
LDAPEXT Working Group B. Greenblatt
Internet Draft Directory Tools and
 Application Services, Inc.
<draft-greenblatt-ldapext-style-01.txt> March 2001
Category: Informational

LDAP Extension Style Guide

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [1].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts. Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet- Drafts
 as reference material or to cite them other than as "work in
 progress."
 The list of current Internet-Drafts can be accessed at

http://www.ietf.org/ietf/1id-abstracts.txt
 The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html.

1. Abstract

 Version 3 of the Lightweight Directory Access Protocol (LDAP) as
 defined in [1] provides a base set of services. Additionally, LDAP
 provides several mechanisms by which the base set of services may be
 enhanced to provide additional services. This document describes
 the different ways that LDAP may be enhanced, and how developers can
 decide which enhancement mechanism is best suited for their
 environment. It also discusses the positives and negatives for each
 LDAP enhancement mechanism

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC-2119 [2].

3. Introduction

https://datatracker.ietf.org/doc/html/draft-greenblatt-ldapext-style-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

 There are four mechanisms for enhancing the base set of services
 offered by LDAP:

<Greenblatt> Informational û February 2001 1
 < LDAP Extension Style Guide> <Expires September 2001>

 - Controls
 - Extended Operations
 - Schema Enhancements
 - New Attribute Type Syntaxes

 Each of these enhancement mechanisms will be described separately in
 the following sections. Each section will include examples that
 show appropriate usage for that mechanism. Each section also
 includes examples that show inappropriate usage for that mechanism.

4. LDAP Controls

 An LDAP Control is a mechanism that allows additional parameters to
 be added to previously defined LDAP operations. The LDAP operations
 defined in [1] are:

 - Bind
 - Unbind
 - Search
 - Add
 - Modify
 - ModifyDN
 - Delete
 - Compare

 Each of these operations has a defined set of parameters that are
 passed in the LDAPMessage construct. A control is the preferred
 means of enhancing an existing operation. The control mechanism
 SHOULD be used when it does not fundamentally change the meaning and
 operating characteristics of an existing operation. LDAP controls
 have a criticality that is defined. The criticality field is only
 meaningful when the control is passed from the LDAP client to the
 LDAP server in the operation request. LDAP clients ignore the
 criticality field in controls that appear in operation results.

 The parameters that appear in the control reside within the
 controlValue field. The controlValue field is encoded as an
 octetString. Its value may be defined by the use of a BNF grammar
 or an ASN.1 syntax definition. If BNF is used, the use of BNF MUST
 be in conformance with the Augmented BNF definitions of [4]. No
 preference is given towards either definition.

 Whenever a new control is defined for a specific operation request,
 the specification MUST clearly specify which controls (if any) are
 allowed to be placed in the corresponding operation result.

 Furthermore, the specification SHOULD clearly specify interactions
 with other, previously-defined, extensions (using other controls).
 The specification MAY NOT restrict further extension of the
 operation by placement of additional, yet to be defined, controls."

 An example of an LDAP extension that is appropriate for
 implementation as a control is the sorted results control that can
 be used in the Search operation as defined by [5]. The Search

<Greenblatt> Informational û March 2001 2
 < LDAP Extension Style Guide> <Expires September 2001>

 operation normally returns all entries that match the supplied
 filter. The results are returned in any order that is appropriate
 for the LDAP server. The sorted results control only changes the
 order in which the matched entries are returned to the LDAP client.
 The control does not substantially change the way in which the LDAP
 server implements the Search operation. It is left up to the client
 to decide on the criticality of the control. Unless there is an
 overwhelming reason why the Search should not be performed if the
 sorted results control then the criticality should be FALSE. As a
 general rule, unless the results of the operation would be useless
 (or potentially harmful) control criticality SHOULD be given the
 value FALSE.

