
Network Working Group B. Greevenbosch
Internet-Draft R. Sun
Intended status: Informational Huawei Technologies
Expires: June 19, 2015 C. Vigano
 University of Bremen
 December 16, 2014

CBOR data definition language: a notational convention to express CBOR
data structures.

draft-greevenbosch-appsawg-cbor-cddl-04

Abstract

 This document proposes a notational convention to express CBOR data
 structures. Its main goal is to provide an easy and unambiguous way
 to express structures for protocol messages and data formats that use
 CBOR.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 19, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Greevenbosch, et al. Expires June 19, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CBOR notation December 2014

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Requirements notation . 3
2. Introduction . 3
3. Definitions . 3
4. Syntax . 3
4.1. General conventions 4
4.2. Keywords for primitive datatypes 4
4.3. Arrays . 5
4.4. Structures . 5
4.5. Maps . 6
4.5.1. Explicit Maps . 6
4.5.2. Implicit Maps . 6

4.6. Tags . 7
4.7. Ordering . 8

5. Examples . 9
5.1. Moves in a computer game 9
5.2. Fruit . 11

6. Using CDDL . 14
6.1. As a guide to a human user 14
6.2. For automated verification of CBOR data structure 14
6.3. For data analytics tools 14

7. Open Issues . 15
8. Change Log . 15
9. Security considerations 16
10. IANA considerations . 16
11. Acknowledgements . 16
Appendix A. ABNF grammar . 16
Appendix B. CBOR keywords . 18
12. Normative References . 18

 Authors' Addresses . 18

Greevenbosch, et al. Expires June 19, 2015 [Page 2]

Internet-Draft CBOR notation December 2014

1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 In this document, a notational convention to express CBOR [RFC7049]
 data structures is defined.

 The main goal for the convention is to provide a unified notation
 that can be used when defining protocols that use CBOR.

 The CBOR notational convention has the following goals:
 (G1) Provide an unambiguous description of a CBOR data structures.
 (G2) Easy for humans to read and write.
 (G3) Flexibility to express the freedoms of choice in the CBOR data
 format.
 (G4) Possibility to restrict format choices where appropriate.
 (G5) Able to express common CBOR datatypes and structures.
 (G6) Human and machine readable and processable.
 (G7) Automatic data format compliancy verification.
 (G8) Extraction of specific elements from CBOR data for further
 processing.

 This document has the following structure:

 The syntax of CDDL is defined in Section 4. Examples of CDDL and
 related CBOR data instances are defined in Section 5. Section 6
 discusses usage of CDDL. A formal definition of CDDL using ABNF
 grammar is provided in Appendix A. Finally, CBOR keywords are listed
 in Appendix B.

3. Definitions

 The following contains a list of used words in this document:
 "datatype" defines the format of a variable.
 "variable" a data component encoded in CBOR.

4. Syntax

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7049

Greevenbosch, et al. Expires June 19, 2015 [Page 3]

Internet-Draft CBOR notation December 2014

4.1. General conventions

 The basic syntax is as follows:
 o Each field has a name and a datatype.
 o The name is written first, followed by a colon and then the
 datatype. The declarations is finished with a semicolon.
 Whitespace may appear around the colon and semicolon, as well as
 in front of the name.
 o The datatype in itself MAY be a name of a structure or a map.
 o A name or datatype can consist of any of the characters from the
 set {'A', ..., 'Z', 'a', ..., 'z', '0', ..., '9', '_'}.
 * Names and datatypes SHALL NOT start with a numerical character.
 * Names and datatypes SHALL NOT equal a CDDL keyword, as listed
 in Appendix B.
 * Names and datatypes are case sensitive.
 * Names and datatypes do not appear in the actual CBOR encoding.
 * It is RECOMMENDED to start a name with a lower case letter, and
 a datatype with a capital.
 o Comments are preceded by a '#' character and finish with the EOL
 character.
 o Hexadecimal numbers are preceded by '0x' (without quotes, lower
 case x), and are case insensitive. Similarly, binary numbers are
 preceded by '0b'.
 o Strings are enclosed by double quotation '"' characters. They
 follow the conventions for strings as defined in [RFC7159],
 section 7.
 o CDDL uses UTF-8 [RFC3629] for its encoding.

