
 * <item reference>.<option reference>-><option reference>
 3.for options in page characteristics use one of the following:
 * global.<option reference>
 - for characteristics on the current page
 * <page tag>.global.<item reference>
 - for characteristics on another page
 4.for options in form characteristics use:
 global.global.<option reference>
 where <option reference> is one of:
 * <option identifier>
 - for the complete option setting (it can be a single
 value or an array)
 * <option identifier>[<array element>]
 - for one element of an array**
 and <item reference> is one of:
 * <item tag>

 - for items on the current page
 * <page tag>.<item tag>
 - for items on another page

 and the indirect membership operator (->) indicates:

Universal Forms Description Language [page 27]

 * a dynamic option reference

 * The phrase '-> <option reference>' can occur any number of times
 on the right hand side of an option statement.
 ** See 'Array References' in section 2.4n for information on
 <array element>.

 In order to refer to an option that varies depending on what the
 user of a form enters, use a dynamic option reference. For example,
 a form developer cannot know what cell a user will choose in a
 popup menu. To refer to the value of whatever cell the user
 chooses, the developer must use a dynamic option reference.
 For example:

 popup_menu.value->value

 A dynamic option reference (-> <option reference>) provides a
 mechanism for determining the location of the option at run-time.
 The references preceding the indirect membership operator must
 resolve to an item reference or a reference to the form or page
 characteristics.

 Examples of option references are:

 - an item on the current page:
 list_one.value
 This identifies the value option of the item whose item
 reference is list_one.

 - a form characteristic:
 global.global.bgcolor
 This identifies the bgcolor option specified at the top of the
 form, as a form global characteristic.

 - a dynamic option reference with one level of indirection:
 The my_choice.value setting becomes the item reference for the
 bgcolor option. If, for example, my_choice.value contains
 "global", then this reference is equivalent to global.bgcolor.

 - a dynamic option reference with two levels of indirection:
 my_choice.value->value->bgcolor
 The my_choice.value setting becomes the item reference for the
 value option. If, for example, my_choice.value contains
 "your_choice", then my_choice.value->value is equivalent to
 your_choice.value.

 If your_choice.value contains "page_two.global", then the complete
 reference is equivalent to page_two.global.bgcolor.

 2.4k Relative Page Tags and Item Tags

 UFDL contains a way to refer to pages and items without using
 specific identifiers: relative page tags and item tags.
 For example:

Universal Forms Description Language [page 28]

 value = itemnext->value;

 itemlocation = [["after", itemprevious]];

 url = ["#"+.global.pagenext->global];

 url = [global.global->pagefirst->itemfirst->url[0]];

 Refering to items and pages that don't exist yet
 Relative page tags and item tags are particularly useful if you are
 making template forms for an application that dynamically generates
 extra items and pages during run time.

 Since dynamically-generated items and pages don't exist until
 runtime, you cannot refer to them by name when you are coding the
 template form (since you don't necessarily know what name the
 generation program will use). Relative page tags and item tags
 allow you to refer to non-existent pages and items.

 For example, you might want to add a paging button that opens the
 next page of a form when the user clicks it. Normally, if your next
 page was called page_2, you'd set up the paging button's url to:
 url = ["#page_2.global"];

 But if the next page will be dynamically generated by a program,
 you don't know what page tag to put in the url. So you would use
 a relative page tag, like this:
 url = ["#"+.global.pagenext->global];

 Available relative page tags and item tags

 pagefirst

 Meaning First page in form description.
 Reference must start at Form global (global.global).
 Example
 url = [global.global->pagefirst->submitButton.url[0]];

 pagelast

 Meaning Last page in form description.
 Reference must start at Form global (global.global).
 Example
 value = global.global.pagelast->resultField.value;

 pageprevious

 Meaning Previous page in form description.
 Reference must start at Page global (global).
 Example
 url = ["#"+.global.pageprevious->global];

 pagenext

 Meaning Next page in form description. The last page points to
 the first page.

Universal Forms Description Language [page 29]

 Reference must start at Page global (global).
 Example
 url = ["#"+.global.pagenext->global];

 itemfirst

 Meaning First item in page description.
 Reference must start at Page global (global).
 Example
 value = global.itemfirst->value;

 itemlast

 Meaning Last item in page description.
 Reference must start at Page global (global).
 Example
 value = global.itemlast->value;

 itemprevious

 Meaning Previous item in page description. First item points to
 last item in page description.
 Reference must start at Item level.
 itemlocation = [["after", itemprevious]];

 itemnext

 Meaning Next item in page description. Last item points to first
 item in page description.
 Reference must start at Item level.
 Example
 value = itemnext->value;

 Rules for creating references using relative tags

 To create references using relative page tags and item tags:

 1. Follow the normal rules for page, item, and option references
 (see "References to Other Options" earlier in this section),
 except apply the rule in 2, below.

 2. Use the dereference symbol (->) following the relative tag,
 if the tag is followed by another tag. For example:
 itemlocation = [["after", itemprevious]];
 but
 value = itemprevious->value;
 and
 value = global.global.pagefirst->itemfirst->value;

 If you do not use the dereference symbol, a UFDL parser will
 evaluate the relative tag as an option name.

2.4l Operations

Universal Forms Description Language [page 30]

 An operation is a calculation or a decision. The syntax of a
 calculation is one of the following:
 1.<operand> <math operator> <operand>
 2.<operand>

 Operands that are numbers can have a unary minus. An operand can
 be any of the following:
 - a literal (for example, "3")
 - a reference to another option (for example, total_field.
 value)
 - a calculation (for example, "total_field.value" *"4")
 - (<decision>) - see below for the syntax of a decision

 A math operator can be any of the following:
 - additive operator
 - multiplicative operator
 - exponentiation operator
 See the table of operators below.

 The syntax of a decision is as follows:

 <comparison> ? <expression> : <expression>
 where <comparison> is:
 - <Boolean> <logical operator> <Boolean>
 and <Boolean> is:
 - <operand> <relational operator> <operand>
 Note: See the table below for the definition of logical and
 relational operators.

 In decisions:
 * An operand can have a logical NOT (!) before it.
 * An expression cannot be an array.

 Some examples of decisions are:
 * A decision based on a check box.
 male_check == "on" ? "male" : "female"
 If the check box is selected, or on, then the result will be male.
 Otherwise, the result will be female. This decision could be used
 to set an item's value.
 * A decision based on a value.
 name_field == "Smith" ? "on" : "off"
 If the name entered into the name field is Smith, then the result
 will be on. Otherwise, the result will be off. This decision
 could be used to set an item's active status.

 UFDL recognizes the following operators:

 Type of Operator Symbol Operation

 Additive + addition
 -(minus) subtraction

 +. concatenation
 Multiplicative * multiplication
 / division
 Exponentation ^ exponential

Universal Forms Description Language [page 31]

 Relational > greater than
 < less than
 <= less than or equal to
 >= greater than or equal to
 == equal to
 != not equal to
 Logical && AND
 || OR
 !! NOT
 Unary Minus -(minus) take negative
 Decision x?y:z Assign the value of expression
 y to the result if expression x
 evaluates to true. Otherwise,
 assign the value of expression
 z to the result.
 Assignment = Assign right operand to left
 operand
 Membership .(dot) structure membership
 [] array membership
 -> indirect membership

 Precedence of Operations
 Operations are evaluated in the following order:
 - membership
 - exponentiation*
 - multiplicative and unary minus*

 Universal Forms Description Language [page 15]

 - additive
 - relational
 - logical NOT
 - logical AND
 - logical OR
 - conditional

 Operations at the same level of precedence are evaluated from left
 to right.
 Parentheses override the precedence levels; however, operations
 within parentheses are evaluated using the normal precedence
 levels.

 - When a unary minus immediately follows an
 exponentiation symbol (^), the unary minus
 is evaluated first. For example, 10^-5 is
 evaluated as ten-to-the-minus-five.

 Concatenation
 An addition operation may imply concatenation. If either operand in
 the addition contains a non-numeric value, the operands are
 concatenated. Otherwise they are added arithmetically. You only
 need to use the concatenation operator if both operands are, or can
 be, numeric values.

Universal Forms Description Language [page 32]

 The following examples demonstrate this rule:
 "UFDL\\" + "form1" -yields "UFDL\\form1"
 "UFDL\\form" + "1" - yields "UFDL\\form1"
 "1" + "2" -yields "3"
 "1" +. "2" -yields "12"

 The last example would not have resulted in concatenation without
 using the concatenation operator.

 Separators

 There are two separators in UFDL: comma (,) and semicolon (;).
 The comma separates list entries; the semicolon terminates an
 option definition statement.

 2.4m User Events and Changes of State

 An "event" is the user's act of causing the state of something in
 the form to change. For example, when the user clicks a check box,
 its state changes from being unchecked (or off), to being checked
 (or on). This act of causing the state to change from off to on is
 the event.

 Other examples of events are:
 - The user moves the mouse pointer over a button and its state
 changes from not having the mouse pointer over it to having the
 mouse pointer over it.
 - The user switches from the first page to the second page in a
 form, and the state of the first page changes from being active
 to being no longer active, while the state of the second page
 changes from not being active to being active.

 Recording Changes of State

 All states in a UFDL form are recorded in options.

 For example, in check boxes the state of "being-checked or not" is
 recorded in the value option. When a user checks a check box, its
 value changes from off to on. For all visible items, all pages,
 and for the entire form, the state of "having the mouse pointer
 over me or not" is recorded in the mouseover option.

 This provides a form developer with enormous potential for creating
 intelligent forms that set and change themselves dynamically, based
 on changes of state. Those changes can be changes of user input
 (such as checking a check box), or simply changes of user behavior
 (such as moving the mouse pointer over a button).

 Example
 The following example illustrates using an event (a change of state
 caused by the user) to trigger self-modifying behavior in the form:

 saveButton = new button
 {
 type = "save";
 value = "Save";

Universal Forms Description Language [page 33]

 bgcolor = [mouseover=="on" ? "white" : "gray90"];
 }
 The bgcolor option in the button above will change from gray to
 white when the user moves the mouse pointer over the button.

 2.4n Arrays

 UFDL uses arrays to store values in options requiring multiple
 settings. The number of elements and the number of dimensions in an
 array depend on the option. However, the syntax of the language
 supports n-elements and n-dimensions. Moreover, UFDL supports
 arrays containing a mix of simple elements and sub-arrays.

 The syntax of an array is as follows:
 [<element1>, <element2>, ... <elementn>]
 Note: 'n' is the number of settings in the option.

 An element can be either of the following:
 - an expression
 - an element definition statement

 Element Definition Statements
 The element definition statement allows you to assign a variable
 name to an element. Variable names permit you to refer to the
 element by name rather than by its position in the array. The
 syntax of an element definition statement is:
 <variable> = <expression>

 UFDL syntax includes variable names in some arrays. In this case,
 you must use an element definition statement when assigning values
 to the element. For example, the format option syntax specifies
 names for the check option's range, length and template. To assign
 values to any of these elements, you must use the name specified
 in the syntax.

 Examples of assignment statements using element definition statements:

 using a UFDL-defined variable name
 format = ["integer", range=["1","100"]];
 using a user-defined variable name
 delay = [the_repeat = "once", the_time = "10"];
 using both UFDL-defined and user-defined variable names
 format = [the_type = "string", length = ["5", "25"]];
 Array elements for UFDL-defined option types must be coded in the
 position they are documented in this specification, unless they
 have UFDL-defined variable names listed in this specification. For
 example, the elements for the size option must always be in the
 order [width, height], but the elements for check and format types
 in the format option can be in any order, since they have
 UFDL-defined variable names.

 Decisions in Arrays

 A decision can be used to determine any element within an array, so

Universal Forms Description Language [page 34]

 long as that element is not itself an array.

 For example, the following format line is valid.
 format = [check_1.value == "on" ? "string" : "integer"];

 The decision sets the data type to be a string if check_1 is "on",
 or an integer if it is "off".

 This format line is not valid:
 format = ["integer", check_1 == "on" ? range = ["10","20"] :
 range = ["0","10"];

 The range is itself an array, so a decision cannot be used to
 determine which range should apply.

 Array References
 The syntax of an array reference is:
 <array name>[<array element>]
 Note: Repeat the phrase '[<array element>]' until reaching the
 desired depth.

 Array name is an option or variable identifier. Array element can
 be one of two things:
 - a number indicating the position of the element in the array
 - variable name

 Before using a variable name, you must define the name in an
 element definition statement. See the section 'Element Definition
 Statements' in section 2.4n for more information.

 UFDL array starting position is 0; therefore, a reference to the
 first element of the array is really a reference to element zero
 (0).

 The following examples show various array assignments and
 references:

 itemlocation = [["below", "field1"], ["alignl2l", "field2"],
 ["alignr2c", "field3"]];
 itemlocation[0][1] - points to "field1"
 itemlocation[2][0] - points to "alignr2c"
 itemlocation = [the_pos= ["below", "field1"], the_align=
 ["alignl2l", "field2"]];
 itemlocation[the_pos][1] - points to "field1"
 itemlocation[the_align][0] - points to "alignl2l"
 format = ["integer", range=["1","10"]];
 format[0] - points to "integer"
 format[range] - points to ["1", "10"]
 format = ["integer", range=[the_low="1", the_high="10"]];
 format[range][the_low] - points to "1"

 2.4o Defining Tabbing and Paging

 UFDL provides two mechanisms for defining the movement between
 pages and items in a form.

Universal Forms Description Language [page 35]

 - tabbing to the new item or page
 - linking to the new page
 You can combine these methods or you can choose to use only one.

 The item in focus is the item with the
 cursor and, often, with some form of
 highlighting.

 Tabbing permits the user to move from one item to another and from
 one page to another using a keystroke. Linking permits the user to
 select a form item whose action moves the focus to a new page.

 Note: The only items users may tab or link to are modifiable items.
 These are items users can change or select.

 Tabbing

 To use tabbing, define a tabbing sequence using the next option.
 The sequence can include items anywhere in the form. Define the
 tabbing sequence this way:
 - Define the first item in the sequence by including the next
 option in the form characteristics. When the form opens, the
 page containing this item displays with the item that is in
 focus.
 - Define each subsequent item by including the next option in
 the definition of each item in the sequence.
 The next option setting is the item reference of the next item to
 receive focus (that is, the referenced item). When the user tabs
 from the current item, the referenced item receives the focus. If
 the item is on a different page, the current page closes and the
 new page displays.

 You can use tabbing to display a new page without choosing an item
 to activate. Set the next option to the characteristics reference
 for the new page. This displays the new page and focusses on the
 first item in that page's tabbing sequence. The page
 characteristics reference is <page tag>.global.
 - Define the first item in a page's tabbing sequence by
 including the next option in the page characteristics.

 This example shows a simple tabbing sequence:

 version = "4.0.0";
 // Open the form on page 'page_one' and focus on 'title_list'.
 next = "page_one.title_list";
 page_one = new page
 {
 // Define the default first item in this page's tabbing sequence.
 next = "name_field";
 bgcolor = ["LightBlue"];
 form_title = new label

 }
 title_list = new list
 {

Universal Forms Description Language [page 36]

 // Tab to the 'name_field' item from here.
 next = "name_field";

 }
 name_field = new field
 {
 // Tab to the 'your_signature' item on 'page_two' from here.
 next = "page_two.your_signature";

 }
 }

 page_two = new page
 {
 bgcolor = ["PaleGreen"];
 form_title = new label
 {

 }
 your_signature = new tablet
 {
 // Tab back to page 'page_one' and focus on the first item
 // in the page_one tabbing sequence.
 next = "page_one.global";

 }
 }

 Linking

 To use linking, define action, button, or cell items for the links
 you want to include in the form, and set their type option to
 pagedone. Since each item performs only one link, you require a
 separate action, button, or cell for each link. This method is
 often best suited to defining links to new pages.

 When you link to a new page, do one of the following:
 - Specify an item on the new page for the focus to move to.
 - Specify that the focus move to the default position on the
 new page, by "linking" to the page characteristics section.
 Store the reference of the linked item or page in the url option of
 the action, button, or cell. The reference is an item reference or
 a page characteristics reference. Use an item reference when you
 want to link a specific item. Use the page characteristics
 reference when you want to link the first item in the page's
 tabbing sequence. A page characteristics reference is <page tag>
 .global.

 When the link occurs (i.e., a user selects the button), the current
 page closes and the linked page appears. Before the current page
 can close, all fields containing error checking must be correctly

 filled in.

 This example shows how you might use linking:

 version = "4.0.0";

Universal Forms Description Language [page 37]

 // Open the form on page 'page_one'. Allow the first item in the page's
 // tabbing sequence to receive focus.
 next = "page_one.global";
 page_one = new page
 {
 // Define the default first item in this page's tabbing sequence.
 next = "name_field";
 bgcolor = ["LightBlue"];
 form_title = new label
 {

 }
 name_field = new field
 {

 next_page = new button
 {
 value = "Page 2";
 // Link to the next page. Allow the first item in the page's
 // tabbing sequence to receive focus.
 type = "pagedone";
 url = "#page_two.global";

 }
 }

 page_two = new page
 {
 // Define the default first item in this page's tabbing sequence.
 next = "your_signature";
 bgcolor = ["PaleGreen"];
 form_title = new label
 {

 }
 your_signature = new tablet
 {

 }
 first_page = new button
 {
 value = "Page 1";
 // Link to the first page. Allow the first item in the page's
 // tabbing sequence to receive focus.
 type = "pagedone";
 url = "#page_one.global";

 }
 }

 UFDL-Defined Default Paging and Tabbing Sequence

 UFDL-defined default sequence depends on the order in which you
 define pages and items in the form. The default first page is the
 first page defined in the form. The default first item is the first

Universal Forms Description Language [page 38]

 item defined for the body of that page.

 The sequence progresses through the page definition moving from one
 modifiable item to the next. If a user tabs past the last
 modifiable item on the page, focus returns to the first modifiable
 item in the page's toolbar (if one exists) or the first modifiable
 item on the page. The default sequence does not permit you to move
 between pages.

 UFDL permits you to define pages and items in any order, regardless
 of when and where they display. If you define your pages and items
 in a random order, the default sequence may result in apparently
 random movement.

 2.4p Including External Files

 You can code a #include statement anywhere in a form definition
 except imbedded in another statement. You can also nest #include
 statements. See the section 'UFDL Form Viewer Directive' in section

6.1 for a syntax of the #include statement.

 In the following examples, you can see the #include statement used
 in a variety of locations.

 // Use the standard defaults for v3.2.0 forms. This include file
 // contains the 'version' option statement and the default 'url'
 // option statement.
 #include "v3form.txt"

 page_one = new page
 {
 // Page one must contain the company logo. This include file
 // contains the 'label' and 'data' item definitions.
 #include "co_logo.txt"

 // The remaining items are specific to this form.
 ...
 }

 // The last page is standard for all company forms. Use the
 #include "lst_page.txt"
 }

 2.5 UFDL Language Elements

 2.5a Identifiers
 Identifiers are the names you assign to the following entities:
 - page tags
 - item tags
 - option names

 - variable names
 - datagroup names
 - group names

Universal Forms Description Language [page 39]

 The naming conventions for an identifier are as follows:
 - It must begin with an alphabetic character.
 - It can contain any of the characters A-Z, a-z, 0-9, $ and
 underscore.

 An example of a valid identifier is sql_query.

 2.5b Custom Item Types and Custom Option Names

 These are the names you assign to your own items and options. The naming
conventions for a custom name are as follows:
 - It must begin with an alphabetic character.
 - It can contain any of the characters A-Z, a-z, 0-9, $ and underscore.
 - It must contain an underscore.

 2.5c Reserved Words

 UFDL reserves the following words for its own use:
 - UFDL item, option and variable names
 - global
 - page
 - new

 2.5d Quoted Strings

 The syntax of a quoted string is:
 "<character string>"

 The minimum length of the string is one (1) byte; the maximum
 length is the lesser of two gigabytes (231 - 1 bytes) and the
 amount of memory the system will allocate.

 Long quoted strings can span multiple lines. To code a multiple
 line string, break the string into segments and surround each
 segment with quotation marks. A reasonable segment length might be
 the maximum line length permitted in your text editor.

 The following example shows a multiple line quoted string in an
 assignment statement. UFDL treats the segments as contiguous,
 ignoring any white space between them.

 value = "This example demonstrates the use of quoted strings "
 "that span multiple lines.";

 Some characters, such as tabs and line delimiters, are invalid in
 a quoted string unless you use an escape sequence. All escape
 sequences begin with the escape character (\). The following table
 shows the escape sequences UFDL recognizes and the characters they
 represent.

 Escape Character Comments
 Sequence

 \t tab UFDL interprets this as an imbedded
 tab character.
 \n line delimiter UFDL interprets this as am imbedded
 line delimiter.

Universal Forms Description Language [page 40]

 \xnn hexadecimal UFDL interprets 'nn' as a hexadecimal
 number number.
 \mnn octal number If 'm' is 0,1,2,or 3, UFDL interprets
 'mnn' as an octal number
 \" double quote UFDL interprets this as an imbedded
 double quote mark.
 \\ backslash UFDL interprets this as an imbedded
 \<any other> <any other> UFDL ignores the escape character.

 2.5e Binary Data

 See 'mimedata' in section 5.27 for the syntax of
 the assignment statement.

 Images and sounds are examples of binary data. Store binary data in
 a form using the mimedata option of a data item. The mimedata
 option requires a quoted string as its setting.

 To store binary data in this manner, you must first convert it to
 base64 format, copy the converted data into the form definition,
 and insert the quotation marks. In all likelihood the data will
 span several lines. Enclose each line in quotation marks.

 Converting binary data to base64 format ensures the string contains
 no characters requiring an escape sequence.

 2.5f Comments

 Comments must occur at the end of the line or on a line by
 themselves. UFDL supports two comment formats:
 // comment - the comment ends at the end of the line
 /* comment */ - these comments can span several lines

 2.6 Security

 Version 4.0 and higher of UFDL supports digital signatures, for
 secure, tamper-proof documents. Digital signatures are incorporated
 into the description of the form, and allow the developer to
 specify that a user may sign the entire form or parts of the form.
 In addition, multiple users may sign a form.

 Design Goals Behind Digital Signatures in UFDL

 Standards Based Security: Due to the sensitive nature of the issues
 surrounding data security and integrity, all digital signature
 technologies used in UFDL must be based on commonly accepted
 industry standards.

 Vendor Independence: Any API used must have the ability to be

 seamlessly replaced with another, should the situation warrant it.

 Optional Implementation: The act of digitally signing a UFDL form

Universal Forms Description Language [page 41]

 should not alter it in any way that prevents it from being opened
 by a viewer that does not support the digital signature technology.

 Partial Content Protection: Forms must be able to be signed both in
 whole and in part to allow for sections to be approved by different
 signing authorities.

 Incremental Protection: Forms or form sections must be able to be
 signed several times to allow for layered or incremental
 authorization.

 How Digital Signatures Work in UFDL

 User-level digital signature functionality is accessible through
 one or more signature buttons, which the form developer must place
 in the form. Typically, a signature button that is associated with
 a valid digital signature will display the signer's identity. A
 signature button associated with an invalid signature will display
 the word Invalid. Finally, a signature button that is not
 associated with a signature will appear to be empty. The form
 developer can override this basic behavior.

 Subject to some constraints specified by the form, a user can
 access the following digital signature functionality: verify the
 digital signatures present in the form, view the signatures in a
 form, digitally sign all or part of a form, and delete the user's
 signature.

 Signature Verification: The signatures in a form will be verified
 automatically when the form is first displayed. The user will be
 warned if any signature verification fails (in addition to the
 invalid appearance displayed by any associated signature buttons).

 Signature Viewing: By pressing a signature button on the form,
 the user will be able to call upon a Signature Viewer dialog box
 to present the signature associated with the button. The dialog
 will include four buttons: OK, Sign, Delete, and Advanced.

 The default button is OK, so the user can hit the Enter key at any
 time to release the Signature Viewer dialog. If there is no
 signature associated with the signature button, then the Delete and
 Advanced buttons will be inactive, and text field will be empty.
 The Sign button will be active, and it will receive the focus when
 the Signature Viewer dialog is first displayed so that the user can
 simply hit the space bar to sign the form. If there is a signature
 associated with the signature button, then the Sign button will be
 inactive, the Delete button may or may not be active, and the
 Advanced button will be active. The Advanced button will also
 receive the focus so that the user can hit space to view the
 advanced information regarding the signature.

 The dialog will also use labels to display the signature status
 (No Signature, Signature Is Valid, Signature Is Invalid), the
 signer's identity (e.g., John Doe Manager, jdoe@company.com), the
 identity of the cryptographic service provider used to generate and
 verify the signature (e.g., Microsoft Base Cryptographic Provider

Universal Forms Description Language [page 42]

 v.1.0), and the hash algorithm used (sha1 or md5).

 Finally, the dialog will provide a readonly text field labeled
 Certificate Chain that will contain a textual description of the
 chain of certificate issuance for the signer. If there is no
 signature, then all elements will be empty except the signature
 status. If there is a signature, and the user presses the Advanced
 button, then a second dialog box will appear, containing a readonly
 text field and an OK button. The OK button will release the
 advanced dialog if pushed, and the text field will contain a UFDL
 text representation showing what the user signed.

 Digital Signature: If the user presses the Sign button, then the
 viewer will first obtain the digital signature key of the user. If
 the user has more than one digital signature identity, then a
 dialog will be presented allowing the user to select the desired
 identity. The signature will then be created in accordance with the
 specifications of the signature button, and the signature
 demographics will be placed into the labels and fields of the
 Signature Viewer dialog. The Sign button will be grayed out, and
 the Delete and Advanced buttons will be activated. The Advanced
 button will receive the focus. Thus, the user may then press the
 space bar to view the new signature's advanced information (or
 Enter to release the signature dialog via the default OK button).

 Deleting a Signature: If a valid signature is associated with the
 signature button, and it belongs to the current user, and the
 deletion of the signature will not corrupt other signatures on the
 form, then the Delete button will be activated. The user is not
 permitted to delete an invalid signature (even if it claims to
 have the user's identity because it may be lying). If the user
 presses this button, then the Signature Demographics field will be
 emptied, the Delete and Advanced buttons will be deactivated, and
 the Sign button will be activated and focused. Thus, the user can
 hit Enter to release the Signature Viewer dialog box via the OK
 button, or space to sign the form. Typically, the user will delete
 a signature, release the dialog, make some changes to the form,
 then reinstantiate the dialog to sign the changed form.

 Freezing Option References, Calculations, and Other Formulas

 Once an option has been digitally signed, it maintains the signed
 literal value and will not change, even if the option setting is a
 formula (for example, value=field1.value).

 The literal value is stored in a start value element of the option
 name, which is represented by an open angle bracket with the value
 in quotation marks and a close angle bracket on the left-hand side
 of the equal sign, like this:

 value<"Jane E. Smith"> = page1.nameField.value;

 The viewer sets this literal value when a form is signed,
 submitted, or saved (and discards any old value if necessary).
 Because a digitally signed formula never fires after being signed,
 the start value for the option is always the same-and therefore it

Universal Forms Description Language [page 43]

 is possible to reference the option and get the signed literal
 value.

 Non-Compliance

 In accordance with the design criterion of optional implementation,
 viewers that don't support digital signature should, for the most
 part, ignore the digital signature enhancements in a form. Viewers
 that support any UFDL versions prior to v.4.0 not be able to parse
 v.4.0 forms, because of the inclusion of the start value syntax
 starting in v.4.0 (see "Freezing Option References, Calculations,
 and Other Formulas" above). However, if a UFDL viewer v.4.0 or
 higher does not have digital signature capability, then the viewer
 should not attempt to verify the signatures. Further, if a button
 of type signature is pressed, the user should be informed that the
 digital signature feature is not supported.

 If a digital signature fails because the signer's certificate is
 out of date, the viewer will denote this as a failure even if
 everything else checks out. The principal idea behind certificate
 expiry is that keys involved in a signature cannot be trusted
 beyond the expiry date.

 Setting Up a Digital Signature Button

 To allow a form user to digitally sign a form, the form developer
 must create a digital signature button, according to the language
 specs outlined in the UFDL button item description.

 When the user signs the form, the user's digital signature is
 stored in a signature item (consisting of the signer
 identification, the encoded UFDL representation of what is being
 signed, and the filters applied). The developer does not create a
 signature item; rather, it is automatically created by the viewer
 or other form application when the user signs the form.

 Once a form or a portion of a form has been signed, it cannot be
 altered. If it becomes altered, the signature will break, and all
 users will be notified of the broken signature. In addition, some
 applications may refuse to process a form containing a broken
 signature.

 Example Signature Button and Signature Descriptions

 empSigButton = new button
 {
 type = "signature";
 value = signer;
 format = ["string", "mandatory"];
 signformat = "application/uwi_form;csp=\"Microsoft Base
 Cryptographic Provider v1.0\";csptype=rsa_full;hashalg=sha1";

 signoptions = ["omit", "triggeritem", "coordinates"];
 signitemrefs = ["omit", "PAGE1.mgrSigButton",
 "PAGE1.admSigButton",
 "PAGE1.empSignature",
 signature = "empSignature";
 }
 ...
 empSignature = new signature
 {
 signformat = "application/uwi_form;csp=\"Microsoft Base
 Cryptographic Provider v1.0\";csptype=rsa_full;hashalg=sha1";
 signer = "Jane D Smith, jsmith@insurance.com";
 signature = "PAGE1.empSignature";
 signitemrefs = ["omit", "PAGE1.mgrSigButton",
 "PAGE1.admSigButton",
 "PAGE1.empSignature",
 "PAGE1.mgrSignature",
 "PAGE1.admSignature"];
 signoptions = ["omit", "triggeritem", "coordinates"];
 mimedata = "MIIFMgYJKoZIhvcNAQcCoIIFIzCCBR8CAQExDzANBgkg"
 "AQUFADALB\ngkqhkiG9w0BBwGgggQZMCA36gAwSRiADjdhfHJl"
 "6hMrc5DySSP+X5j\nANfBGSOI\n9w0BAQQdWaYDVQQHEwhJbn"
 "Rlcm5ldDEXMBUGA1UEChM\nOVmVyaVNpZ24sIEluYy4xNDAKn"
 "1ZlcmlTaWduIENsYXNzIDEgQ0Eg\nLSJbmRdWFsIFN1YnNjcmliy"
 "ZXIwHhcNOTgwMTI3MwMDAwOTgwM\M1OTU5WjCCARExETA";
 }

 For more information, see the button and signature item
 descriptions.

 2.7 Filters

 UFDL supplies options for filtering transmissions and digital
 signatures. The filters allow the form developer to specify the
 items and options that should be included in or omitted from a
 transmission or a signed portion of the form.

 For transmissions, filtering is a useful way to reduce file size.
 While compression reduces file size significantly, filters can be
 used to further optimize a transmission, by sending only the
 required data. Obviously, filtering needs to be done with care, as
 it is possible to destroy the layout or the original context of a
 form if it is applied without caution.

 For information on compression, see the transmitformat option
 description.

 For signatures, filtering is the method to use to allow portions of
 forms to be signed. For example, if you created a form that
 contained two sections, one for an employee to fill out and sign,

 and one for an administrative officer to fill out and sign, you
 would use filters in each signature button to specify which portion
 of a form each signature applied to. For more details, see the
 button item description.

 The filters for transmission are: transmitdatagroups,
 transmitgroups, transmititems, transmititemrefs, transmitoptions,
 and transmitoptionrefs.

Universal Forms Description Language [page 45]

 The filters for digital signatures are: signdatagroups, signgroups,
 signitems, signitemrefs, signoptions, and signoptionrefs.

 For example:

 submitButton = new button
 {
 type = "done";
 value = "Submit";
 url = ["http://www.server.dmn/cgi-bin/warehouse.exe"];
 transmititems = ["omit", "data"];
 transmitdatagroups = ["keep", "enclosures", "related"];
 transmititemrefs = ["omit", "page1.toolbar"];
 transmitoptions = ["omit", "bgcolor", "fontcolor"];
 }

 employeeSignatureButton = new button
 {
 type = "signature";
 value = "Sign This Section";
 signature = "empSignature";
 signitemrefs = ["keep", "page1.nameField", "page1.nameLabel",
 "page1.dateField", "page1.dateLabel",
 "page1.evaluationField",
 "page1.evaluationLabel"];
 }

 For details on each filter, see the option descriptions later in
 this document.

 Order of Precedence of Filters

 Within each family of filters, there are item filters and option
 filters. In addition, there are item type filters, which filter an
 entire type of items (all fields, for example), and item instance
 filters (which filter specific instances of items). The same filter
 levels exist for option filters.

 The settings in filters are applied by a UFDL parser in the
 following manner:

 Filter Behavior Notes
 If keep flag If omit flag
 is used is used
 1.Filter types Keeps only those Omits only those
 of items, based types referred to; types referred
 on transmititems throws others out, to; throws them
 / signitems including their out including
 setting options their options

 2.Filter groups Keeps those Omits those

 of items based on items whose tags items whose
 transmitdatagroups are specified, tags are specified,
 and even if the even if the items
 transmitgroups, items are of a are of a type

Universal Forms Description Language [page 46]

 or signdatagroups type that should that should be kept
 and signgroups not be kept according to a
 settings according to a transmititems or
 transmititems or signitems setting
 signitems setting

 3.Filter specific Keeps the items Omits the items This option's
 items based on whose tags are whose tags are settings
 transmititemrefs specified; specified; override those
 or signitemrefs overrides overrides the in transmititems,
 settings previous setting previous transmitgroups,
 if necessary settings if and
 necessary transmitdatagroups
 or signitems,
 signgroups and
 signdatagroups

 4.Filter types of In the items In the items
 options based on that remain, that remain,
 transmitoptions keeps all omits all
 and signoptions option types option types
 setting referred to; referred to
 throws others
 out

 5.Filter specific Regardless of Regardless of This option's
 options based on all other all other settings override
 transmitoptionrefs settings above, settings above,all other
 and signoptionrefs keeps the omits the filters
 setting specific option specific (transmititems,
 instances option transmitdatagrou
 referred to; instances ps,
 does not keep referred to transmitgroups,
 any other options; transmititemrefs,
 in the case of transmitoptions
 items that will or signitems,
 be omitted signdatagroups,
 exept for a signgroups,
 single option, signitemrefs,
 the description signoptions)
 will look like
 this:
 itemTag = new item
 {
 option = setting;
 }

 Example

 This example uses the transmit-family of options. The order of
 precedence would be the same for the sign-family of options.

 version = "4.0.0";

 page1 = new page
 {

Universal Forms Description Language [page 47]

 submitButton = new button
 {
 value = "Filter Submission";
 type = "done";
 url = ["http://www.server.dmn/cgi-bin/processForm"];
 transmititems = ["omit", "data"];
 transmitdatagroups = ["keep", "enclosures", "related"];
 transmititemrefs = ["omit", "page1.data2"];
 transmitoptions = ["omit" "filename"];
 }

 encloseButton = new button
 {
 image = "encloseImageData";
 type = "enclose";
 datagroup = ["enclosures", "related"];
 }

 data1 = new data
 {
 datagroup = ["enclosures"];
 filename = "jobdescr.frm";
 mimedata = "dfksdfsdfhsdhskdljhf";
 }

 data2 = new data
 {
 datagroup = ["related"];
 filename = "resume.doc";
 mimedata = "dfhsjdfsjhfjs";
 }

 encloseImageData = new data
 {
 filename = "c:\images\enclose.jpg";
 mimedata = "aswWWW8MjfbyhsUE&LKKELFir8dfd";
 "UUUmnskshie3mkjkkeiIIUIUOlfRlgdsoepgejgjj";
 "1sd\35fnnII\fjkess9Wfgjgkggkll\\rgakkk2klgjgkg";
 }

 }

 As a result of the filtering, the following would happen (see
 result form description below):
 - The encloseImageData data item would be stripped from the form,
 as a result of the transmititems setting.

