
Workgroup: Network Working Group

Internet-Draft: draft-gpew-priv-ppm-00

Published: 25 October 2021

Intended Status: Standards Track

Expires: 28 April 2022

Authors: T. Geoghegan

ISRG

C. Patton

Cloudflare

E. Rescorla

Mozilla

C.A. Wood

Cloudflare

Privacy Preserving Measurement

Abstract

There are many situations in which it is desirable to take

measurements of data which people consider sensitive. In these

cases, the entity taking the measurement is usually not interested

in people's individual responses but rather in aggregated data.

Conventional methods require collecting individual responses and

then aggregating them, thus representing a threat to user privacy

and rendering many such measurements difficult and impractical. This

document describes a multi-party privacy preserving measurement

(PPM) protocol which can be used to collect aggregate data without

revealing any individual user's data.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the mailing list (),

which is archived at .

Source for this draft and an issue tracker can be found at https://

github.com/abetterinternet/ppm-specification.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/abetterinternet/ppm-specification
https://github.com/abetterinternet/ppm-specification
https://datatracker.ietf.org/drafts/current/


Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1.  Introduction

1.1.  DISCLAIMER

1.2.  Conventions and Definitions

2.  Overview

2.1.  System Architecture

2.2.  Validating Inputs

3.  Message Transport

3.1.  Errors

4.  Protocol Definition

4.1.  Task Configuration

4.2.  Uploading Reports

4.2.1.  Key Configuration Request

4.2.2.  Upload Request

4.2.3.  Upload Extensions

4.3.  Verifying and Aggregating Reports

4.3.1.  Aggregate Request

4.3.2.  Output Share Request

4.4.  Collecting Results

4.4.1.  Validating Batch Parameters

4.4.2.  Anti-replay

5.  Operational Considerations

5.1.  Protocol participant capabilities

5.1.1.  Client capabilities

5.1.2.  Aggregator capabilities

5.1.3.  Collector capabilities

5.2.  Data resolution limitations

5.3.  Aggregation utility and soft batch deadlines

5.4.  Protocol-specific optimizations

5.4.1.  Reducing storage requirements

6.  Security Considerations

6.1.  Threat model

6.1.1.  Client/user

¶

¶

https://trustee.ietf.org/license-info


6.1.2.  Aggregator

6.1.3.  Leader

6.1.4.  Collector

6.1.5.  Aggregator collusion

6.1.6.  Attacker on the network

6.2.  Client authentication or attestation

6.3.  Anonymizing proxies

6.4.  Batch parameters

6.5.  Differential privacy

6.6.  Robustness in the presence of malicious servers

6.7.  Infrastructure diversity

6.8.  System requirements

6.8.1.  Data types

7.  IANA Considerations

7.1.  Protocol Message Media Types

7.1.1.  "application/ppm-hpke-config" media type

7.1.2.  "message/ppm-report" media type

7.1.3.  "message/ppm-aggregate-req" media type

7.1.4.  "message/ppm-aggregate-resp" media type

7.1.5.  "message/ppm-output-share-req" media type

7.1.6.  "message/ppm-output-share-resp" media type

7.1.7.  "message/ppm-collect-req" media type

7.1.8.  "message/ppm-collect-req" media type

7.2.  Upload Extension Registry

7.3.  URN Sub-namespace for PPM (urn:ietf:params:ppm)

8.  Acknowledgements

9.  References

9.1.  Normative References

9.2.  Informative References

Authors' Addresses

1. Introduction

This document describes a protocol for privacy preserving

measurement. The protocol is executed by a large set of clients and

a small set of servers. The servers' goal is to compute some

aggregate statistic over the clients' inputs without learning the

inputs themselves. This is made possible by distributing the

computation among the servers in such a way that, as long as at

least one of them executes the protocol honestly, no input is ever

seen in the clear by any server.

1.1. DISCLAIMER

This document is a work in progress. We have not yet settled on the

design of the protocol framework or the set of features we intend to

support.

¶

¶



Aggregation function:

Aggregator:

Batch:

Batch duration:

Batch interval:

Client:

Collector:

Input:

Input share:

Input validation protocol:

Measurement:

Minimum batch duration:

Minimum batch size:

1.2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used:

The function computed over the users' inputs.

An endpoint that runs the input-validation protocol and

accumulates input shares.

A set of reports that are aggregated into an output.

The time difference between the oldest and newest

report in a batch.

A parameter of the collect or output-share request

that specifies the time range of the reports in the batch.

The endpoint from which a user sends data to be aggregated,

e.g., a web browser.

The endpoint that receives the output of the aggregation

function.

The measurement (or measurements) emitted by a client,

before any encryption or secret sharing scheme is applied.

One of the shares output by feeding an input into a

secret sharing scheme. Each share is to be transmitted to one of

the participating aggregators.

The protocol executed by the client and

aggregators in order to validate the client's input without

leaking its value to the aggregators.

A single value (e.g., a count) being reported by a

client. Multiple measurements may be grouped into a single

protocol input.

The minimum batch duration permitted for a

PPM task, i.e., the minimum time difference between the oldest

and newest report in a batch.

The minimum number of reports in a batch.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Leader:

Output:

Output share:

Proof:

Report:

Server:

A distinguished aggregator that coordinates input

validation and data collection.

The output of the aggregation function over a given set of

reports.

The share of an output emitted by an aggregator.

Output shares can be reassembled by the leader into the final

output.

A value generated by the client and used by the aggregators

to verify the client's input.

Uploaded to the leader from the client. A report contains

the secret-shared and encrypted input and proof.

An aggregator.

This document uses the protocol definition language of [RFC8446].

2. Overview

The protocol is executed by a large set of clients and a small set

of servers. We call the servers the aggregators. Each client's input

to the protocol is a set of measurements (e.g., counts of some user

behavior). Given the input set of measurements x_1, ..., x_n held by 

n users, the goal of a privacy preserving measurement (PPM) protocol

is to compute y = F(x_1, ..., x_n) for some aggregation function F

while revealing nothing else about the measurements.

This protocol is extensible and allows for the addition of new

cryptographic schemes that compute new functions. The current

version supports two schemes:

Prio [CGB17], which allows for aggregate statistics such as sum,

mean, histograms, etc. over a single value.

Heavy Hitters [BBCGGI21], which allows for finding the most

common strings among a collection of clients (e.g., the URL of

their home page) as well as counting the number of clients that

hold a given string.

This protocol is designed to work with schemes that use secret

sharing. Rather than send its input in the clear, each client splits

its measurements into a sequence of shares and sends a share to each

of the aggregators. This provides two important properties:

It's impossible to deduce the measurement without knowing all of

the shares.

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶



It allows the aggregators to compute the final output by first

aggregating up their measurements shares locally, then combining

the results to obtain the final output.

2.1. System Architecture

{#system-architecture}

The overall system architecture is shown in Figure 1.

Figure 1: System Architecture

[[OPEN ISSUE: This shows two helpers, but the document only allows

one for now. https://github.com/abetterinternet/ppm-specification/

issues/117]]

The main participants in the protocol are as follows:

*

¶

¶

¶

                    +------------+

                    |            |

+--------+          |   Helper   |

|        |          |            |

| Client +----+     +-----^------+

|        |    |           |

+--------+    |           |

              |           |

+--------+    |     +-----v------+         +-----------+

|        |    +----->            |         |           |

| Client +---------->   Leader   <---------> Collector |

|        |    +----->            |         |           |

+--------+    |     +-----^------+         +-----------+

              |           |

+--------+    |           |

|        |    |           |

| Client +----+     +-----V------+

|        |          |            |

+--------+          |   Helper   |

                    |            |

                    +------------+

¶

¶



Collector:

Client(s):

Aggregator:

Leader:

Helper:

The entity which wants to take the measurement and

ultimately receives the results. Any given measurement will have

a single collector.