4.2. Keywords for primitive datatypes

 The following keywords for primitive datatypes are defined:
 "bool" Boolean value (major type 7, additional information 20 or
 21).
 "bstr" A byte string (major type 2).
 "float(16)" IEEE 754 half-precision float (major type 7, additional
 information 25).
 "float(32)" IEEE 754 single-precision float (major type 7,
 additional information 26).
 "float(64)" IEEE 754 double-precision float (major type 7,
 additional information 27).
 "int" An unsigned integer (major type 0) or a negative integer
 (major type 1).
 "nint" A negative integer (major type 1).
 "simple" Simple value (major type 7, additional information 24).

https://datatracker.ietf.org/doc/html/rfc7159#section-7
https://datatracker.ietf.org/doc/html/rfc7159#section-7
https://datatracker.ietf.org/doc/html/rfc3629

Greevenbosch, et al. Expires June 19, 2015 [Page 4]

Internet-Draft CBOR notation December 2014

 "tstr" Text string (major type 3)
 "uint" An unsigned integer (major type 0).

 In addition, Section 4.6 defines datatypes associated with CBOR tags.

4.3. Arrays

 Arrays can be of fixed length or of variable length. Both fixed
 length and variable length arrays can be implemented as definite and
 indefinite length arrays.

 A fixed length array is is indicated by '[' and ']' characters behind
 its type, where number in between specifies the number of elements.

 A variable length array can be indicated with a "*" behind its type.

 The following is an example of an array of 4 integers:

 fourNumbers: int[4];

 The following is an example of a variable length array:

 fibonacci : uint*;

4.4. Structures

 Structures are a logical grouping of CBOR fields.

 A structure has a name, which can be used as a datatype for other
 fields. The name is followed by a '{' character and the declarations
 of the variables inside of the structure. The structure is closed by
 a '}' character.

 A structure MAY be encoded as an array, in which case its name is
 preceded by a '*' character. Otherwise there is no CBOR encoding for
 the grouping.

 The following is an example of a structure:

 GpsCoordinates {
 longitude : uint; # multiplied by 10^7
 latitude : uint; # multiplied by 10^7
 }

 *Geography {
 city : tstr;
 gpsCoordinates : GpsCoordinates;
 }

Greevenbosch, et al. Expires June 19, 2015 [Page 5]

Internet-Draft CBOR notation December 2014

 When encoding, the Geography structure is encoded using a CBOR array,
 whereas the GpsCoordinates do not have their own encompassing array.

4.5. Maps

 For maps, CDDL distinguishes between implicit and explicit
 declarations. Explicit declarations define the datatypes of the keys
 and values, but not the keys. Implicit declarations define the keys
 and datatype of associated values. In Implict declarations, the
 datatypes of the keys can be inferred from the key values.

4.5.1. Explicit Maps

 An explicit map declaration is encapsulated in a structure or another
 map, and has the following form:

 name: map(x, y);

 where the keys have datatype x, and the values a datatype y.

 If either x or y is unspecified (i.e. free to choose per entry), it
 can be replaced by a '.'.

 For example, the following could be used as a conversion table
 converting from an integer or float to a string:

 *ToString {
 mapper: map(., tstr);
 }

4.5.2. Implicit Maps

 It is also possible to define a map with predefined keys and type of
 associated value. The map is defined as a datatype that can be used
 in structures or maps, but the declaration itself is done outside
 structure of maps.

 The type declaration is as follows:

 MapDatatypeName: map {
 key1: type1;
 key2: type2;
 ...
 }

 Where MapDatatypeName is the datatype to be used when referring to
 map, and type1, type2, etc. the datatypes of the value associated
 with keys key1, key2, etc.