 - The data1 data item would remain in the form, as a result of the
 transmitdatagroups setting.

 - The data2 data item would be stripped from the form, as a result

 of the transmititemrefs setting.

 - The filename option would be stripped from data1, as a result of
 the transmitoptions setting.

Universal Forms Description Language [page 48]

 The form description that would be received once filtering was
 applied would look like this:

 version = "4.0.0";

 page1 = new page
 {
 submitButton = new button
 {
 value = "Filter Submission";
 type = "done";
 url = ["http://www.server.dmn/cgi-bin/processForm"];
 transmititems = ["omit", "data"];
 transmitdatagroups = ["keep", "enclosures", "related"];
 transmititemrefs = ["omit", "page1.data2"];
 transmitoptions = ["omit" "filename"];
 }

 encloseButton = new button
 {
 image = "encloseImageData";
 type = "enclose";
 datagroup = ["enclosures", "related"];
 }

 data1 = new data
 {
 datagroup = ["enclosures"];
 mimedata = "dfksdfsdfhsdhskdljhf";
 }

 }

 2.8 Processing Forms

 Once a user saves or submits a form, it becomes a form instance.
 In the course of a form instance's life cycle, it may be viewed by
 various users at various client sites. Also, several form
 processing applications may handle the form. To ensure consistency
 and integrity of the form's appearance and contents, there are some
 important form processing rules in UFDL.

 UFDL offers two types of include statements:

 - #include - Includes a file from the local drive in the form
 description, and, if the file does not exist, flags the error.

 - #optinclude - Includes a file from the local drive if the file
 exists and, if the file does not exist, ignores it gracefully.

 The rules governing handling of #include statements state:

Universal Forms Description Language [page 49]

 - All #include and #optinclude statements are resolved when the
 form appears. The only exception occurs when the referenced file
 cannot be found. In this instance, the #include or #optinclude
 statement remains in the form.

 - When a #include or #optinclude statement is resolved, the
 #include or #optinclude statement definition is permanently
 deleted from the form instance.

 These rules combine to ensure that the definition of a particular
 form instance remains constant from first to last viewing, and that
 no user data disappears.

 2.8b Expressions

 The rule governing handling of expressions in value options states:
 - Expressions are overwritten if the item is modifiable and the
 user updates the value displayed, or if the form submission
 format is HTML.

 This rule ensures that forms submitted in UFDL format continue to
 work as originally designed even after processing.

3. UFDL Global and Page Settings

 At the top of each form and each page, a form developer can specify
 options that apply to the whole form or the particular page. These
 are called global settings and page settings.

 The syntax of global settings is as follows:
 version = <version_number>;
 <option definition2>
 ...
 <option definitionn>
 Notes:
 i) The version option is mandatory. It must be the first line in
 the form.
 ii)All options other than version are optional.
 iii)Global settings must appear before the first page declaration.
 iv)A page setting can override a form global option for the
 particular page.

 The syntax of page settings is as follows:
 <page tag> = new page
 {
 <option definition1>
 ...
 <option definitionn>
 Notes:

 i) Page settings are optional.
 ii)Page settings must appear before the first item definition in
 the page.
 iii)A page will assume the characteristics specified in the global

Universal Forms Description Language [page 50]

 settings unless they are overridden by settings of the same
 type in the page settings.
 iv)Options within item declarations override page settings for the
 particular item they appear in.

 The following pages outline which options can be used as global
 settings and which options can be used as page settings.

 3.1 Global Settings

 Global settings specify particular settings for the form and
 determine its physical characteristics. For example, the version
 option defines which version of UFDL the form was written in. The
 bgcolor option determines the background color of all pages in the
 form. Global settings appear at the top of a form and apply to the
 whole form. Options defined within a page or item can override
 global settings for that particular page or item.

 Available Options

 Option Behavior
 activated Whether the form is displayed or
 not. Default: off

 bgcolor Background color of form.
 Default: 255, 255, 255 (white)

 bordercolor Border color of items in form.
 Default: 0, 0, 0 (black)

 borderwid Border width of items in form.
 Default: Depends on item

 focused Whether the form has the input focus
 (generally, if it's open, it does).
 Default: off

 fontcolor Color of all value text in form. Does not
 apply to the text of label options.
 Default: black

 fontinfo Style of all value text in form. Does not
 apply to the text of label options.
 label Text that appears in title bar of form.
 Default: n/a

 next Item the focus appears on when form opens.
 Default: First input item in form description

 saveformat Format in which the form is saved.
 Default: uncompressed UFDL

 transmitformat Format in which the form is transmitted.
 Default: uncompressed UFDL

Universal Forms Description Language [page 51]

 triggeritem Item tag of item that triggered a submit
 or done action. Default: n/a

 version Version of UFDL used to make the form.
 Default: n/a

 Usage Notes

 1) Define global settings at the top of the form, before the first
 page declaration.

 2) The version option is mandatory and must be the first line in
 the form.

 3) You can give the form a title that appears in the title bar by
 setting a global label option.

 4) To specify a title to appear in the form's title bar, use the
 label option as a global setting.

 Example

 This example defines settings and characteristics for the form.
 version = "3.2.0";
 saveformat = "application/uwi_form; content-encoding=\"gzip\" ";
 label = "Time Sheet";
 bgcolor = ["ivory"];
 fontinfo = ["Helvetica", "10", "plain"];

 These global settings specify that:
 - The form is written in version 3.2.0 of UFDL.
 - All saves activated from the form should save the form as a
 compressed UFDL form, unless specified otherwise in an item
 that initiates a save.
 - The title Time Sheet should appear in the title bar of all
 pages, unless specified otherwise in a page global.
 - All pages, toolbars, boxes, labels, and tablets should have
 an ivory background, unless they contain an option specifying
 otherwise.
 - All pages and items should use a plain, Helvetica, 10-point
 font, unless they contain an option specifying otherwise.
 (Note: Labels that are parts of other items, like fields,
 are excluded from the fontinfo option. They are set using the
 labelfontinfo option.)

 3.2 Page Settings

 Page settings specify settings (like next and saveformat) and
 characteristics (like bgcolor) for the page they appear on. Page
 settings appear at the top of each page definition, and apply to
 the whole page. They can be overridden by option settings within

 items.

 Available Options

Universal Forms Description Language [page 52]

 Option Behavior
 activated Whether the page is being displayed or not.
 Default: off

 bgcolor Background color of page.
 Default: 255, 255, 255 (white)

 bordercolor Border color of items in page.
 Default: 0, 0, 0 (black)

 borderwidth Border width of items in page.
 Default: Depends on item

 fontcolor Color of all value text in page.
 Does not apply to the text of label options.
 Default: black

 focused Whether the page has the input focus.
 (Generally, if it's open, it does).
 Default: off

 fontinfo Style of all value text in page. Does not
 apply to the text of label options.
 Default: Helvetica, 8, plain

 label Text that appears in title bar of page.
 Default: n/a

 mouseover Whether the mouse pointer is over the page.
 next Item the focus appears on when page opens.
 Default: First input item in form description

 saveformat Format in which the page is saved.
 Default: uncompressed UFDL

 transmitformat Format in which the page is transmitted.
 Default: uncompressed UFDL

 Usage Notes

 1) Define page settings at the top of a page, after the opening
 brace and before the first item declaration.
 2) Page settings apply only to the page they are on.

 3) Page settings are optional.

 4) To specify a title to appear in the page's title bar, use the
 label option as a page setting.

 Example

 The following example shows page global options on two pages

 within a single form.

 ...

Universal Forms Description Language [page 53]

 page_1 = new page
 {
 bgcolor = ["seashell"];
 next = "Name_field";

 <item declaration>
 ...
 }
 page_2 = new page
 {
 fontinfo = ["Helvetica", "14", "plain"];
 next = "Activity_popup";

 <item declaration>
 ...

 Page one would have a seashell-colored background, and would direct
 the focus to the item called Name_field as soon as it opened. It
 would assume the rest of its settings from the form's global
 settings. (If no form global settings exist, the page will assume
 the UFDL defaults.)

 On page two, the font would appear as plain, Helvetica, 14-point
 type and the focus would be directed to the item called
 Activity_popup as soon as the page opened. Page two would assume
 the rest of its settings from the page global options and UFDL
 defaults.

4. UFDL Form Items

 Items are the basic elements of a page. The syntax of an item
 definition is as follows:
 <item tag> = new <item type>
 {
 <option definition1>
 ...
 <option definitionn>
 }
 Notes:
 i) The braces are mandatory.
 ii) An item definition must begin on a new line.
 iii) Option definitions are optional.
 iv) You cannot assign values to options in other item definitions.

 Tip: UFDL is case sensitive. All item type
 names are lowercase.

 The item tag uniquely identifies an item instance. No two item tags
 on a page can be the same. Item type is a name that identifies the

 type of item. This section contains information about UFDL-defined
 item types and the options available for each.

 Note: Defining an option more than once in an item's definition may
 cause unpredictable behavior.

Universal Forms Description Language [page 54]

 See the section 'Item Definition' in section 2.4d for more
 information on the syntax and rules regarding an item definition.

 4.1 action

 The action item allows you to specify form-initiated actions that
 execute automatically. The actions can be any of the following
 types:
 - link
 - submit
 - done
 - display
 - print
 - cancel
 See the type option section for a description of each of these
 actions.

 You can define action items that occur only once or repeat at
 specified time intervals. You can also define actions that occur
 after the page opens but before the page appears. See the section
 on the delay option for information on timing options.

 Action items can trigger either background actions or actions
 involving user interaction. In fact, if the form contains only
 hidden items such as action items, then the whole form operates in
 the background. Such forms are called daemon forms.

 Available Options
 Option Behavior
 activated Specifies whether item is currently activated.
 Default: off

 active Specifies whether item is active or inactive.
 Default: on

 data Specifies a single data item associated with
 an action of type display. Default: n/a

 datagroup Identifies group or folder of enclosed files.
 Default: n/a

 delay Delays execution of automatic action or
 specifies automatic action repeat factor.
 Default: repeat factor of once, interval of
 zero seconds

 transmitdatagroups Lists which datagroups of items should be kept
 or omitted from a transmission.
 Default: see "Order of Precedence of Filters"

 transmitformat Specifies format of form data transmitted to

 form processing application. Default:
 uncompressed UFDL (application/uwi_form)

Universal Forms Description Language [page 55]

 transmitgroups Lists which groups of items should be kept
 or omitted from a transmission. Default:
 see "Order of Precedence of Filters"

 transmititemrefs Lists which specific items should be kept
 or omitted from a transmission. Default:
 see "Order of Precedence of Filters"

 transmititems Lists types of items to include in or omit
 from form data submitted to form processing
 application. Default: see "Order of Precedence
 of Filters"

 transmitoptionrefs Lists which specific options should be kept
 or omitted from form data submitted to form
 processing application. Default:
 see "Order of Precedence of Filters"

 transmitoptions Lists which types of options to include in
 or omit from form data submitted to form
 processing application. Default:
 see "Order of Precedence of Filters"

 type Associates task type with item that can trigger
 a task: action, button, or cell. Default:link

 url Identifies an object to access, for items with
 type option setting of link, replace, submit,
 done, or pagedone. Default: n/a

 Usage Notes

 1) Repeating automatic actions is one method of creating a
 sparse-stated connection. It allows the form to indicate
 periodically to a server application that it is still running.
 Use the delay option to specify repetition.

 2) Actions, by the form definition rules, reside on a page;
 therefore, actions occur only when the page is open, and
 repeating actions stop when a the page closes. Actions defined
 to occur before the page displays, occur each time the page
 opens.

 Examples

 Example 1

 The following action will send a status message to the server. The
 transaction happens automatically every 10 minutes (600 seconds).
 sendStatus_action = new action
 {
 delay = ["repeat", "600"];

 type = "submit";
 url = ["http://www.server.com/cgi-bin/recv_status"];
 }

Universal Forms Description Language [page 56]

 Example 2

 This action will link to a search form as soon as the current page
 displays.
 grabSearch_action = new action
 {
 type = "link";
 url = ["http://www.server.com/application/ index/search.frm"];
 }

 Example 3

 Background actions can also cancel forms, or prompt the user to
 save a form. Here is an example:
 // Automatically prompt the user to save the form after 5 minutes
 autoSave_action = new action
 {
 delay = ["once", "300"];
 type = "save";
 }
 //
 // Automatically close the form after 10 minutes
 autoCancel_action = new action
 {
 delay = ["once", "600"];
 type = "cancel";
 }

 4.2 box

 Sample 1: Box

 The box item creates a square box on the form. You may not place
 other items in the box; however, you may place other items on top
 of it. The purpose of box items is simply to add visual variety to
 the form.

 Available Options

 Option Behavior
 bgcolor Defines background color of box.
 Default: page background color

 bordercolor Defines color of border around box.
 Default: black

 borderwidth Defines width of box's border in pixels.
 Default: zero pixels

 fontinfo Defines font name, point size, and font

 characteristics for text portion of box.
 Defaults: Helvetica, 8, plain

Universal Forms Description Language [page 57]

 itemlocation Specifies location of box in page layout.
 Default: in body of page, under previous item
 in page definition, aligned along page's left
 margin

 size Specifies box's size in characters.
 Default: width 1 character, height 1 character

 Usage Notes

 1) To make the box more visible, assign a background color that
 differs from the page background color (the default).

 2) When setting the size option of a box, the height and width of
 the box will be based on the average character size for the font
 in use (set with the fontinfo option).

 Example
 The following example shows a typical box description. The box is
 25 characters wide and 4 characters high. Notice the background
 color setting.
 blue_box = new box
 {
 bgcolor = ["blue"];
 size = ["25", "4"];
 }

 4.3 button

 Sample 2: Button

 The button item provides a click button to perform an action when
 selected. For example, you can use buttons to request data from a
 web server, submit or cancel the form, sign the form, save it to
 disk, or enclose external files.
 Available Options

 Option Behavior
 activated Specifies whether the button is currently
 activated by user. Default: off

 active Specifies whether button is active or
 inactive. Default: on

 bgcolor Defines background color of button.
 Default: gray

 bordercolor Defines width of button's border in pixels.
 Default: zero pixels

 borderwidth Defines font name, point size, and font

 characteristics for text portion of button.
 Defaults: Helvetica, 8, plain

Universal Forms Description Language [page 58]

 coordinates Records position of mouse pointer on an image
 which must exist in a button. Default: n/a

 data Specifies a single data item associated with
 a button of type enclose, display, extract,
 or remove. Default: n/a

 datagroup Identifies group or folder of enclosed files.
 Default: n/a

 focused Specifies whether button has input focus.
 Default: off

 fontcolor Defines font color for text or filler portion
 of button. Default: black

 fontinfo Defines font name, point size, and font
 characteristics for text portion of button.
 Default: Helvetica, 8, plain

 format Defines whether a button is mandatory or
 optional, for use with signature buttons.
 Default: optional (see also format option
 description)

 help Points to help message for button.
 Default: n/a

 image Associates an image with button.
 Default: n/a

 itemlocation Specifies location of button in page layout.
 Default: in body of page, under previous item
 in page definition, aligned along page's
 left margin.

 justify Aligns lines of text within space button
 occupies. Default: center

 mouseover Specifies whether mouse pointer is over
 button. Default: off

 next Identifies item to receive focus when user
 tabs ahead from current item. Default: depends
 on order in which page and item definitions
 occur within form definition

 signature Establishes UFDL item name by which a digital
 signature is identified. Default: n/a

 signdatagroups Specifies which datagroups are to be filtered
 for digital signature. Default: see "Order of

 Precedence of Filters"

 signer Adds user's common name and email address as

Universal Forms Description Language [page 59]

 they appear in user's personal certificate,
 identifying who signed the form. Default: n/a

 signformat Controls what system parameters are used to
 create the signature. Default:
 application/uwi_form

 signgroups Specifies which groups of items are to be
 filtered for digital signature. Default: see
 "Order of Precedence of Filters"

 signitemrefs Specifies which individual items are to be
 filtered for digital signature. Default: see
 "Order of Precedence of Filters"

 signitems Specifies which types of items are to be
 filtered for digital signature. Default: see
 "Order of Precedence of Filters"

 signoptionrefs Specifies which individual options are to be
 filtered for digital signature. Default: see
 "Order of Precedence of Filters"

 Universal Forms Description Language [page 30]

 signoptions Specifies which types of options are to be
 filtered for digital signature. Default: see
 "Order of Precedence of Filters"

 size Specifies button's size in characters.
 Default: width of label, height of label

 transmitdatagroups Lists which datagroups of items should be kept
 or omitted from a transmission. Default: see
 "Order of Precedence of Filters"

 transmitformat Specifies format of form data transmitted to
 form processing application.
 Default: uncompressed UFDL

 transmitgroups Lists which groups of items should be kept or
 omitted from a transmission. Default: see
 "Order of Precedence of Filters"

 transmititemrefs Lists which specific items should be kept or
 omitted from a transmission. Default: see
 "Order of Precedence of Filters"

 transmititems Lists types of items to include in or omit from
 form data submitted to form processing
 application. Default: see "Order of Precedence
 of Filters"

 transmitoptionrefs Lists which specific options should be kept or
 omitted from form data submitted to form
 processing application. Default: see "Order of
 Precedence of Filters"

Universal Forms Description Language [page 60]

 transmitoptions Lists which types of options to include in or
 omit from form data submitted to form
 processing application. Default: see "Order of
 Precedence of Filters"

 type Associates task type with item that can trigger
 a task: action, button, or cell. Default:link

 url Identifies an object to access, for items with
 type option setting of link, replace, submit,
 done, or pagedone. Default: n/a

 value Contains text of button's label. Default: n/a

 Usage Notes

 1) The button's label is defined by the value option. If no value
 option exists, the default label is blank.

 2) When setting the size option of a button, the height and width
 of the button will be based on the average character size for
 the font in use (set with the fontinfo option).

 3) If a button's image option points to a data item that
 dynamically changes its mimedata (but not its item tag), then
 the button will upate the image it displays. For information on
 how to update an image by enclosing a new one, see the data
 option description.

 4) The format option is available in buttons so that you can force
 users to sign forms before submitting them. You do this by
 making a signature button mandatory, like this:

 empSignatureButton = new button
 {
 type = "signature";
 format = ["string", "mandatory"];
 value = signer;
 signer="";
 signature = "empSignature";
 signoptions = ["omit", "triggeritem", "coordinates"];
 signitemrefs = ["omit", "page1.empSignatureButton",
 "page1.empSignature"];
 }

 There are two steps to making a signature button mandatory:

 - Assign a format of ["string", "mandatory"].

 - Set the button's value to equal the button's signer option
 setting.

 By setting the format to mandatory, you specify that the button
 must have a value setting that is not empty before the user submits
 the form. By then equating the value to the setting of the signer

Universal Forms Description Language [page 61]

 option, you make sure that the only way a button's value is set is
 if somebody uses it to sign the form. (The signer option stores the
 identity of the person who signed the form using the button.)

 Behavior of Buttons in Digital Signatures

 1) A digital signature button is the means by which the user can
 digitally sign a form. To make a button a signature button,
 set its type to signature.

 2) You can set up a signature button to sign the whole form or just
 part of it. You do this by setting up filters on the signature,
 using the signdatagroups, signgroups, signitemrefs, signitems,
 signoptionrefs, and signoptions options. To learn about
 filtering, see "Filters"in section 2.7.

 Important:You should always at a minimum filter out the
 triggeritem and coordinates options. These options change
 when a submission is triggered or when a user clicks an
 image button, respectively. You should also consider
 filtering out any parts of the form that a subsequent
 user will change, including subsequent signatures and
 signature buttons; and custom options that might change
 (like odbc_rowcount).

 3) Signature buttons allow users to do the following:

 - Sign the form or portion of the form the button specifies.

 - Delete their signatures (a signature can be deleted only by
 the user whose signature it is, and if the signature is
 currently valid and not signed by some other signature).

 - View the signature and view the UFDL text of what the
 signature applies to.

 4) All option references, calculations, and other formulas in any
 signed portion of a form are frozen once they have been signed.
 Their setting will be valued at the setting they contained at
 the moment when the signature was created. If the user deletes
 the digital signature, however, then the formulas will become
 unfrozen, and will change dynamically as normal.

 5) The usual options for other buttons (i.e. size, image, value)
 can also be used with signature buttons.

 Examples

 Example 1 - Link button

 This button links the form to a server (www.server.com) and
 getHelp_button = new button

 {
 value = "Get Help";
 type = "link";

Universal Forms Description Language [page 62]

 url = ["http://www.server.com/application/help/formHelp.frm"];
 }

 Example 2 - Submit button

 Buttons that trigger form processing requests must have a type
 option setting of submit or done. The definition for such a
 button might look like this:
 submit_button = new button
 {
 value = "Process Form";
 fontinfo = ["Helvetica", "18", "bold", "italic"];
 type = "done";
 url = ["http://www.server.com/cgi-bin/formProcessor"];
 }

 Example 3 - Enclosure button

 This button encloses an external file in the form. The action to
 enclose a file is enclose. The datagroup option identifies the list
 of datagroups, or folders, in which the user can store the enclosed
 file. An enclose button might take the following form:
 enclose_button = new button
 {
 value = "Enclose File";
 fontinfo = ["Helvetica", "18", "bold", "italic"];
 type = "enclose";
 datagroup = ["Images_Asia", "Images_Eur" , "Images_SAmer"];
 }

 This button will allow users to enclose files into one of three
 datagroups (folders): Images_Asia, Images_Eur, Images_SAmer.

 Example 4 - Signature button

 This example shows a signature button with the signature item it
 creates when signed. The button contains the basic settings you
 should use. Its type is designated as signature; it omits
 triggeritem and coordinates options throughout to avoid breaking
 the signature.
 empSigButton = new button
 {
 type = "signature";
 value = signer;
 format = ["string", "mandatory"];
 signformat = "application/uwi_form;csp=\"Microsoft Base
 Cryptographic Provider v1.0\";csptype=rsa_full;hashalg=sha1";
 signoptions = ["omit", "triggeritem", "coordinates"];
 signitemrefs = ["omit", "PAGE1.mgrSigButton",
 "PAGE1.admSigButton", "PAGE1.empSignature",
 "PAGE1.mgrSignature", "PAGE1.admSignature"];

 signature = "empSignature";
 }
 ...
 empSignature = new signature
 {

Universal Forms Description Language [page 63]

 signformat = "application/uwi_form;csp=\"Microsoft Base
 Cryptographic Provider v1.0\";csptype=rsa_full;hashalg=sha1";
 signer = "Jane D Smith, jsmith@insurance.com";
 signature = "PAGE1.empSignature";
 signitemrefs = ["omit", "PAGE1.mgrSigButton",
 "PAGE1.admSigButton", "PAGE1.empSignature",
 "PAGE1.mgrSignature", "PAGE1.admSignature"];
 signoptions = ["omit", "triggeritem", "coordinates"];
 mimedata = "MIIFMgYJKoZIhvcNAQcCoIIFIzCCBR8CAQExDzANBgkg"
 "AQUFADALB\ngkqhkiG9w0BBwGgggQZMCA36gAwSRiADjdhfHJl"
 "6hMrc5DySSP+X5j\nANfBGSOI\n9w0BAQQwDwYDVQQHEwhJbn"
 "Rlcm5ldDEXMBUGA1UEChM\nOVmVyaVNpZ24sIEluYy4xNDAKn"
 "1ZlcmlTaWduIENsYXNzIDEgQ0Eg\nLSJbmRdWFsIFN1YnNjcmliy"
 "ZXIwHhcNOTgwMTI3MwMDAwOTgwM\M1OTU5WjCCARExETA";
 }

 4.4 cell

 The cell item populates combobox, list and popup items. A cell
 can belong to multiple comboboxes, lists and popups. See the
 combobox, list and popup item sections for information on
 associating cells with these items.

 Cells fall into two categories according to their behavior:

 - Action cells
 These cells perform the same set of actions normally associated
 with buttons. This includes such things as cancelling, saving
 and submitting the form.

 - Select cells
 These cells provide users with a mutually exclusive set of
 values from which to choose. When chosen, these cells appear
 selected. In a list this means the cell is highlighted in some
 way. In a popup, the cell's label becomes the popup's label.

 Available Options

 Option Behavior
 activated Specifies whether cell is currently activated
 by user. Default: off

 active Specifies whether cell is active or inactive.
 Default: on

 data Specifies a single data item to associate
 with a cell of type enclose, display, extract,
 or remove. Default: n/a

 datagroup Identifies group or folder of enclosed files.
 Default: n/a

 group Groups cells together. Default: n/a

Universal Forms Description Language [page 64]

 label Specifies external text label for cell.
 Default: n/a

 transmitdatagroups Lists which datagroups of items should be
 kept or omitted from a transmission. Default:
 see "Order of Precedence of Filters"

 transmitformat Specifies format of form data submitted to
 processing application. Default:
 uncompressed UFDL

 transmitgroups Lists which groups of items should be kept or
 omitted from a transmission. Default: see
 "Order of Precedence of Filters"

 transmititemrefs Lists which specific items should be kept or
 omitted from a transmission. Default: see
 "Order of Precedence of Filters"

 transmititems Lists types of items to include in or omit
 from form data submitted to form processing
 application. Default: see "Order of Precedence
 of Filters"

 transmitoptionrefs Lists which specific options should be kept or
 omitted from form data submitted to form
 processing application. Default: see "Order of
 Precedence of Filters"

 transmitoptions Lists which options to include in or omit from
 form data submitted to form processing
 application. Default: see "Order of Precedence
 of Filters"

 type Associates task type with item that can trigger
 a task: action, button, or cell. Default:link

 url Identifies an object to access, for items with
 type option setting of link, replace, submit,
 done, or pagedone. Default: n/a

 value Contains identity of most recently selected
 cell

 Example

 The following example shows a list with three cells. To learn how
 to get the value of the user's selection, see Usage Notes below.

 countryPopup = new popup
 {
 label = "Country";

 group = "country";
 format = ["string", "mandatory"];
 }
 albCell = new cell

Universal Forms Description Language [page 65]

 {
 value = "Albania";
 type = "select";
 }
 algCell = new cell
 {
 value = "Algeria";
 group = "country";
 type = "select";
 }
 banCell = new cell
 {
 value = "Bangladesh";
 group = "country";
 type = "select";
 }

 Usage Notes

 1) Use the type option to establish a cell's behavior. Select cells
 that have a type of select (the default type).

 2) Cells can have both value and label options. These options
 affect the form differently depending on whether the cell is
 linked to a combobox, a popup, or a list. In general, the label
 of the cell will be displayed as a choice, while the value of
 the cell will be displayed if that cell is selected. For more
 information, refer to the appropriate item type.

 3) Cells take their color and font information from the combobox,
 list and popup items with which they are associated. In this
 way, a cell's appearance can vary according to the list the
 user is viewing.

 4) To get the value of a cell that a user has selected from a list,
 you need to dereference it, like this:
 <page_tag>.<list_tag>.value->value

 For example:
 page1.countryPopup.value->value

 When a user selects a cell from a list, the item tag of the cell is
 stored as the value of the list. Hence the dereference syntax.

 4.5 check

 Sample 3: Check Box

 The check item provides a simple check box to record a selected
 or not selected answer from a user. A selected check box appears
 filled while a deselected box appears empty.

 The exact appearance of the check box is platform dependent; but
 the shape is rectangular. The check box appears as a normal check

Universal Forms Description Language [page 66]

 box for the users of each platform.

 Available Options

 Option Behavior
 active Specifies whether check box is active or
 inactive. Default: on

 bgcolor Defines background color of check box.
 Default: white

 bordercolor Defines color of border around check box.
 Default: black

 editstate Defines one of three possible edit states
 for modifiable items: readonly, writeonly,
 or readwrite. Default: readwrite.

 focused Specifies whether check box currently has input
 focus. Default: off

 fontcolor Defines font color for text or filler portion
 of button. Default: black

 fontinfo Defines font name, point size, and font
 characteristics for text portion of button.
 Defaults: Helvetica, 8, plain

 help Points to help message for button. Default: n/a

 itemlocation Specifies location of button in page layout.
 Default: in body of page, under previous item
 in page definition, aligned along page's
 left margin

 label Specifies external text label for check box.
 Default: n/a

 labelbgcolor Defines background color for label specified
 in label option. Default: in toolbar,
 background color of toolbar; otherwise,
 background color of page
 labelbordercolor Defines color of border around label specified
 in label option. Default: black

 labelborderwidth Defines width of border around label specified
 in label option, in pixels.
 Default: zero pixels

 labelfontcolor Defines font color for label specified in label
 option. Default: black

 labelfontinfo Defines font name, point size, and font
 characteristics for label specified in label
 option. Default: Helvetica, 8, plain

Universal Forms Description Language [page 67]

 mouseover Specifies whether mouse pointer is over item.
 Default: off

 next Identifies item to receive focus when user
 tabs ahead from current item.
 Default: depends on order in which page and
 item definitions occur within form definition

 size Specifies check box's size in characters.
 Default: width 1 character, height 1 character

 value Indicates user answer's as to whether check box
 is checked (on) or not (off). Default: off

 Usage Notes

 1) The value option setting indicates the user's answer. If the
 user selects or checks the check box, the value option contains
 on, otherwise it contains off. The default value is off.

 2) Check boxes do not belong to groups like radio buttons-each
 check box may be turned on or off independently of the others.

 3) The label option defines the label for the check box. The label
 appears above the check box and aligned with the boxes left
 edge. There is no default label.

 4) When setting the size option of a check box, the height and
 width of the bounding box will be based on the average character
 size for the font in use (set with the fontinfo option).

 5) The fontcolor option determines the color of the check box fill
 pattern (default is red).

 Example

 This value option setting in this check box is on, so the check
 box will appear selected when it displays. The item's label is
 Activate Health Plan, and the label will display in a Times 14
 Bold font colored blue.

 healthPlan_check = new check
 {
 value = "on";
 label = "Activate Health Plan";
 labelfontinfo = ["Times", "14", "bold"];
 labelfontcolor = ["blue"];
 }

 4.6 combobox

 Sample 4: Combobox

 Comboboxes act like a hybrid of a field and a popup. Unopened, a

Universal Forms Description Language [page 68]

 combobox with a label occupies the same space two labels, and a
 combobox without a label occupies the same space as a single label.
 After a user chooses a cell, the combobox closes (that is, returns
 to its unopened state).

 If none of the cells are appropriate, the user can type other
 information into the combobox. When information is typed in, it is
 stored in the value option of the combobox. When a cell is
 selected, the value option stores the value of that cell.

 A combobox's label appears above the combobox item.

 Available Options

 Option Behavior
 activated Specifies whether the pop-down list is
 currently activated. Default: off

 active Specifies whether combobox is active or
 inactive. Default: on

 bgcolor Defines background color of combobox.
 Default: white

 bordercolor Defines color of border around combobox.
 Default: black

 editstate Defines one of three possible edit states for
 modifiable items: readonly, writeonly, or
 readwrite. Default: readwrite.

 focused Specifies whether the combobox currently has
 the input focus. Default: off
 fontcolor Defines font color for text or filler portion
 of combobox. Default: black

 fontinfo Defines font name, point size, and font
 characteristics for text portion of combobox.
 Defaults: Helvetica, 8, plain

 format Applies to value of each cell linked to
 combobox, flagging or filtering cells that fail
 check, and replacing value of cells that pass
 with formatted value. Default: format option

 group Groups comboboxes together. Default: n/a

 help Points to help message for combobox.
 Default: n/a

 itemlocation Specifies location of combobox in page layout.
 Default: in body of page, under previous item

 in page definition, aligned along page's
 left margin

Universal Forms Description Language [page 69]

 label Specifies external text label for combobox.
 Default: n/a

 labelbgcolor Defines background color for label specified
 in label option. Default: in toolbar,
 background color of toolbar; otherwise,
 background color of page

 labelbordercolor Defines color of border around label specified
 in label option. Default: black

 labelborderwidth Defines width of border around label specified
 in label option, in pixels.
 Default: zero pixels

 labelfontcolor Defines font color for label specified in label
 option. Default: black

 labelfontinfo Defines font name, point size, and font
 characteristics for label specified in label
 option. Default: Helvetica, 8, plain

 mouseover Specifies whether the mouse pointer is over the
 combobox. Default: off

 next Identifies item to receive focus when user tabs
 ahead from current item. Default: depends on
 order in which page and item definitions occur
 within form definition

 previous Identifies the item to receive the focus when
 the user tabs backwards from the current item.
 Default: previous item within form definition

 size Specifies combobox's size in characters.
 Default: width=larger of label width and widest
 cell, height=1 character

 value Contains one of following: value of most
 recently chosen selection, nothing if an action
 was most recently chosen, or text entered if
 something was typed in most recently

 Usage Notes

 1) Place cells in a combobox by creating a group for the combobox
 and assigning cells to the group. Create a group using the group
 option in the combobox definition. Assign cells to the group
 using the group option in the cell definition.

 2) Cells that have a label option will display that label in the
 list. Otherwise, the value of the cell will be displayed. When

 a cell is selected, the value of that cell will be displayed in
 the combobox and stored internally.

 3) To get the value of a cell that a user has selected from a list,

Universal Forms Description Language [page 70]

 you need to dereference it, like this:
 <page_tag>.<list_tag>.value->value
 For example:
 page1.countryPopup.value->value

 When a user selects a cell from a list, the item tag of the cell
 is stored as the value of the list. Hence the dereference syntax.

 4) Combobox, popup, and list items with the same group reference
 display the same group of cells.

 5) When first viewed, a combobox will display its value. If no
 value is set, the combobox will be empty.

 6) The value option will contain one of the following:
 - The value of the most recently chosen selection.
 - Nothing if an action was most recently chosen.
 - The text entered if something was typed in most recently.

 7) When setting the size option of a combobox, the height and width
 of the popup will be based on the average character size for
 the font in use (set with the fontinfo option).

 8) The label option sets the text displayed above the item, as with
 a field.

 9) When setting the editstate option, the combobox will behave in
 the following manner:
 - A readwrite setting will cause it to function normally.
 - A readonly setting will cause the combobox to refuse all
 input, although it will function normally otherwise and
 formulas will still be able to change the value.
 - A writeonly setting will cause the combobox to use "password"
 characters in its field contents, but the list of choices
 will still be displayed in plain text.
 10) When a format is applied to a combobox, the formatting will be
 applied to the value of each cell linked to the combobox.
 Those cells that fail the check will be flagged or filtered.
 Those cells that pass the check will have their value replaced
 with a formatted value. See the format option for more
 information.

 11) If any two comboboxes, lists, or popups use the same set of
 cells, they must apply the same formatting.

 Example
 This is an example of a combobox containing a set of selections
 allowing users to choose a color.

 CATEGORY_POPUP = new combobox
 {
 group = "combo_Group";

 label = "Choose a Color:";
 }

Universal Forms Description Language [page 71]

 Notice the default label is "Choose a Color:". This will display
 above the combobox. Until the user types in something or makes a
 selection, the field area of the combobox will be blank.