The endpoints which directly take the measurement(s) and

report them to the PPM system. In order to provide reasonable

levels of privacy, there must be a large number of clients.

An endpoint which receives report shares. Each

aggregator works with the other aggregators to compute the final

aggregate. This protocol defines two types of aggregators:

Leaders and Helpers. For each measurement, there is a single

leader and helper.

The leader is responsible for coordinating the protocol. It

receives the encrypted shares, distributes them to the helpers,

and orchestrates the process of computing the final measurement

as requested by the collector.

Helpers are responsible for executing the protocol as

instructed by the leader. The protocol is designed so that

helpers can be relatively lightweight, with most of the state

held at the leader.

The basic unit of PPM is the "task" which represents a single

measurement (though potentially taken over multiple time wndows).

The definition of a task includes the following parameters:

The values to be measured;

The statistic to be computed (e.g., sum, mean, etc.);

The set of aggregators and necessary cryptographic keying

material to use; and

The PPM scheme to use. This is to some extent dictated by the

previous choices.

The minimum "batch size" of reports which can be aggregated.

The rate at which measurements can be taken, i.e., the "minimum

batch window".

These parameters are distributed out of band to the clients and to

the aggregators. Each task is identified by a unique 32-byte ID

which is used to refer to it in protocol messages.

During the duration of the measurement, each client records its own

value(s), packages them up into a report, and sends them to the

¶

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

¶



leader. Each share is separately encrypted for each aggregator so

that even though they pass through the leader, the leader is unable

to see or modify them. Depending on the measurement, the client may

only send one report or may send many reports over time.

The leader distributes the shares to the helpers and orchestrates

the process of verifying them (see Section 2.2) and assembling them

into a final measurement for the collector. Depending on the PPM

scheme, it may be possible to incrementally process each report as

it comes in, or may be necessary to wait until the entire batch of

reports is received.

2.2. Validating Inputs

An essential task of any data collection pipeline is ensuring that

the input data is "valid". In PPM, input validation is complicated

by the fact that none of the entities other than the client ever

sees the values for individual clients.

In order to address this problem, each PPM client generates a zero-

knowledge proof that its report is valid and attaches it to the

report. The aggregators can then jointly verify this proof prior to

incorporating the report in the aggregation and reject the report if

it cannot be verified. However, they do not learn anything about the

individual report other than that it is valid.

The specific properties attested to in the proof vary depending on

the measurement being taken. For instance, if we want to measure the

time the user took performing a given task the proof might

demonstrate that the value reported was within a certain range

(e.g., 0-60 seconds). By contrast, if we wanted to report which of a

set of N options the user select, the report might contain N

integers and the proof would demonstrate that N-1 were 0 and the

other was 1.

It is important to recognize that "validity" is distinct from

"correctness". For instance, the user might have spent 30s on a task

but the client might report 60s. This is a problem with any

measurement system and PPM does not attempt to address it; it merely

ensures that the data is within acceptable limits, so the client

could not report 10^6s or -20s.

3. Message Transport

Communications between PPM entities are carried over HTTPS 

[RFC2818]. HTTPS provides server authentication and confidentiality.

In addition, report shares are encrypted directly to the aggregators

using HPKE [I-D.irtf-cfrg-hpke].

¶

¶

¶

¶

¶

¶

¶



3.1. Errors

Errors can be reported in PPM both at the HTTP layer and within

challenge objects as defined in Section 7. PPM servers can return

responses with an HTTP error response code (4XX or 5XX). For

example, if the client submits a request using a method not allowed

in this document, then the server MAY return status code 405 (Method

Not Allowed).

When the server responds with an error status, it SHOULD provide

additional information using a problem document [RFC7807]. To

facilitate automatic response to errors, this document defines the

following standard tokens for use in the "type" field (within the

PPM URN namespace "urn:ietf:params:ppm:error:"):

Type Description

unrecognizedMessage
The message type for a response was incorrect or

the payload was malformed.

unrecognizedTask
An endpoint received a message with an unknown

task ID.

outdatedConfig
The message was generated using an outdated

configuration.

Table 1

This list is not exhaustive. The server MAY return errors set to a

URI other than those defined above. Servers MUST NOT use the PPM URN

namespace for errors not listed in the appropriate IANA registry

(see Section 7.3). Clients SHOULD display the "detail" field of all

errors. The "instance" value MUST be the endpoint to which the

request was targeted. The problem document MUST also include a

"taskid" member which contains the associated PPM task ID (this

value is always known, see Section 4.1).

In the remainder of this document, we use the tokens in the table

above to refer to error types, rather than the full URNs. For

example, an "error of type 'unrecognizedMessage'" refers to an error

document with "type" value

"urn:ietf:params:ppm:error:unrecognizedMessage".

This document uses the verbs "abort" and "alert with [some error

message]" to describe how protocol participants react to various

error conditions.

4. Protocol Definition

PPM has three major interactions which need to be defined:

Uploading reports from the client to the aggregators

¶

¶

¶

¶

¶

¶

* ¶



Computing the results of a given measurement

Reporting results to the collector

We start with some basic type definitions used in other messages.

4.1. Task Configuration

Prior to the start of execution of the protocol, each participant

must agree on the configuration for each task. A task is uniquely

identified by its task ID:

A TaskId is a globally unique sequence of bytes. It is RECOMMENDED

that this be set to a random string output by a cryptographically

secure pseudorandom number generator. Each task has the following

parameters associated with it:

aggregator_endpoints: A list of URLs relative to which an

aggregator's API endpoints can be found. Each endpoint's list 

MUST be in the same order. The leader's endpoint MUST be the

first in the list. The order of the encrypted_input_shares in a 

Report (see Section 4.2) MUST be the same as the order in which

aggregators appear in this list.

collector_config: The HPKE configuration of the collector

(described in Section 4.2.1). Having participants agree on this

absolves collectors of the burden of operating an HTTP server.

See #102 for discussion.

max_batch_lifetime: The maximum number of times a batch of

reports may be used in collect requests.

* ¶

* ¶

¶

enum { prio(0), hits(1) } Proto;

 /* ASCII encoded URL. e.g., "https://example.com" */

opaque Url<1..2^16-1>;

Duration uint64; /* Number of seconds elapsed between two instants */

Time uint64; /* seconds elapsed since start of UNIX epoch */

/* An interval of time, where start is included and end is excluded */

struct {

  Time start;

  Time end;

} Interval;

¶

¶

opaque TaskId[32];¶

¶

*

¶

*

¶

*

¶

https://github.com/abetterinternet/prio-documents/issues/102


min_batch_size: The minimum number of reports that appear in a

batch.

min_batch_duration: The minimum time difference between the

oldest and newest report in a batch. This defines the boundaries

with which the batch interval of each collect request must be

aligned. (See Section 4.4.1.)

protocol: named parameter identifying the core PPM protocol,

e.g., Prio or Hits.

4.2. Uploading Reports

Clients periodically upload reports to the leader, which then

distributes the individual shares to each helper.

4.2.1. Key Configuration Request

Before the client can upload its report to the leader, it must know

the public key of each of the aggregators. These are retrieved from

each aggregator by sending a request to [aggregator]/key_config,

where [aggregator] is the aggregator's endpoint URL, obtained from

the task parameters. The aggregator responds to well-formed requests

with status 200 and an HpkeConfig value:

[OPEN ISSUE: Decide whether to expand the width of the id, or

support multiple cipher suites (a la OHTTP/ECH).]