 The Search request includes a parameter that allows the client to
 request whether or not aliases are dereferenced. RFC 2256 defines
 an object class called organizationalRole. This object class is
 similar to the alias object class in that it includes a roleOccupant
 attribute that holds one or more distinguished names of other
 entries in the directory. The search request does not include a
 parameter to automatically dereference roleOccupants. Thus, it is
 possible to define a control to request whether or not to
 dereference roleOccupants. If this request is made, and is
 supported by the LDAP server, then the LDAP server handles the
 organizationalRole entries in a manner similar to the way in which
 it handles alias entries in the presence of the derefAliases
 parameter. The controlValue can be defined using this ASN.1:

 derefOrganizationRoles ENUMERATED {
 neverDerefRoles (0),
 derefInSearching (1),
 derefFindingBaseObj (2),
 derefAlways (3)}

 Similarly, it can be defined using this BNF:

 derefOrganizationalRoles =
 neverDerefRoles | derefInSearching | derefFindingBaseObj |
 derefAlways
 neverDerefRoles = ô0ö

https://datatracker.ietf.org/doc/html/rfc2256

 derefInSearching = ô1ö
 derefFindingBaseObj = ô2ö
 derefAlways = ô3ö

 The handling of the control value is similar to the way in which the
 derefAliases parameter value is handled. The major difference is
 that the roleOccupant attribute may be multi-valued, and the Search
 operation may fan out in multiple directions, which would not be the
 case with the single-valued aliasedObjectName attribute. The
 question arises as to whether the dereference organizational role
 control fundamentally changes the behavior of the Search operation.
 There is some change in the behavior due to the multiway fan out of
 the Search operation. So, is this change "fundamental"? In this
 situation, the answer is no. The behavior is so similar to the

<Greenblatt> Informational û March 2001 3
 < LDAP Extension Style Guide> <Expires September 2001>

 behavior of the derefAliases parameter already in the Search request
 that the change is not seen to be fundamental.

 Consider the LDAP Extension to copy an entry or subtree from one
 part of the Directory Information Tree (DIT) to another. This
 extension can be defined as a control in the ModifyDN operation.
 This operation already moves an entry or subtree from one part of
 the tree to another. A control can be defined to indicate that
 instead of moving the entries from one part of the DIT to another,
 the entries in the named subtree are copied to the new part of the
 DIT. This control could be defined using this ASN.1:

 copySubtreeControl ::= SEQUENCE {
 target LDAPDN,
 filter Filter OPTIONAL}

 Similarly, it can be defined using this BNF:

 copySubtreeRequest = source SEP target SEP filter
 target = LDAPDN ; defined according to [6]
 filter = UTF-8String ; defined according to [9]
 SEP = ô;ö

 If the filter is present in the request, only those objects in the
 source subtree that match the filter are copied to the target
 subtree. Even though the copy subtree extension can be defined
 using this control, it should not be defined this way. This is due
 to the fact that it fundamentally changes the behavior of the
 modifyDN operation. As it is currently defined, the modifyDN
 operation is logically just a change in name that affects the entry
 named in the ôentryö parameter of the modifyDN operation. The
 addition of the copy subtree control would fundamentally change this

 behavior. Thus, the copy subtree extension should not be
 implemented as a control, and instead by implemented as an extended
 operation.

 The definition of a control SHOULD be defined in such a manner that
 it is extensible. For extensibility, extra binary fields SHOULD be
 built into the definition. In ASN.1, use of a SEQUENCE is helpful.
 In order to allow for extensibility, the copySubtreeControl can be
 defined as:

 copySubtreeControl ::= SEQUENCE {
 target LDAPDN,
 filter Filter OPTIONAL,
 extensions [0] OCTET STRING OPTIONAL}

 Similarly, using ABNF the request can be defined as:

 copySubtreeRequest = source SEP target SEP filter SEP extensions
 target = LDAPDN ; defined according to [6]
 filter = UTF-8String ; defined according to [9]
 extensions = binary ; arbitrary binary data

<Greenblatt> Informational û March 2001 4
 < LDAP Extension Style Guide> <Expires September 2001>

 Note that servers SHOULD not send back controls in an operation
 response that have not been requested by the client. In the event
 that a client does receive an unsolicited control in a response, the
 client MAY ignore the control.

4.1 Controls on the Bind

 Special care should be taken when enhancing the Bind operation with
 controls. Note that controls used in the Bind operation are not
 protected by the privacy and integrity negotiated by the bind
 operation itself. This must be taken into consideration. If
 controls are passed on the Bind that need privacy and/or integrity
 protection, a TLS session SHOULD be negotiated prior to the Bind.