 These are the cells that make up the combobox. Notice they are
 select cells and they belong to the same group as the combobox:
 combo_Group.

 RED_CELL = new cell
 {
 group = "combo_Group";
 type = "select";
 value = "Red";
 }
 WHITE_CELL = new cell
 {
 group = "combo_Group";
 type = "select";
 value = "White";
 }
 BLUE_CELL = new cell
 {
 group = "combo_Group";
 type = "select";
 value = "Blue";
 }

 4.7 data

 The data item stores an information object such as an image, a
 sound, or an enclosed file in a UFDL form. Data in data items must
 be encoded in base64 format.

 Data items are created automatically when you enclose files in a
 form. Enclose files using items with a type option setting of
 enclose.

 Available Options

 Option Behavior
 datagroup Identifies group or folder of enclosed files.
 Default: n/a

 filename Identifies name of enclosed file.
 Default: n/a

 mimedata Contains actual data associated with a data
 item. Default: n/a

 mimetype Defines MIME type of data stored in a data
 item

 Usage Notes
 1) See the section 'Binary Data' on page 41 for more information on
 binary data in UFDL forms.

Universal Forms Description Language [page 72]

 2) Store the data in the mimedata option, and the data's MIME type
 in the mimetype option.

 3) If a button or cell of type enclose contains a data option that
 points to a data item (as opposed to using the datagroup
 option), then special rules apply to the data item's behavior.
 If a user encloses a new data item using that button, the new
 information overwrites the old. For example, if the data item
 originally contained a jpeg image of a dog, and then a user
 enclosed a png image of a house, then the data item's mimedata,
 mimetype, and filename options update themselves to contain the
 information about the house image.

 Example

 This is an example of a data item produced as the result of
 enclosing a file (the data component used here is artificial, and
 is only for demonstration purposes). Notice the quotation marks
 surrounding each segment of the data.

 Supporting_Documents_1 = new data
 {
 filename = "smithltr.doc";
 mimetype = "application/uwi_bin";
 mimedata =
 "R0lGODdhYABPAPAAAP///wAAACwAAAAAYABPAAAC/4SPqcvtD02Y"
 "Art68+Y7im7ku2KkzXnOzh9v7qNw+k+TbDoLFTvCSPzMrS2YzmTE+p"
 "yai3YUk9R6hee2JFP2stju+uG0ptvdeKptb+cX8wfY1jdYU4ehKDi3pdJw"
 "44yAJEqcW28cA5M0oEKnqKasZwydrK9Wo6JTtLG9p5iwtWi8Tbi/b7E0"
 "rvKixzbHJyrDq2uNggaXUs1NlLi36AW3AGv7VWhIPA7TzvdOGi/vvr0Of"
 "ft3Nrx89JewCQJYTirxi2PwgnRpNoMV5FIIboOnqTszFLFIMhQVI0yOz";
 }

 4.8 field

 Sample 5: Field

 The field item creates a text area where users can display and
 enter one or more lines of data. The field's characteristics
 determine the number of lines, the width of each line, and whether
 the field is scrollable.

 Field data can be protected from modification, made to display in
 the system password format (typically, hidden from view), and
 forced to conform to data type and formatting specifications.

 Available Options

 Option Behavior
 active Specifies whether field is active or inactive.
 Default: on

 bgcolor Defines background color of field.

Universal Forms Description Language [page 73]

 Default: white

 bordercolor Defines color of border around field.
 Default: black

 editstate Defines one of three possible edit
 states for modifiable items: readonly,
 writeonly, or readwrite. Default: readwrite.

 focused Specifies whether the field has the input
 focus. Default: off

 fontcolor Defines font color for text or filler portion
 of field. Default: black

 fontinfo Defines font name, point size, and font
 characteristics for text portion of field.
 Defaults: Helvetica, 8, plain

 format Specifies data type of field's data, along with
 flags allowing you to specify edit checks and
 formatting you want applied to data.
 Default: n/a

 help Points to help message for field.
 Default: n/a

 itemlocation Specifies location of field in page layout.
 Default: in body of page, under previous item
 in page definition, aligned along page's
 left margin

 justify Aligns lines of text within the space field
 occupies. Default: left

 label Specifies external text label for field.
 Default: n/a

 labelbgcolor Defines background color for label specified in
 label option. Default: in toolbar, background
 color of toolbar; otherwise, background color
 of page

 labelbordercolor Defines color of border around label specified
 in label option. Default: black

 labelborderwidth Defines width of border around label specified
 in label option, in pixels.
 Default: zero pixels

 labelfontcolor Defines font color for label specified in label
 option. Default: black

 labelfontinfo Defines font name, point size, and font
 characteristics for label specified in label
 option. Default: Helvetica, 8, plain

Universal Forms Description Language [page 74]

 mouseover Specifies whether the mouse pointer is over the
 field. Default: off
 next Identifies item to receive focus when user tabs
 ahead from current item. Default: depends on
 order in which page and item definitions occur
 within form definition

 size Specifies field's size in characters. Default:
 width 30 characters, height 1 character

 value Reflects contents of field-numeric, alphabetic,
 or otherwise. Default: n/a

 Usage Notes

 1) When setting the size option of a field, the height and width of
 the field will be based on the average character size for the
 font in use (set with the fontinfo option).

 2) The editstate option determines whether the field is read only,
 write only (for passwords, for example) or available for both
 reading and writing.

 3) The format option specifies the data type of the field's data.
 It also contains flags allowing you to specify edit checks and
 formatting you want applied to the data.

 4) The label option defines the field's label. The label is
 placed above the field and aligned with the field's left edge.

 5) The scrollvert and scrollhoriz options govern a field's
 scrolling characteristics. They must be set to always to permit
 scrolling. With scrolling enabled, scroll bars display along the
 bottom (horizontal scrolling) and right (vertical scrolling)
 edges of the field.

 Examples

 Example 1

 This is an example of a single line field item that allows 20
 characters of input. An initial value of 23000 has been defined
 for the field. When the form appears, the field will contain
 this value.

 income_field = new field
 {
 label = "Annual income";
 value = "23000";
 size = ["20", "1"];
 fontinfo = ["Courier", "12", "plain"];
 labelfontinfo = ["Helvetica", "12", "plain"];

 labelfontcolor = ["blue"];
 }

Universal Forms Description Language [page 75]

 Example 2

 To create a multiple line field, the vertical size of the field
 must be adjusted (either with size or with itemlocation modifiers).
 As well, vertical scroll bars can be added, and word wrapping
 turned on. Here is an example:

 job_field = new field
 {
 label = "Job Description";
 size = ["50", "5"];
 scrollvert = "always";
 scrollhoriz = "wordwrap";
 fontinfo = ["Times", "12", "plain]";
 labelfontinfo = ["Helvetica", "12", "plain"];
 labelfontcolor = ["blue"];
 }

 4.9 help

 A help item defines a help message you can use to support various
 external items in the form. You can create a separate help item
 for every item you want to support, or you can use one help item
 for several items.

 Available Options

 Option Behavior
 active Specifies whether field is active or inactive.
 Default: on

 value Reflects help item's contents

 Usage Notes

 1) The help item's value option contains the help message text.

 2) The link between the help item and the supported item is created
 by the help option in the supported item's definition. The help
 option contains the help item's item reference.

 Example

 This is an example of a button for which help information is
 available.

 First, here is the button definition. Notice the help item's item
 reference in the help option.

 fullPicture_button = new button
 {

 help = "button_help";
 fontinfo = ["Times", "14", "plain"];

Universal Forms Description Language [page 76]

 type = "link";
 url = ["http://www.server.com/application/fullPic.frm"];
 }

 Now, here is the help item referred to in the button definition.
 The contents of the value option are used as the help message
 when the user asks for help with the button.

 button_help = new help
 {
 value = "Pressing this button will bring a full-sized image in
 a form "
 "down to your viewer.";
 }

 4.10 label

 Sample 6: Label

 The label item defines a static text message or an image to display
 on the form. If both an image and a text message are defined for
 the label, the image takes precedence in viewers able to display
 images.

 Available Options

 Option Behavior
 active Specifies whether label is active or inactive.
 Default: on

 bgcolor Defines background color of label.
 Default: transparent

 bordercolor Defines color of border around label.
 Default: black

 fontcolor Defines font color for text or filler portion
 of label. Default: black

 fontinfo Defines font name, point size, and font
 characteristics for text portion of label.
 Defaults: Helvetica, 8, plain

 format Specifies data type of label's data, along
 with flags allowing you to specify edit checks
 and formatting you want applied to data

 help Points to help message for label.

 image Defines image for label. Default: n/a

 itemlocation Specifies location of label in page layout.
 Default: in body of page, under previous item
 in page definition, aligned along page's
 left margin

Universal Forms Description Language [page 77]

 justify Aligns lines of text within space label
 occupies

 size Specifies label's size in characters. Default:
 width 1 character if label empty, otherwise
 label width; height 1 character if label empty,
 otherwise label height

 value Defines text for label. Default: n/a

 Usage Notes

 1) To define the text for a label, use the value option. To define
 an image for a label, use the image option.

 2) To create a multiple line text message, add line breaks to the
 message text. Use the escape sequence '\n' to indicate a line
 break.

 3) When setting the size option of a label, the height and width
 of the label will be based on the average character size for
 the font in use (set with the fontinfo option).

 4) If a label's image option points to a data item that dynamically
 changes its mimedata (but not its item tag), then the label will
 upate the image it displays. For information on how to update an
 image by enclosing a new one, see the data option description.

 5) The label's background color defaults to being transparent - and
 thus the label will take the background color of whatever item
 it is over. For example, if you wanted to place a label inside a
 colored box, in order to make a title section that stands out,
 you could do so without specifying a background color for the
 label:
 box = new box
 {
 size = ["30", "3"];
 }
 label = new label
 {
 itemlocation = [["alignhorizc2c", "box"],
 ["alignvertc2c", "box"]];
 value = "Great Insurance";
 fontcolor = ["white"];
 fontinfo = ["Helvetica", "14", "bold"];
 // Note: you could also specify bgcolor = ["transparent"], but you
 don't
 // need to because the default is transparent.
 }

 Examples

 Example 1
 This is an example of a text label. The text is centered in the

Universal Forms Description Language [page 78]

 space the label occupies. The label width is 30 characters (thus
 it is bigger than the text in the label).
 MAINMENU_LABEL = new label
 {
 value = "Welcome to the Main Menu";
 fontinfo = ["Helvetica", "24", "bold", "italic"];
 size = ["30", "1"];
 justify = "center";
 }

 Example 2

 This is an example of a multiple line text label. Notice the line
 break escape sequences indicating the end of each line.
 // Specify right justification for this label.
 RHYME_LABEL = new label
 {
 value = "Little miss Muffet\n Sat on her tuffet,\n"
 "Eating her curds and whey.\n When along came a
 spider,\n"
 "who sat down beside her,\n and frightened miss
 Muffet away!";
 fontinfo = ["Times", "16", "italic"];
 }

 4.11 line

 Sample 7: Line

 The line item draws a simple vertical or horizontal line on the
 form. This is useful when you want to visually separate parts of
 a page.

 Available Options

 Option Behavior
 fontcolor Defines font color for text or filler portion
 of label. Default: black

 fontinfo Defines font name, point size, and font
 characteristics for text portion of label.
 Defaults: Helvetica, 8, plain

 itemlocation Specifies location of line in page layout.
 Default: in body of page, under previous item
 in page definition, aligned along page's
 left margin

 size Determines whether line is horizontal or
 vertical: if horizonal dimension=0 then line is
 vertical, if vetical dimension=0 then line is

 horizontal; calculated in characters

 thickness Determines how thick line will be, in pixels

Universal Forms Description Language [page 79]

 Usage Notes
 1) Specify the dimensions of a line using the size and thickness
 options. The size option determines whether the line is vertical
 or horizontal. If the horizontal dimension is set to zero, then
 the line is vertical. If the vertical dimension is set to zero,
 then the line is horizontal. Size is calculated in characters.
 - The thickness option determines how thick the line will be.
 Thickness is calculated in pixels.

 2) The fontinfo option information is used when calculating the
 line's size. The size option's unit of measurement is
 characters; therefore, choice of font can affect the size. See
 the size option for more information.
 3) The fontcolor option defines the color of the line.

 Example

 This is an example of a horizontal line with a thickness of five
 pixels.
 BLUE_LINE = new line
 {
 size = ["40", "0"];
 thickness = "5";
 }

 4.12 list

 Sample 8: List

 The list item creates a list from which users can make selections
 (as in a list of names) and trigger actions (such as enclosing
 files and submitting the form). A list can contain both selections
 and actions.

 The entries in the list are cell items. Selections are cells with
 a type option setting of select. Actions are cells with any other
 type option setting.

 Available Options

 Option Behavior
 active Specifies whether list is active or inactive.
 Default: on

 bgcolor Defines background color of list.
 Default: white

 bordercolor Defines color of border around list.
 Default: black

 editstate Defines one of three possible edit states

 for modifiable items: readonly, writeonly,
 or readwrite. Default: readwrite.

Universal Forms Description Language [page 80]

 focused Specifies whether the list has the input focus.
 Default: off

 fontcolor Defines font color for text or filler portion
 of list. Default: black

 fontinfo Defines font name, point size, and font
 characteristics for text portion of list.
 Defaults: Helvetica, 8, plain

 format Applies to value of each cell linked to list,
 flagging or filtering cells that fail check,
 and replacing value of cells that pass with
 formatted value. See format option

 help Points to help message for list.

 itemlocation Specifies location of list in page layout.
 Default: in body of page, under previous item
 in page definition, aligned along page's
 left margin

 label Specifies external text label for list.
 Default: n/a

 labelbgcolor Defines background color for label specified
 in label option. Default: in toolbar,
 background color of toolbar; otherwise,
 background color of page

 labelbordercolor Defines color of border around label specified
 in label option. Default: black

 labelborderwidth Defines width of border around label specified
 in label option, in pixels.
 Default: zero pixels

 labelfontcolor Defines font color for label specified in label
 option. Default: black

 labelfontinfo Defines font name, point size, and font
 characteristics for label specified in
 label option. Default: Helvetica, 8, plain

 mouseover Specifies whether the mouse pointer is over the
 list. Default: off

 next Identifies item to receive focus when user tabs
 ahead from current item. Default: depends on
 order in which page and item definitions occur
 within form definition

 size Specifies list's size in characters. Default:
 width=larger of label width and widest cell,
 height=number of cells in list
 value Contains item reference of most recently
 selected cell in list (if it was a select
 cell); contains nothing if most recently
 selected cell was not a select cell

 Usage Notes

 1) Place cells in a list by creating a group for the list and
 assigning cells to the group. Create a group using the group
 option in the list definition. Assign cells to the group using
 the group option in the cell definition.

 2) Cells that have a label option will display that label in the
 list. Otherwise, the value option of the cell will be displayed.

 3) To get the value of a cell that a user has selected from a list,
 you need to dereference it, like this:
 <page_tag>.<list_tag>.value->value
 For example:
 page1.countryPopup.value->value

 4) When a user selects a cell from a list, the item tag of the cell
 is stored as the value of the list. Hence the dereference
 syntax.

 5) List, combobox and popup items with the same group reference
 display the same group of cells.

 6) The value option will contain one of the following:
 - The item reference of the most recently chosen cell if the
 cell was of type "select".
 - Nothing if the cell most recently chosen was of any type
 other than "select".

 7) Define the list's label using the label option.

 8) When setting the size option of a list, the height and width of
 the list will be based on the average character size for the
 font in use (set with the fontinfo option).

 9) A vertical scroll bar will appear beside the list if the number
 of cells is greater than the height (defined with the size
 option) of the list.

 10) When a format is applied to a list, the formatting will be
 applied to the value of each cell linked to the list. Those
 cells that fail the check will be flagged or filtered. Those
 cells that pass the check will have their value replaced with a
 formatted value. See the format option for more information.

 11) If any two comboboxes, lists, or popups use the same set of
 cells, they must apply the same formatting.

 Example

 This is an example of a list containing three actions: submit form,

Universal Forms Description Language [page 82]

 save form, and cancel form.

 Here is the list definition.

 MAINMENU_LIST = new list
 {
 group = "list_Group";
 label = "Options Menu";
 labelfontcolor = ["blue"];
 size = ["3", "20"];
 }

 These are the cells that make up the list. Notice they are action
 cells and they belong to the same group as the list: list_Group.
 SUBMIT_CELL = new cell
 {
 group = "list_Group";
 type = "submit";
 url = ["http://www.server.com/cgi-bin/processForm"];
 value = "Submit Form";
 }
 SAVE_CELL = new cell
 {
 group = "list_Group";
 type = "save";
 value = "Save Form";
 }
 CANCEL_CELL = new cell
 {
 group = "list_Group";
 type = "cancel";
 value = "Cancel this Form";
 }

 4.13 popup

 Sample 9: Popup Menu

 The popup item creates a popup menu from which users can make
 selections (as in a list of names) and trigger actions (such as
 enclosing files and submitting the form). A popup can contain both
 selections and actions.

 The entries in the popup are cell items. Selections are cells with
 a type option setting of select. Actions are cells with any other
 type option setting.
 Popups act like a hybrid of a label, a button, and a list.
 Unopened, a popup occupies only the space required for its label.
 Open, the popup displays a list of selections and actions. After a
 user chooses a selection or an action, the popup closes (that is,

 returns to its unopened state). A popup's label displays inside the
 popup item.

 Available Options

Universal Forms Description Language [page 83]

 Option Behavior
 activated Specifies whether the popup list is
 "popped up". Default: off

 active Specifies whether popup is active or inactive.
 Default: on

 bgcolor Defines background color of popup.
 Default: white

 bordercolor Defines color of border around popup.
 Default: black

 borderwidth Defines width of popup's border, in pixels.
 Default: one pixel

 editstate Defines one of three possible edit states for
 modifiable items: readonly, writeonly, or
 readwrite. Default: readwrite.

 focused Specifies whether the popup has the input
 focus. Default: off

 fontcolor Defines font color for text or filler portion
 of popup. Default: black

 fontinfo Defines font name, point size, and font
 characteristics for text portion of popup.
 Defaults: Helvetica, 8, plain

 group Groups cells in popup together.

 help Points to help message for popup.

 itemlocation Specifies location of popup in page layout.
 Default: in body of page, under previous item
 in page definition, aligned along page's
 left margin

 justify Aligns lines of text within the space popup
 occupies.

 label Specifies external text label for popup.
 Default: n/a

 mouseover Specifies whether the mouse pointer is over the
 popup. Default: off

 next Identifies item to receive focus when user tabs
 ahead from current item. Default: depends on
 order in which page and item definitions occur
 within form definition

 size Specifies popup's size in characters.
 Default: width=larger of label width and widest

Universal Forms Description Language [page 84]

 cell, height=1 character

 value Contains item reference of most recently
 selected cell in popup (if it was a select
 cell); contains nothing if most recently
 selected cell was not a select cell

 Usage Notes

 1) Place cells in a popup by creating a group for the popup and
 assigning cells to the group. Create a group using the group
 option in the popup definition. Assign cells to the group using
 the group option in the cell definition.

 2) Cells that have a label option will display that label in the
 list. Otherwise, the value of the cell will be displayed. When
 a cell is selected, the value of that cell will be displayed
 in the popup.

 For example, if cell had a value of "USA", and a label of "United
 States of America", the full version would be shown in the popup
 list. Once the cell was selected, the popup would display
 the abbreviation.

 3) To get the value of a cell that a user has selected from a list,
 you need to dereference it, like this:
 <page_tag>.<list_tag>.value->value

 For example:
 page1.countryPopup.value->value

 When a user selects a cell from a list, the item tag of the cell is
 stored as the value of the list. Hence the dereference syntax.

 4) Popup, combobox and list items with the same group reference
 display the same group of cells.

 5) The value option will contain one of the following:
 - The item reference of the most recently chosen cell if the
 cell was of type "select".
 - Nothing if the cell most recently chosen was of any type
 other than "select".
 6) When setting the size option of a popup, the height and width
 of the popup will be based on the average character size for
 the font in use (set with the fontinfo option).

 7) The label option contains the popup's default label. When the
 value option is empty, the default label displays. Otherwise,
 the label of the cell identified in the value option appears.

 8) When a format is applied to a popup, the formatting will be
 applied to the value of each cell linked to the popup. Those

 cells that fail the check will be flagged or filtered. Those
 cells that pass the check will have their value replaced with
 a formatted value. See the format option for more information.

Universal Forms Description Language [page 85]

 9) If any two comboboxes, lists, or popups use the same set of
 cells, they must apply the same formatting.

 Example

 This is an example of a popup containing a set of selections
 allowing users to choose a category.

 Here is the popup definition. Notice the default label is "Choose
 a Category:". This will display until a user makes a selection.
 Afterwards, the cell's value will display as the label.
 CATEGORY_POPUP = new popup
 {
 group = "popup_Group";
 label = "Choose a Category:";
 }

 These are the cells that make up the popup. Notice they are select
 cells and they belong to the same group as the popup: popup_Group.

 HISTORY_CELL = new cell
 {
 group = "popup_Group";
 type = "select";
 value = "World History";
 }
 SCIENCE_CELL = new cell
 {
 group = "popup_Group";
 type = "select";
 value = "Physical Sciences";
 }
 MUSIC_CELL = new cell
 {
 group = "popup_Group";
 type = "select";
 value = "Music";
 }

 4.14 radio

 Sample 10: Radio Buttons
 The radio button item is intended for use with one or more other
 radio button items. A group of radio buttons presents users with a
 set of mutually exclusive choices. Each radio button represents one
 choice the user can make.

 There is always one selected radio button in the group. As well,
 since radio buttons present a mutually exclusive set of choices,
 only one radio button in a group can be selected. When a user

 chooses a radio button, that radio button becomes selected.

 A selected radio button appears filled in some way. All other radio
 buttons in the group appear empty.

Universal Forms Description Language [page 86]

 Available Options

 Option Behavior
 active Specifies whether radio button is active or
 inactive. Default: on

 bgcolor Defines background color of radio button.
 Default: white

 bordercolor Defines color of border around radio button.
 Default: black

 borderwidth Defines width of radio button's border, in
 pixels. Default: 1 pixel

 editstate Defines one of three possible edit states for
 modifiable items: readonly, writeonly, or
 readwrite. Default: readwrite.

 focused Specifies whether the radio button has the
 input focus. Default: off

 fontcolor Determines color of radio button fill pattern.
 Default: red
 fontinfo Defines font name, point size, and font
 characteristics for text portion of radio
 button. Defaults: Helvetica, 8, plain

 group Groups radio buttons together.

 help Points to help message for radio button.

 itemlocation Specifies location of radio button in page
 layout. Default: in body of page, under
 previous item in page definition, aligned
 along page's left margin

 label Defines label to appear above radio button and
 aligned with left edge.

 mouseover Specifies whether the mouse pointer is over the
 radio button. Default: off

 next Identifies item to receive focus when user tabs
 ahead from current item. Default: depends on
 order in which page and item definitions occur
 within form definition

 size Specifies radio button's size in characters.
 Default: width 1 character, height 1 character

 value Indicates radio button's status: on indicates

 chosen, off indicates not chosen.
 Default: not chosen

Universal Forms Description Language [page 87]

 Usage Notes
 1) Group radio buttons by assigning them to the same group. Do this
 by including the group option in each radio button's definition,
 and using the same group reference in each case.

 2) The value option contains the status indicator. It can be either
 on or off. The value on indicates a status of chosen. The value
 off indicates a status of not chosen. The default status is
 not chosen.

 3) When the form opens, if no radio button has the status chosen,
 then the last radio button defined for the group becomes chosen.
 If multiple radio buttons are chosen, then only the last
 'chosen' radio button retains that status.

 4) The label option defines a label to appear above the radio
 button and aligned with its left edge.

 5) When setting the size option of a radio button, the height
 and width of the bounding box will be based on the average
 character size for the font in use (set with the fontinfo
 option).

 6) The fontcolor option determines the color of the radio button
 fill pattern (default is red).

 Example

 This example shows a group of three radio buttons. The first radio
 button is the initial choice: the value option setting is on.
 The buttons all belong to the group search_Group.

 NAME_RADIO = new radio
 {
 value = "on";
 group = "search_Group";
 label = "Search by Name";
 }
 NUMBER_RADIO = new radio
 {
 group = "search_Group";
 label = "Search by Number";
 }
 OCCUPATION_RADIO = new radio
 {
 group = "search_Group";
 label = "Search by Occupation";
 }

 As shown here, only the chosen radio button needs to have a value
 option setting. The remaining radio buttons will receive the

 (default) value setting of off.

 4.15 signature

Universal Forms Description Language [page 88]

 The signature item contains a digital signature and the data
 necessary to verify the authenticity of a signed form. It is
 created by a form viewer or other program when a user signs a
 form (usually using a digital signature button). The signature
 item contains an encrypted hash value that makes it impossible
 to modify the form without changing the hash value that the
 modified form would generate. To verify, one can generate the hash
 value and then see if it matches the one in the signature.

 Available Options

 Option Behavior
 mimedata Contains actual data associated with signature.
 Default: n/a

 signature Identifies the button that created the
 signature. Default: n/a

 signdatagroups Identifies group or folder of enclosed files
 to be filtered for signature. Default: "Order
 of Precedence of Filters"
 signer Adds text similar to user's email signature,
 identifying who signed form. Default: n/a

 signformat Controls what system parameters are used to
 create the signature. Default:
 application/uwi_form

 signgroups Identifies groups of items to be filtered for
 signature. Default: "Order of Precedence of
 Filters"

 signitemrefs Identifies item references to be filtered for
 signature. Default: "Order of Precedence of
 Filters"

 signitems Identifies type of items to be filtered for
 signature. Default: "Order of Precedence of
 Filters"

 signoptionrefs Identifies option references to be filtered for
 signature. Default: "Order of Precedence of
 Filters"

 signoptions Identifies type of options to be filtered for
 signature. Default: "Order of Precedence of
 Filters"

 Usage Notes

 1) When a user signs a form using a signature button, the viewer
 creates the signature item as specified in the button's

 signature option. The viewer also associates the signature with
 the signature button, using the signature's signature option.

Universal Forms Description Language [page 89]

 2) When a user signs a form, the signer, signformat, signgroups,
 signitemrefs, signitems, signoptionrefs, and signoptions options
 are copied from the button description to the
 signature description.

 3) A copy of the UFDL description of the form or portion of the
 form that is signed is included in the signature's mimedata
 option. This data is encrypted using the hash algorithm
 specified in the button's signformat option.

 4) When a program checks a signed form, it compares the data in the
 mimedata option with that of the portion of the form that is
 apparently signed. If the descriptions match, then the
 signature remains valid. If the signatures do not match, the
 signature breaks, and the user is prompted.

 5) An attempt to create a signature will fail if:
 - The item named by the signature button's signature option
 already exists.
 - The signature button is already signed by any signature in the
 form.
 - The signer's private key is unavailable for signing.

 6) Filters allow you to indicate which items and options to keep
 and to omit. The explicit and implicit settings of an existing
 filter take precedence over an implication that might be drawn
 from a non-existing filter. Set up these filters in the
 signature button description. For details on the order in which
 filters are applied, see "Order of Precedence of Filters"

 7) To use digital signatures, it is necessary for the user to
 obtain a digital signature certificate.

 Example

 This example shows a signature item below the signature button
 that created it.

 empSigButton = new button
 {
 type = "signature";
 value = signer;
 format = ["string", "mandatory"];
 signformat = "application/uwi_form;csp=\"Microsoft Base
 Cryptographic Provider v1.0\";csptype=rsa_full;hashalg=sha1";
 signoptions = ["omit", "triggeritem", "coordinates"];
 signitemrefs = ["omit", "PAGE1.mgrSigButton",
 "PAGE1.admSigButton","PAGE1.empSignature",
 "PAGE1.mgrSignature","PAGE1.admSignature"];
 signature = "empSignature";
 }

 ...
 empSignature = new signature
 {
 signformat = "application/uwi_form;csp=\"Microsoft Base

Universal Forms Description Language [page 90]

 Cryptographic Provider v1.0\";csptype=rsa_full;hashalg=sha1";
 signer = "Jane D Smith, jsmith@insurance.com";
 signature = "PAGE1.empSignature";
 signitemrefs = ["omit", "PAGE1.mgrSigButton",
 "PAGE1.admSigButton","PAGE1.empSignature",
 "PAGE1.mgrSignature", "PAGE1.admSignature"];
 signoptions = ["omit", "triggeritem", "coordinates"];
 mimedata ="MIIFMgYJKoZIhvcNAQcCoIIFIzCCBR8CAQExDzANBgkg"
 "AQUFADALB\ngkqhkiG9w0BBwGgggQZMCA36gAwSRiADjdhfHJl"
 "6hMrc5DySSP+X5j\nANfBGSOI\n9w0BAQQwDwYDVQQHEwhJbn"
 "Rlcm5ldDEXMBUGA1UEChM\nOVmVyaVNpZ24sIEluYy4xNDAKn"
 "1ZlcmlTaWduIENsYXNzIDEgQ0Eg\nLSJbmRdWFsIFN1YnNjcmliy"
 "ZXIwHhcNOTgwMTI3MwMDAwOTgwM\M1OTU5WjCCARExETA";

 4.16 spacer

 The spacer item creates space between items on a form. It can be
 any size you specify. It is invisible.

 Available Options

 Option Behavior
 fontinfo Defines font name, point size, and font
 characteristics for label of spacer.
 Defaults: Helvetica, 8, plain

 itemlocation Specifies location of radio button in page
 layout. Default: in body of page, under
 previous item in page definition, aligned along
 page's left margin

 label Determines size of spacer, though not visible.

 size Specifies spacer's size in characters. Default:
 width=1 character if label empty, otherwise
 label width, height=1 character if label empty,
 otherwise label height

 Usage Notes

 1) You can size a spacer either by giving it length and width
 dimensions (using size), by expanding the default size using the
 itemlocation option or by giving it a label. If you use a label,
 the spacer equals the size of the text you type into the label.
 The label does not appear; it is simply used to determine the
 spacer's size.

 2) When setting the size option of a spacer, the height and width
 of the spacer will be based on the average character size for
 the font in use (set with the fontinfo option).

 Example

 Example 1

Universal Forms Description Language [page 91]

 This example shows a spacer item that uses the size option to
 define the amount of space it will occupy.
 3_SPACER = new spacer
 {
 size = ["1", "3"];
 }

 Example 2

 This example shows the spacer item that uses a label to define the
 amount of space it will occupy. This sizing technique is useful if
 you want to create a spacer that is exactly the same size as a real
 label on the form.
 WELCOME_SPACER = new spacer
 {
 label = "Welcome to Information Line";
 }

 4.17 tablet

 Sample 11: Tablet

 The tablet item creates a rectangular space or drawing object on
 the page where users can draw or write using the mouse pointer.
 This allows users to do such things as sign the form.

 To draw on a tablet, users hold down the left mouse button while
 moving the mouse pointer over the space. To erase the marks, users
 position the mouse over the tablet, hold down CONTROL and click the
 right mouse button.

 The tablet's background may be blank or composed of an image. The
 user draws on the background.

 Available Options

 Option Behavior
 active Specifies whether tablet is active or inactive.
 Default: on

 bgcolor Defines background color of radio button.
 Default: page background color

 bordercolor Defines color of border around tablet.
 Default: black

 borderwidth Defines width of tablet's border, in pixels.
 Default: 1 pixel

 editstate Defines one of three possible edit states for
 modifiable items: readonly, writeonly, or

 readwrite. Default: readwrite.

 fontcolor Determines pen color

Universal Forms Description Language [page 92]

 fontinfo Defines font name, point size, and font
 characteristics for text portion of tablet.
 Defaults: Helvetica, 8, plain

 help Points to help message for tablet.

 image Associates tablet with data item. Default: n/a

 itemlocation Specifies location of tablet in page layout.
 Default: in body of page, under previous item
 in page definition, aligned along page's
 left margin

 justify Aligns lines of text within space tablet
 occupies.

 mouseover Specifies whether the mouse pointer is over
 the tablet. Default: off

 size Specifies tablet's size in characters. Default:
 width 1 character, height 1 character

 value Used to set initial size of tablet; otherwise,
 tablet sizes itself to size of text
 entered in value

 Usage Notes

 1) A tablet item must contain an image option that associates it
 with a data item. The data item must also exist in the form.
 The user's drawing marks will be stored as image data in the
 data item.

 2) For example, this is the code necessary to create a blank tablet
 (that contains no image background) on a form.
 sketch_tablet = new tablet
 {
 fontcolor = ["blue"];
 size = ["30", "5"];
 image = "sketch_data";
 }
 ...
 sketch_data = new data
 {
 }

 3) To place an image in a tablet's background, store the image data
 in the data item already associated with the tablet. Note that
 when the user draws on the tablet, the user's marks will be
 stored as part of the same image.

 For example, this piece of sample form code shows a tablet that

 contains an image called sign_data.
 sign_tablet = new tablet
 {

Universal Forms Description Language [page 93]

 fontcolor = ["blue"];
 size = ["30", "5"];
 image = "sign_logo";
 }
 ...
 sign_data = new data
 {
 mimedata = "R0lGODdhYABPAPAAAP///wAAACwAAAAAYABA/"
 "Art68+Y7im7ku2KkzXnOzh9v7qNw+k+TbDoLFTvCSPzMrSzTE+p"
 "yai3YUk9R6hee2JFP2stju+uG0ptvdeKptb+cX8wfY1jdYU4KpdJw"
 "44yAJEqcW28cA5M0oEKnqKasZwydrK9Wo6JTt9p5iwt8bi/b7E0"
 "rvKixzbHJyrDq2uNggaXUs1NlLi36AW3AGv7VWhIPAzvdGi/vvr0Of"
 "ft3Nrx89JewCQJYTirxi2PwgnRpNoMV5FIIboOnqTszFMhVI0yOz";
 }

 4) The fontcolor option determines the pen color.

 5) The pen width is two pixels.

 6) The value can be used to set the initial size of the tablet.
 If no size is indicated, and no mimedata exists, the tablet will
 size itself to the size of the text entered in the value.

 7) If an enclosure mechanism is used to replace an image stored
 in a data item with a new image, then buttons, labels, and
 tablets whose image option is set to the identifier of the
 image data item will be updated to display the new image.
 For details, see the data option description.

 Example

 This example shows a blank tablet with a background color of pale
 green. It is 40 characters wide and 10 characters high.
 users_signature = new tablet
 {
 bgcolor = ["PaleGreen"];
 size = ["40", "10"];
 fontinfo = ["Courier", "12"]; // This governs the size.
 fontcolor = ["black"]; // This governs pen color.
 image = "signature_data";
 }
 signature_data = new data
 {
 }

 4.18 toolbar

 Sample 12: Toolbar

 The toolbar item allows you to define a toolbar for your page. A

 toolbar is a separate and fixed area at the top of the page. It
 functions much like a toolbar in a word processing application.
 Typically, you place items in the toolbar that you want users to
 see no matter what portion of the page they are viewing.

Universal Forms Description Language [page 94]

 The toolbar is visible no matter what portion of the page body is
 visible. However, if the toolbar is larger than half the form
 window, you will have to scroll to see everything it contains.

 Refer to the section 'Toolbars' for more information on toolbars.

 Available Options
 You can use the following option with toolbar:

 Option Behavior
 bgcolor The background color of the toolbar. Default:
 background color of page.

 mouseover Specifies whether the mouse pointer is over
 the toolbar. Default: off

 Usage Notes

 1) The background color of the toolbar becomes the default
 background color for items in the toolbar.