The client MUST abort if any of the following happen for any 

key_config request:

the client and aggregator failed to establish a secure,

aggregator-authenticated channel;

the GET request failed or didn't return a valid key config; or

*

¶

*

¶

*

¶

¶

¶

struct {

  HpkeConfigId id;

  HpkeKemId kem_id;

  HpkeKdfId kdf_id;

  HpkeAeadKdfId aead_id;

  HpkePublicKey public_key;

} HpkeConfig;

uint8 HpkeConfigId;

opaque HpkePublicKey<1..2^16-1>;

uint16 HpkeAeadId; // Defined in I-D.irtf-cfrg-hpke

uint16 HpkeKemId;  // Defined in I-D.irtf-cfrg-hpke

uint16 HpkeKdfId;  // Defined in I-D.irtf-cfrg-hpke

¶

¶

¶

*

¶

* ¶



the key config specifies a KEM, KDF, or AEAD algorithm the client

doesn't recognize.

Aggregators SHOULD use HTTP caching to permit client-side caching of

this resource [RFC5861]. Aggregators SHOULD favor long cache

lifetimes to avoid frequent cache revalidation, e.g., on the order

of days. Aggregators can control this cached lifetime with the

Cache-Control header, as follows:

Clients SHOULD follow the usual HTTP caching [RFC7234] semantics for

key configurations.

Note: Long cache lifetimes may result in clients using stale HPKE

keys; aggregators SHOULD continue to accept reports with old keys

for at least twice the cache lifetime in order to avoid rejecting

reports.

4.2.2. Upload Request

Clients upload reports by using an HTTP POST to [leader]/upload,

where [leader] is the first entry in the task's aggregator

endpoints. The payload is structured as follows:

This message is called the client's report. It contains the

following fields:

task_id is the task ID of the task for which the report is

intended.

time is the time at which the report was generated. This field is

used by the aggregators to ensure the report appears in at most

one batch. (See Section 4.4.2.)

nonce is a random number chosen by the client generating the

report. This and the timestamp field are used by the aggregators

to ensure that each report appears at most once in a batch. (See 

Section 4.4.2.)

extensions is a list of extensions to be included in the Upload

flow; see Section 4.2.3.

*

¶

¶

  Cache-Control: max-age=86400¶

¶

¶

¶

struct {

  TaskID task_id;

  Time time;

  uint64 nonce;

  Extension extensions<4..2^16-1>;

  EncryptedInputShare encrypted_input_shares<1..2^16-1>;

} Report;

¶

¶

*

¶

*

¶

*

¶

*

¶



encrypted_input_shares contains the encrypted input shares of

each of the aggregators. The order in which the encrypted input

shares appear MUST match the order of the task's 

aggregator_endpoints (i.e., the first share should be the

leader's, the second share should be for the first helper, and so

on).

[OPEN ISSUE: consider dropping nonce altogether and relying on a

more fine-grained timestamp, subject to collision analysis]

Encrypted input shares are structured as follows:

aggregator_config_id is equal to HpkeConfig.id, where HpkeConfig

is the key config of the aggregator receiving the input share.

enc is the encapsulated HPKE context, used by the aggregator to

decrypt its input share.

payload is the encrypted input share.

To generate the report, the client begins by encoding its

measurements as an input for the PPM scheme and splitting it into

input shares. (Note that the structure of each input share depends

on the PPM scheme in use, its parameters, and the role of

aggregator, i.e., whether the aggregator is a leader or helper.) To

encrypt an input share, the client first generates an HPKE [I-

D.irtf-cfrg-hpke] context for the aggregator by running

where pk is the aggregator's public key, task_id is Report.task_id

and server_role is a byte whose value is 0x01 if the aggregator is

the leader and 0x00 if the aggregator is the helper. enc is the

encapsulated HPKE context and context is the HPKE context used by

the client for encryption. The payload is encrypted as

where input_share is the aggregator's input share and time, nonce

and extensions are the corresponding fields of Report.

The leader responds to well-formed requests to [leader]/upload with

status 200 and an empty body. Malformed requests are handled as

*

¶

¶

¶

struct {

  HpkeConfigId aggregator_config_id;

  opaque enc<1..2^16-1>;

  opaque payload<1..2^16-1>;

} EncryptedInputShare;

¶

*

¶

*

¶

* ¶

¶

enc, context = SetupBaseS(pk,

                          "pda input share" || task_id || server_role)

¶

¶

payload = context.Seal(time || nonce || extensions, input_share)¶

¶



described in Section 3.1. Clients SHOULD NOT upload the same

measurement value in more than one report if the leader responds

with status 200 and an empty body.

The leader responds to requests with out-of-date HpkeConfig.id

values, indicated by EncryptedInputShare.config_id, with status 400

and an error of type 'outdatedConfig'. Clients SHOULD invalidate any

cached aggregator HpkeConfig and retry with a freshly generated

Report. If this retried report does not succeed, clients MUST abort

and discontinue retrying.

4.2.3. Upload Extensions

Each UploadReq carries a list of extensions that clients may use to

convey additional, authenticated information in the report. [OPEN

ISSUE: The extensions aren't authenticated. It's probably a good

idea to be a bit more clear about how we envision extensions being

used. Right now this includes client attestation for defeating Sybil

attacks. See issue#89.] Each extension is a tag-length encoded value

of the following form:

"extension_type" indicates the type of extension, and

"extension_data" contains information specific to the extension.

4.3. Verifying and Aggregating Reports

Once a set of clients have uploaded their reports to the leader, the

leader can send them to the helpers to be verified and aggregated.

In order to enable the system to handle very large batches of

reports, this process can be performed incrementally. To aggregate a

set of reports, the leader sends an AggregateReq to each helper

containing those report shares. The helper then processes them

(verifying the proofs and incorporating their values into the

ongoing aggregate) and replies to the leader.

The exact structure of the aggregation flow depends on the PPM

scheme. Specifically:

Some PPM schemes (e.g., Prio) allow the leader to start

aggregating reports proactively before all the reports in a batch

¶

¶

¶

  struct {

      ExtensionType extension_type;

      opaque extension_data<0..2^16-1>;

  } Extension;

  enum {

      TBD(0),

      (65535)

  } ExtensionType;

¶

¶

¶

¶

*



are received. Others (e.g., Hits) require all the reports to be

present and must be initiated by the collector.

Processing the reports -- especially verifying the proofs -- may

require multiple round trips.

Note that it is possible to aggregate reports from one batch while

reports from the next batch are coming in.

This process is illustrated below in Figure 2. In this example, the

batch size is 20, but the leader opts to process the reports in sub-

batches of 10. Each sub-batch takes two round-trips to process. Once

both sub-batches have been processed, the leader can issue an

OutputShareReq in order to retrieve the helper's aggregated result.

In order to allow the helpers to retain minimal state, the helper

can attach a state parameter to its response, with the leader

returning the state value in the next request, thus offloading the

state to the leader. This state value MUST be cryptographically

protected as described in Section 4.3.1.2.

Figure 2: Aggregation Process (batch size=20)

[OPEN ISSUE: Should there be an indication of whether a given

AggregateReq is a continuation of a previous sub-batch?]

[TODO: Decide if and how the collector's request is authenticated.]

4.3.1. Aggregate Request

The AggregateReq request is used by the leader to send a set of

reports to the helper. These reports MUST all be associated with the

same PPM task. [[OPEN ISSUE: And the same batch, right?]]