Greevenbosch, et al. Expires June 19, 2015 [Page 6]

Internet-Draft CBOR notation December 2014

 When defining keys in the CDDL, the writing conventions for "value"
 from [RFC7159], Section 3, are followed. This allows the key
 datatypes "tstr" and "int".

 TBD: float could be signalled in JSON, but how to specify whether it
 is float(16), float(32) or float(64)? Maybe allow something like
 "1.3(16)" to indicate a 16-bit float with value 1.3, or "1.7e-2(32)"
 to indicate a 32-bit float with value 0.017?

 The example below the defines a map with display name (as a text
 string), the name components first name and family name (as a map of
 text strings), and age information (as an unsigned integer).

 NameComponents: map {
 "firstName": tstr;
 "familyName" : tstr;
 }

 PersonalData: map {
 "displayName": tstr;
 "nameComponents": NameComponents;
 "age": uint;
 }

 All key/value pairs are optional from the perspective of CDDL.
 However, applications MAY enforce mandatory fields as required.
 Also, it is up to the application how to handle unknown keys,
 although it is RECOMMENDED to ignore them.

4.6. Tags

 A variable can have an associated CBOR tag (major type 6). This is
 indicated by the tag encapsulated between the square brackets '[' and
 ']', just before the variable's datatype declaration.

 For example, the following defines a positive bignum N:

 N: [2]bstr;

 [RFC7049] defines several tags. These tags can be also written using
 the datatypes from Table 1. For table rows with an empty "possible
 tag notation" entry, we refer to Table 3 in [RFC7049] and associated
 references for the possible encodings.

 For example, the following is another way to define the bignum:

 N: bignum;

https://datatracker.ietf.org/doc/html/rfc7159#section-3
https://datatracker.ietf.org/doc/html/rfc7049

Greevenbosch, et al. Expires June 19, 2015 [Page 7]

Internet-Draft CBOR notation December 2014

 +------------+-----------------+------------------------------------+
 | datatype | possible tag | description |
 | | notation | |
 +------------+-----------------+------------------------------------+
b64	[34]tstr	Base 64 (tag 34)
b64url	[33]tstr	Base 64 URL (tag 33)
bigfloat		bigfloat (tag 5)
bignum	[2]bstr or	positive (tag 2) or negative (tag
	[3]bstr	3) bignum
cbor	[24]bstr	Encoded CBOR data item (tag 24)
decfrac		decimal fraction (tag 4)
eb16		Expected conversion to base16
		encoding (tag 23)
eb64		Expected conversion to base64
		encoding (tag 22)
eb64url		Expected conversion to base64 url
		encoding (tag 21)
epochdt		epoch date/time (tag 1)
mime	[36]tstr	Mime message (tag 36)
nbignum	[3]bstr	negative bignum (tag 3)
regex	[35]tstr	regular expression (tag 35)
standarddt	[0]tstr	standard date/time string (tag 0)
ubignum	[2]bstr	positive bignum (tag 2)
uri	[32]tstr	URI (tag 32)
 +------------+-----------------+------------------------------------+

 Table 1

4.7. Ordering

 The declaration of datatypes does not require a specific order.
 However, it is RECOMMENDED that a datatype that uses another datatype
 is declared before that other datatype.

 For example

 SmallStructure {
 text: tstr;
 price: float(16);
 }

 BigStructure {
 innerData: SmallStructure;
 }

 is preferable over

Greevenbosch, et al. Expires June 19, 2015 [Page 8]

Internet-Draft CBOR notation December 2014

 BigStructure {
 innerData: SmallStructure;
 }

 SmallStructure {
 text: tstr;
 price: float(16);
 }

 but both are valid.

 Furthermore, it is RECOMMENDED that the CBOR data is encapsulated in
 an overal structure or map, and all data is encapsulated (at some
 level) in this overal structure or map.