 2) Add items to the toolbar using the within modifier of the
 itemlocation option. Code the itemlocation option in each
 included item's definition.

 Example

 This example shows a toolbar that contains a label, a spacer, and
 two buttons.

 Here is the toolbar definition:

 TOOL_BAR = new toolbar
 {
 bgcolor = ["cornsilk"];
 }

 Here are the items belonging to the toolbar.

 COMPANY_NAME = new label
 {
 value = "My Company";
 itemlocation = [["within", "TOOL_BAR"]];
 }
 TB_SPACER = new spacer
 {
 itemlocation = [["within", "TOOL_BAR"], ["below", "COMPANY_NAME"]];
 }
 SUBMIT_BUTTON = new button
 {
 value = "Submit Form";
 type = "submit";

 url = ["http://www.server.com/cgi-bin/formProcessor"];
 itemlocation = [["within", "TOOL_BAR"], ["below", "TB_SPACER"]];
 }

Universal Forms Description Language [page 95]

 CANCEL_BUTTON = new button
 {
 type = "cancel";
 itemlocation = [["within","TOOL_BAR"], ["after", "SUBMIT_BUTTON"]];
 }

 4.19 <custom item>
 Custom items allow form designers to add application specific
 information to the form definition. This is useful when
 submitting forms to applications requiring non-UFDL information.
 An example of non-UFDL information might be an SQL query statement.

 Available Options

 You can use all UFDL options and any custom options with custom
 items.

 Usage Notes

 1) The naming conventions for a custom item are as follows:
 - It must begin with an alphabetic character.
 - It can contain any of the characters A-Z, a-z, 0-9, $ and
 underscore.
 - It must contain an underscore.

 Example

 This is an example of a custom item definition. It includes both
 a UFDL and a custom option.

 STATUS_EVENT = new ma_event
 {
 active = "off";
 ma_id = "UF45567 \t /home/users/preferences01";
 }

5. UFDL Form Options

 An option defines a characteristic of a form, a page, or an item.
 An option definition is an assignment statement. The expression
 on the right hand side of the equal sign contains the option's
 setting. The syntax of an option definition statement is
 as follows:

 <option identifier> = <expression>;
 Note: The semicolon is mandatory and terminates the statement.

 Option identifier is a name that identifies the type of option. It
 can be a UFDL-defined option or a custom option. Examples of option

 identifier are: bgcolor, fontinfo, itemlocation, and size. See the
 following pages for a description of each option and its possible
 values.

Universal Forms Description Language [page 96]

 An expression specifies a value. An expression can be any of the
 following:
 - a literal
 - a reference to another option definition in the form
 - an operation
 - an array specification

 Use an array specification for options requiring or permitting
 multiple values. The syntax of an array specification is as
 follows: [PD1]

 [<element1>, <element2>, ... <elementn>]
 Note: 'n' is the number of settings in the option.

 An element can be any of the following:
 - an expression
 - an element definition statement

 The brackets surrounding the array specification are mandatory even
 when there is only one element in the list.

 The evaluation of array elements is done in their order of position
 unless the elements have UFDL-defined variable names. See the
 following section for a discussion of variable names.

 Element Definition Statements

 The element definition statement allows you to assign a variable
 name to an array element. Variable names permit you to refer to the
 element by name rather than by its position in the array. The
 syntax of an element definition statement is:

 <variable> = <expression>

 See the section 'Option Definition' for more information on
 expressions and arrays.

 Characteristics

 Options set for the form or a page are called characteristics. Form
 characteristics are global to the entire form. Page characteristics
 are global to the page on which they occur.

 Defining Form Characteristics

 Defining form characteristics is optional. It has the effect of
 setting characteristics that are global to the form. These
 characteristics override the defaults defined by UFDL. Specific
 pages or items will override these global characteristics if the
 same option is set differently for that page or item.

 Use the reference global.global when referring to form

 characteristics.

 Defining Page Characteristics

Universal Forms Description Language [page 97]

 Defining page characteristics is also optional. It has the effect
 of setting characteristics that are global to the page. These
 settings override the defaults defined by UFDL and any form
 characteristics. Specific pages or items will override these global
 characteristics if the same option is set differently for that page
 or item..

 Use the reference global or <page tag>.global when referring to
 page characteristics.

 Item Reference

 An item reference identifies a particular item instance. The syntax
 of an item reference is as follows:
 <item tag>
 - for items on another page
 <page tag>.<item tag>

 Data Type Designators

 UFDL defines a set of data types to describe the variable data in
 option settings. Each option's description includes the necessary
 data type information.

 UFDL uses the following data type designators:

 Data Type Description
 char a single ASCII character

 string a series of ASCII characters

 color a color name or an RGB triplet representing
 the color
 - The syntax of an RGB triplet is: [<red>,
 <green>, <blue>]. For example, the triplet
 for green is: ["0", "255", "0"].
 - See Appendix B: 'Color Table' on page 300 for
 a list of supported colors. The list contains
 the color names and their RGB triplets.

 coordinate whole number in the range 0 to 1,000
 representing one coordinate of a position

 integer positive or negative whole number in the range
 -32,768 to 32,767

 long int whole number in the range 0 to 2,147,483,647

 short int whole number in the range 0 to 255

 unsigned whole number in the range 0 to 65,535

 Syntax Notation Conventions

Universal Forms Description Language [page 98]

 Tip: UFDL is case sensitive. All option
 names are lowercase.

 The following syntax notation conventions have been used in the
 sections following:
 - Names have been assigned to each expression on the right hand
 side of the assignment operator (=). The meaning and setting of
 each expression appear in a table below the syntax diagram.
 For example,
 fontinfo = [, <point size>, <weight>, <effects>,
 <form>];
 Note: <weight>, <effects>, and <form> are optional.

 Expression Setting Description

 string the name of the font
 <point size> short int the size of the font
 <weight> "plain" use plain face
 "bold" use bold face
 <effects> "underline" underline the text
 <form> "italics" use the italic form

 - In the table, the Setting column indicates whether the
 expression requires variable data or a constant value. Variable
 data is represented by a data type; a constant value is
 represented by the required keyword. Data types appear in
 italics (for example, string); constants display in bold face
 (for example, underline).
 - A set of mutually exclusive choices is represented by a list of
 settings beside an expression's name in the table. For example,
 in the fontinfo statement, the <weight> expression can be one
 - The syntax of an expression can take many forms. For example,
 the following formats are all valid:
 value = "Sample expression";
 value = field_one.value;
 value = "Sample " +. field_two.value;

 As a consequence of the variation, syntax diagrams make no
 reference to an expression's format.

 See the section 'Option Definition' for a discussion of expression
 formats.
 - Repeating expressions are represented using an <opt1>, ...
 <optn> notation and an explanatory note. For example,
 datagroup = [<datagroup reference1>, ... <datagroup referencen>];
 Note: Include a <datagroup reference> entry for each datagroup
 this item accesses.

 - Optional expressions are noted in an explanatory note. For example,
 fontinfo = [, <point size>, <weight>,
 <effects>, <form>];

 Note: <weight>, <effects> and <form> are optional.

Universal Forms Description Language [page 99]

 5.1 activated

 The activated option specifies whether an item, page, or form is
 currently activated by the user or not. This option is set by code
 outside UFDL.

 Syntax

 activated = "<status>";

 Expression Setting Description
 <status> "on" item, page, or form is currently
 activated by user
 "off" item, page, or form is not
 currently activated by user
 "maybe" button only: item might be activated,
 as user has pressed it, but has not
 yet released it

 Available In
 - action
 - button
 - cell
 - combobox
 - popup
 - page global
 - form global

 Example

 The following example shows a button that changes color based on
 whether it is currently activated.
 saveButton = new button
 {
 type = "save";
 value = "Save";
 bgcolor = [activated=="on" ? "white" : "LightPink3"];
 }

 The button will appear white when the user activates it, and gray
 otherwise.

 Usage Notes

 1) Default: off

 2) Any pre-defined setting for activated, including a formula
 setting, will be destroyed as soon as the first activated event
 appears. The activated option is not intended to be set by UFDL
 script, but rather by external forces-a form viewing program,
 for example.

 3) activated is set to on when an item is activated, and remains
 on until any transaction initiated by the item is properly under
 way. For example, in a print button, activated will be turned on
 when the user initiates the print action, and will remain on

Universal Forms Description Language [page 100]

 until network results indicate the print action is taking place.

 4) The activated option is not included in form descriptions that
 are saved or transmitted.

 5) Specific details on activated behavior for each item:

 * action - actions set activated to on when they fire, and
 off when the transaction they initiate is under way.

 * button - buttons set activated to maybe when the user
 holds the mouse pointer or SPACE bar down on the button. They
 set it to on if the user releases the pointer or SPACE bar
 while over the button, and they set activated to off when the
 transaction the button initiates is under way.

 * cell - cells behave in the same manner as buttons. In the
 split second during which a user selects a select type of
 cell, it sets activated to on. It turns activated off as soon
 as the action of being selected is finished. Cells that
 initiate network transactions set activated to on from the
 beginning of the request to the time when the request produces
 results. Note that there is no maybe status for a cell.
 * combobox and popup - comoboxes and popup lists set
 activated to on when their lists are popped open, and off when
 the lists are not open. Note that the "field" portion of a
 combobox does not register an activated setting.

 * page - a page sets activated to on while it is displayed
 on screen, and off when it is not.

 * form - a form sets activated to on while it is displayed
 on screen, and off when it is not.

 5.2 active

 The active option specifies whether an item is active or inactive.
 Inactive items do not respond to user input and, if possible,
 appear dimmed.

 For example, an inactive check box will be dimmed and the user will
 not be able to select or deselect the box.

 Syntax

 active = <status>;

 Expression Setting Description
 <status> "on" item is active
 "off" item is inactive

 Available In
 - action
 - button

Universal Forms Description Language [page 101]

 - cell
 - check
 - field
 - help
 - label
 - list
 - popup
 - radio
 - tablet

 Example

 This sample specifies the item is active.
 active = "on";

 Usage Notes

 1) Default: on

 2) Setting active to off would be similar to setting an edit state
 of readonly.

 5.3 bgcolor

 The bgcolor option defines the background color of a page or
 an item.

 Syntax

 bgcolor = [<color name>];
 bgcolor = [<RGB triplet>];
 Note: Either format is acceptable.

 Expression Setting Description
 <color name> color the color name
 <RGB triplet> color the RGB triplet. See 'Data Type
 Designators' for the syntax of an
 RGB triplet.

 Available In
 - button
 - check
 - field
 - list
 - popup
 - radio
 - tablet
 - toolbar
 - page global characteristics
 - form global characteristics

 Examples

 These samples both set the background color to forest green.

Universal Forms Description Language [page 102]

 bgcolor = ["forest green"];
 bgcolor = ["34", "139", "34"];
 bgcolor = ["transparent"];

 Usage Notes

 1) The transparent color has no RGB equivalent.

 2) Default: varies depending on the object
 Form: white
 Page: the form background color
 Item: depends on the item type-
 button items: gray (or grey)
 check, combobox field, list, popup, and radio items: white
 label items: transparent (version 4.0.1 and greater)
 all other items: the background color of the page

 5.4 bordercolor

 The bordercolor option defines the color of the border around the
 item.

 Syntax

 bordercolor = [<color name>];
 bordercolor = [<RGB triplet>];
 Note: Either format is acceptable.

 Expression Setting Description
 <color name> color the color name
 <RGB triplet> color the RGB triplet. See 'Data Type
 Designators' in section 5 for the
 syntax of an RGB triplet.

 Available In
 - box
 - button
 - check
 - field
 - list
 - popup
 - radio
 - tablet
 - page global characteristics
 - form global characteristics

 Examples

 bordercolor = ["light blue"];
 bordercolor = ["173", "216", "230"];

 Usage Notes

 1) Default: black

Universal Forms Description Language [page 103]

 5.5 borderwidth

 The borderwidth option defines the width of an item's border. The
 unit of measurement is pixels.

 Syntax

 borderwidth = <width>;

 Expression Setting Description
 <width> short int the width of the border

 Available In
 - box
 - button
 - field
 - label
 - list
 - popup
 - tablet
 - page global characteristics
 - form global characteristics

 Example

 This sample sets the border width to five pixels.
 borderwidth = "5";

 Usage Notes

 1) Default: varies depending on the item type
 - box and label items: zero pixels
 - all other visible items: one pixel

 5.6 coordinates

 The coordinates option records the position of the mouse pointer on
 an image. The image must exist in a button item. The recording
 occurs when a user selects (i.e. clicks) the button using the mouse
 pointer.

 The position is an intersection on an unseen grid overlaying the
 image. The points along each axis of the grid range from zero (0)
 through 1000 with position 0,0 occurring in the top, left corner.
 The coordinates map the intersection closest to the mouse
 pointer's position.

 Syntax

 coordinates = [<X_coordinate>, <Y_coordinate>];

 Expression Setting Description
 <X_coordinate> coordinate the coordinate on the X axis

Universal Forms Description Language [page 104]

 <Y_coordinate> coordinate the coordinate on the Y axis

 Available In
 - button

 Example

 When a user clicks on a button containing an image, a coordinates
 option statement is inserted into the button definition. The
 statement would look something like this. This particular setting
 indicates a position at the intersection of points 180 on the
 x-axis and 255 on the y-axis.
 coordinates = ["180", "255"];

 Usage Notes

 5.7 data

 The data option associates an action, button, or cell item with a
 single data item. The data option is valid only in items with a
 type setting of enclose, display, extract, or remove.

 Syntax

 data = <data_item>;

 Expression Setting Description
 <data_item> string the item tag of the data item to
 associate with the action, button,
 or cell

 Available In
 - action
 - button
 - cell

 Example

 The button below is an enclosure button associated with a single
 data item.
 encloseImageButton = new button
 {
 value = "Update Image";
 type = "enclose";
 data = "displayImage";
 }

 If a user enclosed another file, then the data item referred to in
 the button's data option would be replaced with the new data item.
 (The data item would use the same item tag-the one that's referred

 to in the data option.)

 Usage Notes

Universal Forms Description Language [page 105]

 1) A data option may specify only zero or one data items.

 2) If an item with a type setting of enclose and a data option is
 used to enclose a second data item, then the second data item
 will replace the first.

 3) If an enclosure mechanism is used to replace an image stored in
 a data item with a new image (see above), then buttons, labels,
 and tablets whose image option is set to the identifier of the
 image data item will be updated to display the new image.

 4) A data item referred to in a data option may also have a
 datagroup option and thus belong to the datagroups of other
 actions, buttons, or cells.

 5.8 datagroup

 The datagroup option identifies a group or folder of enclosed
 files. Each enclosed file can belong to several datagroups, and
 each datagroup can contain several enclosed files.

 Syntax

 datagroup = [<datagroup reference1>, ... <datagroup referencen>];
 where <datagroup reference> is one of:
 - <datagroup name> for datagroups on the current page
 - <page tag>.<datagroup name> for datagroups on other pages
 Note: Include a <datagroup reference> entry for each datagroup
 this item accesses.

 Expression Setting Description
 <datagroup reference> string identifies a datagroup

 Available In
 - action
 - button
 - cell
 - data

 Example

 If this sample were part of a data item definition, it would mean
 the data item belonged to the datagroups: Business_Letters,
 Personal_Letters, and Form_Letters.

 If this sample were part of a action, button, or cell item, it
 would mean the user could store the enclosure in one of the
 three datagroups.
 datagroup = ["Business_Letters", "Personal_Letters",
 "Form_Letters"];
 Usage Notes

 1) Default: none

Universal Forms Description Language [page 106]

 2) Used with items handling enclosures, datagroup lists the
 datagroups the item can access. Used with a data item, datagroup
 lists the datagroups to which the enclosure belongs. Enclosures
 are stored in data items.

 3) Items that handle enclosed files perform enclose, extract,
 remove, and display actions. These actions types are set using
 the type option.

 4) When a user selects an item that handles enclosed files, the
 list of datagroups appears. The user chooses the datagroup
 (or folder) with which to work. If the action is enclosing, the
 enclosed file is added to that datagroup. Otherwise, a list of
 files in the datagroup appears. The user chooses a file from
 the list.

 5) The action of enclosing a file creates the data item, and stores
 the user's choice of datagroup (or folder) in the data item's
 datagroup option.

 5.9 delay

 The delay option delays the execution of an automatic action or
 specifies an automatic action repeat factor. Repeated actions stop
 when the page containing the action definition closes. Define
 automatic actions using an action item.

 Syntax

 delay = [<repeat factor>, <interval>];

 Expression Setting Description
 <repeat factor> "repeat" queue the action to repeat at the
 <interval> specified
 "once" perform the action once after the
 <interval> specified
 <interval> integer the frequency of repeated actions
 or the delay before performing
 single occurrence actions.
 The unit of measurement is seconds.
 "-1" perform the action before the page
 displays. Only valid with a repeat
 factor of once.

 Available In
 - action

 Example

 This sample sets the action to occur once, 15 minutes (900 seconds)
 after the page opens.

 delay = ["once", "900"];

 Usage Notes

Universal Forms Description Language [page 107]

 1) Defaults:
 - repeat factor: once
 - interval: zero seconds
 This means the action will occur when the page appears.

 2) Repeating automatic actions is one method of creating a
 sparse-stated connection. It allows the form to indicate
 periodically to a server application that it is still running.

 3) All actions with the same interval occur in the order they are
 defined in the page.

 4) The page does not display while actions with an interval of
 -1 are running.

 5.10 editstate

 The editstate option defines one of three possible edit states for
 modifiable items.

 Syntax

 editstate = <edit state>;

 Expression Setting Description
 <edit state> "readonly" users cannot change the item's
 "writeonly" users can change, but not see, the
 item's setting

 "readwrite" users can see and change the item's
 setting

 Available In
 - check
 - field
 - list
 - popup
 - radio

 Example

 This sample sets the editstate to readonly.
 editstate = "readonly";

 Usage Notes

 1) Default: readwrite.

 2) The writeonly setting applies only to fields. It causes all
 characters the user types to appear the same as the system
 password character.

 3) The readonly setting permits users to scroll an item even though

Universal Forms Description Language [page 108]

 they may not update the item's contents.

 5.11 filename

 The filename option identifies the name of an enclosed file. This
 name appears in the list of enclosed files.

 Syntax

 filename = <file name>;

 Expression Setting Description
 <file name> string the name of the enclosed file

 Available In
 - data

 Example

 This sample specifies the name of an enclosed file.
 filename = "std_logo.frm";

 Usage Notes

 1) Default: none

 2) To ensure cross-platform compatibility, you should limit
 filenames to the following set of characters: lowercase letters
 from a to z, uppercase letters from A to Z, the integers 0
 through 9, and the underscore (_).

 3) To ensure cross-platform compatibility, you should limit form
 names to a maximum of eight characters, followed by a .frm
 extension.

 5.12 focused

 The focused option specifies whether an item, page, or form
 currently has the input focus. This option is set by code
 outside UFDL.

 Syntax

 focused = "<status>";

 Expression Setting Description
 <status> "on" item, page, or form has input focus
 "off" item, page, or form does not have
 input focus

 Available In
 - button
 - combo

Universal Forms Description Language [page 109]

 - field
 - list
 - popup
 - radio
 - page global
 - form global

 Example

 The following example shows a button that changes its color to
 white if it has the input focus, and to blue if it does not.
 saveButton = new button
 {
 type = "save";
 value = "Save";
 bgcolor = [focused=="on" ? "white" : "blue"];
 }

 Usage Notes

 1) Default: off

 2) Any pre-defined setting for focused, including a formula
 setting, will be destroyed as soon as the first activated event
 appears. The focused option is not intended to be set by UFDL
 script, but rather by external forces-a form viewing program,
 for example.

 3) focused is set to on when an item, page, or form receives the
 input focus, and is set to off when it does not.

 4) An object's focus does not change when the form application
 displaying it becomes active or inactive on a desktop. For
 example, a page that is open on screen will have a focus set
 to on, even if the page is minimized or is not the currently
 active application on the desktop.

 5) In objects that are hierarchical, it is possible for more than
 one object to have the focus at one time. For example, a form,
 a page, and a field can all be focused at the same time.

 6) When a form viewing application is closing a form, it should set
 all focus options to off and then resolve all formulas before
 shutting down.

 7) focused may only be set by a desktop form viewing application.

 8) The focused option is not included in form descriptions that
 are saved or transmitted.

 5.13 fontcolor

 The fontcolor option defines the font color for the text or filler
 portion of an item. In radio and check items, fontcolor defines
 the color of the bullet and check, respectively. In line items,

Universal Forms Description Language [page 110]

 fontcolor defines the color of the line. In tablet items, fontcolor
 defines the pen color. In other items, it defines the text color.

 Syntax

 fontcolor = [<color name>];
 fontcolor = [<RGB triplet>];
 Note: Either format is acceptable.

 Expression Setting Description
 <color name> color the color name
 <RGB triplet> color the RGB triplet. See 'Data Type
 Designators' in section 5 for the
 syntax of an RGB triplet.

 Available In
 - button
 - check
 - field
 - label
 - line
 - list
 - popup
 - radio
 - tablet
 - page global characteristics
 - form global characteristics

 Examples

 These samples both set the background color to chocolate.
 fontcolor = ["210", "105", "30"];

 Usage Notes

 1) Default: black

 5.14 fontinfo

 The fontinfo option defines the font name, point size, and font
 characteristics for the text portion of an item.

 Note: The font selected for an item influences the item's size.

 Syntax

 fontinfo = [, <point size>, <weight>, <effects>,
 <form>];
 Note: <weight>, <effects> and <form> are optional.

 Expression Setting Description

 string the name of the font
 <point size> short int the size of the font
 <weight> "plain" use a plain face

Universal Forms Description Language [page 111]

 "bold" use a bold face
 <effects> "underline" underline the text
 <form> "italic" use the italic form

 Available In
 - box
 - button
 - check
 - field
 - label
 - line
 - list
 - popup
 - radio
 - spacer
 - tablet
 - page global characteristics
 - form global characteristics

 Example

 This sample sets the font information to Times 14, bold italic.
 fontinfo = ["Times", "14", "bold", "italic"];

 Usage Notes

 1) Defaults:
 - font name: Helvetica
 - point size: 8
 - weight: plain
 - effects: not underlined
 - form: not italics
 2) If any of the fontinfo settings are invalid, then the defaults
 will be used.

 3) The size option calculates item size using the font's average
 character width. Therefore, choice of font affects item width.

 4) UFDL supports the following fonts and font sizes:
 Fonts: Courier, Times, Symbol (??????), Helvetica, and
 Palatino
 Sizes: 8, 9, 10, 11, 12, 14, 16, 18, 24, 36, 48

 You can also use other fonts and font sizes if you wish.
 However, especially for cross-platform Internet applications,
 it is best to choose from the ones cited above since they are
 guaranteed to work.

 5.15 format

 The format option allows you to specify edit checks and formatting

 options for field, label, list, popup, and combobox items. It also
 allows you to specify a mandatory status for signature button items
 (for details, see the button item description).

Universal Forms Description Language [page 112]

 Syntax

 format = [<data type>, <format flag>, <check flag>];
 Notes:
 i) Multiple flags are valid.
 ii) <data type> is mandatory and must appear first; the flags are
 optional and can appear in any order.

 Expression Setting Description
 <data type> (see below) the type of data the field should
 contain
 <format flag> (see below) the type of formatting applied to
 the user's input
 <check flag> (see below) the type of edit check performed on
 the formatted input

 Available In
 - button
 - combobox
 - field
 - label
 - list
 - popup

 Example

 This example specifies a field containing integer data with a range
 of values from 10 to 1,000 inclusive, and formatted with commas
 separating the thousands.
 format = ["integer", "comma_delimit", range=["10", "1000"]];

 This example specifies a field that contains dollar data that is
 mandatory. An error message appears if the data is not entered
 correctly.
 format = ["dollar", "mandatory", message= "Entry incorrect-try
 again."];

 This example specifies a field in which date data will be formatted
 as day-of-month, month, and year (i.e., 15 June 1999).
 format = ["date", "long"];

 This example contains two templates. User input must match one of
 them:
 format = ["string", template=["###-###-####",
 "###-###-####-###"]];

 This example contains a decision: if a check box called
 allowIncompleteCheck is checked, then filling out the item is
 optional; if the check box is checked, then item is mandatory and
 the user must complete it.
 format = ["string", page1.allowIncompleteCheck=="on" ? "optional"

 : "mandatory"];

 Data Types

Universal Forms Description Language [page 113]

 UFDL supports the following data types:

 Data Type Description Format Defaults To:
 string free form character data up Any Character.
 to 32K long

 integer a positive or negative whole Any whole number.
 number in the range of -2,147,

 float a positive or negative floating Any decimal number.
 point decimal number in the
 range of 1.7 * 10-308 to 1.7 *
 10308

 dollar a fixed point decimal number Any number.
 with a scale of 2 and a range Automatically adds
 equal to the range of a float .00 to end, if no
 decimal value
 specified

 date a date including day-of-month, This format:
 month, and year 3 Mar 96

 day_of_week the name or number of a day of This format: Thu
 the week

 month the name or number of a month This format: Mar

 day_of_month the number of a day of the Number format.
 month

 year a numeric year designation This format:
 1996 | 2000 B.C.

 time a time value containing hours This format:
 and minutes from the 12 hour 11:23 P.M.
 or the 24 hour clock

 void disable entire format option No effects on
 (including data type, checks, contents of a
 and formats) field

 Format Flags

 You can specify any number of format flags in a format line. To see
 which format flags apply to each data type, see the cross reference
 table at the end of this section.

 The available format flags are:

 Format Flag Description

 comma_delimit Delimit the thousands by commas.

Universal Forms Description Language [page 114]

 space_delimit Delimit the thousands by spaces.

 bracket_negative Indicate negative values by surrounding
 the value with parentheses, that is ().

 add_ds Add a dollar sign to the start of the
 value (dollar fields only).

 upper_case Convert alphabetic characters to upper
 case.

 lower_case Convert alphabetic characters to lower
 case.

 title_case Convert first letter of each word to upper
 case and all other letters to lower case,
 for titles and proper names.

 short Display dates and times using the
 following formats:
 - day_of_week - numeric value in range 1
 to 7 where 1 represents Sunday
 - day_of_month - numeric value in range 1
 to 31
 - year - apostrophe followed by last two
 digits in year ('98), 'before Christ'
 era designator is B.C. ('98 B.C.)
 - date - year as four digits, month as two
 digits, and day-of-month as two digits,
 organized in YMD order; no punctuation
 (1998-04-29)
 - time - 24 hour clock (as in 23:30)

 long Display dates and times using the
 following formats:
 - day_of_week - name in full as in Monday
 - day_of_month - two digits plus suffix as
 in 1st
 - month - name in full as in January
 - year - four-digit numeric format,
 'before Christ' era designator is B.C.
 (2000 B.C.)
 - date - long year, long month, and long
 day-of-month formats organized in DMY
 order; no punctuation (29th April 1998)
 - time - 12 hour clock with the time of
 day suffix (A.M. or P.M., as in
 11:30 P.M.)

 numeric Display dates and times using numeric
 values and, possibly, the minus sign:

 - day_of_week - 2 digits in range 01 to
 07 where 01 represents Sunday
 - day_of_month - 2 digits in range 01 to
 31

Universal Forms Description Language [page 115]

 - month - 2 digits in range 01 to 12
 - year - 4 digits; 'before Christ' era
 designator is minus sign as in -1995
 - date - month and day-of-month formats
 above,
 * year format is 4 digits
 * 'before Christ' era designator is
 minus sign
 * organized in YMD order; no punctuation
 * Examples: 19980429, -19980429
 - time - 24 hour clock (as in 23.30)

 presentation="yy/mm/dd" Available only when formatting dates, to
 create custom template for presentation
 of dates, using Y for year, M for month,
 and D for day
 - Example: "date", presentation=
 "YY/MM/DD"
 * this could yield 98/12/23

 void No formatting is applied

 Check Flag

 You can specify any number of edit checks in a format line. The
 edit checks you specify and any edit checks implied by the data
 type will be performed.

 To see which edit checks apply to each data type, see the cross
 reference table at the end of this section.

 Important: UFDL specifies that fields be formatted before an edit
 check is performed. For example, if the field's data type is dollar
 and you specify the add_ds and comma_delimit format options, then
 the input 23000 becomes $23,000.00 before edit checks are applied.
 This can affect length and template checks. In this example, the
 length before formatting was 5 but it became 10 before edit
 checking.

 The available check flags are:

 Check Flag Description

 optional Input from the user is not mandatory.

 mandatory Input from the user is mandatory.

 case_insensitive Apply edit checks without regard to the
 case in which the user enters the data.

 range=["low","high"] The field's value must be in the range
 specified. The range can be alphabetic,
 numeric, days of the week, days of the
 month, or months.

Universal Forms Description Language [page 116]

 Ranges cannot vary from high to low. For
 example, 10 to one, the year 2000 to 1900,
 etc. are invalid.

 length=["min","max"] Restrict the length of the formatted input
 data to a minimum of "min" bytes and a
 maximum of "max" bytes.

 template=["a","b",...] This is a list of formats permitted for
 the field. There is no restriction on the
 number of formats. Field contents must
 match one of the formats in the list. You
 may use any of the following wild card
 characters:
 -?- represents any one (1) character?
 -*- represents any number of characters
 -#- represents any one (1) numeric
 character
 -%- represents any number of numeric
 characters
 -@- represents any one (1) alphabetic
 character
 -!- represents any number of alphabetic
 characters (which can include none)
 message="help" Sets the error message that is displayed
 if the user input fails the type checking.
 The default message is, "This entry is
 invalid. Please try again."

 fail_checks Forces failure of format statement.

 ignore_checks Causes all type checking checks to be
 ignored.
 Note: only checks are ignored, not
 formatting or data type.

 Cross Reference of Data Types, Format Flags, and Check Flags

 Data Type Applicable Format Flags Applicable Check Flags

 string lower_case, upper_case, case_insensitive,
 title_case fail_checks, length,
 mandatory, optional,
 range, template

 integer bracket_negative, fail_checks,
 comma_delimit, space_delimit ignore_checks, length,
 mandatory, optional,
 range, template

 float bracket_negative, fail_checks,

 comma_delimit, space_delimit ignore_checks, length,
 mandatory, optional,
 range, template

Universal Forms Description Language [page 117]

 dollar add_ds, bracket_negative, fail_checks,
 comma_delimit, space_delimit ignore_checks, length,
 mandatory, optional,
 range, template

 date long, short, numeric case_insensitive,
 year fail_checks,
 month ignore_checks, length,
 day_of_month mandatory, optional,
 day_of_week range, template
 time

 void No formatting or type No checking or type
 checking is done checking is done

 Usage Notes

 1) If a format flag conflicts with the data type, the format flag
 will be ignored.

 2) All edit checks specified will be applied to the input data.
 This may result in a field the user cannot change. For example,
 the combination of data type integer and check flag
 template="a*" creates such a situation. Data cannot be both an
 integer and begin with a letter.

 3) Default Formatting:
 - Case remains unchanged.
 - Numeric value format contains no thousands delimiter. This
 permits easy conversion of ASCII to integer format.
 - Dollar value format uses two decimal places and no dollar
 sign.
 - Zero is always positive.
 - Day-of-week and month format is the abbreviated name with no
 punctuation. For example, the 2nd day of the week is always
 Mon; the first month is always Jan.
 - The year format is long.
 - The day_of_month is short.
 - The date format uses the default day-of-month, month, and
 year formats organized in DMY order as in 25 Dec 1995. The
 'before Christ' era designator is B.C.
 - The time format defaults to short if the input is between
 0:00 and 12:59, and to long otherwise.

 4) Default Edit Checks
 - All checking is case sensitive.
 - The default edit checks combine the requirements of the data
 type with any formatting requirements (default or specific).
 - If neither optional nor mandatory are specified, the rules
 that are specified will determine whether the user must

 enter information.

 5) When applying a format to a combobox, list, or popup, the
 formatting will be applied to the value of each cell linked to

Universal Forms Description Language [page 118]

 the item. Those cells that do not pass the check will be
 flagged or filtered. If a cell passes the checks, its value will
 be replaced with a formatted value before the item is displayed.
 The label option for these cells will remain unaffected.

 6) When applying a format to a combobox, list, or popup, a cell
 with an empty value will fail all format checks but will still
 be selectable, even if input is mandatory. This allows users to
 erase their previous choice (which will also reset all formulas
 based on that choice). However, users will still need to select
 a valid cell before they can submit the form.

 7) If any two comboboxes, lists, or popups use the same set of
 cells, they must apply the same formatting.

 8) The void format type disables a format line completely through
 the use of a compute. void formats never fail regardless of the
 checks in the format statement.
 9) The void format flag facilitates the modification of a format
 statement by a formula. It is ignored by the formatting system.

 10) For details on using the format option in buttons, see the
 Usage Notes in the button item description.

 5.16 group

 The group option provides a method of grouping items together.
 Items with the same group reference are considered members of the
 same group. Examples of grouped items are radio buttons and cells.

 Syntax

 group = <group reference>;
 where <group reference> is one of:
 - <group name> for groups on the current page
 - <page tag>.<group name> for groups on other pages

 Expression Setting Description
 <group reference> string identifies the group

 Available In
 - cell
 - combobox
 - list
 - popup
 - radio

 Example

 This sample associates the item with the group coverage_type.
 group = "coverage_type";

 Usage Notes

Universal Forms Description Language [page 119]

 1) Default: none

 2) List and popup items are populated with cells that have the same
 group reference as the item. It is possible to have several list
 and popup items with the same group reference. In this way, the
 same group of cells can populate more than one list or popup.

 3) All radio items having the same group reference will form a
 mutually exclusive group.

 5.17 help

 The help option points to the help message for the item. The item
 reference identifies the help item containing the help message.
 There can be many items pointing to the same help message.

 Syntax

 help = <item reference>;

 Expression Setting Description
 <item reference> string identifies the help item

 Available In
 - button
 - check
 - field
 - label
 - list
 - popup
 - radio
 - tablet

 Example

 This sample points to the help item general_help defined on the
 page called page_1.
 help = "page_1.general_help";

 The image option associates an image with an item. The item
 reference identifies the data item containing the image. This image
 replaces any text label if the viewer is able to display images.

 Syntax

 image = <item reference>;

 Expression Setting Description
 <item reference> string identifies the data item

 Available In
 - button

Universal Forms Description Language [page 120]

 - label
 - tablet

 Example

 This sample points to the data item company_logo defined on the
 page called page_lst.
 image = "page_lst.company_logo";

 Usage Notes

 1) Default: none

 2) Use this option to associate images with button, label, and
 tablet items.

 3) If an enclosure mechanism is used to replace an image stored in
 a data item with a new image, then buttons, labels, and tablets
 whose image option is set to the identifier of the image data
 item will be updated to display the new image. For details, see
 the data option description.

 5.19 itemlocation

 The itemlocation option serves three purposes:
 - It specifies the location of an item in the page layout.
 - If you use the extent setting, it will set the size of an
 item's bounding box.
 - If you are using the relational positioning scheme, it may
 dynamically alter the size of an item.

 Each specification in the itemlocation option defines one aspect
 of an item's location or size.

 There are two different schemes you can use to position items on
 the page: an absolute positioning scheme and a relational
 positioning scheme. The absolute positioning scheme anchors the
 top left corner of an item to a particular pixel on the displayed
 page, whereas the relational positioning scheme places items on the
 page in relation to one another. Once you understand the two
 schemes you can combine them to gain the advantages of both
 schemes.