¶

*

¶

¶

¶

¶

Leader                                                 Helper

AggregateReq (Reports 1-10) -------------------------------->  \

<------------------------------------ AggregateResp (State 1)  | Reports

AggregateReq (continued, State 1)      --------------------->  | 10-11

<------------------------------------ AggregateResp (State 2)  /

AggregateReq (Reports 11-20, State 2) ---------------------->  \

<------------------------------------ AggregateResp (State 3)  | Reports

AggregateReq (continued, State 3) -------------------------->  | 20-21

<------------------------------------ AggregateResp (State 4) /

OutputShareReq (State 4) ----------------------------------->

<----------------------------------- OutputShareResp (Result)

¶

¶

¶



For each aggregator endpoint [aggregator] in AggregateReq.task_id's

parameters except its own, the leader sends a POST request to 

[aggregator]/aggregate with the following message:

The structure contains the PPM task, an opaque helper state string,

and a sequence of sub-requests, each corresponding to a unique

client report. Sub-requests are structured as follows:

The time, nonce, and extensions fields have the same value as those

in the report uploaded by the client. Similarly, the helper_share

field is the EncryptedInputShare from the Report whose index in 

Report.encrypted_input_shares is equal to the index of [aggregator]

in the task's aggregator endpoints. [OPEN ISSUE: We usually only

need to send this in the first aggregate request. Shall we exclude

it in subsequent requests somehow?] The remainder of the structure

is dedicated to the protocol-specific request parameters.

In order to provide replay protection, the leader is required to

send aggregate sub-requests in ascending order, where the ordering

on sub-requests is determined by the algorithm defined in Section

4.4.2. Specifically, the leader constructs its request such that:

each sub-request follows the previous sub-request; and

the first sub-request follows the last sub-request in the

previous aggregate request.

The helper handles well-formed requests as follows. (As usual,

malformed requests are handled as described in Section 3.1.) It

first looks for PPM parameters corresponding to 

AggregateReq.task_id. It then filters out out-of-order sub-requests

by ignoring any sub-request that does not follow the previous one

(See Section 4.4.2.)

¶

struct {

  TaskID task_id;

  opaque helper_state<0..2^16>;

  AggregateSubReq seq<1..2^24-1>;

} AggregateReq;

¶

¶

struct {

  Time time;                       // Equal to Report.time.

  uint64 nonce;                    // Equal to Report.nonce.

  Extension extensions<4..2^16-1>; // Equal to Report.extensions.

  EncryptedInputShare helper_share;

  select (protocol) { // Protocol for the PPM task

    case prio: PrioAggregateSubReq;

    case hits: HitsAggregateSubReq;

  }

} AggregateSubReq;

¶

¶

¶

* ¶

*

¶

¶



The response is an HTTP 200 OK with a body consisting of the

helper's updated state and a sequence of sub-responses, where each

sub-response corresponds to the sub-request in the same position in 

AggregateReq. The structure of each sub-response is specific to the

PPM protocol:

The helper handles each sub-request AggregateSubReq as follows. It

first looks up the HPKE config and corresponding secret key

associated with helper_share.config_id. If not found, then the sub-

response consists of an "unrecognized config" alert. [TODO: We'll

want to be more precise about what this means. See issue#57.] Next,

it attempts to decrypt the payload with the following procedure:

where sk is the HPKE secret key, task_id is AggregateReq.task_id and 

server_role is the role of the server (0x01 for the leader and 0x00

for the helper). time, nonce and extensions are obtained from the

corresponding fields in AggregateSubReq. If decryption fails, then

the sub-response consists of a "decryption error" alert. [See

issue#57.] Otherwise, the helper handles the request for its

plaintext input share input_share and updates its state as specified

by the PPM protocol.

After processing all of the sub-requests, the helper encrypts its

updated state and constructs its response to the aggregate request.

4.3.1.1. Leader State

The leader is required to issue aggregate requests in order, but

reports are likely to arrive out-of-order. The leader SHOULD store

reports for a time period proportional to the batch window before

including them in an aggregate request. Failure to do so may result

in out-of-order reports being dropped by the helper. The leader MUST

¶

struct {

  opaque helper_state<0..2^16>;

  AggregateSubResp seq<1..2^24-1>;

} AggregateResp;

struct {

  Time time;     // Equal to AggregateSubReq.time.

  uint64 nonce;  // Equal to AggregateSubReq.nonce.

  select (protocol) { // Protocol for the PPM task

    case prio: PrioAggregateSubResp;

    case hits: HitsAggregateSubResp;

  }

} AggregateSubResp;

¶

¶

context = SetupBaseR(helper_share.enc, sk,

                     "pda input share" || task_id || server_role)

input_share = context.Open(time || nonce || extensions, helper_share)

¶

¶

¶



NOT accept reports whose timestamps are in the future. Implementors 

MAY provide for some small leeway, usually no more than a few

minutes, to account for clock skew.

4.3.1.2. Helper State

The helper state is an optional parameter of an aggregate request

that the helper can use to carry state across requests. At least

part of the state will usually need to be encrypted in order to

protect user privacy. However, the details of precisely how the

state is encrypted and the information that it carries is up to the

helper implementation.

4.3.2. Output Share Request

Once the aggregators have verified at least as many reports as

required for the PPM task, the leader issues an output share request

to each helper. The helper responds to this request by extracting

its output share from its state and encrypting it under the

collector's HPKE public key.

For each aggregator endpoint [aggregator] in the parameters

associated with CollectReq.task_id (see Section 4.4) except its own,

the leader sends a POST request to [aggregator]/output_share with

the following message:

task_id is the task ID associated with the PPM parameters.

batch_interval is the batch interval of the request.

helper_state is the helper's state, which is carried across

requests from the leader.

To respond to an output share request, the helper first looks up the

PPM parameters associated with task task_id. Then, using the

procedure in Section 4.4.1, it ensures that the request meets the

requirements of the batch parameters. If so, it aggregates all valid

input shares that fall in the batch interval into an output share.

The format of the output share is specific to the PPM protocol:

¶

¶

¶

¶

struct {

  TaskID task_id;

  Interval batch_interval;

  opaque helper_state<0..2^16>;

} OutputShareReq;

¶

* ¶

* ¶

*

¶

¶



Next, the helper encrypts the output share output_share under the

collector's public key as follows:

where pk is the HPKE public key encoded by the collector's HPKE key

configuration, task_id is OutputShareReq.task_id and server_role is

the role of the server (0x01 for the leader and 0x00 for the

helper). output_share is the serialized OutputShare, and 

batch_interval is obtained from the OutputShareReq.

This encryption prevents the leader from learning the actual result,

as it only has its own share and not the helper's share, which is

encrypted for the collector. The helper responds to the collector

with HTTP status 200 OK and a body consisting of the following

structure:

collector_hpke_config_id is collector_config.id from the task

parameters corresponding to CollectReq.task_id.

enc is the encapsulated HPKE context, used by the collector to

decrypt the output share.

payload is an encrypted OutputShare.

The leader uses the helper's output share response to respond to the

collector's collect request (see Section 4.4).

4.4. Collecting Results

The collector uses CollectReq to ask the leader to collect and

return the results for a given PPM task over a given time period. To

make a collect request, the collector issues a POST request to 

[leader]/collect, where [leader] is the leader's endpoint URL. The

body of the request is structured as follows:

struct {

  select (protocol) { // Protocol for CollectReq.task_id

    case prio: PrioOutputShare;

    case hits: HitsOutputShare;

  }

} OutputShare;

¶

¶

enc, context = SetupBaseS(pk,

                          "pda output share" || task_id || server_role)

encrypted_output_share = context.Seal(batch_interval, output_share)

¶

¶

¶

struct {

  HpkeConfigId collector_hpke_config_id;

  opaque enc<1..2^16-1>;

  opaque payload<1..2^16>;

} EncryptedOutputShare;

¶

*

¶

*

¶

* ¶

¶

¶



The named parameters are:

task_id, the PPM task ID.

batch_interval, the request's batch interval.