 For example, when defining a message, it would be have an overal
 structure "Message" that encapsulates the whole message as follows:

 *Metadata {
 senderName: tstr;
 receiverName: tstr;
 }

 Message {
 id: bstr;
 data: bstr;
 metadata: Metadata;
 }

 The order of variable instances within structures is fixed by the
 order of declaration. This means that when a variable A is declared
 before a variable B, a data instance of A will be encoded in front of
 a data instance of B.

 The ordering of variables in maps is not fixed, as the keys are
 already an indication for the related value.

5. Examples

 This section contains various examples of structures defined using
 the CBOR notational convention.

5.1. Moves in a computer game

 A multiplayer computer game uses CBOR to exchange moves between the
 players. To ensure a good gaming experience, the move information
 needs to be exchanged quickly and frequently. Therefore, the game

Greevenbosch, et al. Expires June 19, 2015 [Page 9]

Internet-Draft CBOR notation December 2014

 uses CBOR to send its information in a compact format. Figure 1
 shows definition of the CBOR information exchange format.

 Supplies : map(uint) {
 0 : uint; # wood
 1 : uint; # iron
 2 : uint; # grain
 }

 PlayerInfo {
 alias : tstr;
 player_id : uint;
 experience : uint; # beginner: 0; expert: 3
 gold : uint;
 supplies : Supplies;
 avg_strength : float(16);
 }

 *Moves {
 unit_id : uint;
 unit_strength : uint; # between 0 and 100
 source_pos : uint[2]; # (x,y)
 target_pos : uint[2]; # (x,y)
 }

 *UpdateMsg {
 move_no : uint; # increases for each move
 player_info : PlayerInfo; # general information
 moves : Moves*; # moves in this message
 }

 Figure 1: CBOR definition of an information exchange format for a
 computer game

 Notice that the supplies have been encoded as a map with integer
 keys. In this example, using string keys would also have been
 suitable. However, the example illustrates the possibility to use
 other datatypes for keys, leading to more efficient encoding.

 Player "Johnny" does two moves. The game server has assigned Johnny
 the ID 0x7a3b871f. Johnny is an amateur player, so has experience 1.
 He currently has 1200 gold, 13 units of wood, 70 units of iron and 29
 units of grain. He has several units, with a total average strength
 of 30.25.

 The units Johnny plays in move 250 are the unit with ID 19, strength
 20 from (5,7) to (6,9), and the unit with ID 87, strength 40 from

Greevenbosch, et al. Expires June 19, 2015 [Page 10]

Internet-Draft CBOR notation December 2014

 (7,10) to (6,10).

 This information is coded in CBOR as depicted in Figure 2.

 9F
 18 FA # move 250
 66 4A 6F 68 6E 6E 79 # "Johnny"
 1A 7A 3B 87 1F # player_id
 01 # experience
 19 04 B0 # 1200 gold as uint
 A3 # begin map "supplies" with 3 elements
 00 # wood:
 0C # 13 as uint
 01 # iron:
 18 86 # 70 as uint
 02 # grain:
 18 1D # 29 as uint
 F9 4F 90 # average strength 30.25 half-precision float
 9F # indefinite length "moves" array
 84 # 4-element array Moves
 13 # unit id 19 as uint
 14 # strength 20 as uint
 82 # 2-element array source_pos
 05 # source_pos.x=5
 07 # source_pos.y=7
 82 # 2-element array target_pos
 06 # target_pos.x=6
 09 # target_pos.y=9
 84 # 4-element array Moves
 18 57 # unit id 87
 18 28 # strength 40
 82 # 2-element array source_pos
 07 # source_pos.x=7
 0a # source_pos.y=10
 82 # 2-element array target_pos
 06 # target_pos.x=6
 0a # target_pos.y=10
 FF # end of "moves" array
 FF

 Figure 2: CBOR instance for game example

5.2. Fruit

 Figure 3 contains an example for a CBOR structure that contains
 information about fruit.