 For more information on the two schemes, see 'Absolute Positioning
 Scheme' and 'Relational Positioning Scheme', below.

 Note: You can combine the two methods of positioning, so that some
 items are positioned absolutely, and other items are positioned in
 relation to those absolute items.

 Syntax:

 itemlocation = [[<specification1>], ... [<specificationn>]];
 where:
 (absolute positioning and extent modifier)

Universal Forms Description Language [page 121]

 - <specification> is defined as: <modifier>,<x-coordinate>,
 <y-coordinate>
 (relational positioning)
 - <specification> is defined as: <modifier>, <item tag1>,
 <item tag2>
 Notes:
 i) There is no restriction on the number of specifications.
 ii) x-coordinate and y-coordinate may be negative only when the
 modifier is offset.
 iii) <item tag2> is valid only with the modifiers
 alignhorizbetween and alignvertbetween.

 Expression Setting Description

 <modifier> (see below) the type of modification to apply to
 the item's location or size

 <x-coordinate> short - the horizontal distance in pixels
 (must be from the form's top left corner
 positive if (with the modifier absolute); or
 modifier is
 absolute) - the horizontal distance in pixels
 from the item's top left corner in
 its original position to its new
 offset position (with the modifier
 offset)
 <y-coordinate> short - the vertical distance in pixels
 (must be from the form's top left corner
 positive if (with the modifier absolute); or
 modifier is
 absolute) - the vertical distance in pixels
 from the item's top left corner in
 its original position and to its
 new offset position (with the
 modifier offset)

 <item tag> string identifies the reference point item

 Modifiers

 There are four types of modifiers:
 - position modifiers - used to position an item
 - alignment modifiers - used to align one edge of an item
 (relational positioning only)
 - expansion modifiers - used to alter an item's size
 (relational positioning only)
 - the extent modifier - used to set a pixel based size for an
 item (both relational and absolute positioning)

 Position Modifiers

 a) For the Absolute Positioning Scheme:

 Modifier Description

Universal Forms Description Language [page 122]

 absolute Place top left corner of item on the pixel
 noted in the x-coordinate and y-coordinate
 settings.

 offset Place item so that it is offset from its
 original location by the measurement
 specified in the x-coordinate and
 y-coordinate settings.

 The extent modifier, listed later in this section, can also be
 used with absolute positioning.

 b) For the Relational Positioning Scheme:

 Note:A specification containing the within modifier must be the
 first specification in the list.

 Modifier Description

 above Place item a small distance above
 reference point item; align left edges.

 after Place item a small distance after
 reference point item; align top edges.

 before Place item a small distance before
 reference point item; align top edges.

 below Place item a small distance below
 reference point item; align left edges.

 within Assign item to the toolbar.

 Alignment Modifiers (Relational Positioning only)

 Note: The modifiers alignvertbetween and alignhorizbetween require
 two reference items.

 Modifier Description

 alignb2b Align bottom edge of item with bottom edge
 of reference point item.

 alignb2c Align bottom edge of item with vertical
 center of reference point item.

 alignb2t Align bottom edge of item with top edge
 of reference point item.

 alignc2b Align vertical center of item with bottom

 edge of reference point item.

 alignc2l Align horizontal center of item with left

Universal Forms Description Language [page 123]

 edge of reference point item.

 alignc2r Align horizontal center of item with right
 edge of reference point item.

 alignc2t Align vertical center of item with top
 alignhorizbetween Align horizontal center of item between
 right edge of first reference point item
 and left edge of second reference point
 item.

 alignhorizc2c Align horizontal center of item with
 horizontal center of reference point item;
 center below.

 alignl2c Align left edge of item with horizontal
 center of reference point item.

 alignl2l Align left edge of item with left edge of
 reference point item.

 alignl2r Align left edge of item with right edge of
 reference point item.

 alignr2c Align right edge of item with horizontal
 center of reference point item.

 alignr2l Align right edge of item with left edge of
 reference point item.

 alignr2r Align right edge of item with right edge
 of reference point item.

 alignt2b Align top edge of item with bottom edge of
 reference point item.

 alignt2c Align top edge of item with vertical
 center of reference point item.

 alignt2t Align top edge of item with top edge of
 reference point item.

 alignvertbetween Align vertical center of item between
 bottom edge of first reference point item
 and top edge of second reference point
 item.

 alignvertc2c Align vertical center of item with
 vertical center of reference point item.

 Expansion Modifiers (Relational Positioning only)

 Modifier Description

Universal Forms Description Language [page 124]

 expandb2c Hold top edge of item constant and expand
 bottom edge to align with vertical center
 of reference point item.

 expandb2t Hold top edge of item constant and expand
 bottom edge to align with top edge of
 reference point item.

 expandl2c Hold right edge of item constant and
 expand left edge to align with horizontal
 center of reference point item.

 expandl2l Hold right edge of item constant and
 expand left edge to align with left edge
 of reference point item.

 expandl2r Hold right edge of item constant and
 expand left edge to align with right edge
 of reference point item.

 expandr2c Hold left edge of item constant and expand
 right edge to align with horizontal center
 of reference point item.

 expandr2l Hold left edge of item constant and expand
 right edge to align with left edge of
 reference point item.

 expandr2r Hold left edge of item constant and expand
 right edge to align with right edge of
 reference point item.

 expandt2b Hold bottom edge of item constant and
 expand top edge to align with bottom edge
 of reference point item.

 expandt2c Hold bottom edge of item constant and
 expand top edge to align with vertical
 center of reference point item.

 expandt2t Hold bottom edge of item constant and
 expand top edge to align with top edge of
 reference point item.

 The Extent Modifier (Relational and Absolute Positioning)

 extent Hold the top left corner of the item in
 place, and size the item so that it is
 as many pixels wide as the x coordinate,
 and as many pixels tall as the
 y coordinate.

 Available In

Universal Forms Description Language [page 125]

 - box
 - button
 - check
 - field
 - label
 - line
 - list
 - popup
 - radio
 - spacer
 - tablet

 Absolute Positioning Scheme

 This scheme anchors an item to a particular coordinate on the
 visible page. The coordinate is a measurement in pixels of the
 distance between the top left corner of the form and the item's
 top left corner.

 The itemlocation line describing the label in the picture above
 would look like this:
 itemlocation = [["absolute", "60", "60"]];

 The absolute positioning scheme also allows you to offset an item
 from its original position, by a particular number of pixels. This
 is a quick way to create an indented layout on your form.

 It is valid to offset an item in any of these four directions:
 right, left, up, down. Since the offset is measured by a pixel
 grid and is represented with x and y coordinates, the directions
 left and up are measured as negative distances. For example, to
 outdent the Last Name field in the above diagram, so that its left
 edge is further left than the label's, the x measurement would be
 negative, as in -15.

 You can offset an item from either:
 - Its original absolute position. For example,
 itemlocation = [["absolute", "60", "100"],
 ["offset", "15", "20"]];
 - Its original relational position. For example,
 itemlocation = [["below", "persInfo_label"],
 ["offset", "15", "20"]];

 Caution

 An absolute positioning scheme is not a cross-platform
 solution-nor even a solution guaranteed to make forms appear the
 same under different video cards or in both small font and large
 font modes.

 The sizes of many UFDL form items are measured in characters. For

 example, a field that is 60 x 1 in size, is 60 characters long and
 1 character high. Because different platforms and video cards use
 differently sized fonts, even for the so-called cross-platform
 fonts, an item's actual size (in pixels) may change from one
 platform to another as the font it is measured in changes size.

Universal Forms Description Language [page 126]

 If you rely on spacing items on your form using absolute
 positioning, which fastens an item to a particular pixel, some
 items may appear overlapped on some platforms.

 To ensure that your forms appear the same on any platform, and
 under any video card or font mode, use relational positioning.

 Relational Positioning Scheme

 Relational positioning allows you to place an item relative to the
 location of another item. It also allows you to specify an item's
 size relative to the size and location of other items. The other
 items (called reference point items) must be defined before they
 can be used in an itemlocation statement.

 When you use the relational positioning scheme, the first external
 item you place on the form appears in the top left corner. It
 cannot be placed in relation to any other item, since no other
 items exist. All subsequent items can be placed in relation to
 items that appear before them in the form's description. If you do
 not specify any relational position for an item, it will appear
 below the previous item, with its left edge against the page's left
 edge.

 Itemlocation can only reference items on the same page as the item
 being defined. If the item being defined is in a toolbar, the
 referenced items must be in the same toolbar.

 The Extent Modifier

 The extent modifier allows you to set an absolute size for an item
 in pixels. When you specify an extent, the item's top left corner
 will stay where it is, and the item will be resized so that it is
 as many pixels wide as the x value and as many pixels in height as
 the y value.

 Note: Itemlocation uses the bounding boxes of the defined and
 referenced items to determine location and size.

 Examples

 Example 1 - Absolute Positioning

 This sample places a label on the page so that its top left corner
 is 20 pixels in from the page's left edge, and 30 pixels down from
 the top of the page.
 persInfo_label = new label
 {
 value = "Personal Information";
 itemlocation = [["absolute", "20", "30"]];
 }

 Example 2 - Offsetting an Item

 These samples show two ways in which to offset a field below the
 label in example one. The first sample shows how to do so using

Universal Forms Description Language [page 127]

 only the absolute positioning scheme. The second sample shows how
 to do so using both relational and absolute positioning schemes.
 lastName_field = new field
 {
 label = "Last Name";
 itemlocation = [["absolute", "20", "100"],
 }

 lastName_field = new field
 {
 label = "Last Name";
 itemlocation = [["below", "persInfo_label"],
 ["offset", "10", "10"]];
 }

 Note that the item is offset from its original position, not from
 other items. It's not a good idea to offset items using strictly
 absolute positioning (sample one). Use relational positioning if
 possible (sample two). For more information on the dangers of
 absolute positioning, see the Caution in section 5.19.

 Example 3 - Relational Positioning

 Sample 3.1

 This sample aligns the vertical center of an item between the
 bottom edge of the item label_one and the top edge of the item
 label_two.
 itemlocation = [["alignvertbetween", "label_one", "label_two"]];

 Sample 3.2

 This sample aligns the item's left edge with the center of item
 the_firm and expands the right edge to align with the right edge
 of the same reference item (the_firm).
 itemlocation = [["alignl2c", "the_firm"], ["expandr2r",
 "the_firm"]];

 Sample 3.3

 This sample assigns an item to the toolbar main_toolbar and
 positions it under the company logo company_logo.
 itemlocation = [["within", "main_toolbar"], ["below",
 "company_logo"]];

 Example 4 - Extent

 Sample 4.1

 This sample shows an extent setting on a field that has been placed
 using absolute positioning. The field is first placed at an x-y

 coordinate of 10, 10. It is then sized to be 300 pixels wide and
 30 pixels high.
 itemlocation = [["absolute", "10", "10"], ["extent", "300",

Universal Forms Description Language [page 128]

 "30"]];

 Sample 4.2

 The second sample shows an extent setting on a label that has been
 placed using relational positioning. The label is first placed
 below a field, and is then sized to be 100 pixels wide and 20
 pixels high.
 itemlocation = [["below", "field_1"], ["extent", "100", "20"]];

 Usage Notes

 1) Default item location:
 - in the body of the page
 - under the previous item in the page definition
 - aligned along the left margin of the page
 Default bounding box size:
 See 'Appendix B: Default Sizes'

 2) Itemlocation overrides size. If the itemlocation affects the
 size of the item and the size option has also been set for the
 item, the itemlocation will determine the size.

 3) An item's vertical center is halfway between the top and bottom
 edges. The horizontal center is halfway between the left and
 right edges.

 4) See the following sections for more information on using
 itemlocation:
 - 'Item Placement'
 - 'Item Size'

 4) To offset an item by shifting it to the right or down the page,
 specify the offset distance using positive integers. To offset
 an item by shifting it to the left or up the page, specify the
 offset distance using negative integers.

 5) Use absolute positioning carefully. See the Caution
 for more information.

 5.20 justify

 The justify option aligns lines of text within the space an item
 occupies.

 Syntax

 justify = <alignment>;

 Expression Setting Description
 <alignment> "left" align each line's left edge along

 "right" align each line's right edge along
 the right margin
 "center" align the center of each line with

Universal Forms Description Language [page 129]

 the center of the item

 Available In
 - button
 - field
 - label
 - popup
 - tablet

 Example

 This sample aligns the text in the center of the item.
 justify = "center";

 If the item's text was:
 The hare and the hound
 went off to the woods to play

 It would display as follows:
 The hare and the hound
 went off to the woods to play

 Usage Notes

 1) Default: varies depending on the item
 - button and popup items: center
 - label items: left

 5.21 label

 The label option specifies an external text label for an item. The
 label appears above the item and aligned with its left margin. The
 only exception is popup items, where the label appears inside the
 item.

 Syntax

 label = <label text>;

 Expression Setting Description
 <label text> string the text of the label

 Available In
 - check
 - field
 - list
 - popup
 - radio
 - spacer
 - page global characteristics
 - form global characteristics

 Example

 This sample defines a typical label.

Universal Forms Description Language [page 130]

 label = "Student Registration Form";

 Usage Notes

 1) Default: none

 2) The label you define in a label option has a transparent
 background by default. If you wish to display a particular color
 behind the label, then set the labelbgcolor option.

 3) Multiple line labels require line breaks imbedded in the label
 text. Use the escape sequence '\n' to indicate a line break.
 For example:
 label = "This label spans\ntwo lines.";

 5.22 labelbgcolor

 The labelbgcolor option defines the background color for the label
 specified in the label option.
 Syntax

 labelbgcolor = [<color name>];
 labelbgcolor = [<RGB triplet>];
 Note: Either format is acceptable.

 Expression Setting Description
 <color name> color the color name
 <RGB triplet> color the RGB triplet. See 'Data Type
 Designators' on page 116 for the
 syntax of an RGB triplet.

 Available In
 - check
 - field
 - list
 - radio
 - page global characteristics
 - form global characteristics

 Examples

 These samples both set the background color to red.
 labelbgcolor = ["red"];
 labelbgcolor = ["255", "0", "0"];
 labelbgcolor = ["transparent"];

 Usage Notes

 1) Default for version 4.0.1 and greater forms: transparent
 This means that a label option will always be transparent unless
 you specify a color.

 2) Default for version 4.0.0 and lesser forms:
 for items in the toolbar - background color of toolbar.

Universal Forms Description Language [page 131]

 for items on a page - background color of the page.

 5.23 labelbordercolor

 The labelbordercolor option defines the color of the border around
 the label specified in the label option.

 Syntax

 labelbordercolor = [<color name>];
 labelbordercolor = [<RGB triplet>];
 Note: Either format is acceptable.

 Expression Setting Description
 <color name> color the color name
 <RGB triplet> color the RGB triplet. See 'Data Type
 Designators' in section 5 for the
 syntax of an RGB triplet.

 Available In
 - check
 - field
 - list
 - radio
 - page global characteristics
 - form global characteristics
 Examples

 These samples both set the border color to blue1.
 labelbordercolor = ["blue1"];
 labelbordercolor = ["0", "0", "255"];

 Usage Notes

 1) Default: black

 5.24 labelborderwidth

 The labelborderwidth option defines the width of the border around
 the label specified in the label option. The unit of measurement
 is pixels.

 Syntax

 labelborderwidth = <width>;

 Expression Setting Description
 <width> short int the width of the border

 Available In
 - check
 - field

Universal Forms Description Language [page 132]

 - list
 - radio
 - page global characteristics
 - form global characteristics

 Example
 This sample sets the border width to 15 pixels.
 labelborderwidth = "15";

 Usage Notes

 1) Default: zero pixels

 5.25 labelfontcolor

 The labelfontcolor option defines the font color for the label
 specified in the label option.

 Syntax

 labelfontcolor = [<color name>];
 labelfontcolor = [<RGB triplet>];
 Note: Either format is acceptable.

 Expression Setting Description
 <color name> color the color name
 <RGB triplet> color the RGB triplet. See 'Data Type
 Designators' on page 116 for the
 syntax of an RGB triplet.

 Available In
 - check
 - field
 - list
 - radio
 - page global characteristics
 - form global characteristics

 Examples

 labelfontcolor = ["green1"];
 labelfontcolor = ["0", "255", "0"];

 Usage Notes

 1) Default: black

 5.26 labelfontinfo

 The labelfontinfo option defines the font name, point size, and

 font characteristics for the label specified in the label option.

 Syntax

Universal Forms Description Language [page 133]

 labelfontinfo = [, <point size>, <weight>, <effects>,
 <form>];
 Note: <weight>, <effects> and <form> are optional.

 Expression Setting Description
 string the name of the font
 <point size> short int the size of the font
 <weight> "plain" use plain face
 "bold" use bold face
 <effects> "underline" underline the text
 <form> "italics" use the italic form

 Available In
 - check
 - field
 - list
 - radio
 - page global characteristics
 - form global characteristics

 Example

 This sample sets the font information to Palatino 12, plain
 (the default), underlined.
 labelfontinfo = ["Palatino", "12", "underline"];

 Usage Notes

 1) See the section on fontinfo for the usage notes.

 5.27 mimedata

 The mimedata option contains the actual data associated with a data
 item or a signature item. It can be binary data or the contents of
 an enclosed file. The data is encoded in base64 format, so that
 even forms containing binary data can be viewed in a text editor.
 When the data is needed by the form, it is decoded automatically
 from base64 back to its native format.

 About mimedata in signature items

 The mimedata contains the contents of a signature. A UFDL generator
 should create it as follows:

 1) Using the signature filter instructions in the associated
 signature button, create a plain-text version of the form or
 portion of the form to be signed.

 2) Using the instructions in the signature button's signformat
 option, create a hash of the plain-text description.

 3) Sign the hash with the signer's private key.

 4) Include the signed hash and the signer's public key in the

Universal Forms Description Language [page 134]

 mimedata option.

 Syntax

 mimedata = <data>;
 Expression Setting Description
 <data> string the binary data or enclosed file
 contents

 Available In
 - data
 - signature

 Example

 This sample assigns some encoded data to the mimedata option.
 Notice the quotation marks surrounding each segment of the data.
 mimedata =
 "R0lGODdhYABPAPAAAP///wAAACwAAAAAYABPAAAC/4SPqcvtD02Y"
 "Art68+Y7im7ku2KkzXnOzh9v7qNw+k+TbDoLFTvCSPzMrS2YzmTE+";

 This sample shows a mimedata option in a digital signature.
 empSignature = new signature
 {
 signformat = "application/uwi_form";
 signer = "Jane D Smith, jsmith@insurance.com";
 signature = "PAGE1.empSignature";
 signitemrefs = ["omit", "PAGE1.mgrSigButton",
 PAGE1.admSigButton",
 "PAGE1.empSignature", "PAGE1.mgrSignature",
 "PAGE1.admSignature"];
 signoptions = ["omit", "triggeritem", "coordinates"];
 mimedata = "MIIFMgYJKoZIhvcNACooIIFIzCCBR8CAQExDzANBgkg"
 "AQUFADALB\ngkqhkiG9w0BBwGgggQZMCA36gAwSRiADjdhfHJl"
 "6hMrc5DySSP+X5j\nANfBGSOI\n9w0BAQQwDwYDVQQHEwhJbn"
 "Rlcm5ldDEXMBUGA1UEChM\nOVmVyaVNpZ24sIEluYy4xNDAKn"
 "1ZlcmlTaWduIENsYXNzIDEgQ0Eg\nLSJbmRdWFsIFN1YnNjcmliy"
 "ZXIwHhcNOTgwMTI3MwMDAwOTgwM\M1OTU5WjCCARExETA";
 }

 Usage Notes

 1) Default: none

 2) Base64 encoding transforms the data into a format that can be
 processed easily by text editors, email applications, etc.
 Converting data to base64 format ensures the resulting string
 contains no characters requiring an escape sequence.

 3) For signatures: Because the signer's public key is included in
 the mimedata, a subsequent program can verify a signature
 without requiring that to the signer's key be previously

 installed.

Universal Forms Description Language [page 135]

 5.28 mimetype

 The mimetype option defines the MIME type of the data stored in a
 data item.

 Syntax

 mimetype = <MIME type>;

 Expression Setting Description
 <MIME type> string the MIME type of the data item

 Available In
 - data

 Example

 This sample sets the MIME type to indicate image data.
 mimetype = "image/gif";

 Usage Notes

 1) Default: application/uwi_bin

 2) Here are some examples of MIME types. For full information on
 MIME types, read the MIME rfcs (1521, 1522 and 822). You can
 find them on the World Wide Web.
 MIME type Meaning

 application/postscript Binary item
 application/uwi_bin Binary item
 application/uwi_form UFDL form item
 application/uwi_nothing No data included
 audio/basic Sound item
 audio/wav Sound item
 image/jpeg Image item
 image/rast Image item
 image/tiff Image item
 image/png Image item
 image/bmp Image item
 text/plain ASCII text item
 text/richtext Binary item
 video/mpeg Video item
 video/quicktime Video item

 5.29 mouseover

 The mouseover option specifies whether the mouse pointer is
 currently over an item or page. This option is set by code outside
 UFDL.

 Syntax

 mouseover = "<status>";

Universal Forms Description Language [page 136]

 Expression Setting Description
 <status> "on" mouse pointer is over item or page
 "off" mouse pointer is not over item or
 page

 Available In
 - button
 - check
 - combo
 - field
 - list
 - popup
 - tablet
 - toolbar
 - page settings

 Example

 The following example shows a button that changes its color to
 white if it the mouse pointer is over it, and to blue if the
 pointer is not over it.
 saveButton = new button
 {
 type = "save";
 value = "Save";
 bgcolor = [mouseover=="on" ? "white" : "blue"];
 }

 Usage Notes

 1) Default: off

 2) An object's mouseover option is set to on when the mouse pointer
 is over the object, and to off when the mouse pointer is not
 over the object.

 3) A page global mouseover option is set to on when the mouse
 pointer is over the page (even if it is also over an item on
 the page).

 4) A mouseover option in a toolbar is set to on when the mouse
 pointer is over the toolbar (even if it is also over an item
 in the toobar).

 5) The mouseover option is not included in form descriptions that
 are is saved or transmitted.

 5.30 next

 The next option identifies the item to receive focus when a user
 tabs ahead from the current item. If the specified item is on

 another page, the new page appears with the item in focus. Only
 modifiable items can receive focus.

Universal Forms Description Language [page 137]

 See the section 'Defining Tabbing and Paging' in section 2.4o for
 more information on tabbing.

 Syntax

 next = <item reference>;

 Expression Setting Description
 <item reference> string identifies the item to receive
 focus next
 Available In
 - button
 - check
 - field
 - list
 - popup
 - radio
 - page global
 - form global

 Example

 This sample points to the item address_field. When users tab ahead
 from the current item, the item identified as address_field will
 receive focus.
 next = "address_field";

 Usage Notes

 1) Default tabbing order: depends on the order in which page and
 item definitions occur within the form definition. The
 sequence is:
 - first page to display: first page defined in the form
 - first item to receive focus: first modifiable item defined
 for the body of the first page
 - subsequent items to receive focus: each modifiable item on
 the page in the order you define them

 When you tab past the last item on the page, the first modifiable
 item in the page's toolbar receives focus. If there is no toolbar,
 focus returns to the first item.

 2) Placing the next option in form characteristics defines the
 first page to appear, and the first item to receive focus when
 the form opens. Placing next in page characteristics defines the
 first item to receive focus when the page appears.

 3) If the next option identifies form or page characteristics,
 focus moves to the item defined to receive focus when the form
 or page appears. The form characteristics reference is
 global.global. The page characteristics reference is global for
 the current page or <page tag>.global for another page

 5.31 previous

Universal Forms Description Language [page 138]

 The previous option identifies the item to receive focus when a
 user tabs backwards, using SHIFT + TAB, from the current item. If
 the current item has a previous option, the item indicated in that
 option is next in the reverse tab order. If the current item has
 no previous option, the previous item in the build order that can
 receive the input focus is next in the reverse tab order.

 See the section 'Defining Tabbing and Paging' in section 2.4o for
 more information on tabbing.

 previous = <item reference>;

 Expression Setting Description
 <item reference> string identifies the item to receive
 focus next

 Available In
 - button
 - check
 - combobox
 - field
 - list
 - popup
 - radio
 - page global characteristics
 - form global characteristics

 Example

 This sample points to the item date_field. When users tab back from
 the current item, the item identified as date_field will receive
 focus.
 previous = "date_field";

 Usage Notes

 2) Default tabbing order: depends on the order in which page and
 item definitions occur within the form definition. The
 sequence is:
 - first page to display: first page defined in the form
 - first item to receive focus: first modifiable item defined
 for the body of the first page
 - subsequent items to receive focus: each modifiable item on
 the page in the reverse order you define them

 When you tab back past the first item on the page, the last
 modifiable item in the page's toolbar receives focus. If there is
 no toolbar, focus returns to the last item defined in the page.

 4) Placing the previous option in form characteristics defines the
 first page to appear, and the first item to receive focus when the
 form opens. Placing previous in page characteristics defines the

 first item to receive focus when the page appears.

Universal Forms Description Language [page 139]

 If the previous option identifies form or page characteristics,
 focus moves to the item defined to receive focus when the form
 or page appears. The form characteristics reference is
 global.global. The page characteristics reference is global for
 the current page or <page tag>.global for another page.

 5.32 printsettings

 The printsettings option determines the settings that will be used
 when the form is printed. You can allow the user to change these
 defaults, or set the form so that it will always follow the
 defaults.

 Syntax

 printsettings = [<page list>, <dialog settings>];
 Notes:
 i) All settings are optional.

 Expression Setting Description
 <page list> (see below) the list of pages that should be
 printed
 <dialog settings> (see below) determines whether the print
 dialog is shown, and which settings
 should be used when printing (for
 example, paper orientation and
 number of copies)

 Available In
 - action
 - button
 - cell
 - page global characteristics
 - form global characteristics

 Page List

 The page list uses the following syntax:
 pages=["keep"|"omit", "<page tag 1>", "<page tag 2>", ...]

 Setting Description
 keep The pages listed will be printed. Any
 other pages will not.
 omit The pages listed will not be printed.
 Any other pages will.
 <page tag> The list of page tags indicates which
 pages should be either kept or omitted.

 Dialog Settings

 The dialog settings use the following syntax

 dialog=[active="on"|"off", orientation="portrait"|"landscape", copies="1"]

 The settings work as follows:

Universal Forms Description Language [page 140]

 Setting Description
 active When "on", the print dialog will be
 displayed before the form is printed,
 allowing the user to change the settings.
 When "off", the dialog will not be shown
 and the form will be printed immediately.
 orientation Determines whether the form will be
 printed in "landscape" or "portrait"
 orientation.
 copies Determines the number of copies that will
 be printed.
 printpages See below.

 Example

 This sample omits "page2" from printing, sets the form to print in
 landscape orientation, and causes two copies of the form to be
 printed. The user is able to change all of these settings.
 printsettings=[pages=["omit", "page2"], dialog=["on",
 orientation="landscape", copies="2"]];

 Usage Notes

 1) Default Page List: the page list will default to keeping all
 pages in the form.

 2) Default Dialog Settings: the dialog will default to being "on",
 and will print one copy of all pages in the form in a portrait
 orientation. By default, the user will be able to change all of
 these settings.

 5.33 saveformat

 The saveformat option specifies what format a form should be saved
 in. A UFDL form can be saved in UFDL format, compressed UFDL
 format, or HTML format.

 UFDL format saves the entire form definition, including the user
 input.

 Compressed UFDL format saves the entire form description as a
 compressed file using a gzip compression algorithm.

 HTML format saves the form as a series of assignment statements for
 each modifiable item, equating the item reference with the item's
 value. The only items included in the save are custom items and the
 following modifiable items: check, field, list, popup, radio.

 Syntax

 saveformat = <MIME type>;

 Expression Setting Description
 <MIME_type> "application/uwi_form" use UFDL format

Universal Forms Description Language [page 141]

 "application/uwi_form;content- use compressed
 encoding=\"gzip\"" UFDL format

 "application/x-www-form-urlencoded" use HTML format

 Note: You cannot specify that HTML format files be compressed.

 Available In
 - button
 - cell
 Example

 Example 1 - HTML format in a button

 This example shows how to use saveformat in a save button.
 save_button = new button
 {
 type = "save";
 saveformat = "application/x-www-form-urlencoded";
 }

 When a user clicks this button, the form will be converted to HTML
 format (see Usage Note 3 below) and saved to the user's drive.

 Example 2 - Compressed UFDL format in form global characteristics

 This example shows how to use saveformat as a form global
 characteristic and to specify that the saved form be compressed.
 version = "3.2.0";
 bgcolor = ["ivory"];
 saveformat = "application/uwi_form; content-encoding = \"gzip\"";

 page_1 = new page
 {
 ...

 Any time a user saves this form, it will be saved in compressed
 UFDL format.

 A saveformat setting as a form global characteristic applies to all
 save actions for the form. You can override the global setting for
 specific save actions by coding a different saveformat option into
 the item that initiates the save action. For example,
 version = "3.2.0";
 bgcolor = ["ivory"];
 saveformat = "application/uwi_form; content-encoding = \"gzip\"";

 page_1 = new page
 {
 save_button = new button
 {

 type = "save";
 value = "Save Form";

Universal Forms Description Language [page 142]

 saveformat = "application/uwi_form";
 }

 When the user saves the form by clicking the Save Form button, it
 will be saved as an uncompressed UFDL form.

 Note that the quotation marks around gzip must be escaped.

 Usage Notes

 1) Default: UFDL format (not compressed)

 2) You can include this option as a form global option and in the
 definitions of items that trigger save actions. These are button
 or cell items that have a type option setting of save.

 3) HTML Format by Item Type

 The general syntax of a form saved in HTML format is:
 <item reference>=<value>&< item reference>=<value>&...
 Note: the ampersand separates form items.

 The syntax of items saved in HTML format by type:

 Item Type HTML Format
 check <item tag>=<value option setting>
 field <item tag>=<value option setting>
 list <item tag>=
 <value option setting of selected cell>
 Note: <item reference> identifies the list.
 <value option setting of selected cell>
 Note: <item reference> identifies the popup.
 radio <group option setting>=
 <item tag of selected radio>
 <custom> <item tag>=<value option setting>

 Note: combo boxes cannot be saved in HTML format.

 Substitutions and Omissions:

 - Only modifiable items are saved as HTML data. You cannot save a
 form in HTML format and expect to view it as a form again. It is
 saved as a string of item tags and their associated values.
 - Spaces in the value are replaced by the plus sign (+).
 Two words' becomes 'Two+words'
 - The membership operator in item and group references is replaced
 by a minus sign.
 'page_one.age_group' becomes 'page_one-age_group'
 - Page tags are removed from item and group references in single
 page forms.
 - Check boxes and radio buttons with a value option setting of off

 are omitted.
 - Entries resulting in an empty string on the right hand side
 of the assignment statement are omitted. This occurs when

Universal Forms Description Language [page 143]

 the referenced option setting is empty or the option
 definition is missing.

 5.34 scrollhoriz

 The scrollhoriz option defines horizontal scrolling options for a
 field item.

 Syntax

 scrollhoriz = <option>;

 Expression Setting Description
 <option> "never" permit scrolling using the cursor but
 display no horizontal scroll bar
 "always" permit scrolling and display a
 horizontal scroll bar
 "wordwrap" wrap field contents from line to
 line, inhibit scrolling and display
 no horizontal scroll bar

 Available In
 - field

 Example

 This sample sets the horizontal scrolling option to permit
 scrolling and to display the horizontal scroll bar.
 scrollhoriz = "always";

 Usage Notes

 1) Default: never

 2) The scroll bar displays along the field's bottom edge.

 5.35 scrollvert

 The scrollvert option defines vertical scrolling options for a
 field item.

 Syntax

 scrollvert = <option>;

 <option> "never" permit scrolling using the cursor but
 display no vertical scroll bar
 "always" permit scrolling and display a
 vertical scroll bar
 "fixed" inhibit scrolling and display no

 vertical scroll bars

 Available In

Universal Forms Description Language [page 144]

 - field

 Example

 This sample sets the vertical scrolling option to inhibit all
 scrolling.
 scrollvert = "fixed";

 Usage Notes

 1) Default: never

 2) The scroll bar displays along the field's right edge.

 5.36 signature

 The signature option is used in conjunction with the button item
 to establish the UFDL item name by which a particular digital
 signature will be identified.

 Syntax

 signature = <name of signature>;

 Expression Setting Description
 <name of signature> string the name of the signature

 Available In
 - button
 - signature

 Example

 This sample identifies the signature item for a particular button
 as "mysig".
 signature = "mysig";

 Usage Notes

 1) Default: none

 2) The signature option must be included in each Signature button
 that is set up.

 3) For more information on filtering, see "Filters"

 5.37 signdatagroups

 The signdatagroups option specifies which datagroups are to be
 filtered for a particular digital signature. (Filtering means

 either keeping or omitting data.) Keeping a datagroup means
 keeping or omitting all items containing that datagroup name, even
 if they were added after the form was created. This is how
 enclosures are signed.

Universal Forms Description Language [page 145]

 Syntax

 signdatagroups = [<datagroup filter>, <datagroup reference>,
 ... <datagroup referencen>];
 Note: The number of <datagroup reference> entries is optional.

 Expression Setting Description
 <datagroup filter> "keep" include datagroups in the
 <datagroup reference> list with
 the signature; omit those not in
 list
 "omit" omit datagroups in the
 <datagroup reference> list from
 the signature; include those not
 in list
 <datagroup reference> string identifies a datagroup
 Available In
 - button
 - signature

 Example

 This example specifies a signdatagroups option that keeps the
 datagroup called "Business_Letters".
 signdatagroups = ["keep", "Business_Letters"];

 Usage Notes

 1) Default: keep

 2) Since enclosed files can belong to several datagroups, and
 datagroups can contain several enclosed files, care must be
 exercised when setting up signdatagroups options to ensure that
 only the desired datagroups are filtered.

 3) See "Order of Precedence of Filters" on page 48 for further
 information on filtering.

 5.38 signer

 The signer option identifies who signed a particular form.

 Syntax

 signer = <identity of user>;

 Expression Setting Description
 <identity of user> string identity of user

 Available In
 - button

 - signature

Universal Forms Description Language [page 146]

 Example

 In this example, signer is similar to a user's email signature,
 clearly identifying who signed the form.
 signer = "John Smith jsmith@acme.org";

 Usage Notes

 1) The setting of the signer option varies, depending on where the
 signature is from. Using different certificate authorities may
 produce different results.

 2) The signer option is automatically generated by the signature
 button when the user signs the form. It goes automatically into
 both the signature button code and the signature code. No manual
 coding is required.

 5.39 signformat

 The signformat option records the type of encoding that a Viewer
 should use to create the mimedata setting in a signature.
 Specifically, the parameters in signformat specify:
 - the MIME type of the data from which the mimedata setting is
 created (see below for an explanation).

 - the cryptographic service provider to use when creating a hash
 of the signed data.

 - the type of implementation of the cryptographic service provider
 (for example, full implementation, only one algorithm supported,
 etc.)

 - the algorithm to use when creating a hash of the signed data.

 About the mimedata setting:

 To create the mimedata setting, a Viewer takes the signer's
 certificate and a plaintext representation of the form or portion
 of the form that the signature applies to, and encodes them
 according to the settings in signformat. For details, see the
 mimedata option description.