The remainder of the message is dedicated to the protocol-specific

request parameters.

Depending on the PPM scheme and how the leader is configured, the

collect request may cause the leader to send a series of aggregate

requests to the helpers in order to compute their share of the

output. Alternately, the leader may already have made these requests

and can respond immediately. In either case it responds to the

collector's request as follows.

It begins by checking that the request meets the requirements of the

batch parameters using the procedure in Section 4.4.1. If so, it

obtains the helper's encrypted output share for the batch interval

by sending an output share request to the helper as described in 

Section 4.3.2. (This request may too have been made in advance.)

Next, the leader computes its own output share by aggregating all of

the valid input shares that fall within the batch interval. Finally,

it responds with HTTP status 200 and a body consisting of a

CollectResp message:

[OPEN ISSUE: What happens if this all takes a really long time.]

[TODO: Decide if and how the collector's request is authenticated.]

shares is a vector of EncryptedOutputShares, as described in 

Section 4.3.2, except that for the leader's share, the task_id

and batch_interval used to encrypt the OutputShare are obtained

from the CollectReq.

struct {

  TaskID task_id;

  Interval batch_interval;

  select (protocol) { // Protocol corresponding to task_id

    case prio: PrioCollectReq;

    case hits: HitsCollectReq;

  }

} CollectReq;

¶

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

struct {

  EncryptedOutputShare shares<1..2^16-1>;

} CollectResp;

¶

*

¶



[OPEN ISSUE: Describe how intra-protocol errors yield collect errors

(see issue#57). For example, how does a leader respond to a collect

request if the helper drops out?]

4.4.1. Validating Batch Parameters

Before an aggregator responds to a collect request or output share

request, it must first check that the request does not violate the

parameters associated with the PPM task. It does so as described

here.

First the aggregator checks that the request's batch interval

respects the boundaries defined by the PPM task's parameters.

Namely, it checks that both batch_interval.start and 

batch_interval.end are divisible by min_batch_duration and that 

batch_interval.end - batch_interval.start >= min_batch_duration.

Unless both these conditions are true, it aborts and alerts the peer

with "invalid batch interval".

Next, the aggregator checks that the request respects the generic

privacy parameters of the PPM task. Let X denote the set of input

shares the aggregator has validated and which fall in the batch

interval of the request.

If len(X) < min_batch_size, then the aggregator aborts and alerts

the peer with "insufficient batch size".

The aggregator keeps track of the number of times each input

share was added to the batch of an output share request. If any

input share in X was added to at least max_batch_lifetime

previous batches, then the helper aborts and alerts the peer with

"request exceeds the batch's privacy budget".

4.4.2. Anti-replay

Using a client-provided report multiple times within a single batch,

or using the same report in multiple batches, may allow a server to

learn information about the client's measurement, violating the

privacy property of PPM. To prevent such replay attacks, this

specification defines a total ordering on reports that aggregators

can use to ensure that reports are aggregated once.

Aggregate requests are ordered as follows: We say that a report R2

follows report R1 if either R2.time > R1.time or R2.time == R1.time

and R2.nonce > R1.nonce. If R2.time < R1.time, or R2.time == R1.time

but R2.nonce <= R1.nonce, then we say that R2 does not follow R1.

To prevent replay attacks, each aggregator ensures that each report

it aggregates follows the previously aggregated report. To prevent

the adversary from tampering with the ordering of reports, honest

¶

¶

¶

¶

*

¶

*

¶

¶

¶



clients incorporate the ordering-sensitive parameters (time, nonce)

into the AAD for HPKE encryption. Note that this strategy may result

in dropping reports that happen to have the same timestamp and nonce

value.

Aggregators prevent the same report from being used in multiple

batches (except as required by the protocol) by only responding to

valid collect requests, as described in Section 4.4.1.

5. Operational Considerations

PPM protocols have inherent constraints derived from the tradeoff

between privacy guarantees and computational complexity. These

tradeoffs influence how applications may choose to utilize services

implementing the specification.

5.1. Protocol participant capabilities

The design in this document has different assumptions and

requirements for different protocol participants, including clients,

aggregators, and collectors. This section describes these

capabilities in more detail.

5.1.1. Client capabilities

Clients have limited capabilities and requirements. Their only

inputs to the protocol are (1) the parameters configured out of band

and (2) a measurement. Clients are not expected to store any state

across any upload flows, nor are they required to implement any sort

of report upload retry mechanism. By design, the protocol in this

document is robust against individual client upload failures since

the protocol output is an aggregate over all inputs.

5.1.2. Aggregator capabilities

Helpers and leaders have different operational requirements. The

design in this document assumes an operationally competent leader,

i.e., one that has no storage or computation limitations or

constraints, but only a modestly provisioned helper, i.e., one that

has computation, bandwidth, and storage constraints. By design,

leaders must be at least as capable as helpers, where helpers are

generally required to:

Support the collect protocol, which includes validating and

aggregating reports; and

Publish and manage an HPKE configuration that can be used for the

upload protocol.

¶

¶

¶

¶

¶

¶

*

¶

*

¶



In addition, for each PPM task, helpers are required to:

Implement some form of batch-to-report index, as well as inter-

and intra-batch replay mitigation storage, which includes some

way of tracking batch report size with optional support for state

offloading. Some of this state may be used for replay attack

mitigation. The replay mitigation strategy is described in 

Section 4.4.2.

Beyond the minimal capabilities required of helpers, leaders are

generally required to:

Support the upload protocol and store reports; and

Track batch report size during each collect flow and request

encrypted output shares from helpers.

In addition, for each PPM task, leaders are required to:

Implement and store state for the form of inter- and intra-batch

replay mitigation in Section 4.4.2; and

Store helper state.

5.1.3. Collector capabilities

Collectors statefully interact with aggregators to produce an

aggregate output. Their input to the protocol is the task

parameters, configured out of band, which include the corresponding

batch window and size. For each collect invocation, collectors are

required to keep state from the start of the protocol to the end as

needed to produce the final aggregate output.

Collectors must also maintain state for the lifetime of each task,

which includes key material associated with the HPKE key

configuration.

5.2. Data resolution limitations

Privacy comes at the cost of computational complexity. While affine-

aggregatable encodings (AFEs) can compute many useful statistics,

they require more bandwidth and CPU cycles to account for finite-

field arithmetic during input-validation. The increased work from

verifying inputs decreases the throughput of the system or the

inputs processed per unit time. Throughput is related to the

verification circuit's complexity and the available compute-time to

each aggregator.

Applications that utilize proofs with a large number of

multiplication gates or a high frequency of inputs may need to limit

¶

*

¶

¶

* ¶

*

¶

¶

*

¶

* ¶

¶

¶

¶



inputs into the system to meet bandwidth or compute constraints.

Some methods of overcoming these limitations include choosing a

better representation for the data or introducing sampling into the

data collection methodology.

[[TODO: Discuss explicit key performance indicators, here or

elsewhere.]]

5.3. Aggregation utility and soft batch deadlines

A soft real-time system should produce a response within a deadline

to be useful. This constraint may be relevant when the value of an

aggregate decreases over time. A missed deadline can reduce an

aggregate's utility but not necessarily cause failure in the system.

An example of a soft real-time constraint is the expectation that

input data can be verified and aggregated in a period equal to data

collection, given some computational budget. Meeting these deadlines

will require efficient implementations of the input-validation

protocol. Applications might batch requests or utilize more

efficient serialization to improve throughput.