5. LDAP Extended Operations

 An LDAP Extended Operation is a mechanism that allows for new LDAP
 operations to be defined to enhance the base set listed above. The
 extended operation describes the parameters that are passed in the
 LDAPMessage construct. The extended operation MUST define both the
 ExtendedRequest message that is passed from the LDAP client to the
 LDAP server, as well as the ExtendedResult message that is passed
 from the LDAP server back to the LDAP client. The extended
 operation mechanism SHOULD be used when its operating
 characteristics are fundamentally different from the base set of
 LDAP operations.

 The parameters that appear in the extension reside within the
 requestValue field. The requestValue field is encoded as an
 octetString. Its value may be defined by the use of a BNF grammar
 or an ASN.1 syntax definition. If BNF is used, the use of BNF MUST
 be in conformance with the Augmented BNF definitions of [4]. No
 preference is given towards either definition.

 Consider the copy subtree extension mentioned above. Since it
 fundamentally changes the behavior of the base LDAP operations, it
 will be defined using an extended operation. The requestValue has
 this ASN.1:

 copySubtreeRequest ::= SEQUENCE {
 source LDAPDN,
 target LDAPDN,
 filter Filter OPTIONAL}

 Similarly, it can be defined using this BNF:

 copySubtreeRequest = source SEP target SEP filter
 source = LDAPDN ; defined according to [6]
 target = LDAPDN ; defined according to [6]
 filter = UTF-8String ; defined according to [9]

 Notice that the source parameter is added here as opposed to the
 previously defined control. This is due to the fact that the

<Greenblatt> Informational û March 2001 5
 < LDAP Extension Style Guide> <Expires September 2001>

 previously defined control made use of the ôentryö parameter of the
 modifyDN operation.

 The definition of an extended operation should be defined in such a
 manner that it is extensible. For extensibility, extra binary
 fields SHOULD be built into the definition. In ASN.1, use of a
 SEQUENCE is helpful. In order to allow for extensibility, the
 copySubtreeRequest can be defined as:

 copySubtreeRequest ::= SEQUENCE {
 source LDAPDN,
 target LDAPDN,
 filter Filter OPTIONAL,
 extensions [0] OCTET STRING OPTIONAL}

 Similarly, using ABNF the request can be defined as:

 copySubtreeRequest = source SEP target SEP filter SEP extensions
 source = LDAPDN ; defined according to [6]
 target = LDAPDN ; defined according to [6]

 filter = UTF-8String ; defined according to [9]
 extensions = binary ; arbitrary binary data

 Note that servers MUST not send back extended responses that have
 not been requested by the client. In the event that a client does
 receive an unsolicited extended response in a response, the client
 MAY ignore the extended response.

6. LDAP Schema Extensions

 The base set of LDAP Object Classes and Attribute Types are defined
 in [2] and [3]. Schema is the collection of attribute type
 definitions, object class definitions and other information that a
 server uses to determine how to match a filter or attribute value
 assertion (in a compare operation) against the attributes of an
 entry, and whether to permit add and modify operations. Schema
 extensions are the preferred mechanism of enhancing LDAP. This is
 due to the fact that all LDAP servers allow their base schemas to be
 enhanced. Furthermore, it is a requirement that the LDAP server
 MUST publish the schema supported by an LDAP server.

 New attribute types MUST not be added to existing object classes.
 New object classes that are defined SHOULD use existing attribute
 types when the data elements are substantially similar to existing
 data elements that have previously been defined. The use of schema
 extensions allows normal LDAP operations to be used to supply
 enhancements to the set of base LDAP services. For example, the
 sorted results control was previously mentioned. This control is
 only useful in dealing with whole attributes that appear within
 entries.

 Consider a search that wants to retrieve the list of users by
 location code (a subfield of the phone number), but sorted by
 surname within location code. The telephoneNumber attribute type is

<Greenblatt> Informational û March 2001 6
 < LDAP Extension Style Guide> <Expires September 2001>

 defined as a character string that is assumed to contain the
 location code. Unfortunately, the location code is not broken out
 from the telephone number, so it is not generally possible to
 algorithmically determine the location code from examining the
 telephone number attribute. Furthermore, the telephoneNumber is a
 multi-valued attribute. Each attribute value might contain a
 logically different location code. In order to adequately support
 this feature, a new attribute type can be defined to hold the
 primary location code of the entry. This can be defined as follows:

 (tempOID NAME 'locationCodeInformation' SUP top AUXILIARY
 MUST primaryLocationCode)

 (tempOID NAME 'primaryLocationCode' SUP ænameÆ SINGLE-VALUE)

 Note that real object identifiers are not used in the above
 definitions, since this document is not actually defining the
 locationCodeInformation object class. The desired sort can now be
 achieved by using the primaryLocationCode attribute type and the
 surname attribute type within the sort results control. This sort
 only works if the locationCodeInformation is populated within the
 DIT. The LDAP server does not automatically populate the
 primaryLocationCode using other attributes, so it is incumbent upon
 the LDAP client to populate the primaryLocationCode attribute if the
 sort is to work as desired.

7. New Attribute Type Syntaxes

 The base LDAP Syntaxes are defined in [2]. It is occasionally the
 case that there is no defined syntax that exactly matches a
 previously defined syntax. When this circumstance arises, there are
 two alternatives:

 - Define a new attribute syntax
 - Use a binary syntax, and define a BNF grammar for the
 attributes that fits inside the binary syntax.

 Either of these alternatives defines new attribute syntaxes. The
 use of BNF is preferred in environments where the LDAP Server is not
 specifically required to understand the syntax. Furthermore, there
 is no requirement of compliant LDAP servers to be able to support
 attribute type syntaxes that are defined outside of [2]. Thus, the
 use of BNF on top of existing attribute syntaxes is preferred as it
 is more likely to be interoperable among LDAP servers supplied form
 multiple sources. The use of BNF MUST be in conformance with the
 Augmented BNF definitions of [4]. When a binary syntax is chosen,
 the Octet String syntax defined in [2] which uses
 1.3.6.1.4.1.1466.115.121.1.40 as the object identifier SHOULD be
 used as the wrapper attribute syntax. When the data to be stored is
 character data, the Directory String syntax defined in [2], which
 uses 1.3.6.1.4.1.1466.115.121.1.15 as the object identifier SHOULD
 be used instead.

<Greenblatt> Informational û March 2001 7
 < LDAP Extension Style Guide> <Expires September 2001>

 Since not all LDAP servers support (or easily support) the addition
 of new attribute type syntaxes, the use of the attribute type
 syntaxes is not always available. The use of an Octet String or a
 Directory String in combination with BNF is normally a better
 alternative, and SHOULD be used. In defining the BNF, strong
 consideration should be paid to matching rules. In string data, the

 BNF SHOULD be defined so that the substring matching rule is still
 effective. For example, [2] defines the postal address syntax as a
 Directory String syntax that uses the following BNF:

 postal-address = dstring *("$" dstring)

 An example character string using this BNF is:

 1234 Main St.$Anytown, CA 12345$USA

 This definition allows substring matching to still be effective,
 especially through its use of separation characters. For example,
 the ô$Anytownö string could be used as the ôANYö sub-filter to find
 all entries with a postal address in Anytown. Use of this sub-
 filter would not match those entries that have a postal address on
 ôAnytown Blvdö that are not actually in he city Anytown.

 Use of ASN.1 for new attribute type syntaxes SHOULD only be used in
 the case of very complex data types, and only then after serious
 consideration of an ABNF representation. Whenever ASN.1 is used for
 specifying a new attribute type syntax, the ASN.1 encoding mechanism
 MUST also be specified (DER encoding is STRONGLY preferred).

8. The Grey Area

 In some situations it is not clear whether to use a control or an
 extended operation. Consider an LDAP extension that would delete an
 entire subtree instead of deleting a single entry as the current
 Delete operation does. This could be implemented as either a
 control used with the existing Delete operation or a new extended
 operation. In fact Internet drafts have been proposed using both
 methodologies [7], [8]. Persuasive arguments can be made about
 implementing this LDAP extension either as an extended operation or
 a control. An operation on a subtree is different than an operation
 than an operation on an individual entry. But, are the operations
 different enough to implement the subtree delete operation as an
 extended operation.

 A good guideline to use for deciding if the use of a control is
 appropriate is to examine what would happen if an LDAP server that
 did not support it received the control. If the criticality field
 is set to TRUE, then the LDAP server would return the error code
 unsupportedCriticalExtension. If the criticality field is set to
 FALSE, then the LDAP server ignores the control and operates on the
 remainder of the LDAP operation request. If the LDAP server
 attempts to implement the operation with the non-critical control
 and would always return an error result code, then the LDAP

<Greenblatt> Informational û March 2001 8
 < LDAP Extension Style Guide> <Expires September 2001>

 extension SHOULD NOT be implemented as a control, but instead SHOULD
 be implemented as an extended operation.

 If there are many scenarios in which an LDAP server ignoring a non-
 critical control would still be able to successfully implement the
 operation, then the LDAP extension SHOULD be implemented as a
 control. If there are only a few scenarios in which an LDAP server
 ignoring a non-critical control would still be able to successfully
 implement the operation, then consensus should be sought from the
 LDAP community. The smaller the number of valid scenarios in which
 an LDAP server ignoring a non-critical control would still be able
 to successfully implement the operation, then greater consideration
 should be given to the use of an extended operation. Similarly, the
 greater the number of valid scenarios in which an LDAP server
 ignoring a non-critical control would still be able to successfully
 implement the operation, then greater consideration should be given
 to the use of a control. In the case of the subtree delete
 extension, the only scenario in which an LDAP server ignoring the
 control would still be able to successfully implement the delete
 operation is when the entry named in the DelRequest is a leaf entry.
 Using the guideline mentioned above, consideration should be given
 to the use of an extended operation for the implementation of the
 delete subtree extension.

9. Security Considerations

 Implementors and administrators should be aware that à

10. References

 1 Bradner, S., "The Internet Standards Process -- Revision 3", BCP
9, RFC 2026, October 1996.

 2 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997

 [1] Wahl, M., Kille, S. and Howes, T., "Lightweight Directory
 Access Protocol (v3)", Internet Standard, December, 1997.

RFC2251.
 [2] Wahl, M., Coulbeck, A., Howes, T. and Kille, S., "Lightweight
 Directory Access Protocol (v3), Attribute Syntax Definitions",
 Internet Standard, December, 1997. RFC2252.
 [3] Wahl, M., "A Summary of the X.500(96) User Schema for use with
 LDAPv3", Internet Standard, December, 1997. RFC2256.
 [4] Crocker, D., and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.
 [5] Herron, A., et. al, "LDAP Control Extension for Server Side

https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2252
https://datatracker.ietf.org/doc/html/rfc2256
https://datatracker.ietf.org/doc/html/rfc2234

 Sorting of Search Resultsö, RFC NNNN, July 2000.

<Greenblatt> Informational û March 2001 9
 < LDAP Extension Style Guide> <Expires September 2001>

 [6] Wahl, M., Kille, S. and Howes, T., "Lightweight Directory
 Access Protocol (v3): UTF-8 String Representation of
 Distinguished Names", Internet Standard, December, 1997.

RFC2253.
 [7] Greenblatt, B, ôSimple Operations on Subtrees (for LDAP)ö,
 Internet Draft (Work in Progress), August 2000, draft-greenblatt-

ldapext-sos-01.
 [8] Armijo, M, ôLDAP Tree Delete Controlö, Internet Draft (Work in
 Progress), expired, ftp://ftp.isi.edu/internet-drafts/draft-

armijo-ldap-treedelete-03.txt.
 [9] Howes, T., "The String Representation of LDAP Search Filters",
 Internet Standard, December, 1997. RFC2254.

10. Acknowledgments

 Thanks to Kurt Zeilenga for an informal review prior to submission.

11. Author's Addresses

 Bruce Greenblatt
 Directory Tools and Application Services, Inc.
 6841 Heaton Moor Drive
 Phone: +1-408-390-4776
 Email: bgreenblatt@directory-applications.com

https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/draft-greenblatt-ldapext-sos-01
https://datatracker.ietf.org/doc/html/draft-greenblatt-ldapext-sos-01
ftp://ftp.isi.edu/internet-drafts/draft-armijo-ldap-treedelete-03.txt
ftp://ftp.isi.edu/internet-drafts/draft-armijo-ldap-treedelete-03.txt
https://datatracker.ietf.org/doc/html/rfc2254

<Greenblatt> Informational û March 2001 10
 < LDAP Extension Style Guide> <Expires September 2001>

Full Copyright Statement

 "Copyright (C) The Internet Society (date). All Rights Reserved.
 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English. The limited permissions granted above are perpetual and
 will not be revoked by the Internet Society or its successors or
 assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

<Greenblatt> Informational û March 2001 11