 Syntax

 signformat = "<MIMEtype>;csp=\"<csp>\";csptype=<csptype>;
 hashalg=<alg>";

 Expression Setting Description
 <MIMEtype> string the MIME type of the signed data.
 Must be application/uwi_form.
 <csp> string the cryptographic service provider

 to use. Must be a string enclosed in
 escaped double-quotation marks. The
 string is pre-defined by the crypto
 API.

Universal Forms Description Language [page 147]

 <csptype> string or the type of implementation of the
 csp-defined crytographic service provider. For
 number allowed types, see the list in
 <alg> string the hash algorithm to use

 Available In
 - button
 - signature

 Example

 empSigButton = new button
 {
 type = "signature";
 value = signer;
 format = ["string", "mandatory"];
 signformat = "application/uwi_form;csp=\"Microsoft Base
 Cryptographic Provider v1.0\";csptype=rsa_full;hashalg=sha1";
 signoptions = ["omit", "triggeritem", "coordinates"];
 signitemrefs = ["omit", "PAGE1.mgrSigButton",
 "PAGE1.admSigButton", "PAGE1.empSignature",
 "PAGE1.mgrSignature", "PAGE1.admSignature"];
 signature = "empSignature";
 }

 Usage Notes

 1) A UFDL Viewer automatically copies the signformat option from a
 signature button to its associated signature item.

 2) You must escape the quotation marks around the name of the
 cryptographic service provider. Escape them using the
 backslash (\).

 3) The list below describes the settings you may use for the
 csptype parameter. (Note that you may also use a numeric value,
 as described below the table.)

 Setting Meaning
 rsa_full Full RSA implementation (this is the default)
 rsa_sig For a CSP that supplies only RSA signature
 algorithms
 dss For a CSP that supplies algorithms compliant
 with the Digital Signature Standard
 dss_dh For a CSP that supplies DSS compliant algorithms
 and Diffie-Hellman encryption
 fortezza For a CSP that supplies Fortezza algorithms

 4) Instead of using one of the settings in the table above for
 csptype, you may use the numeric value that is defined for it in
 the cryptographic API. For example, csptype=dss and csptype=3

 produce the same result.

 5.40 signgroups

Universal Forms Description Language [page 148]

 The signgroups option specifies which groups of items are to be
 filtered for a particular digital signature. (Filtering means
 either keeping or omitting items.) Examples of grouped items are
 radio buttons and cells.

 Syntax

 signgroups = [<group filter>, <group reference>, ...
 <group referencen>];
 Note: The number of <group reference> entries is optional.

 Expression Setting Description
 <group filter> "keep" include groups of items in the <group
 reference> list with the signature;
 omit those not in list
 "omit" omit groups of items in the <group
 reference> list from the signature;
 include those not in list
 <group reference> string identifies a group of items
 Available In
 - button
 - signature

 Example

 This example shows a signgroups setting that omits the groups of
 items named "yesnoradiobuttons" and "monthlypaycells".
 signgroups = ["omit", "yesnoradiobuttons", "monthlypaycells"];

 Usage Notes

 1) Default: keep

 2) It is possible to have several list or popup items with the same
 group reference, as these are populated with cells that have the
 same group reference as the item which contains them. Therefore,
 when setting up signgroups options, caution must be exercised
 in making group references to list or popup items which may be
 populated by the same group of cells.

 3) See "Order of Precedence of Filters" in section 2.7 for further
 information on filtering.

 5.41 signitemrefs

 The signitemrefs option specifies which individual items are to be
 filtered for a particular digital signature. (Filtering means
 either keeping or omitting data.)

 Syntax

 signitemrefs = [<item filter>, <item reference>, ...
 <item referencen>];

Universal Forms Description Language [page 149]

 Note: The number of <item reference> entries is optional.

 Expression Setting Description
 <item filter> "keep" include items in the <item reference>
 list with the signature; omit those
 not in list
 "omit" omit items in the <item reference>
 list from the signature; include
 those not in list
 <item reference> string specifies the item to be filtered

 Available In
 - button
 - signature

 Example

 This sample sets the signitemrefs option to omit two fields from
 the digital signature.
 signitemrefs = ["omit", "field1", "page1.field2"];

 Usage Notes

 1) Default: keep

 2) Since all items have a name and type, signitemrefs filters are
 always applicable.

 3) signitemrefs filters take precedence over signitems filters.

 4) See "Order of Precedence of Filters" for further information
 on filtering.

 5.42 signitems

 The signitems option specifies which types of items are to be
 filtered for a particular digital signature. (Filtering means
 either keeping or omitting data.)

 Syntax

 signitems = [<item filter>, <item type>, ... <item typen>];
 Note: The number of <item type> entries is optional.

 Expression Setting Description
 <item filter> "keep" include types of items in the <item
 type> list with the signature; omit
 "omit" omit types of items in the <item
 type> list from the signature;
 include those not in list
 <item type> string specifies the type of item to be

 filtered

 Available In

Universal Forms Description Language [page 150]

 - button
 - signature

 Example

 This sample sets the signitems option to keep the following types
 of items with the signature: boxes, buttons, and fields.
 signitems = ["keep", "box", "button", "field"];

 Usage Notes

 1) Default: keep

 2) A signitems setting can be overridden by a signoptions setting,
 in terms of the order of precedence.

 3) See "Order of Precedence of Filters" in section 2.7 for further
 information on filtering.

 5.43 signoptionrefs

 The signoptionrefs option specifies which individual options are
 to be filtered for a particular digital signature. (Filtering
 means either keeping or omitting a piece of data.) This option
 should be used in conjunction with a signoptions option also
 appearing in the filter.

 Syntax

 signoptionrefs = [<option filter>, <option reference>, ...
 <option referencen>];
 Note: The number of <option reference> entries is optional.

 Expression Setting Description
 <option filter> "keep" include options in the <option
 reference> list with the signature;
 omit those not in list
 "omit" omit options in the <option reference>
 list from the signature; include those
 not in list
 <option reference> string specifies the option to be filtered

 Available In
 - button
 - signature

 Example

 This example specifies a signoptionrefs setting that keeps a
 particular field with the digital signature.

 signoptionrefs = ["keep", "page1.field1.value"];

 Note: the page name can be dropped if the option in question is
 on the same page, but the item name should not be dropped.

Universal Forms Description Language [page 151]

 Usage Notes

 1) Default: keep

 2) Note that unlike signoptions, the signoptionrefs filter can
 cause an item to be included even if the item filters would
 normally omit the item. This is necessary in order to ensure
 that the hashed text is in valid UFDL format.

 3) Signoptionrefs filters take precedence over signoptions filters.

 4) See "Order of Precedence of Filters" in section 2.7 for further
 information on filtering.

 5.44 signoptions

 The signoptions option specifies which types of options are to be
 filtered for a particular digital signature. (Filtering means
 either keeping or omitting a piece of data.)

 Syntax

 signoptions = [<option filter>, <option type>, ...
 <option typen>];
 Note: The number of <option type> entries is optional.

 <option filter> "keep" include types of options in the <option
 type> list with the signature; omit
 those not in list
 "omit" omit types of options in the <option
 type> list from the signature; include
 those not in list
 <option type> string specifies the type of option to be
 filtered

 Available In
 - button
 - signature

 Example

 This example shows a signoptions setting that omits two types of
 options from the digital signature.
 signoptions = ["omit", "url", "printsettings"];

 Usage Notes

 1) Default: keep

 2) One signoptions setting that must always be specified is as

 follows:
 signoptions = ["omit", "triggeritem", "coordinates"];

Universal Forms Description Language [page 152]

 This setting ensures that the signature will not be broken due
 to an alteration to the form.

 3) signoptions can be overridden by a signoptionrefs setting.

 4) See "Order of Precedence of Filters" in section 2.7 for further
 information on filtering.

 5.45 size

 The size option specifies an item's size. It does not include
 external labels, borders or scroll bars. These are part of the
 bounding box size which is calculated automatically. The size unit
 of measurement is characters.

 Examples of item size are the input area in a field item or the
 height and width of the label in label and button items.

 See 'Item Size' in section 2.4e for a discussion of item and
 bounding box sizes.

 Syntax

 size = [<width>, <height>];

 Expression Setting Description
 <width> short int the horizontal dimension of the item
 <height> short int the vertical dimension of the item

 Available In
 - box
 - button
 - check
 - field
 - label
 - line
 - list
 - popup
 - radio
 - spacer
 - tablet

 Example

 This sample sets the item's size to 80 characters wide by five
 characters high.
 size = ["80", "5"];

 Usage Notes

 2) Size and Font:

Universal Forms Description Language [page 153]

 The width may not always accommodate the number of characters
 you specify. The calculation to determine actual width is:
 'average character width for the item's font' X <width>
 This will only exactly match the number of characters the item
 can display horizontally when the font is mono-spaced
 (like Courier).

 3) If either the height or the width is invalid, the default item
 size will be used. A dimension of zero (0) is invalid for all
 items except line.

 4) The item and bounding box sizes can be changed by using
 itemlocation with an expansion or extent modifier.

 5.46 thickness

 The thickness option specifies the thickness of a line. The unit
 of measurement is pixels.

 Syntax

 thickness = <thickness>;

 Expression Setting Description
 <thickness> short int the thickness of the line

 Available In
 - line

 Example

 Example 1

 This sample defines a horizontal line 40 characters long and five
 pixels thick.
 size = ["40", "0"];
 thickness = "5";

 Example 2

 This sample defines a vertical line 20 characters long and 10
 pixels thick.
 size = ["0", "20"];
 thickness = "10";

 Usage Notes

 1) Default: one pixel

 2) Use size to define the dimension of a line in one direction

 (height or width) and thickness to define the dimension in the
 other direction. The dimension thickness defines must be set to
 zero in size.

Universal Forms Description Language [page 154]

 3) The line's thickness can be changed by using itemlocation with
 an expansion modifier for the dimension that thickness
 describes.

 5.47 transmitdatagroups

 This is one of the transmit-family of options that allow you to
 filter form submissions. This option lists which datagroups of
 items should be kept or omitted from a transmission.

 For example, if transmitdatagroups specifies that the datagroup
 called enclosures should be kept in the transmission, then all
 items with a datagroup setting of enclosures will be transmitted
 (unless other filters of greater precedence exclude them).

 This filter applies only to items for which it is valid to have a
 datagroup option (action, button, cell, data).

 For details on the order of precedence of filters, see "Order of
 Precedence of Filters" in section 2.7.

 Syntax

 transmitdatagroups = [<transmit flag>, <datagroup identifier1>,
 ... <datagroup identifiern>];
 Note: There may be zero or more <datagroup identifier> entries.

 Expression Setting Description
 <transmit flag> "keep" keep items with a datagroup setting
 specified in the <datagroup
 identifier> list; omit those with
 a datagroup setting not included in
 the list
 "omit" omit items with a datagroup setting
 specified in the <datagroup
 identifier> list; keep those with a
 group setting not in the list
 <datagroup string the name of a datagroup setting
 identifier>

 Available In
 - button
 - cell

 Examples

 This sample specifies that only the items with a datagroup setting
 of enclosures should be transmitted.
 transmitdatagroups = ["keep", "enclosures"];

 This sample specifies that all items except those with a datagroup

 setting of other should be kept in the transmission.
 transmitdatagroups = ["omit", "other"];

Universal Forms Description Language [page 155]

 Usage Notes

 1) The default is to keep all datagroups in the form.

 For details on the order of precedence of filters, see "Order of
 Precedence of Filters" in section 2.7.

 5.48 transmitformat

 The transmitformat option specifies the format of the form data
 submitted to a processing application. A UFDL form can submit data
 in UFDL format, compressed UFDL format, or in HTML format.

 UFDL format is the entire form definition, including user input,
 unless you use the options transmit, transmititems, and
 transmitoptions to omit some items and options from the form
 submission.

 HTML format is just an assignment statement for each item equating
 the item reference with the item's value. The only items included
 are modifiable items, custom items, and items with a transmit
 option setting of all.

 If you specify that a UFDL format submission should be compressed,
 it will be compressed using a gzip compression algorithm.

 Note: Form and page global characteristics are sent only if the
 format is UFDL.

 Syntax

 transmitformat = <MIME_type>;

 Expression Setting Description
 <MIME_type> "application/uwi_form" use UFDL format
 "application/uwi_form;content- use compressed UFDL
 encoding=\"gzip\"" format
 "application/x-www-form-urlencoded" use HTML form
 format

 Note: You cannot specify that data in HTML form format be
 compressed.

 Available In
 - action
 - button
 - cell
 - form global characteristics

 Examples

 Example 1 - UFDL format

 This example shows a button which, when clicked, will submit the

Universal Forms Description Language [page 156]

 form in UFDL format.
 send_button = new button
 {
 type = "done";
 url = ["mailto:user@host.domain"];
 transmitformat = "application/uwi_form";
 }

 When a user clicks the button, the entire form definition will be
 submitted, unless other transmit options specify a partial
 submission.

 Example 2 - Compressed UFDL format specified in form global

 This example shows how to use the transmitformat option as a form
 global option. Here, it specifies that data should be submitted in
 compressed UFDL format.
 version = "3.2.0";
 bgcolor = ["ivory"];
 transmitformat = "application/uwi_form; content-encoding=\"gzip\"";

 page_1 = new page
 {
 When a submit or done action is activated in the form, the data
 will be sent in compressed UFDL format. When transmitformat appears
 as a form global characteristic, it applies to all submissions from
 the form. You can override it for a particular submission if you
 place a transmitformat setting in the item that initiates the
 submission.

 Note that the quotation marks around gzip must be escaped.

 Example 3 - HTML form format

 This sample shows an automatic action that submits form data in
 HTML form format.
 status_action = new action
 {
 type = "submit";
 url = ["http://www.host.domain/cgi-bin/recvStatus"];
 transmitformat = "application/x-www-form-urlencoded";
 delay = ["repeat", "180"];
 }

 Every 180 seconds, the form definition will be converted to HTML
 form format as specified in Usage Note 4. Other transmit options
 could override the choice of items to include in an HTML form
 (see Usage Notes 5 and 6).

 Usage Notes

 1) Default: UFDL format (not compressed)

 2) You can include this option as a form global option and in the
 definitions of items that trigger form submissions. These items

Universal Forms Description Language [page 157]

 have a type option setting of submit or done.

 3) HTML Format by Item Type
 The general syntax of a submitted HTML form is:
 <item reference>=<value>&< item reference>=<value>&...
 Note: the ampersand separates form items.

 The syntax of an HTML form entry by item type:

 Item Type HTML Format
 check <item tag>=<value option setting>
 field <item tag>=<value option setting>
 list <item tag>=
 <value option setting of selected cell>
 Note: <item reference> identifies the list.
 popup <item tag>=
 <value option setting of selected cell>
 Note: <item reference> identifies the popup.
 radio <group option setting>=
 <item tag of selected radio>
 <custom> <item tag>=<value option setting>
 all other items <item tag>=<value option setting>

 Note: combo boxes are not supported in HTML.

 Substitutions and Omissions:
 - Spaces in the value are replaced by the plus sign (+).
 'Two words' becomes 'Two+words'
 - The membership operator in item and group references is
 replaced by a minus sign.
 'page_one.age_group' becomes 'page_one-age_group'
 - Page tags are removed from item and group references in
 single page forms.
 - Check boxes and radio buttons with a value option setting of
 off are omitted.
 - Entries resulting in an empty string on the right hand side
 of the assignment statement are omitted. This occurs when the
 referenced option setting is empty or the option definition
 is missing.

 4) Partial Submissions

 Just as you can specify partial submissions when transmitting
 data in UFDL format, you can also specify partial submissions
 when transmitting data in HTML format. Use the transmit and
 transmititems options.

 Use the transmitoptions option for HTML formatted submissions
 with caution. If you omit the options used for HTML format, then
 items requiring those options are omitted also.
 For example, if the trigger item's definition included the

 following pair of statements, the form submission would contain
 only radio item entries (all other entries use a value option
 setting).
 transmitformat = "application/x-www-form-urlencoded";

Universal Forms Description Language [page 158]

 transmitoptions = ["omit", "value"];

 5) HTML Considerations

 The functionality of UFDL forms differs somewhat from HTML
 forms. Those differences are:
 - Enclosures
 HTML does not support enclosures. To submit enclosed form
 data, use UFDL format.
 - Item tags
 UFDL allows a smaller set of characters in item tags than
 HTML does. UFDL item tags support the following characters:
 a-z, A-Z, 0-9, and the underscore (_).
 - Check boxes
 UFDL check boxes vary slightly from HTML check boxes. UFDL
 check boxes are independent items; HTML check boxes are
 grouped together using the same format as radio items. When
 a UFDL form is submitted in HTML format, the submission will
 contain an entry for each check box.

 5.49 transmitgroups

 This is one of the transmit-family of options that allow you to
 filter form submissions. This option lists which groups of items
 should be kept or omitted from a transmission.

 For example, if transmitgroups specifies that the group called
 countries should be kept in the transmission, then all items with
 a group setting of countries will be transmitted (unless other
 filters of greater precedence exclude them).

 This filter applies only to items for which it is valid to have a
 group option (cell, combobox, list, popup, radio).

 For details on the order of precedence of filters, see "Order of
 Precedence of Filters"

 Syntax

 transmitgroups = [<transmit flag>, <group identifier1>,
 ... <group identifiern>];
 Note: There may be zero or more <group identifier> entries.

 Expression Setting Description
 <transmit flag> "keep" keep items with a group setting
 specified in the <group identifier>
 list; omit those with a group setting
 not included in the list
 "omit" omit items with a group setting
 specified in the <group identifier>
 list; keep those with a group setting

 not in the list
 <group identifier> string the name of a group setting

Universal Forms Description Language [page 159]

 Available In
 - action
 - button
 - cell

 Examples

 This sample specifies that only the items in the countries and
 departments groups should be kept in the transmission.
 transmitgroups = ["keep", "countries", "departments"];

 This sample specifies that all groups should be kept in the
 transmission except the fillType group.
 transmitgroups = ["omit", "fillType"];

 Usage Notes

 1) The default is to keep all groups in the form.

 2) This option is handy for keeping the user's selection in lists
 and popups. Since the value setting of a popup or list is not
 the value of the cell the user chose, but is rather the item
 tag of the cell containing the value, you might want to make
 sure you keep the selected cell in the transmission so that you
 can dynamic option reference its value. To do this, you would
 keep the group of cells associated with the popup's group.

 For details on the order of precedence of filters, see "Order
 of Precedence of Filters"

 5.50 transmititemrefs

 This is one of the transmit-family of options that allow you to
 filter form submissions. This option lists which specific items
 should be kept or omitted from a transmission. It differs from
 transmititems in that transmititems specifies particular types of
 items to filter, whereas transmititemrefs refers to one or more
 specific items.

 For example, if transmititemrefs specifies that the item
 page1.MgrSignButton should be kept in the transmission, then even
 if a transmititems filter says all buttons should be omitted from
 the form, the particular button on page 1 named MgrSignButton would
 be kept.

 For details on the order of precedence of filters, see "Order of
 Precedence of Filters"

 Syntax

 transmititemrefs = [<transmit flag>, <item identifier1>,

 ... <item identifiern>];
 Note: There may be zero or more <item identifier> entries.
 Expression Setting Description

Universal Forms Description Language [page 160]

 <transmit flag> "keep" keep the specific items referred to in
 the <item identifier> list; omit all
 other items
 "omit" omit the specific items referred to in
 the <item identifier> list; keep all
 others
 <item identifier> string the item reference of an item,
 starting with the page tag

 Available In
 - action
 - button
 - cell

 Examples

 This sample specifies that only the item on page 1 called
 MgrSignButton should be transmitted, and that all other items
 should be omitted.
 transmititemrefs = ["keep", "page1.MgrSignButton"];

 This sample shows how you would use transmititemrefs in
 conjunction with transmititems: although all items that are
 buttons are omitted, the button on page 1 called MgrSignButton will
 be kept.
 transmititems = ["omit", "button"];
 transmititemrefs = ["keep", "page1.MgrSignButton"];

 Usage Notes

 2) The default is to keep all items in the form.

 3) The setting of a transmititemrefs always overrides a
 transmititems setting.

 4) The setting of a transmitoptionrefs always overrides a
 transmititemrefs setting.

 For full details on the order of precedence of filters, see
 "Order of Precedence of filters" in section 2.7.

 5.51 transmititems

 This option lists the types of items to include in or omit from the
 form data submitted to a form processing application. Include this
 option in the definitions of items that trigger form submissions.
 These trigger items have a type option setting of submit or done.

 Syntax

 transmititems = [<transmit flag>, <item type1>, ... <item typen>];

 Note: The number of <item type> entries is optional.

 Expression Setting Description
 <transmit flag> "keep" include items with an item type from

Universal Forms Description Language [page 161]

 the <item type> list; omit those not
 in list
 "omit" omit items with an item type from the
 <item type> list; include those not
 in list
 <item type> string a type of item

 Available In
 - action
 - button
 - cell

 Example

 This sample specifies that box, help, label, spacer, and toolbar
 items should be omitted from the form data submitted to the form
 processing application.
 transmititems = ["omit", "box", "help", "spacer", "toolbar"];

 Usage Notes

 1) The default is to keep all items.

 2) See the transmititemsrefs description for information on how to
 keep or omit a specific item (as opposed to a type of item).
 5.52 transmitoptionrefs

 This is one of the transmit-family of options that allow you to
 filter form submissions. This option lists which specific options
 should be kept or omitted from a transmission. It differs from
 transmitoptions in that transmitoptions specifies particular types
 of options to filter, whereas transmitoptionrefs refers to one or
 more specific options.

 For example, if transmitoptionrefs specifies that the option
 page1.NameField.value should be kept in the transmission, then even
 if a transmitoptions filter says all value options should be
 omitted from the form, the particular value option in the field on
 page 1 called NameField will be kept.

 For details on the order of precedence of filters, see "Order of
 Precedence of Filters" in section 2.7.

 Syntax

 transmitoptionrefs = [<transmit flag>, <option identifier1>,
 ... <option identifiern>];
 Note: There may be zero or more <option identifier> entries.

 Expression Setting Description
 <transmit flag> "keep" keep the specific options referred to

 in the <option identifier> list; omit
 all other options
 "omit" omit the specific options referred to

Universal Forms Description Language [page 162]

 in the <option identifier> list; keep
 all others
 <option identifier> string the option reference of an option,
 starting with the page tag

 Available In
 - action
 - button
 - cell

 Examples

 This sample shows how you would use transmitoptionrefs in
 conjunction with transmitoptions: although all options that are
 values are omitted, the value in the NameField on page 1 will be
 kept.
 transmitoptions = ["omit", "value"];
 transmitoptionrefs = ["keep", "page1.NameField.value"];

 This sample shows how you would use transmitoptionrefs in
 conjunction with transmititemrefs: although the item called
 MgrSignButton on page 1 is omitted, its signer option is kept
 transmititemrefs = ["omit", "MgrSignButton"];
 transmitoptionrefs = ["keep", "page1.MgrSignButton.signature"];

 Usage Notes

 5) The default is to keep all options in the form.

 For details on the order of precedence of filters, see "Order
 of Precedence of Filters" in section 2.7.

 5.53 transmitoptions

 This option lists which options to include in or omit from the
 form data submitted to a form processing application. Include this
 option in the definitions of items that trigger form submissions.
 These trigger items have a type option setting of submit or done.

 Only options meeting the following standard are affected by
 transmitoptions:
 - The option definition occurs in an item already included in the
 form submission.

 Note: The version option is always included in the submission
 unless the format is HTML.

 Syntax

 transmitoptions = [<transmit flag>, <option identifier1>,

 ... <option identifiern>];
 Note: The number of <option identifier> entries is optional.

 Expression Setting Description

Universal Forms Description Language [page 163]

 <transmit flag> "keep" include options with an option type
 in the <option identifier> list;
 omit those not in list
 "omit" omit options with an option
 identifier in the <option
 identifier> list; include those not
 in list
 Tip: Transmitoptions does not affect options in items omitted by
 the transmititems option.

 Available In
 - action
 - button
 - cell

 Example

 This sample specifies that only the active, mimedata, and value
 options should be included in the form data submitted to the form
 processing application.
 transmitoptions = ["keep", "active", "mimedata", "value"];

 Usage Notes

 6) The default is to keep items.

 7) See the transmitoptionrefs description for details on how to
 keep or omit a specific option (as opposed to a type of option).

 5.54 triggeritem

 The triggeritem option identifies the item that triggered a form
 submission. Items triggering form submissions have a type option
 setting of submit or done.

 When a user selects an item that triggers a form submission, the
 triggeritem option is added to the form global characteristics and
 assigned the item reference of the selected item.

 Syntax

 triggeritem = <item reference>;

 Expression Setting Description
 <item reference> string identifies the trigger item

 Available In
 - form global characteristics

 Example

 This sample indicates that the item triggering the request is on
 the page called Page_one and has an item tag of submit_button.

Universal Forms Description Language [page 164]

 triggeritem = "Page_one.submit_button";

 5.55 type

 The type option associates a task type with an item that can
 trigger a task: action, button, or cell.

 Syntax

 type = <task type>;

 Expression Setting Description
 <task type> (see below) the task to perform

 Task Types

 The <task type> can be any of the following:

 Task Type Description of Task Use With
 link Perform all requests specified by the action
 url options in the current item. See button
 the section 'url' for more details. cell

 replace Perform a link followed by a cancel. action
 cell

 submit Initiate the form processing action
 applications identified in the url button
 options of the current item. cell

 done Perform a submit followed by a cancel. action
 button
 cell

 pagedone Move to the page specified in the url action
 option. This closes the current page button
 and replaces it with the new page. cell
 All fields containing error checking
 on the current page must be correctly
 filled out before it can be closed.

 cancel Close the form; if any changes were action
 made to the form since the last save button
 or submit, then the user is informed cell
 that the form has changed and is
 allowed to choose whether the
 cancellation should proceed. Note that
 the value options of many items, as
 well as the contents of data items,
 can change in response to an enclose

 or remove action.

 save Save the form in a file specified by action

Universal Forms Description Language [page 165]

 the user. button
 cell

 select With cell items: flag the cell as button
 selected when a user chooses the cell. cell
 This means the item reference of the
 cell is copied to the value option of
 the parent list or popup.
 With button items containing images:
 store coordinates of the mouse click
 position in the image into the
 coordinates option

 enclose Allows the user to place one or more button
 files into one or more of the cell
 datagroups defined for the form. The
 files will be encoded using base64
 encoding format.

 extract Allows a user to copy the contents of button
 an enclosed file into a file on the cell
 local disk.

 remove Allows the user to remove an item from button
 a datagroup; the underlying data item cell
 will only be deleted if it belongs to
 no other datagroups.

 display Display an enclosed file. Your web action
 browser will choose the appropriate button
 viewer according to the file's MIME cell
 type.

 print Print the form on a local printer. action
 button
 cell

 signature Create a digital signature. button

 Universal Forms Description Language [page 96]

 Available In
 - action
 - button
 - cell

 Example

 This sample specifies that this item saves the form to a local file.
 type = "save";

 Usage Notes

 1) Default: link

Universal Forms Description Language [page 166]

 5.56 url

 The url option identifies an object to access. Items containing
 this option must have a type option setting of link, replace,
 submit, done, or pagedone.

 The object identified can be any of the following:
 * File - used with a type option setting of link or replace
 The file identified is downloaded, and either displayed or
 saved. Examples of such files are images, word processing
 documents, and UFDL forms.
 * Application - used with a type option setting of submit or
 done
 The application identified is initiated. A form processing
 application is an example of such an application.
 * Item - used with a type option setting of pagedone
 The item identified, on the page identified, receives focus.
 The item must be on another page.
 * Form or Page Characteristics - used with a type option
 setting of pagedone
 The focus moves to the item defined to receive focus when the
 form or page appears. The form characteristics reference is
 global.global. The page characteristics reference is
 <page tag>.global for another page.

 Syntax

 url = [<the URL1>, <the URL2>, ... <the URLn>];
 where <the URL> is one of:
 - a URL with the format <scheme://host.domain[:port]
 /path/filename> for files and applications
 - #<item reference> for the next item in the form to receive
 focus
 Notes:
 I) <the URL> can occur 1-n times.
 ii) <item reference> can be a form or page characteristics
 reference.

 Expression Setting Description
 <the URL> string identifies the object to link

 Available In
 - action
 - button
 - cell

 Example

 This sample identifies a form processing application.
 url = ["http://www.host.domain/cgi-bin/recv_status"];

 This sample identifies a page to display and an item on it to
 direct the focus to.
 url = ["#page_2.expense_field"];

 Usage Notes

Universal Forms Description Language [page 167]

 1) Default: none

 2) When a form communicates with a server, the information sent
 may be URL-encoded. This means all non alpha-numeric characters
 are replaced by a character triplet consisting of the %
 character followed by two hexadecimal digits that form the
 hexadecimal value of the original character. The hexadecimal
 digits are "0123456789ABCDEF". For example,

 Character ASCII Number URL-encoded triplet
 \r 13 %0D

 Applications receiving form data must check the content type of the
 incoming data to see whether it is url-encoded.

 5.57 value

 The value option reflects the contents of an item. Visually, this
 can take several forms, depending on the item to which it applies.
 For example, the value option in label items contains the label
 text; the value option in radio items contains the status
 indicator; and the value option in list items contains the identity
 of the most recently selected cell (if it was a select cell).

 An item's contents will be stored in the form whenever a user saves
 the form or submits it for processing. This is true even for
 inactive items and items using the default value option setting
 (in this case, a value option containing the default setting is
 added to the item's definition).

 Syntax

 value = <setting>;

 Expression Setting Description
 <setting> string the item's contents

 Available In
 - button
 - cell
 - check
 - field
 - help
 - label
 - list
 - popup
 - radio
 - tablet

 Example

Universal Forms Description Language [page 168]

 This sample identifies the text of a label item.
 value = "My Form Title";

 Usage Notes

 1) Default: varies by item. See the documentation for each item.

 2) Multiple line values require line breaks imbedded in the value
 text. Use the escape sequence '\n' to indicate a line break.
 For example:
 value = "This value spans\ntwo lines.";

 3) To get the value of a cell that a user has selected from a list,
 you need to dereference it, like this:
 <page_tag>.<list_tag>.value->value
 For example:
 page1.countryPopup.value->value

 When a user selects a cell from a list, the item tag of the cell
 is stored as the value of the list. Hence the dereference
 syntax.

 5.58 version

 The version option specifies the Universal Forms Description
 Language version used to code the form definition.

 Note: This option must be the first statement in the form. It is
 invalid in any other location.

 Syntax

 version = <version>;

 Expression Setting Description
 <version> string the UFDL version number.

 Note: The version number must be coded as a quoted string. Other
 expression formats are invalid in this statement.

 Available In
 - form global characteristics (mandatory)

 This sample indicates the language in this form definition conforms
 to UFDL version 3.2.0 specification.
 version = "3.2.0";

 Usage Notes

 1) Important: Do not increase the version number of old forms

 unless they have been modified to conform to the new version.

 2) The format of a version number is m.n.r where:

Universal Forms Description Language [page 169]

 i) m is the major version number
 ii) n is the minor version number
 iii) r is the maintenance release number

 5.59 <custom option>

 Custom options allow form designers to add application specific
 information to the form definition. This is useful when submitting
 forms to applications requiring non-UFDL information. An example of
 non-UFDL information might be an SQL query statement.

 Syntax

 <custom> = [<expression1>, ... <expressionn>];
 Note: <expression> can occur 1-n times.

 Expression Setting Description
 <expression> string an expression that assigns a value
 to the option

 Example

 This sample shows a custom option containing an SQL query.
 sql_query = ["SELECT NAME FROM EMPLOYEE WHERE ID = "];

 This statement could be included in the definition of an item that
 triggers a form submission. The form processing application might
 then complete the statement with a value option setting from
 another item, and use the statement results to populate a response
 form.

 Usage Notes

 1) The naming conventions for a custom option are as follows:
 - It must begin with an alphabetic character.
 - It can contain any of the characters A-Z, a-z, 0-9, $ and
 underscore.
 - It must contain an underscore.

6. UFDL Form Viewer Directive

 UFDL contains the following viewer directive statement:
 - the #include statement for including external files
 - the #optinclude statement for optionally including external
 files

 The syntax of a viewer directive statement is as follows:
 #<directive> "<value>"

 Do not terminate viewer directive statements with a semicolon.

 See the section "UFDL Form Options" for syntax notation
 conventions in section 5.0.

Universal Forms Description Language [page 170]

 6.1 #include

 The #include statement allows you to include external files in your
 form definition much as you would include header files in a C
 language source file. The form viewer application replaces the
 #include statement with the contents of the include file before the
 form appears.

 Syntax

 #include "<filename>"

 Value Setting Description
 <filename> string name of the include file

 Example

 This is an example of using an include file to add image data to
 a form.

 ?
 // Create a label to display the image.
 LOGO_IMAGE = new label
 {
 image = "LOGO_DATA";
 }
 //
 // Now include the image in the form.
 #include "logo.frm"
 ?

 This is the external file:

 LOGO_DATA = new data
 {
 mimedata = "<image data>";
 }

 The form after resolution of the include:
 ?
 // Create a label to display the image.
 LOGO_IMAGE = new label
 {
 image = "LOGO_DATA";
 }
 //
 // Now include the image in the form.

 LOGO_DATA = new data

 {
 mimedata = "<image data>";
 }

Universal Forms Description Language [page 171]

 ?

 Usage Notes

 1) You can code a #include statement anywhere in a form definition
 except imbedded in another statement. You can also nest #include
 statements.

 2) The include file must reside in a secure include directory
 accessible to the form viewer application.

 3) Use include files to reduce form file size, and ensure
 standardization of form definitions. Smaller files occupy less
 space on the server and download more quickly

 6.2 #optinclude

 The #optinclude statement is a variation on the #include statement.
 It allows you to include external files in your form definition
 much as you would include header files in a C language source
 file-without crashing your program if a file you attempt to include
 is not available. The form viewer application replaces the
 #optinclude statement with the contents of the optinclude file
 before the form appears.

 Syntax

 #optinclude "<filename>"

 Value Setting Description
 <filename> string name of the optinclude file

 Example

 This is an example of using an optinclude file to add image data
 to a form.

 Here is the original form definition:
 ?
 // Create a label to display the image.
 {
 image = "LOGO_DATA";
 }
 //
 // Now include the image in the form.
 #optinclude "logo.frm"
 ?

 This is the external file:

 LOGO_DATA = new data
 {

Universal Forms Description Language [page 172]

 mimedata = "<image data>";
 }

 The form after resolution of the include:
 ?
 // Create a label to display the image.
 LOGO_IMAGE = new label
 {
 image = "LOGO_DATA";
 }
 //
 // Now include the image in the form.

 LOGO_DATA = new data
 {
 mimedata = "<image data>";
 }

 ?

 Usage Notes

 1) Employing the same syntax as #include, #optinclude is a
 convenient alternative to #include, because:

 - In a given pool of users, everyone can be sent the same form,
 but certain users can have access to all its components while
 others do not-but there is no risk of crashing for anyone.

 - #optinclude saves server resources by making decisions on the
 client side about which files are to be included.

 2) The files to be included must reside in a secure directory on
 the user's computer.

7. UFDL Functions

 UFDL functions allow forms to perform procedural logic, and also
 to perform complex operations that would normally require
 complicated conditional statements to achieve.