Some applications may be constrained by the time that it takes to

reach a privacy threshold defined by a minimum number of input

shares. One possible solution is to increase the reporting period so

more samples can be collected, balanced against the urgency of

responding to a soft deadline.

5.4. Protocol-specific optimizations

Not all PPM tasks have the same operational requirements, so the

protocol is designed to allow implementations to reduce operational

costs in certain cases.

5.4.1. Reducing storage requirements

In general, the aggregators are required to keep state for all valid

reports for as long as collect requests can be made for them. In

particular, the aggregators must store a batch as long as the batch

has not been queried more than max_batch_lifetime times. However, it

is not always necessary to store the reports themselves. For schemes

like Prio in which the input-validation protocol is only run once

per input share, each aggregator only needs to store the aggregate

output share for each possible batch interval, along with the number

of times the output share was used in a batch. (The helper may store

its output shares in its encrypted state, thereby offloading this

state to the leader.) This is due to the requirement that the batch

interval respect the boundaries defined by the PPM parameters. (See 

Section 4.4.1.)

¶

¶

¶

¶

¶

¶

¶



6. Security Considerations

Prio assumes a powerful adversary with the ability to compromise an

unbounded number of clients. In doing so, the adversary can provide

malicious (yet truthful) inputs to the aggregation function. Prio

also assumes that all but one server operates honestly, where a

dishonest server does not execute the protocol faithfully as

specified. The system also assumes that servers communicate over

secure and mutually authenticated channels. In practice, this can be

done by TLS or some other form of application-layer authentication.

In the presence of this adversary, Prio provides two important

properties for computing an aggregation function F:

Privacy. The aggregators and collector learn only the output of

F computed over all client inputs, and nothing else.

Robustness. As long as the aggregators execute the input-

validation protocol correctly, a malicious client can skew the

output of F only by reporting false (untruthful) input. The

output cannot be influenced in any other way.

There are several additional constraints that a Prio deployment must

satisfy in order to achieve these goals:

Minimum batch size. The aggregation batch size has an obvious

impact on privacy. (A batch size of one hides nothing of the

input.)

Aggregation function choice. Some aggregation functions leak

slightly more than the function output itself.

[TODO: discuss these in more detail.]

6.1. Threat model

In this section, we enumerate the actors participating in the Prio

system and enumerate their assets (secrets that are either

inherently valuable or which confer some capability that enables

further attack on the system), the capabilities that a malicious or

compromised actor has, and potential mitigations for attacks enabled

by those capabilities.

This model assumes that all participants have previously agreed upon

and exchanged all shared parameters over some unspecified secure

channel.

¶

¶

1. 

¶

2. 

¶

¶

1. 

¶

2. 

¶

¶

¶

¶



6.1.1. Client/user

6.1.1.1. Assets

Unshared inputs. Clients are the only actor that can ever see

the original inputs.

Unencrypted input shares.

6.1.1.2. Capabilities

Individual users can reveal their own input and compromise

their own privacy.

Clients (that is, software which might be used by many users of

the system) can defeat privacy by leaking input outside of the

Prio system.

Clients may affect the quality of aggregations by reporting

false input.

Prio can only prove that submitted input is valid, not that

it is true. False input can be mitigated orthogonally to the

Prio protocol (e.g., by requiring that aggregations include

a minimum number of contributions) and so these attacks are

considered to be outside of the threat model.

Clients can send invalid encodings of input.

6.1.1.3. Mitigations

The input validation protocol executed by the aggregators

prevents either individual clients or coalitions of clients

from compromising the robustness property.

If aggregator output satisifes differential privacy Section

6.5, then all records not leaked by malicious clients are still

protected.

6.1.2. Aggregator

6.1.2.1. Assets

Unencrypted input shares.

Input share decryption keys.

Client identifying information.

Output shares.

1. 

¶

2. ¶

1. 

¶

2. 

¶

3. 

¶

*

¶

4. ¶

1. 

¶

2. 

¶

1. ¶

2. ¶

3. ¶

4. ¶



Aggregator identity.

6.1.2.2. Capabilities

Aggregators may defeat the robustness of the system by emitting

bogus output shares.

If clients reveal identifying information to aggregators (such

as a trusted identity during client authentication),

aggregators can learn which clients are contributing input.

Aggregators may reveal that a particular client

contributed input.

Aggregators may attack robustness by selectively omitting

inputs from certain clients.

For example, omitting submissions from a particular

geographic region to falsely suggest that a particular

localization is not being used.

Individual aggregators may compromise availability of the

system by refusing to emit output shares.

Input validity proof forging. Any aggregator can collude with a

malicious client to craft a proof that will fool honest

aggregators into accepting invalid input.

Aggregators can count the total number of input shares, which

could compromise user privacy (and differential privacy Section

6.5) if the presence or absence of a share for a given user is

sensitive.

6.1.2.3. Mitigations

The linear secret sharing scheme employed by the client ensures

that privacy is preserved as long as at least one aggregator

does not reveal its input shares.

If computed over a sufficient number of input shares, output

shares reveal nothing about either the inputs or the

participating clients.

Clients can ensure that aggregate counts are non-sensitive by

generating input independently of user behavior. For example, a

client should periodically upload a report even if the event

that the task is tracking has not occurred, so that the absence

of reports cannot be distinguished from their presence.

5. ¶

1. 

¶

2. 

¶

1. 

¶

2. 

¶

*

¶

3. 

¶

4. 

¶

5. 

¶

1. 

¶

2. 

¶

3. 

¶



Bogus inputs can be generated that encode "null" shares that do

not affect the aggregate output, but mask the total number of

true inputs.

Either leaders or clients can generate these inputs to mask

the total number from non-leader aggregators or all the

aggregators, respectively.

In either case, care must be taken to ensure that bogus

inputs are indistinguishable from true inputs (metadata,

etc), especially when constructing timestamps on reports.

[OPEN ISSUE: Define what "null" shares are. They should be defined

such that inserting null shares into an aggregation is effectively a

no-op. See issue#98.]

6.1.3. Leader

The leader is also an aggregator, and so all the assets,

capabilities and mitigations available to aggregators also apply to

the leader.

6.1.3.1. Capabilities

Input validity proof verification. The leader can forge proofs

and collude with a malicious client to trick aggregators into

aggregating invalid inputs.

This capability is no stronger than any aggregator's ability

to forge validity proof in collusion with a malicious

client.

Relaying messages between aggregators. The leader can

compromise availability by dropping messages.

This capability is no stronger than any aggregator's ability

to refuse to emit output shares.

Shrinking the anonymity set. The leader instructs aggregators

to construct output parts and so could request aggregations

over few inputs.

6.1.3.2. Mitigations

Aggregators enforce agreed upon minimum aggregation thresholds

to prevent deanonymizing.

If aggregator output satisfies differential privacy Section

6.5, then genuine records are protected regardless of the size

of the anonymity set.

4. 

¶

*

¶

*

¶

¶

¶

1. 

¶

*

¶

2. 

¶

*

¶

3. 

¶

1. 

¶

2. 

¶



6.1.4. Collector

6.1.4.1. Capabilities

Advertising shared configuration parameters (e.g., minimum

thresholds for aggregations, joint randomness, arithmetic

circuits).

Collectors may trivially defeat availability by discarding

output shares submitted by aggregators.

Known input injection. Collectors may collude with clients to

send known input to the aggregators, allowing collectors to

shrink the effective anonymity set by subtracting the known

inputs from the final output. Sybil attacks [Dou02] could be

used to amplify this capability.

6.1.4.2. Mitigations

Aggregators should refuse shared parameters that are trivially

insecure (i.e., aggregation threshold of 1 contribution).

If aggregator output satisfies differential privacy Section

6.5, then genuine records are protected regardless of the size

of the anonymity set.