Greevenbosch, et al. Expires June 19, 2015 [Page 11]

Internet-Draft CBOR notation December 2014

 International : map {
 "DE" : tstr; # German
 "EN" : tstr; # English
 "FR" : tstr; # French
 "NL" : tstr; # Dutch
 "ZH-HANS" : tstr; # Chinese
 }

 *Fruit {
 name : tstr;
 colour : uint*;
 avg_weight : float(16);
 price : uint;
 international_names : International;
 rfu : bstr; # reserved for future use
 }

 fruitlist : Fruit*;

 Figure 3: Example CBOR structure

 The colour integer can have the values from Table 2.

 +---------+-------+
 | Colour | Value |
 +---------+-------+
 | black | 0 |
 | red | 1 |
 | green | 2 |
 | yellow | 3 |
 | blue | 4 |
 | magenta | 5 |
 | cyan | 6 |
 | white | 7 |
 | orange | 8 |
 | pink | 9 |
 | purple | 10 |
 | brown | 11 |
 | grey | 12 |
 +---------+-------+

 Table 2: Possible values for the colour field

 For example, apples can be red, yellow or green. They have an
 average weight of 0.195kg and a price of 30 cents. Chinese for
 "apple" in UTF-8 is [E8 8B B9 E6 9E 9C], the Dutch word is "appel"
 and the French word "pomme".

Greevenbosch, et al. Expires June 19, 2015 [Page 12]

Internet-Draft CBOR notation December 2014

 For simplicity, let's assume that the colour of oranges can only be
 orange. They have an average weight of 0.230kg and a price of 50
 cents. Chinese for "orange" in UTF-8 is [E6 A9 99 E5 AD 90], the
 Dutch word is "sinaasappel" and the German word "Orange".

 This information would be encoded as depicted in Figure 4.

 9F # indefinite length "fruitlist" array
 86 # First "Fruit" instance, 6 elements
 65 # text string "name" length 5
 61 70 70 6C 65 # "apple"
 83 # array for "Colour", 3 elements
 01 # "red" as uint
 02 # "green" as uint
 03 # "yellow" as uint
 F9 # Floating point half precision
 32 3D # "avg_weight" 0.195
 18 1E # "price" 30 as uint
 A3 # map "international_names", 3 pairs
 67 5A 48 2D 48 41 4E 53 # text string length 7, "ZH-HANS"
 66 E8 8B B9 E6 9E 9C # Chinese word for apple
 62 4E 4C # "NL"
 65 61 70 70 65 6C # "appel"
 62 46 52 # "FR"
 65 70 6F 6D 6D 65 # "pomme"
 40 # byte string "rfu", 0 bytes length
 86 # Second "Fruit" instance
 66 # text string "name" length 6
 6F 72 61 6E 67 65 # "orange"
 81 # array for "Colour", 3 elements
 08 # "orange" as uint
 F9 # Floating point half precision
 33 5C # "avg_weight" 0.230
 18 32 # "price" 50 as uint
 A3 # map "international_names", 3 pairs
 67 5A 48 2D 48 41 4E 53 # text string length 7, "ZH-HANS"
 66 E6 A9 99 E5 AD 90 # Chinese word for orange
 62 4E 4C # "NL"
 6B 73 69 6E 61 61 73 61 70 70 65 6C # "sinaasappel"
 62 44 45 # "DE"
 66 4F 72 61 6E 67 65 # "Orange"
 40 # byte string "rfu", 0 bytes length
 FF # end of "fruitlist" array

 Figure 4: Example CBOR instance

 Notice that if the "Fruit" structure did not have the preceding "*",
 the two "Fruit" instance arrays would have been omitted. In

Greevenbosch, et al. Expires June 19, 2015 [Page 13]

Internet-Draft CBOR notation December 2014

 addition, the "fruitlist" array would have had 12 elements instead of
 2. (Although for "fruitlist" the indefinite length approach was
 chosen, such that the number of elements is not explicitely
 signalled.)

6. Using CDDL

 In this section, we discuss several usages for CDDL.

6.1. As a guide to a human user

 CDDL can be used to efficiently define the layout of CBOR data, such
 that a human implementer can easily see how data is supposed to be
 encoded.

 Since CDDL maps parts of the CBOR data to human readable names,
 editors could be built that use CDDL to provide a human friendly
 representation of the CBOR data, and allow them to edit such data
 while remaining compliant to its CDDL definition.

6.2. For automated verification of CBOR data structure

 CDDL has been specified such that a machine can handle the CDDL
 definition and related CBOR data. For example, a machine could use
 CDDL to verify whether or not CBOR data is compliant to is
 definition.

 The thoroughness of such compliance verification depends on the
 application. For example, an application may decide not to verify
 the data structure at all, and use the CDDL definition solely as a
 means to indicate the structure of the data to the programmer.

 On the other end, the application may also implement a verification
 mechanism that goes as far as verifying that all mandatory map pairs
 are available.

 The matter in how far the data description must be enforced by an
 application is left to the designers and implementers of that
 application, keeping in mind related security considerations.

6.3. For data analytics tools

 Since CBOR is a data format, it can be expected that more and more
 data will be stored using the CBOR data format.

 Where there is data, there is data analytics and the need to process
 such data automatically. CDDL can be used for such automated data

Greevenbosch, et al. Expires June 19, 2015 [Page 14]

Internet-Draft CBOR notation December 2014

 processing, allowing tools to verify data, clean it, and extract
 particular parts of interest from it.

 Since CBOR is designed with constrained devices in mind, a likely use
 of it would be small sensors. An interesting use would thus be
 automated analytics of sensor data.

7. Open Issues

 At least the following issues need further consideration:
 o More extensive security considerations.
 o The key/value pairs in maps have no fixed ordering. However,
 there may be situations where fixing the ordering may be of use.
 For example, an decoder could look for values related with integer
 keys 1, 3 and 7. If the order was fixed and the decoder
 encounters the key 4 without having encountered key 3, it can
 conclude that key 3 is not available without doing more
 complicated bookkeeping.
 o Whether to add signalling of mandatory fields in maps.

8. Change Log

 Changes from version 00 to version 01:
 o Removed constants
 o Updated the tag mechanism
 o Extended the map structure
 o Added examples

 Changes from version 01 to version 02:
 o Fixed example

 Changes from version 02 to version 03:
 o Added information about characters used in names
 o Added text about an overall data structure and order of definition
 of fields
 o Added text about encoding of keys
 o Added table with keywords
 o Strings and integer writing conventions
 o Added ABNF

 Changes from version 03 to version 04:
 o Removed optional fields for non-maps
 o Defined all key/value pairs in maps are considered optional from
 the CDDL perspective

Greevenbosch, et al. Expires June 19, 2015 [Page 15]

Internet-Draft CBOR notation December 2014

 o Allow omission of type of keys for maps with only text string and
 integer keys
 o Changed order of definitions
 o Updated fruit and moves examples
 o Renamed the "Philosophy" section to "Using CDDL", and added more
 text about CDDL usage
 o Several editorials

9. Security considerations

 This document presents a content rules language for expressing CBOR
 data structures. As such, it does not bring any security issues on
 itself, although specification of protocols that use CBOR naturally
 need security analysis when defined.

 Topics that could be considered in a security considerations section
 that uses CDDL to define CBOR structures include the following:
 o TO DO

10. IANA considerations

 This document does not require any IANA registrations.

11. Acknowledgements

 For this draft, there has been inspiration from the C and Pascal
 languages, MPEG's conventions for describing structures in the ISO
 base media file format, and Andrew Lee Newton's "JSON Content Rules"
 draft.

 Useful feedback came from Carsten Bormann, Joe Hildebrand, Sean
 Leonard and Jim Schaad.

Appendix A. ABNF grammar

 The following is a formal definition of CBOR in Augmented Backus-Naur
 Form (ABNF, [RFC5234]). We also use the conventions from [RFC5234],
 Appendix B and [RFC3629], section 4.

 file = 1*(structure / map / field)

 field = name ":" type ";" newline

 name = valid-name

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B
https://datatracker.ietf.org/doc/html/rfc3629#section-4

Greevenbosch, et al. Expires June 19, 2015 [Page 16]

Internet-Draft CBOR notation December 2014

 type = fixed-array / indefinite-array / valid-type

 fixed-array = valid-type "[" 1*DIGIT "]"
 indefinite-array = valid-type "*"

 structure = (simple-structure / array-structure) newline
 structure-body = S "{" S 1*field S "}"
 simple-structure = name structure-body
 array-structure = "*" name structure-body

 map = name ":" map-header map-body
 map-header = map "(" (valid-type / ".") ","
 (valid-type / ".") ")"
 map-body = S "{" newline 1*map-entry "}"

 map-entry = map-optional-entry / map-mandatory-entry / comment
 map-mandatory-entry = cbor-data ":" type ";"
 map-optional-entry = "?" map-mandatory-entry

 cbor-data = cbor-string / cbor-number / cbor-extension
 cbor-string = DQUOTE text DQUOTE
 cbor-number = cbor-leading-numerical / cbor-leading-dot /
 cbor-hex-number / cbor-binary-number
 cbor-leading-dot = '.' 1*DIGIT ['e' 1*DIGIT]
 cbor-leading-numerical = 1*DIGIT ['.' 1*DIGIT] ['e' 1*DIGIT]
 cbor-hex-number = hex-prefix 1*HEXDIG
 cbor-bin-number = bin-prefix 1*BIT

 hex-prefix = %d48.120 ; 0x
 bin-prefix = %d48.98 ; 0b
 cbor-extension = *text-char

 valid-char = DIGIT / ALPHA / "_"
 valid-name = 1*valid-char
 valid-type = primitive-datatype / 1*valid-char

 primitive-datatype = bool / bstr / float16
 / float32 / float64 / int
 / nint / simple / tstr / uint

 S = *(WS)
 newline = [CR] LF
 text-char = %20-7e
 comment-char = UTF8-char
 comment = "#" *(comment-char) newline
 WS = SP / HTAB / newline / comment ; white space

 ; case-sensitive literals

Greevenbosch, et al. Expires June 19, 2015 [Page 17]

Internet-Draft CBOR notation December 2014

 bool = %d98.111.111.108
 bstr = %d98.115.116.114
 float16 = %d102.108.111.97.116.40.49.54.41 ; float(16)
 float32 = %d102.108.111.97.116.40.51.50.41 ; float(32)
 float64 = %d102.108.111.97.116.40.54.52.41 ; float(64)
 int = %d105.110.116
 map = %d109.97.112
 nint = %d110.105.110.116
 simple = %d115.105.109.112.108.101
 tstr = %d116.115.116.114
 uint = %d117.105.110.116

Appendix B. CBOR keywords

 The following table contains an overview of the CDDL keywords.

 +----------------+----------------+----------------+----------------+
b64	b64url	bigfloat	bignum
bool	bstr	cbor	decfrac
eb16	eb64	eb64url	epochdt
float	int	map	mime
nbignum	nint	regex	simple
standarddt	tstr	ubignum	uint
uri			
 +----------------+----------------+----------------+----------------+

12. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159

Greevenbosch, et al. Expires June 19, 2015 [Page 18]

Internet-Draft CBOR notation December 2014

Authors' Addresses

 Bert Greevenbosch
 Huawei Technologies Co., Ltd.
 Huawei Industrial Base
 Bantian, Longgang District
 Shenzhen 518129
 P.R. China

 Email: bert.greevenbosch@huawei.com

 Ruinan Sun
 Huawei Technologies Co., Ltd.
 Huawei Industrial Base
 Bantian, Longgang District
 Shenzhen 518129
 P.R. China

 Email: sunruinan@huawei.com

 Christoph Vigano
 University of Bremen

 Email: christoph.vigano@uni-bremen.de

Greevenbosch, et al. Expires June 19, 2015 [Page 19]