 Using functions in conjunction with conditional statements and user
 events provides a means for creating extremely powerful Internet
 form applications in a fairly simple and elegant manner.

 Below is a simple example of using a UFDL function (in the
 status_option line):
 version = "4.0.0";

 page1 = new page
 {
 field1 = new field

Universal Forms Description Language [page 173]

 {
 label = "Field 1";
 format = ["string", "mandatory"];
 value = "high";
 }

 {
 label = "Field 2";
 format = ["string", "mandatory"];
 status_option = toggle(field1.value, "high", "low");
 value = status_option=="1"?"Declined":"";
 }

 }

 Explanation: The toggle function (used in the status_option option
 line) returns a "1" if the value in field1 changes from high to
 low. As a result, the value of field 2 will change to Declined, if
 the toggle function returns a "1". Otherwise the value of the
 second field will be empty.

 Function Definition

 Call a UFDL function much in the same way you would call a C or
 Java function. The formal definition of a UFDL function is:

 returnValue package.functionName([parameter])

 Expression Description

 returnValue a string or an array
 package the name of the package that the function
 belongs to; UFDL functions from this
 specification are part of the system
 package. All custom-made packages must
 contain an underscore in their names.
 functionName the name of the function
 parameter a string or an array

 Notes on the Functions

 Position in Strings

 When referring to the position of a character in a string, note
 that the position of the first character in a string is at
 position zero. For example:
 This is a string

 The capital T in the string above is at position zero.

 Passing Literals and Option References

 1) To pass a literal value into a function, surround it in
 double-quotatation marks. For example:

Universal Forms Description Language [page 174]

 str_length = strlen("This is a literal string");

 2) To evaluate an option reference and pass its evaluated value
 into a function, do not surround the option reference in
 quotation marks. For example:
 str_length = strlen(surnameField.value);

 3) To pass an option reference into a function (without evaluating
 it), surround the option reference in double-quotation marks.
 For example:
 auto_set = set("statusField.value", "Confirmed.");

 A UFDL form will evaluate option references before a function runs,
 unless the references are surrounded by quotation marks.

 About Functions and Packages

 Functions are compiled into packages, which must reside on the
 desktop computer. The UFDL functions that are documented in this
 specification must be compiled into a package called system. No
 functions other than those documented here may be part of the
 system package.

 Form developers are free to develop their own packages of functions
 to extend UFDL. Packages of custom-developed functions must contain
 an underscore in their names. For example:

 - extr_fun.ifx

 About UFDL Functions

 UFDL functions are divided into the following sections:

 - String Functions
 - Math Functions
 - Utility Functions
 - Time and Date Functions

 7.1 String Functions

 7.1a countLines

 Description

 Counts the number of lines that a string <string> would take up
 over a given width <width>, and returns the number of lines. The
 count assumes that the font is a monospaced font, and that the
 line will be wrapped at the ends of words, and not in the middle of
 words.
 This function is useful if you need to dynamically size items into
 which you want to insert a string. For example, if you want to

 insert an entry from a database into a field on a form, you can
 dynamically size the height of the field so that all of the text is
 visible.

Universal Forms Description Language [page 175]

 Note: The <width> must be a character-based width and not a
 pixel-based width.

 Call

 countLines(<string>, <width>)

 Parameters

 Expression Setting Description
 <string> literal string the string to base the measurement
 or option on
 reference
 <width> positive int the width, in monospaced
 characters, to base the measurement
 on

 Returns

 The number of lines, or "" (empty) if an error occurs.

 Example

 commentField = new field
 {
 label = "Comments";
 itemlocation = [["below", "deptField"]];
 size = ["50", countLines(value, "50")];
 }

 In the example above, the field's height will be set by the number
 that countLines returns. The calculation is based on a
 dynamically-generated value, and the field's set width (50).

 7.1b replace

 Description

 Takes a string <string> and replaces a substring in it (marked by
 <start> and <end>) with <newString>. Returns the resulting string.

 If <start> is less than 0 then the substring will begin on the
 first character of <string>. If <end> is greater than or equal to
 the length of <string> then the substring will end on the last
 character of <string>. If <newString> is not long enough (i.e.,
 does not reach position <end>), replacement will end with the last
 character of <newString>. If <newString> is too long (i.e.,
 extends past position <end>), replacement will end on position
 <end>.

 An error occurs if <start> is greater than <end>, if either of

 <start> and <end> is not a valid integer, or if <string> is empty.

 Call

Universal Forms Description Language [page 176]

 replace(<string>, <start>, <end>, <newString>)

 Parameters

 Expression Setting Description
 <string> literal string the original string (enclose
 or option literal strings in double
 reference quotation marks, do not enclose
 option references in quotation
 marks)
 <start> int position of character at the start
 of the substring (the first
 character in <string> is zero)
 <end> int position of character at the end of
 the substring (the first character
 in <string> is zero)
 <newString> literal string the replacement string (enclose
 or option literal strings in double
 reference quotation marks, do not enclose
 option references in quotation
 marks)

 Returns

 The modified string, or "" (empty) if an error occurs.

 Example

 replaceField = new field
 {
 label = "Test replace()";
 format = ["string", "mandatory"];
 id_value = replace(value, "3", "6", "east");
 }

 The result of replace in the above example would be "Go east,
 young man!".

 7.1c strlen

 Description

 Returns the length of <string>.

 Call

 strlen(<string>)

 Parameters

 Expression Setting Description

 <string> literal string the string (enclose literal strings
 or option in double quotation marks, do not

Universal Forms Description Language [page 177]

 reference enclose option references in
 quotation marks)

 Returns

 A string containing the length.

 Example

 stringLengthField = new field
 {
 label = "The length of this label is:";
 format = ["string", "mandatory"];
 value = strlen(label);
 }

 The result of strlen in the above example would be "28".

 7.1d strmatch

 Description

 Determines if the wildcard string <wild> matches the non-wildcard
 string <real> and returns the boolean result. See the format
 forms option for a description of valid wildcards.

 Call

 strmatch(<wild>, <real>)

 Parameters

 Expression Setting Description
 <wild> literal string the wildcard string to match
 or option (enclose literal strings in double
 reference quotation marks, do not enclose
 option references in quotation
 marks)
 <real> literal string the non-wildcard match string
 or option (enclose literal strings in double
 reference quotation marks, do not enclose
 option references in quotation
 marks)

 Returns

 A string containing "1" if a match occurs, "0" if no match occurs.

 Example

 testStrmatch = new field
 {
 label = "Test strmatch()";

Universal Forms Description Language [page 178]

 format = ["string", "mandatory"];
 value = "To be or not to be, etc.";
 id_value = strmatch("?o be* ?o be*", value);
 }

 The result of strmatch in the above example would be "1".

 7.1e strpbrk

 Description
 Returns the position of the first character from <string2> that is
 found in <string1>.

 Call

 strpbrk(<string1>, <string2>)

 Parameters

 Expression Setting Description
 <string1> literal string the string (enclose literal strings
 or option in double quotation marks, do not
 reference enclose option references in
 quotation marks)
 <string2> literal string the string of characters (enclose
 or option literal strings in double quotation
 reference marks, do not enclose option
 references in quotation marks)

 Returns

 A string containing the position, or "-1" if no matching
 characters are found.

 Example

 testStrpbrk = new field
 {
 label = "testField";
 format = ["string", "mandatory"];
 value = "To be or not to be, etc.";
 id_value = strpbrk(value, "lLmMnNoOpP");
 }

 The result of strpbrk in the above example would be "9".

 7.1f strrstr

 Description

 Returns the position of the first character of the last
 occurrence of <string2> in <string1>.

Universal Forms Description Language [page 179]

 Call

 strrstr(<string1>, <string2>)

 Parameters

 Expression Setting Description
 <string1> literal string the string (enclose literal strings
 or option in double quotation marks, do not
 reference enclose option references in
 quotation marks)
 <string2> literal string the substring (enclose literal
 or option strings in double quotation marks,
 reference do not enclose option references
 in quotation marks)

 Returns

 A string containing the position, or "-1" if no substring is found.

 Example

 testStrrstr = new field
 {
 label = "testField";
 format = ["string", "mandatory"];
 value = "To be or not to be, etc.";
 id_value = strrstr(value, "be");
 }

 The result of strrstr in the above example would be "16".

 7.1g strstr

 Description

 Returns the position of the first character of the first occurrence
 of <string2> in <string1>.

 Call
 strstr(<string1>, <string2>)

 Parameters

 Expression Setting Description
 <string1> literal string the string (enclose literal strings
 or option in double quotation marks, do not
 reference enclose option references in
 quotation marks)
 <string2> literal string the substring (enclose literal

 or option strings in double quotation marks,
 reference do not enclose option references

Universal Forms Description Language [page 180]

 in quotation marks)

 Returns

 A string containing the position, or "-1" if no occurrence is
 found.

 Example

 testStrstr = new field
 {
 label = "testField";
 format = ["string", "mandatory"];
 value = "To be or not to be, etc.";
 id_value = strstr(value, "be");
 }

 The result of strstr in the above example would be "3".

 7.1h substr

 Description

 Returns the substring of <string> from the position indicated in
 <start> through the position indicated in <end>. If <start> is
 less than zero then the substring will begin on the first
 character of <string>. If <end> is greater than or equal to the
 length of <string> then the substring will end on the last
 character of <string>.

 An error occurs if <start> is greater than <end>, if either of
 <start> and <end> is not a valid integer, or if <string> is empty.

 Call

 substr(<string>, <start>, <end>)

 Parameters

 Expression Setting Description
 <string> literal string the string (enclose literal strings
 or option in double quotation marks, do not
 reference enclose option references in
 quotation marks)
 <start> int position of character at the start
 of the substring (the first
 character in <string> is zero)
 <end> int position of character at the end of
 the substring (the first character
 in <string> is zero)

 Returns

Universal Forms Description Language [page 181]

 The substring, or "" (empty) if an error occurs.

 Example

 surnameField = new field
 {
 label = "Surname";
 format = ["string", "mandatory"];
 value = "Watson";
 id_value = substr(value, "0", "4");
 }

 The result of substr in the above example would be "Watso".

 7.1i tolower

 Description
 Returns the lower case of <string>.

 Call

 tolower(<string>)

 Parameters

 Expression Setting Description
 <string> literal string the original string (enclose
 or option literal strings in double quotation
 reference marks, do not enclose option
 references in quotation marks)

 Returns

 The lower case string.

 Example

 tolowerField = new field
 {
 label = "Type in Here";
 format = ["string", "mandatory"];
 value = "Hello!";
 id_value = tolower(value);
 }

 The result of tolower in the above example would be "hello!".

 7.1j toupper

 Description

 Returns the upper case of <string>.

Universal Forms Description Language [page 182]

 Call

 toupper(<string>)

 Parameters

 Expression Setting Description
 <string> literal string the original string (enclose
 or option literal strings in double quotation
 reference marks, do not enclose option
 references in quotation marks)

 Returns

 The upper case string.

 Example

 toupperField = new field
 {
 label = "Type in Here";
 format = ["string", "mandatory"];
 value = "Hello!";
 id_value = toupper(value);
 }

 The result of toupper in the above example would be "HELLO!".

 7.1k trim

 Description

 Returns a copy of <string> with all leading and trailing white
 space (blanks, tabs, newlines, carriage returns) removed.

 Call

 trim(<string>)

 Parameters

 <string> literal string the original string (enclose
 or option literal strings in double quotation
 reference marks, do not enclose option
 references in quotation marks)

 Returns

 The string with leading and trailing whitespace removed.

 Example

Universal Forms Description Language [page 183]

 trimField = new field
 {
 label = " Test trim() ";
 format = ["string", "mandatory"];
 value = trim(label);
 }

 The result of trim in the above example would be "Test trim()".

 7.1l URLDecode

 Description

 Returns a URL-decoded version of <string>.

 Call

 URLDecode(<string>)

 Parameters

 Expression Setting Description
 <string> literal string the original string (enclose
 or option literal strings in double quotation
 reference marks, do not enclose option
 references in quotation marks)

 Returns

 The URL-decoded string.

 Example

 URLDecodeField = new field
 {
 label = " Test URLDecode";
 format = ["string", "mandatory"];
 value = URLDecode("This%20is%20a%20line%0D");
 }

 The result of URLDecode in the above example would be "This is a
 line\r".

 7.1m URLEncode

 Description

 Returns a URL-encoded version of <string>.

 Call

 URLEncode(<string>)

Universal Forms Description Language [page 184]

 Parameters

 Expression Setting Description
 <string> literal string the original string (enclose
 or option literal strings in double quotation
 reference marks, do not enclose option
 references in quotation marks)

 Returns

 The URL-encoded string.

 Example

 URLEncodeField = new field
 {
 label = " Test URLEncode";
 format = ["string", "mandatory"];
 }

 The result of URLEncode in the above example would be
 "This%20is%20a%20line%0D".

 7.2 Math Functions

 7.2a abs
 Description

 Returns the absolute value of the number represented in <number>.
 An error occurs if <number> is not a valid number.

 Call

 abs(<number>)

 Parameters

 Expression Setting Description
 <number> decimal number a number

 Returns

 A string containing the absolute of the number, or "" if an
 error occurs.

 Example

 absTest = new field

 {
 label = "Test abs";

Universal Forms Description Language [page 185]

 format = ["string", "mandatory"];
 value = abs("-2341.23");
 }

 The result of abs in the above example would be "2341.23".

 7.2b acos

 Description

 Returns the arc cosine of a number stored in <number>.
 An error occurs if <number> is not a valid number or has absolute
 value greater than 1.

 Call

 acos(<number>)

 Parameters

 Expression Setting Description
 <number> decimal number a number

 Returns

 A string containing the arc cosine, or "" if an error occurs.

 Example

 arccosineField = new field
 {
 label = " Test acos";
 format = ["string", "mandatory"];
 value = acos("0.5");
 }

 7.2c annuity

 Description

 Returns the present value annuity factor for an ordinary annuity,
 at a periodic interest rate indicated by <rate> over a number of
 periods specified in <periods>. (Present value is the lump sum to
 invest at <rate> in order to produce a set payment over <periods>.
 An ordinary annuity provides the payment at the end of each period
 specified in <periods>.)

 You might use this function to figure out either:

 - P, the present value (lump sum to invest)
 - R, the periodic payment amount that you will receive

Universal Forms Description Language [page 186]

 For your reference:

 P = R * annuity_factor R = P / annuity_factor

 An error occurs if <periods> is not a valid integer, or if
 <rate> is 0.

 Call

 annuity(<rate>, <periods>)

 Parameters

 Expression Setting Description
 <rate> decimal number the rate of interest in decimal
 form compounded each period
 <periods> integer the number of periods

 Returns

 A string containing the present value annuity factor, or ""
 if an error occurs.

 Example

 presentValueInv = new field
 {
 label = "The present value to invest is:";
 format = ["string", "mandatory"];
 value = paymentField.value * annuity(".05", "7");
 }

 In the example above, annuity would return "5.786373", and, if the
 desired payment entered into paymentField were $1, then the value
 of presentValueInv would be $5.78. (That is, a person would have
 to invest $5.78 at 5% for seven payments.)

 7.2d asin

 Description

 Returns the arc sine of a number stored in <number>.

 An error occurs if <number> is not a valid number or has an
 absolute value greater than 1.

 Call

 asin(<number>)

 Parameters

 Expression Setting Description
 <number> decimal number a number

Universal Forms Description Language [page 187]

 Returns

 A string containing the arc sine, or "" if an error occurs.

 Example

 arcsineField = new field
 {
 label = " Test asin";
 value = asin("0.5");
 }

 The result of asin in the above example would be "0.523599".

 7.2e atan

 Description

 Returns the arc tangent of a number stored in <number>.

 An error occurs if <number> is not a valid number.

 Call

 atan(<number>)

 Parameters

 Expression Setting Description
 <number> decimal number a number

 Returns

 A string containing the arc tangent, or "" if an error occurs.

 Example

 arctangentField = new field
 {
 label = " Test atan";
 format = ["string", "mandatory"];
 value = atan("0.5");
 }

 The result of atan in the above example would be "0.463648".

 7.2f ceiling

 Description

Universal Forms Description Language [page 188]

 Returns the ceiling of the number represented in <number>.

 An error occurs if <number> is not a valid number.

 Call

 ceiling(<number>)

 Parameters

 Expression Setting Description
 <number> decimal number a number

 Returns

 A string containing the ceiling of the number, or "" if an error
 occurs.

 Example

 ceilingTest = new field
 {
 label = "Test ceiling";
 format = ["string", "mandatory"];
 value = ceiling("-19.6");
 }

 The result of ceiling in the above example would be "-19".

 7.2g compound

 Description

 Returns the compound interest factor at a rate indicated by <rate>
 over a number of periods specified in <periods>.

 You might use this to calculate the total amount of a loan, by
 multiplying an original principle by the result of compund. See
 below for an example.
 An error occurs if <periods> is not a valid integer.

 Call

 compound(<rate>, <periods>)

 Parameters

 Expression Setting Description
 <rate> decimal number the rate of interest in decimal
 form compounded each period

 <periods> integer the number of periods

Universal Forms Description Language [page 189]

 Returns

 A string containing the compound interest factor, or "" if an error
 occurs.

 Example

 totalAmountField = new field
 {
 label = "Total Amount of Loan";
 format = ["string", "mandatory"];
 value = principleField.value * compound(".1", "7");
 }

 The result of compound in the above example would be "1.948717".
 The value of the field would then be 1.948717 x the amount in the
 field called principleField.

 7.2h cos

 Description

 Returns the cosine of an angle stored in <angle> and expressed
 in radians.

 An error occurs if <angle> does not contain a valid angle.

 Call

 cos(<angle>)

 Parameters

 Expression Setting Description
 <angle> decimal number the angle in radians

 Returns

 A string containing the cosine, or "" if an error occurs.

 Example

 cosineField = new field
 {
 label = " Test cos";
 format = ["string", "mandatory"];
 value = cos("2");
 }

 The result of cos in the above example would be "-0.416147".

 7.2i deg2rad

Universal Forms Description Language [page 190]

 Description

 Returns the number of radians in an angle expressed in degrees
 stored in <angle>.

 An error occurs if <angle> does not contain a valid angle.

 Call

 deg2rad(<angle>)

 Parameters
 Expression Setting Description
 <angle> decimal number the angle in degrees

 Returns

 A string containing the number of radians, or "" if an error
 occurs.

 Example

 deg2radField = new field
 {
 label = " Test deg2rad";
 format = ["string", "mandatory"];
 value = deg2rad("114.591559");
 }

 The result of deg2rad in the above example would be "2.00000".

 7.2j exp

 Description

 Returns the exponentiation of the number represented in <number>
 (i.e., e<number>).

 An error occurs if <number> is not a valid number.

 Call

 exp(<number>)

 Parameters

 Expression Setting Description
 <number> decimal number a number

 Returns

 A string containing the exponentiation of the number, or "" if an

Universal Forms Description Language [page 191]

 error occurs.

 Example

 expTest = new field
 {
 label = "Test exp";
 format = ["string", "mandatory"];
 value = exp("3");
 }

 The result of exp in the above example would be "1.098612".

 7.2k fact

 Description

 Returns the factorial value of the integer represented in
 <integer>.

 An error occurs if <integer> is negative.

 Call

 fact(<number>)

 Parameters

 Expression Setting Description
 <integer> integer a non-negative integer

 Returns

 A string containing the factorial of the integer, or "" if an error
 occurs.

 Example
 factTest = new field
 {
 label = "Test fact";
 format = ["string", "mandatory"];
 value = fact("8");
 }

 The result of fact in the above example would be "40320".

 7.2l floor

 Description

 Returns the floor of the number represented in <number>.

Universal Forms Description Language [page 192]

 An error occurs if <number> is not a valid number.

 Call

 floor(<number>)

 Parameters

 Expression Setting Description
 <number> decimal number a number

 Returns

 A string containing the floor of the number, or "" if an error
 occurs.

 Example

 floorTest = new field
 {
 label = "Test floor";
 format = ["string", "mandatory"];
 value = floor("-19.6");
 }

 The result of floor in the above example would be "-20".

 7.2m ln

 Description

 Returns the natural logarithm of the number represented in
 <number>.

 An error occurs if <number> is not a decimal number greater
 than zero.

 Call

 ln(<number>)

 Parameters

 Expression Setting Description
 <number> decimal number a number

 Returns

 A string containing the natural log of the number, or "" if an
 error occurs.

 Example

Universal Forms Description Language [page 193]

 lnTest = new field
 {
 label = "Test ln";
 format = ["string", "mandatory"];
 value = ln("1");
 }

 The result of ln in the above example would be "0".

 7.2n log

 Description

 Returns the logarithm of the number represented in <number> to the
 base indicated by <base>. If <base> is empty or absent, then base
 10 is used.

 An error occurs if either of <number> or <base> is not a valid
 number, or <base> is negative.

 Call

 log(<number>)
 log(<number>, <base>)

 Parameters

 Expression Setting Description
 <number> decimal number a number
 <base> decimal number a number representing the base for
 which the logarithm will be
 computed

 Returns

 A string containing the log of the number to the base, or "" if an
 error occurs.

 Example

 logTest = new field
 {
 label = "Test log";
 format = ["string", "mandatory"];
 value = log("100", "10");
 }

 The result of log in the above example would be "2".

 7.2o mod

 Description

 Returns the modulus of the number represented in <number> using the

Universal Forms Description Language [page 194]

 divisor indicated by <divisor>.

 An error occurs if either of <number> or <divisor> is not a valid
 number, or <divisor> is 0.

 Call

 mod(<number>, <divisor>)

 Parameters

 Expression Setting Description
 <number> decimal number a number
 <divisor> decimal number a number representing the divisor
 for which the modulus will be
 computed

 Returns

 A string containing the modulus, or "" if an error occurs.

 Example

 modTest = new field
 {
 label = "Test mod";
 format = ["string", "mandatory"];
 value = mod("-3.5", ".3");
 }

 The result of mod in the above example would be "-0.200000".

 7.2p pi
 Description

 Returns the value of PI to the best available accuracy.

 Call

 pi()

 Parameters

 Expression Setting Description
 (none)

 Returns

 A string containing the value of PI.

 Example

Universal Forms Description Language [page 195]

 piTest = new field
 {
 label = "Test pi";
 format = ["string", "mandatory"];
 value = pi();
 }

 The result of pi in the above example would be "3.14159265359"
 (precision is machine-dependent).

 7.2q power

 Description

 Returns the number represented in <number> raised to the power
 indicated by <power>.

 An error occurs if either of <number> or <power> is not a valid
 number.

 Call

 power(<number>, <power>)

 Parameters

 Expression Setting Description
 <number> decimal number a number
 <power> decimal number a number representing the power
 by which the number will be
 raised

 Returns

 A string containing the number raised to the power, or "" if an
 error occurs.

 Example

 powerTest = new field
 {
 label = "Test power";
 format = ["string", "mandatory"];
 value = power("0.1", "-2");
 }

 The result of power in the above example would be "100.00000".

 7.2r rad2deg

 Description

 Returns the number of degrees in an angle expressed in radians

Universal Forms Description Language [page 196]

 stored in <angle>.

 An error occurs if <angle> does not contain a valid angle.

 Call

 rad2deg(<angle>)

 Parameters
 Expression Setting Description
 <angle> decimal number the angle in radians

 Returns

 A string containing the number of degrees, or "" if an error
 occurs.

 Example

 rad2degField = new field
 {
 label = " Test rad2deg";
 format = ["string", "mandatory"];
 value = rad2deg("2");
 }

 The result of rad2deg in the above example would be "114.591559".

 7.2s rand

 Description

 Returns a random integer from the range of integers indicated by
 <lowerlimit> and <upperlimit>. (The range includes <lowerlimit>
 and <upperlimit>).

 An error occurs if either of <lowerlimit> or <upperlimit> is not a
 valid integer, or <upperlimit> is less than <lowerlimit>.

 Call

 rand(<lowerlimit>, <upperlimit>)

 Parameters

 Expression Setting Description
 <lowerlimit> integer the lower limit of the random
 number's range
 <upperlimit> integer the upper limit of the random
 number's range

 Returns

Universal Forms Description Language [page 197]

 A string containing the random integer, or "" if an error occurs.

 Example

 randTest = new field
 {
 label = "Test rand";
 format = ["string", "mandatory"];
 value = rand("45", "90");
 }

 The result of rand in the above example would be an integer in the
 range [45,90].

 7.2t round

 Description

 Returns the number represented in <number> rounded to the nearest
 decimal position indicated by <place> (e.g., 100, 10, 1, 0.1, ...).

 An error occurs if <number> is not a valid number or <place> is not
 a power of 10.

 Call

 round(<number>, <place>)

 Parameters

 Expression Setting Description
 <place> decimal number a number representing the decimal
 place where <number> is to be
 rounded

 Returns

 A string containing the rounded number, or "" if an error occurs.

 Example

 roundTest = new field
 {
 label = "Test round";
 format = ["string", "mandatory"];
 value = round("-323.235", ".01");
 }

 The result of round in the above example would be "-323.2400".

 7.2u sin

Universal Forms Description Language [page 198]

 Description

 Returns the sine of an angle stored in <angle> and expressed in
 radians.

 An error occurs if <angle> does not contain a valid angle.

 Call

 sin(<angle>)

 Parameters

 Expression Setting Description
 <angle> decimal number the angle in radians

 Returns

 A string containing the sine, or "" if an error occurs.

 Example

 sineField = new field
 {
 label = " Test sin";
 format = ["string", "mandatory"];
 value = sin("2");
 }

 The result of sin in the above example would be "0.909297".

 7.2v sqrt

 Description

 Returns the square root of the number represented in <number>.

 An error occurs if <number> is a negative number.

 Call

 sqrt(<number>)

 Parameters

 Expression Setting Description
 <number> decimal number a non-negative number

 Returns

 A string containing the square root, or "" if an error occurs.

 Example

Universal Forms Description Language [page 199]

 {
 label = "Test sqrt";
 format = ["string", "mandatory"];
 value = sqrt("19.5");
 }

 The result of sqrt in the above example would be "4.415880".

 7.2w tan

 Description

 Returns the tangent of an angle expressed in radians stored in
 <angle>.

 An error occurs if <angle> does not contain a valid angle (for
 example, (/2, 3(/2, 5(/2, and so on).

 Call

 tan(<angle>)

 Parameters

 Expression Setting Description
 <angle> decimal number the angle in radians

 Returns

 A string containing the tangent, or "" if an error occurs.

 Example

 tanField = new field
 {
 label = " Test tan";
 format = ["string", "mandatory"];
 value = tan("2");
 }

 The result of tan in the above example would be "-2.185040".

 7.3 Utility Functions

 7.3a applicationName

 Description

 Returns the name of the currently running application.

 Call

Universal Forms Description Language [page 200]

 applicationName()

 Parameters

 Expression Setting Description
 (none)

 Returns

 A string containing the application name.

 Example

 anTest = new field
 {
 label = "Test applicationName";
 value = applicationName();
 }

 The result of applicationName in the above example, if the form
 were running in an application named "Viewer", would be "Viewer".

 7.3b applicationVersion

 Description

 Returns the version of the currently running application in the
 format "MM.mm.TT".

 Call

 applicationVersion()

 Parameters

 Expression Setting Description
 (none)

 Returns

 A string containing the application version.

 Example

 avTest = new field
 {
 label = "Test applicationVersion";
 format = ["string", "mandatory"];
 value = applicationVersion();
 }

 The result of applicationVersion in the above example, if running
 in an application at version 3.2.4, would be "03.02.04".

Universal Forms Description Language [page 201]

 7.3c applicationVersionNum

 Description

 Returns the decimal form of the version of the currently running
 application. This number is obtained from the hexadecimal format
 0xMMmmTTPP, where MM is the Major version number, mm is the minor
 version number, TT is the maintenance number, and PP is the patch
 number. At this point, individual patches are not recognized in
 version numbers and so will always be 0.

 Call

 applicationVersionNum()

 Parameters

 Expression Setting Description
 (none)

 Returns

 A string containing the application version number.

 Example

 avnTest = new field
 {
 label = "Test applicationVersionNum";
 format = ["string", "mandatory"];
 value = applicationVersionNum();
 }

 The result of applicationVersionNum in the above example, if
 running in an application at version v3.2.4, would be "50463744",
 which is the decimal representation of 0x03020400.

 7.3d decimal

 Description

 Returns the decimal representation of the number represented by
 <number> with base indicated by <base>.

 An error occurs if <number> is not a valid number, if <base> is
 not a valid positive integer base, or <number> cannot be resolved
 under the specified <base>.

 Call

 decimal(<number>, <base>)

 Parameters

Universal Forms Description Language [page 202]

 Expression Setting Description
 <number> number a number
 <base> positive integer an integer that is the base of
 the provided number

 Returns

 A string containing the decimal representation of the number,
 or "" if an error occurs.

 Example

 decimalTest = new field
 {
 label = "Test decimal";
 format = ["string", "mandatory"];
 value = decimal("-4a", "16");
 }

 The result of decimal in the above example would be "-74".

 7.3e formatString

 Description

 Returns a string <string> formatted according to the rules set out
 in the referenced format option <formatOptionReference>.

 An error occurs if an invalid format is specified.

 Call

 formatString(<string>, <itemtagOfFormat>)

 Parameters

 Expression Setting Description
 <string> a string a string to format
 according to the
 referenced option
 <formatOptionReference> an option the option reference of
 reference, the format line to use
 including the when in formatting the
 page tag, if string
 necessary

 Returns

 The formatted string.

 Example
 Field1 = new field
 {

Universal Forms Description Language [page 203]

 label = "Field 1";
 format = ["dollar", "add_ds", "comma_delimit"];
 value = "";
 }
 Field2 = new field
 {
 label = "Field 2";
 format = ["string", "mandatory"];
 value = formatString(Field3.value, "Field1.format");
 }
 Field3 = new field
 {
 label = "Field 3";
]

 The result of formatString in Field2 would be $30,095.60.

 //Example 2
 Field4 = new field
 {
 value = "$1.00";
 format = ["dollar"];
 backend_value = formatString(value,"backend_format");
 backend_format = ["integer"];
 }

 In the example above, formatString is used to reformat a value as
 an integer and insert it into a custom option (presumably for a
 back-end application to use).

 7.3f isValidFormat

 Description

 Returns the boolean result of whether a string <string> is valid
 according to the setting of the format option referred to in
 <formatOptionReference>.

 An error occurs if a non-existent format is specified.

 Call

 isValidFormat(<string>, <formatOptionReference>)

 Parameters

 Expression Setting Description
 <string> a string a string to be checked
 against the format
 <formatOptionReference> an option the option reference of the
 reference, format to check the string

 including the against
 page tag, if
 necessary

Universal Forms Description Language [page 204]

 Returns

 "1" if the string follows the format, "0" if not, or "" if an
 error occurs.

 Example

 Field1 = new field
 {
 label = "Test isValidFormat1";
 format = ["integer", "mandatory"];
 value = "45";
 }
 Field2 = new field
 {
 label = "Test isValidFormat2";
 format = ["string", "mandatory"];
 value = isValidFormat("23.2", "Field1.format");
 }

 The result of isValidFormat in the above example would be "0"
 because the string to check contains a non-integer number
 representation and the specified format to check is of type
 integer.

 7.3g set

 Description

 Sets the value of a form option described by <reference> to the
 value described by <value> and returns an indication of the success
 of the operation. The option will be created if it does not exist.
 If a compute existed on the option, it will be destroyed. Items
 and pages will not be created.

 An error occurs if the specified form option could not be set to
 the specified value.

 Call

 set(<reference>, <value>)

 Parameters

 <reference> form option an adequately qualified reference
 reference to a form option
 <value> form value a string containing the option's
 new value

 Returns

Universal Forms Description Language [page 205]

 "1" if the operation completed successfully, "0" if an error
 occurred.

 Example

 field1 = new field
 {
 label = "Test set 1";
 format = ["string", "mandatory"];
 value = "gold";
 }
 field2 = new field
 {
 label = "Test set 2";
 format = ["string", "mandatory"];
 value = set("field1.value", "silver");
 }

 The result of set in the above example would be "1" and the value
 of field1 would be set to "silver".

 7.3h toggle

 Description

 Detects transitions in a form option specified by <reference>, and
 returns a result. If toggle contains just a <reference> parameter,
 then toggle returns "1" every time the referenced setting changes.
 If toggle contains the <reference> parameter and the <from> and
 <to> parameters, then toggle returns "1" when the setting changes
 from the from state to the to state, and "0" at other times.

 An error occurs if the specified form option does not exist.

 Call

 toggle(<reference>)
 toggle(<reference>, <from>, <to>)

 Parameters

 Expression Setting Description
 <reference> form option an adequately qualified reference
 reference to a form option
 <from> form value a string containing a possible
 option value
 <to> form value a string containing a possible
 option value

 Returns

 "1" if the specified change occurs in the specified option, or "0"
 if another change occurs.

Universal Forms Description Language [page 206]

 Example

 timeStampField = new field
 {
 value = toggle(nameField.value)=="1"?now():"";
 label = "Time Stamp";
 editstate = "readonly";
 }

 nameField = new field
 {
 value = "";
 }

 In the example above, toggle has just a <reference> parameter.
 Every time the nameField's value changes, toggle will return "1",
 and then a new time will be entered into timeStampField, using
 the now function.

 noChoiceAllowed = new check
 {
 label = "Simple Application - No Choices";
 value = "off";
 logic_1 = toggle(noChoiceAllowed.value, "off", "on")
 == "1" ? set("option1.value", "off") +
 set("option2.value", "off") +
 set("option3.value", "off") : "";
 }

 In the example above, toggle is used to change form behavior based
 on whether the noChoiceAllowed check box is checked. When the
 check's value changes from off to on, toggle will return a "1".
 That will trigger the decision set up in the logic_1 option - thus
 the items called option1, option2, and option3 will become
 deselected (their values will be off). Normally, you would also set
 their active options to be off, but to save room, this example
 omits that step.

 7.4 Time and Date Functions

 7.4a date

 Description

 Returns the current date in "yyyymmdd" format.

 Call

 date()

 Parameters

 Expression Setting Description

Universal Forms Description Language [page 207]

 (none)

 Returns

 A string containing the current date.

 Example

 dateTest = new field
 {
 label = "Test date";
 format = ["string", "mandatory"];
 value = date();
 }

 The result of date in the above example, if run on January 18th,
 1998, would be "19980118".

 7.4b dateToSeconds

 Description

 Returns the number of seconds from the GMT date and time
 represented in <date> and <time> respectively since 00:00:00 GMT,
 January 1st, 1970.

 An error occurs if either of <date> or <time> is not well-formed.

 Call

 dateToSeconds(<date>, <time>)

 Parameters

 Expression Setting Description
 <time> time string a time in a recognized format

 Returns

 A string containing the number of seconds, or "" if an error
 occurs.

 Example

 dtsTest = new field
 {
 label = "Test dts";
 format = ["string", "mandatory"];
 value = dateToSeconds("980319", "09:39:16");
 }

 The result of dateToSeconds in the above example would be
 "89030056"

Universal Forms Description Language [page 208]

 7.4c day

 Description

 Returns the numeric day of the month for the provided date in
 <dateSecs> or the current date if one is not provided. The
 provided date is a string representing the number of seconds
 since 00:00:00 GMT, January 1st, 1970.

 An error occurs if <dateSecs> is not well-formed.

 Call

 day(<dateSecs>|"")

 Parameters

 Expression Setting Description
 <dateSecs> number a date represented by the number
 of seconds since 00:00:00 GMT,
 January 1st, 1970

 Returns

 A string containing the day, or "" if an error occurs.