6.1.5. Aggregator collusion

If all aggregators collude (e.g. by promiscuously sharing

unencrypted input shares), then none of the properties of the system

hold. Accordingly, such scenarios are outside of the threat model.

6.1.6. Attacker on the network

We assume the existence of attackers on the network links between

participants.

6.1.6.1. Capabilities

Observation of network traffic. Attackers may observe messages

exchanged between participants at the IP layer.

The time of transmission of input shares by clients could

reveal information about user activity.

For example, if a user opts into a new feature, and the

client immediately reports this to aggregators, then

just by observing network traffic, the attacker can

infer what the user did.

1. 

¶

2. 

¶

3. 

¶

1. 

¶

2. 

¶

¶

¶

1. 

¶

1. 

¶

*

¶



Observation of message size could allow the attacker to

learn how much input is being submitted by a client.

For example, if the attacker observes an encrypted

message of some size, they can infer the size of the

plaintext, plus or minus the cipher block size. From

this they may be able to infer which aggregations the

user has opted into or out of.

Tampering with network traffic. Attackers may drop messages or

inject new messages into communications between participants.

6.1.6.2. Mitigations

All messages exchanged between participants in the system

should be encrypted.

All messages exchanged between aggregators, the collector and

the leader should be mutually authenticated so that network

attackers cannot impersonate participants.

Clients should be required to submit inputs at regular

intervals so that the timing of individual messages does not

reveal anything.

Clients should submit dummy inputs even for aggregations the

user has not opted into.

[[OPEN ISSUE: The threat model for Prio --- as it's described in the

original paper and [BBCGGI19] --- considers either a malicious

client (attacking soundness) or a malicious subset of aggregators

(attacking privacy). In particular, soundness isn't guaranteed if

any one of the aggregators is malicious; in theory it may be

possible for a malicious client and aggregator to collude and break

soundness. Is this a contingency we need to address? There are

techniques in [BBCGGI19] that account for this; we need to figure

out if they're practical.]]

6.2. Client authentication or attestation

[TODO: Solve issue#89]

6.3. Anonymizing proxies

Client reports can contain auxiliary information such as source IP,

HTTP user agent or in deployments which use it, client

authentication information, which could be used by aggregators to

identify participating clients or permit some attacks on robustness.

This auxiliary information could be removed by having clients submit

reports to an anonymizing proxy server which would then use Oblivous

2. 

¶

*

¶

2. 

¶

1. 

¶

2. 

¶

3. 

¶

4. 

¶

¶

¶



HTTP [I-D.thomson-http-oblivious] to forward inputs to the PPM

leader, without requiring any server participating in PPM to be

aware of whatever client authentication or attestation scheme is in

use.

6.4. Batch parameters

An important parameter of a PPM deployment is the minimum batch

size. If an aggregation includes too few inputs, then the outputs

can reveal information about individual participants. Aggregators

use the batch size field of the shared task parameters to enforce

minimum batch size during the collect protocol, but server

implementations may also opt out of participating in a PPM task if

the minimum batch size is too small. This document does not specify

how to choose minimum batch sizes.

The PPM parameters also specify the maximum number of times a report

can be used. Some protocols, such as Hits, require reports to be

used in multiple batches spanning multiple collect requests.

6.5. Differential privacy

Optionally, PPM deployments can choose to ensure their output F

achieves differential privacy [Vad16]. A simple approach would

require the aggregators to add two-sided noise (e.g. sampled from a

two-sided geometric distribution) to outputs. Since each aggregator

is adding noise independently, privacy can be guaranteed even if all

but one of the aggregators is malicious. Differential privacy is a

strong privacy definition, and protects users in extreme

circumstances: Even if an adversary has prior knowledge of every

input in a batch except for one, that one record is still formally

protected.

[OPEN ISSUE: While parameters configuring the differential privacy

noise (like specific distributions / variance) can be agreed upon

out of band by the aggregators and collector, there may be benefits

to adding explicit protocol support by encoding them into task

parameters.]

6.6. Robustness in the presence of malicious servers

Most PPM protocols, including Prio and Hits, are robust against

malicious clients, but are not robust against malicious servers. Any

aggregator can simply emit bogus output shares and undetectably

spoil aggregates. If enough aggregators were available, this could

be mitigated by running the protocol multiple times with distinct

subsets of aggregators chosen so that no aggregator appears in all

subsets and checking all the outputs against each other. If all the

protocol runs do not agree, then participants know that at least one

aggregator is defective, and it may be possible to identify the

¶

¶

¶

¶

¶



defector (i.e., if a majority of runs agree, and a single aggregator

appears in every run that disagrees). See #22 for discussion.

6.7. Infrastructure diversity

Prio deployments should ensure that aggregators do not have common

dependencies that would enable a single vendor to reassemble inputs.

For example, if all participating aggregators stored unencrypted

input shares on the same cloud object storage service, then that

cloud vendor would be able to reassemble all the input shares and

defeat privacy.

6.8. System requirements

6.8.1. Data types

7. IANA Considerations

7.1. Protocol Message Media Types

This specification defines the following protocol messages, along

with their corresponding media types types:

HpkeConfig Section 4.1: "application/ppm-hpke-config"

Report Section 4.2.2: "message/ppm-report"

AggregateReq Section 4.3.1: "message/ppm-aggregate-req"

AggregateResp Section 4.3.1: "message/ppm-aggregate-resp"

OutputShareReq Section 4.3.2: "message/ppm-output-share-req"

OutputShareResp Section 4.3.2: "message/ppm-output-share-resp"

CollectReq Section 4.4: "message/ppm-collect-req"

CollectResp Section 4.4: "message/ppm-collect-req"

The definition for each media type is in the following subsections.

Protocol message format evolution is supported through the

definition of new formats that are identified by new media types.

IANA [shall update / has updated] the "Media Types" registry at

https://www.iana.org/assignments/media-types with the registration

information in this section for all media types listed above.

[OPEN ISSUE: Solicit review of these allocations from domain

experts.]

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

https://github.com/abetterinternet/ppm-specification/issues/22


Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

7.1.1. "application/ppm-hpke-config" media type

application

ppm-hpke-config

N/A

None

only "8bit" or "binary" is permitted

see Section 4.1

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

7.1.2. "message/ppm-report" media type

message

ppm-report

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

None

only "8bit" or "binary" is permitted

see Section 4.2.2

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

7.1.3. "message/ppm-aggregate-req" media type

message

ppm-aggregate-req

N/A

None

only "8bit" or "binary" is permitted

see Section 4.3.1

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

7.1.4. "message/ppm-aggregate-resp" media type

application

ppm-aggregate-resp

N/A

None

only "8bit" or "binary" is permitted

see Section 4.3.1

N/A

this specification

N/A

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

7.1.5. "message/ppm-output-share-req" media type

application

ppm-output-share-req

N/A

None

only "8bit" or "binary" is permitted

see Section 4.3.2

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

7.1.6. "message/ppm-output-share-resp" media type

application

ppm-output-share-resp

N/A

None

only "8bit" or "binary" is permitted

see Section 4.3.2

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

see Authors' Addresses section

IESG

7.1.7. "message/ppm-collect-req" media type

application

ppm-collect-req

N/A

None

only "8bit" or "binary" is permitted

see Section 4.4

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

7.1.8. "message/ppm-collect-req" media type

application

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

ppm-collect-req

N/A

None

only "8bit" or "binary" is permitted

see Section 4.4

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

7.2. Upload Extension Registry

This document requests creation of a new registry for extensions to

the Upload protocol. This registry should contain the following

columns:

[TODO: define how we want to structure this registry when the time

comes]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



[I-D.irtf-cfrg-hpke]

[I-D.thomson-http-oblivious]

[RFC2119]

[RFC2818]

[RFC3553]

7.3. URN Sub-namespace for PPM (urn:ietf:params:ppm)

The following value [will be/has been] registered in the "IETF URN

Sub- namespace for Registered Protocol Parameter Identifiers"

registry, following the template in [RFC3553]:

Initial contents: The types and descriptions in the table in Section

3.1 above, with the Reference field set to point to this

specification.