 Example

 dayTest = new field
 {
 label = "Test day";
 format = ["string", "mandatory"];
 value = day("890300356");
 }

 The result of day in the above example would be "19".

 7.4d dayOfWeek

 Description

 Returns the numeric day of the week (Sunday=1, etc.) for the
 provided date in <dateSecs> or the current date if one is not
 provided. The provided date is a string representing the number of
 seconds since 00:00:00 GMT, January 1st, 1970.

 An error occurs if <dateSecs> is not well-formed.

 Call

 dayOfWeek(<dateSecs>|"")

Universal Forms Description Language [page 209]

 Parameters

 Expression Setting Description
 <dateSecs> number a date represented by the number of
 seconds since 00:00:00 GMT,
 January 1st, 1970

 Returns

 A string containing the day of the week, or "" if an error occurs.

 Example

 {
 label = "Test dayOfWeek";
 format = ["string", "mandatory"];
 value = dayOfWeek("890300356");
 }

 The result of dayOfWeek in the above example would be "5".

 7.4e endOfMonth

 Description

 Returns the number of seconds since 00:00:00 GMT, January 1st, 1970
 to the current time on the last day of the month in the date
 provided in <dateSecs> or the current date if one is not provided.
 The provided date is a string representing the number of seconds
 since 00:00:00 GMT, January 1st, 1970.

 An error occurs if <dateSecs> is not well-formed.

 Call

 endOfMonth(<dateSecs>|"")

 Parameters

 Expression Setting Description
 <dateSecs> number a date represented by the number of
 seconds since 00:00:00 GMT,
 January 1st, 1970

 Returns

 A string containing the number of seconds, or "" if an error
 occurs.

 Example

 eomTest = new field

Universal Forms Description Language [page 210]

 {
 label = "Test endOfMonth";
 format = ["string", "mandatory"];
 value = endOfMonth("890300356");
 }

 The result of endOfMonth in the above example would be "891337156".

 7.4f hour

 Description

 Returns the numeric hour for the provided date in <dateSecs> or the
 current date if one is not provided. The provided date is a string
 representing the number of seconds since 00:00:00 GMT, January 1st,
 1970.

 An error occurs if <dateSecs> is not well-formed.

 Call

 hour(<dateSecs>|"")

 Parameters

 Expression Setting Description
 <dateSecs> number a date represented by the number of
 seconds since 00:00:00 GMT, January
 1st, 1970

 Returns

 A string containing the hour, or "" if an error occurs.

 Example

 hourTest = new field
 {
 label = "Test hour";
 format = ["string", "mandatory"];
 value = hour("890300356");
 }

 The result of hour in the above example would be "9".

 7.4g minute
 Description

 Returns the numeric minute for the provided date in <dateSecs> or

 the current date if one is not provided. The provided date is a
 string representing the number of seconds since 00:00:00 GMT,
 January 1st, 1970.

Universal Forms Description Language [page 211]

 An error occurs if <dateSecs> is not well-formed.

 Call

 minute(<dateSecs>|"")

 Parameters

 Expression Setting Description
 <dateSecs> number a date represented by the number of
 seconds since 00:00:00 GMT, January
 1st, 1970

 Returns

 A string containing the minute, or "" if an error occurs.

 Example

 minuteTest = new field
 {
 label = "Test minute";
 format = ["string", "mandatory"];
 value = minute("890300356");
 }

 The result of minute in the above example would be "39".

 7.4h month

 Description

 Returns the numeric month of the year for the provided date in
 <dateSecs> or the current date if one is not provided. The
 provided date is a string representing the number of seconds since
 00:00:00 GMT, January 1st, 1970.

 An error occurs if <dateSecs> is not well-formed.

 Call

 month(<dateSecs>|"")

 Parameters

 Expression Setting Description
 <dateSecs> number a date represented by the number of
 seconds since 00:00:00 GMT, January
 1st, 1970

 Returns

 A string containing the month, or "" if an error occurs.

Universal Forms Description Language [page 212]

 Example

 monthTest = new field
 {
 label = "Test month";
 format = ["string", "mandatory"];
 value = month("890300356");
 }

 The result of month in the above example would be "3".

 7.4i now

 Description

 Returns the number of seconds since 00:00:00 GMT, January 1st,
 1970.

 Call

 now()

 Parameters

 (none)

 Returns

 A string containing the number of seconds.

 Example

 nowTest = new field
 {
 label = "Test now";
 format = ["string", "mandatory"];
 value = now();
 }

 The result of now in the above example, if run at 09:39:16 GMT on
 Thursday, March 19th, 1998 would be "890300356".

 7.4j second

 Description

 Returns the numeric second for the provided date in <dateSecs> or
 the current date if one is not provided. The provided date is a
 string representing the number of seconds since 00:00:00 GMT,
 January 1st, 1970.

 An error occurs if <dateSecs> is not well-formed.

Universal Forms Description Language [page 213]

 Call

 second(<dateSecs>|"")

 Parameters

 Expression Setting Description
 <dateSecs> number a date represented by the number
 of seconds since 00:00:00 GMT,
 January 1st, 1970

 Returns

 A string containing the second, or "" if an error occurs.

 Example

 secondTest = new field
 {
 label = "Test second";
 format = ["string", "mandatory"];
 value = second("890300356");
 }

 The result of second in the above example would be "16".

 7.4k time

 Description

 Returns the current time in "hh:mm:AM" format.

 Call

 time()

 Parameters

 Expression Setting Description
 (none)

 Returns

 A string containing the current time.

 Example

 timeTest = new field
 {
 format = ["string", "mandatory"];

 value = time();
 }

Universal Forms Description Language [page 214]

 The result of time in the above example, if run at 3:22 in the
 afternoon, would be "3:22:PM".

 7.4l year

 Description

 Returns the numeric year for the provided date in <dateSecs> or the
 current date if one is not provided. The provided date is a string
 representing the number of seconds since 00:00:00 GMT, January 1st,
 1970.

 An error occurs if <dateSecs> is not well-formed.

 Call

 year(<dateSecs>|"")

 Parameters

 Expression Setting Description
 <dateSecs> number a date represented by the number of
 seconds since 00:00:00 GMT, January
 1st, 1970

 Returns

 A string containing the year, or "" if an error occurs.

 Example

 yearTest = new field
 {
 label = "Test year";
 format = ["string", "mandatory"];
 value = year("890300356");
 }

 The result of year in the above example would be "1998".

Appendix A: Quick Reference Tables

 A.1 Table of Items and Form and Page Characteristics

 Item Available Options

 action activated; active; data; datagroup; delay;
 transmitdatagroups; transmitformat; transmitgroups;

 transmititemrefs; transmititems; transmitoptionrefs;
 transmitoptions; type; url

Universal Forms Description Language [page 215]

 box bgcolor; bordercolor; borderwidth; fontinfo;
 itemlocation; size

 button activated; active; bgcolor; bordercolor;
 borderwidth; coordinates; data; datagroup;
 editstate; focused; fontcolor; fontinfo; format;
 help; image; itemlocation; justify; mouseover; next;
 previous; saveformat; signature; signdatagroups;
 signer; signformat; signgroups; signitemrefs;
 signitems; signoptionrefs; signoptions; size;
 transmitdatagroups; transmitformat; transmitgroups;
 transmititemrefs; transmititems;
 transmitoptionrefs; transmitoptions; type; url;
 value

 cell activated; active; data; datagroup; editstate;
 group; saveformat; transmitdatagroups;
 transmitformat; transmitgroups; transmititemrefs;
 transmititems; transmitoptionrefs; transmitoptions;
 type; url; value

 check active; bgcolor; bordercolor; editstate; focused;
 fontcolor; fontinfo; help; itemlocation; label;
 labelbgcolor; labelbordercolor; labelborderwidth;
 labelfontcolor; labelfontinfo; mouseover; next;
 previous; size; value

 combobox activated; active; bgcolor; bordercolor;
 borderwidth; editstate; focused; fontcolor;
 fontinfo; format; group; help; itemlocation; label;
 labelbgcolor; labelbordercolor; labelborderwidth;
 labelfontcolor; labelfontinfo; mouseover; next;
 previous; size; value

 data datagroup; filename; mimedata; mimetype

 field active; bgcolor; bordercolor; borderwidth;
 editstate; focused; fontcolor; fontinfo; format;
 help; itemlocation; justify; label; labelbgcolor;
 labelbordercolor; labelborderwidth; labelfontcolor;
 labelfontinfo; mouseover; next; previous;
 scrollhoriz; scrollvert; size; value

 help active; value

 label active; bgcolor; bordercolor; borderwidth;
 fontcolor; fontinfo; help; image; itemlocation;
 justify; size; value

 line fontcolor; fontinfo; itemlocation; size; thickness
 list active; bgcolor; bordercolor; borderwidth;

 editstate; focused; fontcolor; fontinfo; group;
 help; itemlocation; label; labelbgcolor;
 labelbordercolor; labelborderwidth; labelfontcolor;
 labelfontinfo; mouseover; next; previous; size;

Universal Forms Description Language [page 216]

 value

 popup activated; active; bgcolor; bordercolor;
 borderwidth; editstate; focused; fontcolor;
 fontinfo; group; help; itemlocation; justify; label;
 mouseover; next; previous; size; value

 radio active; bgcolor; bordercolor; editstate; focused;
 fontcolor; fontinfo; group; help; itemlocation;
 label; labelbgcolor; labelbordercolor;
 labelborderwidth; labelfontcolor; labelfontinfo;
 mouseover; next; previous; size; value

 signature mimedata, signature, signdatagroups, signer,
 signformat, signitems, signgroups, signoptions,
 signoptionrefs

 spacer fontinfo; itemlocation; label; size

 tablet active; bgcolor; bordercolor; borderwidth;
 fontcolor; help; image; itemlocation; justify;
 mouseover; size; value

 toolbar bgcolor; mouseover

 page globals activated; bgcolor; bordercolor; borderwidth;
 focused; fontcolor; fontinfo; label; mouseover; next

 form globals activated; bgcolor; bordercolor; borderwidth;
 focused; fontcolor; fontinfo; label; next;
 saveformat; transmitformat; triggeritem; version

 A.2 Table of Options

 Option Details

 activated Syntax: activated = "on" | "maybe" | "off";
 Default:off
 Items: action; button; cell; combobox; popup; page
 global; form global

 active Syntax: active = "on" | "off";
 Default:on
 Items: action; button; cell; check; combobox;
 field; help; label; list; popup; radio;
 tablet. To prevent user input in a field,
 use the editstate "readonly".

 bgcolor Syntax: bgcolor = ["<color name>"];
 bgcolor = ["<R value>","<G value>",
 "<B value>"];

 Default:for button - "gray"
 for check, field, list, popup, radio -
 "white" all other items - the background #
 color of the form

Universal Forms Description Language [page 217]

 Items: box; button; check; combobox; field; label;
 list; popup; radio; tablet; toolbar; page
 characteristics; form characteristics

 bordercolor Syntax: bordercolor = ["<color name>"];
 bordercolor = ["<R value>","<G value>",
 "<B value>"];
 Default:the bordercolor set in the global
 characteristics, or "black" if no
 characteristics set
 Items: box; button; check; combobox; field; label;
 list; popup; radio; tablet; page
 characteristics; form characteristics

 borderwidth Syntax: borderwidth = "<width>";
 Default:for label - 0
 for all other items - the borderwidth set
 in characteristics, or 1 if no
 characteristics set
 Items: box; button; combobox; field; label; list;
 popup; tablet; page characteristics; form
 characteristics

 coordinates Syntax: coordinates = ["<X_coordinate>",
 "<Y_coordinate>"];
 Default:none
 Items: button

 data Syntax: data = "<data_item>";
 Default:none
 Items: action; button; cell
 datagroup Syntax: datagroup = ["<datagroup_reference>",
 "<datagroup reference>"...];
 Default:none
 Items: action; button; cell; data

 delay Syntax: delay = ["repeat" | "once","interval"];
 Default:once with an interval of 0 seconds
 Items: action

 editstate Syntax: editstate = "readonly | writeonly |
 readwrite";
 Default:readwrite
 Items: button; cell; check; combobox; field; list;
 popup; radio

 filename Syntax: filename = "<file name>";
 Default:None
 Items: data

 focused Syntax: focused = "on" | "off";

 Default:off
 Items: button; check; combo; field; list; popup;
 radio; page global; form global

Universal Forms Description Language [page 218]

 fontcolor Syntax: fontcolor = ["<color name>"];
 fontcolor = ["<R value>","<G value>",
 "<B value>"];
 Default:for check and radio - red
 for all other items, the fontcolor set in
 global characteristics, or "black" if no
 preference set
 Items: button; check; combobox; field; label; line;
 list; popup; radio; tablet; page
 characteristics; form characteristics

 fontinfo Syntax: fontinfo = ["","<point size>",
 "<weight>","<effects>","<form>"];
 * weight, effects, and form are optional
 Default:the fontinfo set in global characteristics,
 or "Helvetica 8 plain" if no characteristics
 set
 Items: box; button; check; combobox; field; label;
 line; list; popup; radio; spacer; tablet;
 page characteristics; form characteristics

 format Syntax: format = [<data type>,<format flag>,
 <check flag>];
 * format and check flags are optional, and
 multiple flags are valid
 Default:for data type - none
 for format flag - depends on data type
 for check option - depends on data type
 Items: button; combobox; field; label; list; popup

 group Syntax: group = "<group name | group reference>";
 Default:none
 Items: cell; combobox; list; popup; radio

 help Syntax: help = "<item reference>";
 Default:none
 Items: button; check; combobox; field; label; list;
 popup; radio; tablet

 image Syntax: image = "<item reference>";
 Default:none
 Items: button; label; tablet

 itemlocation Syntax: itemlocation = [[<specification>],
 [<specification>]...];<specification> =
 "<modifier>","<itemtag>","<itemtag>"
 * the second itemtag only to align between
 modifiers
 Default:for the first item - the top left corner of
 the form
 for all other items - vertically below the

 previously created item and horizontally at
 the left margin
 Items: box; button; check; combobox; field; label;
 line; list; popup; radio; spacer; tablet
 justify Syntax: justify = "<left | right | center>";
 Default:for button and popup - center
 for label - left
 Items: button; field; label; popup; tablet

 label Syntax: label = "<label text>";
 Default:none
 Items: check; combobox; field; list; popup; radio;
 spacer; page characteristics; form
 characteristics

 labelbgcolor Syntax: labelbgcolor = ["<color name>"];
 labelbgcolor = ["<R value>","<G value>",
 "<B value>"];
 Default:for items in the toolbar - the background
 color of the toolbar
 for other items - the background color of
 the form
 Items: check; combobox; field; list; radio

 labelbordercolorSyntax:labelbordercolor = ["<color name>"];
 labelbordercolor = ["<R value>","<G value>",
 "<B value>"];
 Default:black
 Items: check; combobox; field; list; radio

 labelborderwidthSyntax:labelborderwidth = "<width>";
 Default:0 pixels
 Items: check; combobox; field; list; radio

 labelfontcolor Syntax: labelfontcolor = ["<color name>"];
 labelfontcolor = ["<R value>","<G value>",
 "<B value>"];
 Default:black
 Items: check; combobox; field; list; radio; page
 characteristics; form characteristics

 labelfontinfo Syntax: labelfontinfo = ["",
 "<point size>","<weight>","<effects>",
 "<form>"];
 * weight, effects, and form are optional
 Default:Helvetica, 8 plain
 Items: check; combobox; field; list; radio

 mimedata Syntax: mimedata = "<data>";
 Default:none
 Items: button, data, signature

 mouseover Syntax: mouseover = "on" | "off";
 Default:off
 Items: button; check; combo; field; list; popup;
 radio; tablet; toolbar; page global

 next Syntax: next = "<item reference>";
 Default:when the form opens - the first non-toolbar
 item in the form's description that users

Universal Forms Description Language [page 220]

 can modify
 when tabbing to subsequent items - the next
 item in the form's description that users
 can modify
 when tabbing from the last item - the first
 item in the form's description that users
 can modify (can be a toolbar item)
 Items: button; combobox; check; field; list; popup;
 radio; page globals; form globals

 previous Syntax: previous = "<item_reference>";
 Default:the previous item in the form description
 Items: button; combobox; check; field; list; popup;
 radio;

 printsettings Syntax: printsettings = [<page list>,
 <dialog settings>];
 Default:the page list defaults to include all pages
 in the form the dialog defaults to "on", has
 the following settings:
 orientation = portrait
 copies = 1
 printpages active = on
 Items: action, button, cell, page global
 characteristics, form global characteristics

 saveformat Syntax: saveformat = "<mimetype>";
 Default:application/uwi_form
 Items: button; cell; form characteristics

 scrollhoriz Syntax: scrollhoriz = "<never | always | wordwrap>";
 Default:never

 scrollvert Syntax: scrollvert = "<never | always | fixed>";
 Default:never
 Items: field

 signature Syntax: signature = "<string>";
 Default:none
 Items:button, signature

 signdatagroups Syntax: signdatagroups = ["<keep | omit>",
 "<datagroup reference>","<datagroup
 reference>"...];
 Default:keep
 Items: button, signature

 signer Syntax: signer= "<string>";
 Default:depends on where signature is from
 Items: button, signature

 signformat Syntax: signformat = "<MIME type>";
 Default:application/uwi_form
 Items: button, signature

Universal Forms Description Language [page 221]

 signgroups Syntax: signgroups = ["<keep | omit>","<group
 reference>","<group reference>"...];
 Default:keep
 Items: button, signature

 signitems Syntax: signitems = ["<keep | omit>", "<item type>",
 "<item type>"...];
 Default:keep
 Items: button, signature

 signitemrefs Syntax: signitemrefs = ["<keep | omit>", "<item
 reference>","<item reference>"...];
 Default:keep
 Items: button, signature

 signoptionrefs Syntax: signoptionrefs = transmitoptions = ["<keep
 | omit>","<option reference>","<option
 reference>"...];
 Default:keep
 Items: button, signature

 signoptions Syntax: signoptions = ["<keep | omit>","<option
 type>","<option type>"...];
 Default:keep
 Items: button, signature

 size Syntax: size = ["<width>","<height>"];
 The unit of measurement is characters.
 Default:see below (defaults are also used in place
 of invalid and missing arguments)

 Items Width Height Default bounding box size

 box 1 1 same as item
 (smaller than one not allowed in either dimension)

 button
 (with text) label width label height same as item
 (with image)image width image height same as item

 check 1 1 max (1, label width)
 x label height + 1

 combobox max of 1 same as item
 (label width,
 widest cell)

 field 60 1 max (field width, label
 width)x field height +
 label height

 label

 (label empty)1 1 same as item
 (label given)label width label heightsame as item

Universal Forms Description Language [page 222]

 line 1 1 pixel same as item
 (one dimension must be 0)

 list max of number of same as item
 (label cells, +1
 width, if label
 widest
 cell)

 popup max of 1 same as item
 (label width,
 widest cell)

 radio 1 1 max (radio width, label
 width)x radio height +
 label height

 spacer
 (no label) 1 1 same as item
 (label given)label width label heightsame as item

 tablet
 (no image) 1 1 same as item
 (image) image width image heightsame as item

 thickness Syntax: thickness = "<thickness>";
 Default:1 pixel
 Items: line
 transmitdatagroupsSyntax:transmitdatagroups = [<transmit flag>,
 <datagroup identifier>, ...
 Default:keep
 Items: action; button; cell

 transmitformat Syntax: transmitformat = "<MIME type>";
 Default:application/uwi_form
 Items: action; button; cell; form characteristics

 transmitgroups Syntax: transmitgroups = [<transmit flag>, <group
 identifier>,...<group identifier>];
 Default:keep
 Items: action; button; cell

 transmititemrefsSyntax:transmititemrefs = [<transmit flag>, <item
 identifier>,...<item identifier>];
 Default:keep
 Items: action; button; cell

 transmititems Syntax: transmititems = ["<keep | omit>", "<item
 type>","<item type>"...];
 Default:keep

 Items: action; button; cell

 transmitoptionrefsSyntax:transmitoptionrefs = [<transmit flag>,

Universal Forms Description Language [page 223]

 <option identifier>,...<option
 identifier>];
 Default:keep
 Items: action; button; cell

 transmitoptionsSyntax: transmitoptions = ["<keep | omit>","<option
 type>","<option type>"...];
 Default:keep
 Items: action; button; cell

 triggeritem Syntax: triggeritem = "<item reference>";
 Default:the item reference of the item that
 triggered the "submit" or "done"
 Items: in form global characteristics

 type Syntax: type = "<task type>";
 Default:link
 Items: action; button; cell

 url Syntax: url = ["<URL | item reference>",
 ["<URL>"],...];
 Default:none
 Items: action; button; cell

 value Syntax: value = "<setting>";
 Default:depends on item
 Items: button; cell; check; combobox; field; help;
 label; list; popup; radio; tablet

 version Syntax: version = <version number>;
 Default:none
 Items:in form global characteristics

Appendix B: Default Sizes

 The following table shows the default basic item and bounding box
 sizes.

 box width:1 character Same as default item size
 height:1 character
 Smaller than 1 not
 allowed in either
 dimension

 button width:width of label same as default item size
 height:height of label
 (label is in the value
 option)
 or size of embedded image

 if it exists

 check width:1 character width:larger of 1 character

Universal Forms Description Language [page 224]

 height:1 character and label width
 height:label height plus
 1 character
 (label is in the label
 option)

 combobox width:larger of label Same as default item size
 width and widest (ii)
 cell (iii)
 height:1 character
 (label is in the label
 option)

 field width:30 characters width:larger of item width
 height:1 character and label width (ii)
 height:height of item plus
 height of label (ii)
 (label is in the label
 option)

 label width:1 character if Same as default item size
 label empty,
 otherwise label
 width
 height:1 character if
 label empty,
 otherwise label
 height
 or size of embedded image
 if it exists

 line width:30 character Same as default item size
 height:1 pixel
 One dimension must be 0
 (i)

 list width:larger of label width:larger of item width
 width and widest and widest cell (ii)
 cell (iii) height:height of item plus
 height:number of cells height of label
 in list (label is in the label
 (label is in the label option)
 popup width:larger of label Same as default item size
 width and widest (ii)
 cell (iii)
 height:1 character
 (label is in the label
 option)

 radio width:1 character width:larger of 1 character

 height:1 character and label width
 height:label height plus
 1 character
 (label is in the label

Universal Forms Description Language [page 225]

 option)

 spacer width:1 character if Same as default item size
 label empty,
 otherwise label
 width
 height:1 character if
 label empty,
 otherwise label
 height
 (label is in the label
 option)

 tablet width:1 character if Same as default item size
 tablet empty,
 otherwise value
 width
 height:1 character if
 label empty,
 otherwise value
 height
 or size of embedded image
 if it exists

 Notes

 i) For line items, either height or width must be set to zero. The
 thickness option specifies the thickness (in pixels) of the line
 in the dimension containing zero (0). If both settings are
 non-zero, the line size will default to one character wide by
 one pixel thick.

 ii) This includes a scroll bar if one appears.

 iii) The cell's width comes from the cell's value option setting.

Appendix C: UFDL for C and C++ Programmers

 This document is intended to introduce programmers to the syntax
 of UFDL. To do so, we will compare UFDL to the C programming
 language, and point out many of the similarities in syntax and
 structure that exist between the two languages, as well as some of
 the differences.

 Be aware that this document outlines one way of modelling these
 similarities and differences, and that a number of other approaches
 could be used.

 C.1 Procedural vs. State Language

 Unlike C, UFDL is a state language. Where C describes a procedure
 that is followed, UFDL describes a state that is maintained. All of

Universal Forms Description Language [page 226]

 the statements in a UFDL form are always maintained as being true.

 As a result, computations are constantly updated throughout the
 form. For instance, imagine a form with a field called total, the
 value of which is based on adding the values of five other fields.
 Whenever a value is entered (or changed) in one of those five
 fields, the total field will be instantly updated to reflect that
 change. In this, UFDL acts much like a spreadsheet.

 C.2 Globals and Functions (Pages)

 When coding a form, the first statements define the global
 characteristics and includes. These are much like global variables
 and includes in C. The next thing defined is the first page of the
 form, which parallels a function in a C program. The table below
 demonstrates these similarities:

 C UFDL

 int version=3; version="3.2.0";
 char *bgColor="blue"; bgcolor=["blue"];

 #include "header.h" #include "header.frm"

 void page_1() page_1=new page
 <code> <code>
 } }

 Notice the similarities in syntax as well. Statements are ended
 with a semi-colon. New pages (or functions) do not end with a
 semi-colon, and the code for each begins and ends with braces.

 Within each page, UFDL allows the definition of page-specific
 characteristics similar to function specific variables. You can
 also define items, which can be thought of as instances of
 predefined structures or cases. Within each instance, there are a
 number of options that can be set. The following table illustrates
 this:

 C UFDL

 struct label{
 char *value;
 char *fontcolor;
 char *bgcolor;
 };

 void page_1()
 { page_1=new page
 struct label *label_1=NULL; {

 char *bgcolor = "papayawhip"; bgcolor=["papayawhip"];

 label_1=(struct label*)malloc

Universal Forms Description Language [page 227]

 (sizeof(struct label)); label 1_1=new label
 label_1->value=strdup("This is a label"); {
 label_1->fontcolor=strdup("white"); value="This is a label";
 label_1->transmit=strdup("none"); fontcolor=["white"];
 label_1->bgcolor=strdup(bgcolor); transmit="none";
 } }

 In this example, value and fontcolor are options for the item
 label_1. Notice that they are contained within an opening and a
 closing brace, which makes it clear, without dereferencing, which
 item they belong to (this is similar to the with statement in
 Pascal). Also note that bgcolor is a page characteristic that is
 automatically assigned to label_1.

 Additional pages can be defined just like additional functions, and
 there is no limit to the number of pages you can have, nor to the
 number of items you can have within a page. Additionally, it is
 possible to create custom items and options, allowing for greater
 flexibility.

 C.3 References and Dynamic Option Reference

 Specific items or option can be referenced through the use of a
 reference string. Additionally, the values of options can be
 dynamic option reference in a manner similar to C.

 C UFDL

 Structure Declaration Item declaration
 struct label{ label_1=new label
 struct label *value; {
 char *fontcolor; value="label_2";
 }; fontcolor=["white"];
 }
 struct label *label_1; label_2=new label
 struct label *label_2; {
 fontcolor=["blue"];
 label_1->value=label_2; }
 label_1->fontcolor=strdup("white");
 label_2->fontcolor=strdup("blue");

 References References
 label_1->fontcolor is white label_1.fontcolor is white
 label_1->value->fontcolor is blue label_1.value->fontcolor is blue

 no equivalent page1.label_1.fontcolor is white

 Note that the inclusion of page1 is optional. Including it allows
 the item or option to be referenced from a different page. Where C

 requires you to pass values between functions by using parameters,
 UFDL allows you to access any value from any page on the form by
 using a direct reference.

Universal Forms Description Language [page 228]

 C.4 Arrays

 Many of the options in UFDL are set using array structures.
 Specific elements in these arrays are referenced just as they
 would be in C.

 Array Declaration Option Declaration
 char *format[2][2]; format=["integer",range=["1","10"]];

 format[0][0]=strdup("integer");
 format[0][1]=NULL;
 format[1][0]=strdup("1");
 format[1][1]=strdup("10");

 Element Reference Element Reference
 format[1][0] format[1][0] or
 format[range][0]

 Note the second Element Reference in UFDL. This reference is based
 on assigning a name to an element or set of elements within the
 array. In this case, the name range was given to the second set of
 elements. This allows you to access the elements of an array
 without having to know the order of those elements.

 There is no limit to the depth allowed an array in UFDL-you can
 have infinitely nested arrays. Additionally, UFDL does not create
 unnecessary blocks in memory. For instance, in the above example
 format[0][1] was assigned to be NULL in the C code. This is
 because this portion of the array is not used. In UFDL, that
 portion of the array is never created. This means that UFDL uses
 significantly less memory to store multi-dimensional arrays.

 C.5 Assignment

 UFDL has a single data type: the string. All values, be they
 integer, character, or float, are stored as literal strings. In
 order to assign literal strings, quotes are used just as in C.
 For example:

 C UFDL

 value=strdup("This is a value="This is a literal string";
 literal string");

 size[0]=strdup("10"); size=["10","10"];
 size[1]=strdup("10");

 Note that you do not need to use any of the string functions such
 as strdup. Memory management is handled automatically. Assigning a
 string to an option automatically copies the string and disposes of

Universal Forms Description Language [page 229]

 any previous value for that option. Additionally, the full list of
 elements can be assigned to an array at any time in UFDL code. In
 C, this is only possible when you first declare your arrays (see
Appendix D: Glossary

Absolute Positioning

 Absolute positioning places items in set locations on the form. This
 form of positioning uses an x-y coordinate system to specify where,
 in relation to the upper-left corner of the form, the item should be
 placed. Absolute positioning allows for drag-and-drop form designer
 functionality. See Also: Relative Positioning

Automatic Action

 Automatic actions are background actions that you can set your form
 to carry out without user prompting. These actions can be set to
 occur after a specific amount of time, or to repeat periodically.
 Use automatic actions to create effects such as periodic interfacing
 with databases. For example:

 ping_action = new action
 {
 delay = ["repeat", "120"];
 type = "submit";
 url = ["http://www.server.domain/cgi-bin/status"];
 }

Alignment Modifiers

 This is a group of modifiers used in relative positioning. They are
 used to set locators that align items in relation to each other. See
 Also: Relative Positioning, Locators

Bounding Box

 An unseen rectangular area surrounding each item and including all
 elements of the item (including built-in labels and borders). Used
 in the relative ositioning scheme for determiniing the "edge" of an
 item.

Build Order

 When you create items on a form, the order in which they are created
 forms a sequence. The first item you create is the first item in the
 sequence, the second item is second in the sequence, and so on. This
 sequence is called the build order. The build order can affect
 relative positioning.

Compression

 You can set up forms to submit and save as compressed files. See the

 descriptions or the saveformat and transmitformat options.

Universal Forms Description Language [page 230]

Computation

 See: Formulas

Custom Item

 Custom items are items that are not part of the standard UFDL. You
 define these items yourself. Custom items are ignored by the a UFDL
 parser, and are never visible on the form. Use custom items to
 integrate the form with other applications. See Also: Custom
 Options, Hidden Items

Custom Option

 Custom options are options that are not part of the standard UFDL.
 You create these options yourself. Custom options are ignored by a
 UFDL parser, and ever affect the appearance of an item. Use custom
 options to integrate your form with other applications. See Also:
 Custom Items

Expansion Modifiers

 This is a group of modifiers used in relative sizing. They are used
 to set locators that adjust the size of items in relation to other
 items on the form. See Also: Extent Modifier, Locators

Extent Modifier
 This modifier is used in both normal and relative positioning. It
 is used to set locators that set the size of items in pixels. See
 Also: Expand Modifiers, Locators

Filtering

 You can set up forms to filter out specific item types, option
 types, or items when they are transmitted. This can be useful for
 eliminating unnecessary information when the form is being
 transmitted to another application. See the descriptions for the
 transmit, transmititems, and ransmitoptions options. See Also:
 Compression

Formulas

 Formulas allow you to add math or logic to your form. You can use
 them to add values or make decisions based on user input. Also
 referred to as computations or logical operations.

Global Settings

 Global settings are used to set options for the whole form. Each
 item in the form will reflect that option setting, unless the same
 option is also set for that page or item.

Hidden Items

 Hidden items are not independently visible on the form. However, in

Universal Forms Description Language [page 231]

 some cases they may contribute to the appearance of other form
 items. The hidden items are: data items, cells, action items, help
 items, and custom items.

Identifiers

 Identifiers are used to uniquely identify a page, item, option, or
 option element in the form. For a discussion of the character set
 you may use when creating identifiers, see the section called
 Identifiers in '2. The Universal Forms Description Language'.

Include

 The #include statement allows you to "include" external files in a
 form. These files must be in a UFDL format that is compatible with
 the form. A UFDL parser must insert include files into forms at the
 place marked by an #include statement.

Input Focus

 When a user views a form, the input focus is the focus that moves
 from item to item in the form when the user presses the TAB key.

Item Tag

 Each item has a unique item tag, or name, which is used to identify
 that item.

Locators

 Locators are used to set both the locations of an item on the page
 and any relative or extent sizing that should apply to the item.

Modifier

 Modifiers are combined with item tags to create locators. Modifiers
 describe how an item should be positioned in relation to its
 reference items. For example, after, below, left-to-left, and so on.
 See Also: Locators, Reference Items

Page

 Each form can be composed of any number of pages, just like a paper
 form. Each page is identified with a page tag, begins with an open
 brace ({) and ends with a close brace (}). All forms must have at
 least one page.

Page Settings

 These settings set global option settings for all items on the page
 (unless an individual item description overrides the setting). Page
 settings override global settings, but are overridden by options set

 for individual items.

Page Tag

Universal Forms Description Language [page 232]

 Each page has a unique page tag, or name, which is used to identify
 that page.

Reference

 References allow you to identify a specific option by providing a
 "path" to it. This means that you can refer directly to a specific
 option anywhere in the form. A reference is constructed by combining
 the page tag, item tag, and option name that will point to the
 option you want. For example, page1.title_label.value points to the
 value option of the title_label on page one.

Reference Items

 When using relative positioning or sizing, you will need to use some
 items as reference points. These reference points will be used as
 anchors that set either where an item is positioned on the form or
 how large the item is. If the reference items are moved or change
 size, the item using them as anchors may also move or change size.
 See Also: Relative Positioning, Relative Sizing

Relative Positioning

 Relative positioning places items on the form in relation to other
 items. This means that items will move on the form if their
 reference item moves. Relative positioning is useful for ensuring
 cross-platform compatability. See Also: Absolute Positioning,
 Reference Items

Relative Sizing

 Relative sizing adjusts the size of items on the form in relation to
 other items. This means that items will change size on the form if
 their reference item moves or changes size. Relative sizing is
 useful for ensuring that the edges of your items line up on the
 form. See Also: Reference Items

Required Status

 The required status is part of the format option. It determines
 whether the user of a form is required to enter information into an
 item. The required status can be set to "optional" or "mandatory".

Start Value

 The start value is an element of the option name that contains the
 literal resolution of an option reference or other formula. The
 start value element is represented as an open angle bracket, the
 value in quotation marks, and a close angle bracket on the left-hand
 side of the equal sign, like this:

 value<"Jane E. Smith"> = page1.nameField.value;

 The viewer sets this literal value when a form is signed, submitted,

Universal Forms Description Language [page 233]

 or saved (and discards any old value if necessary). Because a digitally
 signed formula never fires after being signed, the start value for the
 option is always the same--and therefore it is possible to reference the
 option and get the signed literal value.

Tab Order

 This is the order in which the user will move through the item on
 the form by pressing the TAB key. The tab order only includes those
 items that take user input, such as fields, buttons, and so on. You
 can set the tab order yourself.

Version Number

 This option records the version number of the UFDL that was used to
 create the form. It is only available in the global settings.

Author Contact Information

David Manning
dmanning@uwi.com

voice. 250-479-8334
fax. 250-479-3772
post. David Manning
 UWI.Com
 1095 McKenzie Avenue, 4th Floor
 Victoria, B.C., Canada
 V8P 2L5

Expires: February 04, 1999

Universal Forms Description Language [page 234]