8. Acknowledgements

The text in Section 3 is based extensively on [RFC8555]

9. References

9.1. Normative References

Barnes, R. L., Bhargavan, K., Lipp, B., and C.

A. Wood, "Hybrid Public Key Encryption", Work in

Progress, Internet-Draft, draft-irtf-cfrg-hpke-12, 2

September 2021, <https://datatracker.ietf.org/doc/html/

draft-irtf-cfrg-hpke-12>. 

Thomson, M. and C. A. Wood, "Oblivious

HTTP", Work in Progress, Internet-Draft, draft-thomson-

http-oblivious-02, 24 August 2021, <https://

datatracker.ietf.org/doc/html/draft-thomson-http-

oblivious-02>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>. 

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/rfc/

rfc2818>. 

Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An

IETF URN Sub-namespace for Registered Protocol

¶

Registry name:  ppm

Specification:  [[THIS DOCUMENT]]

Repository:  http://www.iana.org/assignments/ppm

Index value:  No transformation needed.

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-12
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-12
https://datatracker.ietf.org/doc/html/draft-thomson-http-oblivious-02
https://datatracker.ietf.org/doc/html/draft-thomson-http-oblivious-02
https://datatracker.ietf.org/doc/html/draft-thomson-http-oblivious-02
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2818
https://www.rfc-editor.org/rfc/rfc2818


[RFC5861]

[RFC7234]

[RFC7807]

[RFC8174]

[RFC8446]

[BBCGGI19]

[BBCGGI21]

[CGB17]

[Dou02]

[RFC8555]

Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June

2003, <https://www.rfc-editor.org/rfc/rfc3553>. 

Nottingham, M., "HTTP Cache-Control Extensions for Stale

Content", RFC 5861, DOI 10.17487/RFC5861, May 2010, 

<https://www.rfc-editor.org/rfc/rfc5861>. 

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching", 

RFC 7234, DOI 10.17487/RFC7234, June 2014, <https://

www.rfc-editor.org/rfc/rfc7234>. 

Nottingham, M. and E. Wilde, "Problem Details for HTTP

APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016, 

<https://www.rfc-editor.org/rfc/rfc7807>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>. 

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, 

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>. 

9.2. Informative References

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N.,

and Y. Ishai, "Zero-Knowledge Proofs on Secret-Shared

Data via Fully Linear PCPs", 5 January 2021, <https://

eprint.iacr.org/2019/188>. 

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N.,

and Y. Ishai, "Lightweight Techniques for Private Heavy

Hitters", 5 January 2021, <https://eprint.iacr.org/

2021/017>. 

Corrigan-Gibbs, H. and D. Boneh, "Prio: Private, Robust,

and Scalable Computation of Aggregate Statistics", 14

March 2017, <https://crypto.stanford.edu/prio/paper.pdf>.

Douceur, J., "The Sybil Attack", 10 October 2022, 

<https://link.springer.com/chapter/

10.1007/3-540-45748-8_24>. 

Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.

Kasten, "Automatic Certificate Management Environment

https://www.rfc-editor.org/rfc/rfc3553
https://www.rfc-editor.org/rfc/rfc5861
https://www.rfc-editor.org/rfc/rfc7234
https://www.rfc-editor.org/rfc/rfc7234
https://www.rfc-editor.org/rfc/rfc7807
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8446
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://crypto.stanford.edu/prio/paper.pdf
https://link.springer.com/chapter/10.1007/3-540-45748-8_24
https://link.springer.com/chapter/10.1007/3-540-45748-8_24


[Vad16]

(ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019, 

<https://www.rfc-editor.org/rfc/rfc8555>. 

Vadhan, S., "The Complexity of Differential Privacy", 9

August 2016, <https://privacytools.seas.harvard.edu/

files/privacytools/files/complexityprivacy_1.pdf>. 

Authors' Addresses

Tim Geoghegan

ISRG

Email: timgeog+ietf@gmail.com

Christopher Patton

Cloudflare

Email: chrispatton+ietf@gmail.com

Eric Rescorla

Mozilla

Email: ekr@rtfm.com

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

https://www.rfc-editor.org/rfc/rfc8555
https://privacytools.seas.harvard.edu/files/privacytools/files/complexityprivacy_1.pdf
https://privacytools.seas.harvard.edu/files/privacytools/files/complexityprivacy_1.pdf
mailto:timgeog+ietf@gmail.com
mailto:chrispatton+ietf@gmail.com
mailto:ekr@rtfm.com
mailto:caw@heapingbits.net

	Privacy Preserving Measurement
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. DISCLAIMER
	1.2. Conventions and Definitions

	2. Overview
	2.1. System Architecture
	2.2. Validating Inputs

	3. Message Transport
	3.1. Errors

	4. Protocol Definition
	4.1. Task Configuration
	4.2. Uploading Reports
	4.2.1. Key Configuration Request
	4.2.2. Upload Request
	4.2.3. Upload Extensions

	4.3. Verifying and Aggregating Reports
	4.3.1. Aggregate Request
	4.3.1.1. Leader State
	4.3.1.2. Helper State

	4.3.2. Output Share Request

	4.4. Collecting Results
	4.4.1. Validating Batch Parameters
	4.4.2. Anti-replay


	5. Operational Considerations
	5.1. Protocol participant capabilities
	5.1.1. Client capabilities
	5.1.2. Aggregator capabilities
	5.1.3. Collector capabilities

	5.2. Data resolution limitations
	5.3. Aggregation utility and soft batch deadlines
	5.4. Protocol-specific optimizations
	5.4.1. Reducing storage requirements


	6. Security Considerations
	6.1. Threat model
	6.1.1. Client/user
	6.1.1.1. Assets
	6.1.1.2. Capabilities
	6.1.1.3. Mitigations

	6.1.2. Aggregator
	6.1.2.1. Assets
	6.1.2.2. Capabilities
	6.1.2.3. Mitigations

	6.1.3. Leader
	6.1.3.1. Capabilities
	6.1.3.2. Mitigations

	6.1.4. Collector
	6.1.4.1. Capabilities
	6.1.4.2. Mitigations

	6.1.5. Aggregator collusion
	6.1.6. Attacker on the network
	6.1.6.1. Capabilities
	6.1.6.2. Mitigations


	6.2. Client authentication or attestation
	6.3. Anonymizing proxies
	6.4. Batch parameters
	6.5. Differential privacy
	6.6. Robustness in the presence of malicious servers
	6.7. Infrastructure diversity
	6.8. System requirements
	6.8.1. Data types


	7. IANA Considerations
	7.1. Protocol Message Media Types
	7.1.1. "application/ppm-hpke-config" media type
	7.1.2. "message/ppm-report" media type
	7.1.3. "message/ppm-aggregate-req" media type
	7.1.4. "message/ppm-aggregate-resp" media type
	7.1.5. "message/ppm-output-share-req" media type
	7.1.6. "message/ppm-output-share-resp" media type
	7.1.7. "message/ppm-collect-req" media type
	7.1.8. "message/ppm-collect-req" media type

	7.2. Upload Extension Registry
	7.3. URN Sub-namespace for PPM (urn:ietf:params:ppm)

	8. Acknowledgements
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses


