
Network Working Group J. Gregorio, Ed.
Internet-Draft Google
Intended status: Standards Track R. Fielding, Ed.
Expires: September 9, 2010 Day Software
 M. Hadley, Ed.
 Oracle
 M. Nottingham, Ed.
 D. Orchard
 Mar 08, 2010

URI Template
draft-gregorio-uritemplate-04

Abstract

 A URI Template is a compact sequence of characters for describing a
 range of Uniform Resource Identifiers through variable expansion.
 This specification defines the URI Template syntax and the process
 for expanding a URI Template into a URI, along with guidelines for
 the use of URI Templates on the Internet.

Editorial Note (to be removed by RFC Editor)

 To provide feedback on this Internet-Draft, join the W3C URI mailing
 list (http://lists.w3.org/Archives/Public/uri/) [1].

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Gregorio, et al. Expires September 9, 2010 [Page 1]

http://lists.w3.org/Archives/Public/uri/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft URI Template Mar 2010

 This Internet-Draft will expire on September 9, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Gregorio, et al. Expires September 9, 2010 [Page 2]

Internet-Draft URI Template Mar 2010

Table of Contents

1. Introduction . 4
1.1. Overview . 4
1.2. Expression Types . 5
1.3. Design Considerations 8
1.4. Limitations . 9
1.5. Notational Conventions 9

2. URI Template Syntax . 11
2.1. Literals . 11
2.2. Expressions . 11
2.3. Variables . 12
2.4. Value Modifiers . 13
2.4.1. Component Values 13
2.4.2. Prefix and Suffix Values 14

2.5. Value Defaults . 15
3. URI Template Expansion . 18
3.1. Unicode normalization 18
3.2. Literal expansion . 18
3.3. Expression expansion 19
3.4. Variable and modifier expansion 19
3.5. Simple expansion: {var} 20
3.6. Reserved expansion: {+var} 21
3.7. Path-style parameter expansion: {;var} 21
3.8. Form-style parameter expansion: {?var} 21
3.9. Hierarchical path expansion: {/var} 21
3.10. Label expansion with dot-prefix: {.var} 22

4. Examples . 22
5. Security Considerations 22
6. IANA Considerations . 22
7. Acknowledgments . 22
8. Normative References . 22
Appendix A. Example URI Template Parser 23
Appendix B. Revision History (to be removed by RFC Editor) . . . 23

 Authors' Addresses . 24

Gregorio, et al. Expires September 9, 2010 [Page 3]

Internet-Draft URI Template Mar 2010

1. Introduction

1.1. Overview

 A Uniform Resource Identifier (URI) [RFC3986] is often used to
 identify a specific resource within a common space of similar
 resources. For example, personal web spaces are often delegated
 using a common pattern, such as

 http://example.com/~fred/
 http://example.com/~mark/

 or a set of dictionary entries might be grouped in a hierarchy by the
 first letter of the term, as in

 http://example.com/dictionary/c/cat
 http://example.com/dictionary/d/dog

 or a service interface might be invoked with various user input in a
 common pattern, as in

 http://example.com/search?q=cat&lang=en
 http://example.com/search?q=dog&lang=fr

 URI Templates provide a mechanism for abstracting a space of resource
 identifiers such that the variable parts can be easily identified and
 described. URI templates can have many uses, including discovery of
 available services, configuring resource mappings, defining computed
 links, specifying interfaces, and other forms of programmatic
 interaction with resources. For example, the above resources could
 be described by the following URI templates:

 http://example.com/~{username}/
 http://example.com/dictionary/{term:1}/{term}
 http://example.com/search{?q,lang}

 We define the following terms:
 o expression - The text between '{' and '}', including the enclosing
 braces, as defined in Section 2.
 o expansion - The string result obtained from a template expression
 after processing it according to its expression type, list of
 variable names, and value modifiers, as defined in Section 3.
 o template processor - A program or library that, given a URI
 Template and a set of variables with values, transforms the
 template string into a URI-reference by parsing the template for
 expressions and substituting each one with its corresponding
 expansion.

https://datatracker.ietf.org/doc/html/rfc3986

Gregorio, et al. Expires September 9, 2010 [Page 4]

Internet-Draft URI Template Mar 2010

 A URI Template provides both a structural description of a URI space
 and, when variable values are provided, a simple instruction on how
 to construct a URI corresponding to those values. A URI Template is
 transformed into a URI-reference by replacing each delimited
 expression with its value as defined by the expression type and the
 values of variables named within the expression. The expression
 types range from simple value expansion to multiple key=value lists.
 The expansions are based on the URI generic syntax, allowing an
 implementation to process any URI Template without knowing the
 scheme-specific requirements of every possible resulting URI.

 A URI Template may be provided in absolute form, as in the examples
 above, or in relative form if a suitable base URI is defined.

 Although the URI syntax is used for the result, the template string
 is allowed to contain the broader set of characters that can be found
 in IRI references [RFC3987]. A URI Template is therefore also an IRI
 template, and the result of template processing can be rendered as an
 IRI by transforming the pct-encoded sequences to their corresponding
 Unicode character if the character is not in the reserved set.

1.2. Expression Types

 URI Templates are similar to a macro language with a fixed set of
 macro definitions: the expression type determines the expansion
 process. For example, the following URI Template includes a form-
 style parameter expression, as indicated by the "?" operator
 appearing before the variable names.

 http://www.example.com/foo{?query,number}

 Each template expression describes, in a machine-readable manner, how
 a URI is to be constructed. In this example, the expansion process
 for templates beginning with the question-mark ("?") operator follows
 the same pattern as form-style interfaces on the World Wide Web.

 http://www.example.com/foo{?query,number}
 _____________/
 |
 |
 For each defined variable in ['query', 'number'],
 substitute "?" if it is the first substitution or "&"
 thereafter, followed by the variable name, '=', and the
 variable's value.

 If the variables have the values

 query := "mycelium"

https://datatracker.ietf.org/doc/html/rfc3987

Gregorio, et al. Expires September 9, 2010 [Page 5]

Internet-Draft URI Template Mar 2010

 number := 100

 then the expansion of the above URI Template is

 http://www.example.com/foo?query=mycelium&number=100

 Alternatively, if 'query' is undefined, then the expansion would be

 http://www.example.com/foo?number=100

 or if both variables are undefined, then it would be

 http://www.example.com/foo

 The following table summarizes each type of template expression by
 its associated operator and cross-references the section of this
 document that defines the operator and its specific expansion
 process. The example expansions are based on the following variables
 and values:

 var := "value";
 hello := "Hello World!";
 undef := null;
 empty := "";
 list := ["val1", "val2", "val3"];
 keys := [("key1", "val1"), ("key2", "val2")];
 path := "/foo/bar"
 x := "1024";
 y := "768";

 .---.
 | Sec | Op | Description |
 | | | Expression | Expansion |
 |-----+-----+---|
3.3		Simple expansion with comma-separated values
		{var} value
		{hello} Hello%20World%21
		{path}/here %2Ffoo%2Fbar/here
		{x,y} 1024,768
		{var=default} value
		{undef=default} default
		{list} val1,val2,val3
		{list*} val1,val2,val3
		{list+} list.val1,list.val2,list.val3
		{keys} key1,val1,key2,val2
		{keys*} key1,val1,key2,val2
		{keys+} keys.key1,val1,keys.key2,val2

Gregorio, et al. Expires September 9, 2010 [Page 6]

Internet-Draft URI Template Mar 2010

 | | | |
 |-----+-----+---|
3.4	+	Reserved expansion with comma-separated values
		{+var} value
		{+hello} Hello%20World!
		{+path}/here /foo/bar/here
		{+path,x}/here /foo/bar,1024/here
		{+path}{x}/here /foo/bar1024/here
		{+empty}/here /here
		{+undef}/here /here
		{+list} val1,val2,val3
		{+list*} val1,val2,val3
		{+list+} list.val1,list.val2,list.val3
		{+keys} key1,val1,key2,val2
		{+keys*} key1,val1,key2,val2
		{+keys+} keys.key1,val1,keys.key2,val2
-----+-----+---		
3.5	;	Path-style parameters, semicolon-prefixed
		{;x,y} ;x=1024;y=768
		{;x,y,empty} ;x=1024;y=768;empty
		{;x,y,undef} ;x=1024;y=768
		{;list} ;val1,val2,val3
		{;list*} ;val1;val2;val3
		{;list+} ;list=val1;list=val2;list=val3
		{;keys} ;key1,val1,key2,val2
		{;keys*} ;key1=val1;key2=val2
		{;keys+} ;keys.key1=val1;keys.key2=val2
-----+-----+---		
3.6	?	Form-style parameters, ampersand-separated
		{?x,y} ?x=1024&y=768
		{?x,y,empty} ?x=1024&y=768&empty=
		{?x,y,undef} ?x=1024&y=768
		{?list} ?list=val1,val2,val3
		{?list*} ?val1&val2&val3
		{?list+} ?list=val1&list=val2&list=val3
		{?keys} ?keys=key1,val1,key2,val2
		{?keys*} ?key1=val1&key2=val2
		{?keys+} ?keys.key1=val1&keys.key2=val2
-----+-----+---		
3.7	/	Hierarchical path segments, slash-separated
		{/var} /value

Gregorio, et al. Expires September 9, 2010 [Page 7]

Internet-Draft URI Template Mar 2010

		{/var,empty} /value/
		{/var,undef} /value
		{/list} /val1,val2,val3
		{/list*} /val1/val2/val3
		{/list*,x} /val1/val2/val3/1024
		{/list+} /list.val1/list.val2/list.val3
		{/keys} /key1,val1,key2,val2
		{/keys*} /key1/val1/key2/val2
		{/keys+} /keys.key1/val1/keys.key2/val2
-----+-----+---		
3.8	.	Label expansion, dot-prefixed
		X{.var} X.value
		X{.empty} X.
		X{.undef} X
		X{.list} X.val1,val2,val3
		X{.list*} X.val1.val2.val3
		X{.list*,x} X.val1.val2.val3.1024
		X{.list+} X.list.val1.list.val2.list.val3
		X{.keys} X.key1,val1,key2,val2
		X{.keys*} X.key1.val1.key2.val2
		X{.keys+} X.keys.key1.val1.keys.key2.val2
 `-----+-----+---'

1.3. Design Considerations

 The URI Template syntax has been designed to carefully balance the
 need for a powerful expansion mechanism with the need for ease of
 implementation. The syntax is designed to be trivial to parse while
 at the same time providing enough flexibility to express many common
 template scenarios. Implementations are able to parse the template
 and perform the expansions in a single pass.

 Templates are simple and readable when used with common examples
 because the single-character operators match the URI generic syntax
 delimiters. The operator's associated delimiter (";", "?", "/", and
 ".") is omitted when none of the listed variables are defined.
 Likewise, the expansion process for ";" (path-style parameters) will
 omit the "=" when the variable value is empty, whereas the process
 for "?" (form-style parameters) will not omit the "=" when the value
 is empty. Multiple variables and list values have their values
 joined with "," if there is no predefined joining mechanism for the
 operator. Only one operator, plus ("+"), will substitute unencoded
 reserved characters found inside the variable values; the other
 operators will pct-encode reserved characters found in the variable
 values prior to expansion.

Gregorio, et al. Expires September 9, 2010 [Page 8]

Internet-Draft URI Template Mar 2010

 The most common cases for URI spaces can be described with simple URI
 Template expressions. If we were only concerned with URI generation,
 then the template syntax could be limited to just simple variable
 expansion, since more complex forms could be generated by changing
 the variable values. However, URI Templates have the additional goal
 of describing the layout of identifiers in terms of preexisting data
 values. The template syntax therefore includes operators that
 reflect how resource identifiers are commonly allocated. Likewise,
 since prefix and suffix substrings are often used to partition large
 spaces of resources, modifiers on variable values provide a way to
 specify those substrings.

 Mechanisms similar to URI Templates have been defined within several
 specifications, including WSDL, WADL and OpenSearch. This
 specification extends and formally defines the syntax so that URI
 Templates can be used consistently across multiple Internet
 applications and within Internet message fields.

1.4. Limitations

 Since a URI Template describes a superset of the identifiers, there
 is no implication that every possible expansion for each delimited
 variable expression corresponds to a URI of an existing resource.
 Our expectation is that an application constructing URIs according to
 the template will be provided with an appropriate set of values for
 the variables being substituted and will be able to cope with any
 errors that might occur when the resulting URI is used for name
 resolution or access.

 URI Template expressions are not URIs: they do not identify an
 abstract or physical resource, they are not parsed as URIs, and
 should not be used in places where a URI would be expected unless the
 template expressions will be expanded by a template processor prior
 to use. Distinct field, element, or attribute names should be used
 to differentiate protocol elements that carry a URI Template from
 those that expect a URI-reference.

1.5. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234]. The following ABNF rules are imported from
 the normative references [RFC5234], [RFC3986], and [RFC3987].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987

Gregorio, et al. Expires September 9, 2010 [Page 9]

Internet-Draft URI Template Mar 2010

 ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
 DIGIT = %x30-39 ; 0-9
 HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

 pct-encoded = "%" HEXDIG HEXDIG
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
 reserved = gen-delims / sub-delims
 gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
 sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

 ucschar = %xA0-D7FF / %xF900-FDCF / %xFDF0-FFEF
 / %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD
 / %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD
 / %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD
 / %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD
 / %xD0000-DFFFD / %xE1000-EFFFD

 iprivate = %xE000-F8FF / %xF0000-FFFFD / %x100000-10FFFD

 This specification uses the terms "character" and "coded character
 set" in accordance with the definitions provided in [RFC2978], and
 "character encoding" in place of what [RFC2978] refers to as a
 "charset".

 A URI Template is defined as a sequence of characters and therefore
 has the same issues as URIs with regard to codepoints and character
 sets. That is, URI Template characters are frequently encoded as
 octets for transport or presentation. This specification does not
 mandate any particular character encoding for mapping between URI
 Template characters and the octets used to store or transmit those
 characters. When a URI Template appears in a protocol element, the
 character encoding is defined by that protocol; without such a
 definition, a URI Template is assumed to be in the same character
 encoding as the surrounding text.

 A URI Template and its associated variable values are converted to a
 normal form of UTF-8 [RFC3629] prior to template processing, as
 defined in Section 3.1.

 The ABNF notation defines its terminal values to be non-negative
 integers (codepoints) that are a superset of the US-ASCII coded
 character set [ASCII]. This specification defines terminal values as
 codepoints within the Unicode coded character set [UNIV4]. Thus, a
 string of characters in a URI Template is assumed to be transformed
 into its corresponding sequence of Unicode codepoints prior to
 testing for a match with the URI Template grammar.

https://datatracker.ietf.org/doc/html/rfc2978
https://datatracker.ietf.org/doc/html/rfc2978
https://datatracker.ietf.org/doc/html/rfc3629

Gregorio, et al. Expires September 9, 2010 [Page 10]

Internet-Draft URI Template Mar 2010

2. URI Template Syntax

 A URI Template is a string of printable Unicode characters that
 contains zero or more embedded variable expressions, each expression
 being delimited by a matching pair of braces ('{', '}').

 URI-Template = *(literals / expression)

2.1. Literals

 The characters outside of expressions in a URI Template string are
 intended to be translated literally to the URI-reference.

 literals = %x21 / %x23-24 / %x26 / %x28-3B / %x3D / %x3F-5B
 / %x5D-5F / %x61-7A / %x7E / ucschar / iprivate
 / pct-encoded
 ; any Unicode character except: CTL, SP,
 ; DQUOTE, "'", "%" (aside from pct-encoded),
 ; "<", ">", "\", "^", "`", "{", "|", "}"

2.2. Expressions

 Template expressions are the parameterized parts of a URI Template.
 Each expression contains an optional operator, which defines the
 expression type and its corresponding expansion process, followed by
 a comma-separated list of variable specifiers (variable names and
 optional value modifiers). If no operator is provided, the
 expression defaults to simple variable expansion of unreserved
 values.

 expression = "{" [operator] variable-list "}"
 operator = "+" / "." / "/" / ";" / "?" / op-reserve
 op-reserve = "|" / "!" / "@"
 ; reserved for local use: "$" / "(" / ")"

 The operator characters have been chosen to reflect each of their
 roles as reserved characters in the URI generic syntax. The
 operators defined by this specification include: plus ("+") for
 substituting values that may contain reserved characters; dot (".")
 for substituting values as a sequence of name labels prefixed by ".";
 slash ("/") for substituting values as a sequence of path segments
 separated by "/"; semicolon (";") for substituting key=value pairs as
 path parameters prefixed by ";"; and, question-mark ("?") for
 substituting a query component beginning with "?" and consisting of
 key=value pairs separated by "&". These operators will be described
 in detail in Section 3.

 The operator characters pipe ("|"), exclamation ("!"), and at-sign

Gregorio, et al. Expires September 9, 2010 [Page 11]

Internet-Draft URI Template Mar 2010

 ("@") are reserved for future extensions. A processor that
 unexpectedly encounters such an extension operator SHOULD pass the
 expression through unexpanded and MAY also indicate a warning to the
 invoking application.

 The expression syntax specifically excludes use of the dollar ("$")
 and parentheses ["(" and ")"] characters so that they remain
 available for local language extensions outside the scope of this
 specification.

2.3. Variables

 After the operator (if any), each expression contains a list of one
 or more comma-separated variable specifiers (varspec). The variable
 names serve multiple purposes: documentation for what kinds of values
 are expected, identifiers for associating values within a URI
 Template processor, and the string to use for each key on key=value
 expansions.

 variable-list = varspec *("," varspec)
 varspec = varname [modifier] ["=" default]
 varname = varchar *(varchar / ".")
 varchar = ALPHA / DIGIT / "_" / ucschar / iprivate
 / pct-encoded

 An expression MAY reference variables that are unknown to the
 template processor or whose value is set to a special "undefined"
 value, such as undef or null. Such undefined variables are given
 special treatment by the expansion process.

 A variable value that is a string of length zero is not considered
 undefined; it has the defined value of an empty string.

 A variable may have a composite or structured value, such as a list
 of values, an associative array of (key, value) pairs, or a structure
 of components defined by some separate schema. Such value types are
 not directly indicated by the template syntax, but do have an impact
 on the expansion process. A composite or structured value with zero
 member values is considered undefined.

 If a variable appears more than once in an expression or within
 multiple expressions of a URI Template, the value of that variable
 MUST remain static throughout the expansion process (i.e., the
 variable must have the same value for the purpose of calculating each
 expansion).

Gregorio, et al. Expires September 9, 2010 [Page 12]

Internet-Draft URI Template Mar 2010

2.4. Value Modifiers

 Any of the variables can have a modifier indicating that its value is
 exploded into components or is limited to a prefix, suffix, or the
 remainder of a prefix or suffix of the variable value.

 modifier = explode / partial

2.4.1. Component Values

 The explode modifiers ("*" and "+") indicate that the variable
 represents a composite value that may be substituted in full or
 partial forms, depending on the variable's type or schema. Since URI
 Templates do not contain an indication of type or schema, this is
 assumed to be determined by context. An example context is a mark-up
 element or header field that contains one attribute that is a
 template and one or more other attributes that define the schema
 applicable to variables found in the template. Likewise, a typed
 programming language might differentiate variables as strings, lists,
 associative arrays, or structures.

 explode = ("*" / "+")

 The primary difference between the two explode modifiers is that an
 asterisk ("*") indicates that just the component names and values are
 included in the expansion, whereas the plus ("+") indicates that each
 component name is prefixed with the given variable name and a period
 ("."), thereby enabling multiple variables with the same component
 names to be disambiguated.

 Component modifiers improve brevity in the URI Template syntax. For
 example, a resource that provides a geographic map for a given street
 address might accept a hundred permutations on fields for address
 input, including partial addresses (e.g., just the city or postal
 code). Such a resource could be described as a template with each
 and every address component listed in order, or with a far more
 simple template that makes use of an explode modifier, as in

 /mapper{?address*}

 or

 /directions{?from+,to+}

 along with some context that defines each variable (address, from,
 and to) as adhering to a given addressing standard (e.g., UPU S42 or
 AS/NZS 4819:2003). A recipient aware of the schema can then provide
 appropriate expansions, such as:

Gregorio, et al. Expires September 9, 2010 [Page 13]

Internet-Draft URI Template Mar 2010

 /mapper?city=Newport%20Beach&state=CA
 /directions?from.zipcode=92660&to.zipcode=90210

 The expansion process for variables, as defined in Section 3, is
 dependent on both the operator being used and, if one of the explode
 modifiers is used, the type and schema of the variable being
 substituted.

2.4.2. Prefix and Suffix Values

 Prefix and suffix modifiers are often used to partition an identifier
 space hierarchically, as is common in reference indices and hash-
 based storage, or to limit the substituted value to a maximum number
 of characters.

 partial = (substring / remainder) offset
 substring = ":"
 remainder = "^"
 offset = [from-end] 1*DIGIT
 from-end = "-"

 The offset refers to a maximum number of characters from either the
 beginning (prefix) or end (suffix) of the variable's value as a
 Unicode string. Note that this numbering is in characters, not
 octets, in order to avoid substituting improperly encoded values due
 to splitting a multi-octet UTF-8 encoded character or a pct-encoded
 triplet.

 A substring modifier requires that only the indicated prefix or
 suffix be used in the expansion. A remainder modifier requires that
 only the remainder of the value, excluding the indicated prefix or
 suffix, be used in the expansion. If the offset is greater than the
 length of the variable's value, then the entire string is used for a
 substring and the empty string is used for a remainder.

 The following examples illustrate how modifiers work with the
 different variable types. More complex examples are provided in

Section 4.

Gregorio, et al. Expires September 9, 2010 [Page 14]

Internet-Draft URI Template Mar 2010

 Given the variable assignments:
 var := "value";
 name := ["Fred", "Wilma", "Pebbles"];

 Example Template Expansion

 {var} value
 {var:20} value
 {var:3} val
 {var^3} ue
 {var:-3} lue
 {var^-3} va

 {?name} ?name=Fred,Wilma,Pebbles
 {?name:1} ?name=F

2.5. Value Defaults

 Any of the variables may also be supplied with a default value to be
 used when a template processor determines the variable to be
 undefined. The default value is limited to the unreserved and pct-
 encoded characters of a URI-reference, since our intention is for the
 default to be presented in the exact form that it would appear in the
 resulting URI. The default is not affected by the variable
 modifiers; it is assumed that the default string provided in the
 expression already reflects any necessary substring or remainder
 processing.

 default = *(unreserved / pct-encoded)

 The following examples illustrate how default values work with
 different variable types. More complex examples are provided in

Section 4.

 Given the variable assignments:
 var := "value";
 empty := "";
 undef := null;
 name := ["Fred", "Wilma", "Pebbles"];
 favs := [("color","red"), ("volume","high")];
 empty_list := [];
 empty_keys := [];

 Example Template Expansion

 {var=default} value
 {undef=default} default

Gregorio, et al. Expires September 9, 2010 [Page 15]

Internet-Draft URI Template Mar 2010

 x{empty}y xy
 x{empty=_}y xy
 x{undef}y xy
 x{undef=_}y x_y

 x{empty_list}y xy
 x{empty_list=_}y xy
 x{empty_list*}y xy
 x{empty_list*=_}y x_y
 x{empty_list+}y xy
 x{empty_list+=_}y xempty_list._y

 x{empty_keys}y xy
 x{empty_keys=_}y xy
 x{empty_keys*}y xy
 x{empty_keys*=_}y x_y
 x{empty_keys+}y xy
 x{empty_keys+=_}y xempty_keys._y

 x{?name=none} x?name=Fred,Wilma,Pebbles
 x{?favs=none} x?favs=color,red,volume,high
 x{?favs*=none} x?color=red&volume=high
 x{?favs+=none} x?favs.color=red&favs.volume=high

 x{?undef} x
 x{?undef=none} x?undef=none
 x{?empty} x?empty=
 x{?empty=none} x?empty=

 x{?empty_list} x
 x{?empty_list=none} x?empty_list=none
 x{?empty_list*} x
 x{?empty_list*=none} x?none
 x{?empty_list+} x
 x{?empty_list+=none} x?empty_list.none

 x{?empty_keys} x
 x{?empty_keys=none} x?empty_keys=none
 x{?empty_keys*} x
 x{?empty_keys*=none} x?none
 x{?empty_keys+} x
 x{?empty_keys+=none} x?empty_keys.none

 x{;name=none} x;name=Fred,Wilma,Pebbles
 x{;favs=none} x;favs=color,red,volume,high
 x{;favs*=none} x;color=red;volume=high
 x{;favs+=none} x;favs.color=red;favs.volume=high

Gregorio, et al. Expires September 9, 2010 [Page 16]

Internet-Draft URI Template Mar 2010

 x{;undef} x
 x{;undef=none} x;undef=none
 x{;empty} x;empty
 x{;empty=none} x;empty

 x{;empty_list} x
 x{;empty_list=none} x;empty_list=none
 x{;empty_list*} x
 x{;empty_list*=none} x;none
 x{;empty_list+} x
 x{;empty_list+=none} x;empty_list.none

 x{;empty_keys} x
 x{;empty_keys=none} x;empty_keys=none
 x{;empty_keys*} x
 x{;empty_keys*=none} x;none
 x{;empty_keys+} x
 x{;empty_keys+=none} x;empty_keys.none

 x{/name=none} x/Fred,Wilma,Pebbles
 x{/name*=none} x/Fred/Wilma/Pebbles
 x{/name+=none} x/name.Fred/name.Wilma/name.Pebbles
 x{/favs=none} x/color,red,volume,high
 x{/favs*=none} x/color/red/volume/high
 x{/favs+=none} x/favs.color/red/favs.volume/high

 x{/undef} x
 x{/undef=none} x/none
 x{/empty} x/
 x{/empty=none} x/

 x{/empty_list} x
 x{/empty_list=none} x/none
 x{/empty_list*} x
 x{/empty_list*=none} x/none
 x{/empty_list+} x
 x{/empty_list+=none} x/empty_list.none

 x{/empty_keys} x
 x{/empty_keys=none} x/none
 x{/empty_keys*} x
 x{/empty_keys*=none} x/none
 x{/empty_keys+} x
 x{/empty_keys+=none} x/empty_keys.none

Gregorio, et al. Expires September 9, 2010 [Page 17]

Internet-Draft URI Template Mar 2010

3. URI Template Expansion

 The process of URI Template expansion is to scan the template string
 from beginning to end, copying literal characters as-is and replacing
 each expression with the result of applying the expression's operator
 to the value of each variable named in the expression.

 If a template processor encounters an error, such as an operator that
 it does not understand or a character sequence that does not match
 the <URI-Template> grammar, then processing of the template SHOULD
 cease, the URI-reference result SHOULD be undefined, and the location
 and type of error SHOULD be indicated to the invoking application.

 If a template processor encounters a warning, such as the use of an
 operator character reserved for future extension, then the processing
 of the template SHOULD NOT cease, and the location and type of
 warning SHOULD be indicated to the invoking application.

3.1. Unicode normalization

 The Unicode Standard [UNIV4] defines various equivalences between
 sequences of characters for various purposes. Unicode Standard Annex
 #15 [UTR15] defines various Normalization Forms for these
 equivalences, in particular Normalization Form KC (NFKC:
 Compatibility Decomposition followed by Canonical Composition).
 Since different Normalized Form unicode strings will have different
 UTF-8 representations, the only way to guarantee that template
 processors will produce the same URI is to require a common
 Normalized Form.

 The string values for the URI Template and template variables MUST be
 in NFKC and encoded as UTF-8 [RFC3629] prior to use in the template
 expansion process (US-ASCII is a proper subset of NFKC UTF-8). The
 remaining sections defining the expansion process assume strings are
 in NFKC UTF-8.

3.2. Literal expansion

 If the literal character is allowed anywhere in the URI syntax
 (unreserved / reserved), then it is copied directly to the result
 string. Otherwise, the pct-encoded equivalent of the literal
 character is copied to the result string by encoding the character in
 UTF-8 (a sequence of octets) and then encoding each octet as a pct-
 encoded triplet.

https://datatracker.ietf.org/doc/html/rfc3629

Gregorio, et al. Expires September 9, 2010 [Page 18]

Internet-Draft URI Template Mar 2010

3.3. Expression expansion

 Each expression is indicated by an opening brace ("{") character and
 continues until the next closing brace ("}"). The expression is
 expanded by determining the expression type and then following that
 type's expansion process for each comma-separated varspec in the
 expression.

 The expression type is determined by looking at the first character
 after the opening brace. If the character is an operator, then
 remember the expression type associated with that operator for later
 expansion decisions and skip to the next character for the varspec
 list. If the first character is not an operator, then the expression
 type is simple expansion and the first character is the beginning of
 the varspec list.

 If the expression does not contain any varspec, as in "{}" or "{,}",
 then a template processor SHOULD copy that invalid expression to the
 result string, continue processing the remainder of the template, and
 indicate that an error occurred to the caller.

 If the template contains an opening brace without a corresponding
 closing brace (the template ends in mid-expression), then a processor
 SHOULD attempt to process the template as if it ended in a closing
 brace and indicate that an error occurred to the caller.

3.4. Variable and modifier expansion

 A variable that is undefined has no value and thus is excluded from
 the expansion. A variable defined as composite or component values
 is undefined if it contains zero members or all of its components are
 undefined. If all of the variables are undefined, then the
 expression's expansion is the empty string.

 A variable defined as a single value is expanded by converting its
 value to a NFKC UTF-8 string, replacing any character within the
 string that is not in the unreserved set with its corresponding
 sequence of pct-encoded octets, applying any prefix or suffix
 modifier (Section 2.4.2), and then appending the result to the URI-
 reference.

 A variable defined as a list of values is substituted as a string of
 comma-separated single values when no explode modifier is given. If
 the "*" modifier is used, then each value is separated by the default
 delimiter for the expression type. If the "+" operator is used, then
 the variable name is prepended to the expansion list as if it were
 the initial value in the list. If a partial modifier is indicated,
 the modifier is applied to the combined string of values. The list

Gregorio, et al. Expires September 9, 2010 [Page 19]

Internet-Draft URI Template Mar 2010

 expansion is then appended to the result string.

 A variable defined as an associative array is expanded as a list of
 alternating key and value pairs, excluding any keys for which the
 corresponding value is undefined. If no explode modifier is used,
 then the list is substituted as comma-separated single values. If
 the "*" modifier is given, then the list is delimited as key=value
 pairs according to the default delimiters defined by the expression
 type. If the "+" modifier is used, the values are substituted as in
 the "*" case, except that each key name is prefixed by the variable
 name and a ".", as in "name.key=value".

 When a variable containing component values is given without an
 explode modifier, the value of each defined component is substituted,
 separated by a comma (",") character, in the order indicated by the
 variable's schema or, if the schema is unknown, in the order provided
 by the variable's value. A structure of component values is expanded
 as a list of the component values in the order implied by a preorder
 (depth-first) traversal of that structure, excluding any components
 that are undefined.

 When an explode modifier is used with an operator that substitutes
 variables as key=value pairs, the key is determined as follows. If
 the modifier is an asterisk ("*"), then each "key" is the name of the
 component. If the modifier is a plus ("+"), then each key is the
 variable name followed by a period (".") and the component name. In
 both cases, if the component names have a hierarchical structure,
 then the component subnames are also appended to the key, each
 separated by a period.

 When an explode modifier is used with the hierarchical ("/")
 operator, the slash delimiter is substituted before each defined
 component's value if the modifier is "*", or before each conjunction
 of component name and value (e.g., "name.value") if the modifier is
 "+".

3.5. Simple expansion: {var}

 The default expression type when no operator is given is simple
 expansion: the value of each defined variable is substituted in the
 order given, modified as indicated by the optional modifiers, with
 each value separated by a comma character (","). A variable that is
 undefined has no value and thus is excluded from the expansion. If
 all of the variables are undefined, then the expansion is the empty
 string.

Gregorio, et al. Expires September 9, 2010 [Page 20]

Internet-Draft URI Template Mar 2010

 For example,

 foo := "fred"

 "{foo}" -> "fred"
 "{foo,foo}" -> "fred,fred"
 "{bar,foo}" -> "fred"
 "{bar=wilma}" -> "wilma"

3.6. Reserved expansion: {+var}

 Reserved expansion is identical to simple expansion except that the
 substituted values may contain characters in the reserved set.

 For example,

 foo := "That's right!"

 "{foo}" -> "That%27s%20right%21"
 "{+foo}" -> "That%27s%20right!"

 base := "http://example.com/home/"

 "{base}index" -> "http%3A%2F%2Fexample.com%2Fhome%2Findex"
 "{+base}index" -> "http://example.com/home/index"

 The same expansion process is followed as in Section 3.5 except that,
 instead of replacing any character within each value string that is
 not in the unreserved set with its corresponding sequence of pct-
 encoded octets, replace any character within each value string that
 is not in the set of unreserved or reserved characters with its
 corresponding sequence of pct-encoded octets.

3.7. Path-style parameter expansion: {;var}

 TBD.

3.8. Form-style parameter expansion: {?var}

 TBD.

3.9. Hierarchical path expansion: {/var}

 TBD.

Gregorio, et al. Expires September 9, 2010 [Page 21]

Internet-Draft URI Template Mar 2010

3.10. Label expansion with dot-prefix: {.var}

 TBD.

4. Examples

 TBD.

5. Security Considerations

 A URI Template does not contain active or executable content. Other
 security considerations are the same as those for URIs, see section 7
 of [RFC3986].

6. IANA Considerations

 No IANA actions are required by this document.

7. Acknowledgments

 The following people made significant contributions to this
 specification: Mike Burrows, Michaeljohn Clement, DeWitt Clinton,
 John Cowan, James H. Manger, and James Snell.

8. Normative References

 [ASCII] American National Standards Institute, "Coded Character
 Set - 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2978] Freed, N. and J. Postel, "IANA Charset Registration
 Procedures", BCP 19, RFC 2978, October 2000.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

https://datatracker.ietf.org/doc/html/rfc3986#section-7
https://datatracker.ietf.org/doc/html/rfc3986#section-7
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp19
https://datatracker.ietf.org/doc/html/rfc2978
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986

Gregorio, et al. Expires September 9, 2010 [Page 22]

Internet-Draft URI Template Mar 2010

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [UNIV4] The Unicode Consortium, "The Unicode Standard, Version
 4.0.1, defined by: The Unicode Standard, Version 4.0
 (Reading, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1),
 as amended by Unicode 4.0.1
 (http://www.unicode.org/versions/Unicode4.0.1/)",
 March 2004.

 [UTR15] Davis, M. and M. Duerst, "Unicode Normalization Forms",
 Unicode Standard Annex # 15, April 2003.

 [1] <http://lists.w3.org/Archives/Public/uri/>

Appendix A. Example URI Template Parser

 Parsing a valid URI Template expression does not require building a
 parser from the given ABNF. Instead, the set of allowed characters
 in each part of URI Template expression has been chosen to avoid
 complex parsing, and breaking an expression into its component parts
 can be achieved by a series of splits of the character string.

 Here is example Python code that parses a URI Template expression and
 returns the operator, argument, and variables as a tuple. The
 variables are returned as a dictionary of variable names mapped to
 their default values. If no default is given then the name maps to
 None.

 TBD.

Appendix B. Revision History (to be removed by RFC Editor)

 04 - Changed the operator syntax to a single character that is
 analogous to its reserved role within the URI generic syntax,
 resulting in templates that are far more readable for the common
 cases. Added value modifiers for prefix and suffix expansion. Added
 explode modifiers to allow expansion of complex variables and lists
 according to (external) variable types or schema. Replaced use of
 "expansion" with "expression", since expansion is traditionally used
 to refer to the result after expanding a macro (not the macro
 itself). Made applicable to any hypertext reference string, such
 that the process for template expansion also includes transforming

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc5234
http://www.unicode.org/versions/Unicode4.0.1/
http://lists.w3.org/Archives/Public/uri/

Gregorio, et al. Expires September 9, 2010 [Page 23]

Internet-Draft URI Template Mar 2010

 the surrounding string into a proper URI-reference rather than
 assuming it is already in absolute URI form. Rewrote the text
 accordingly.

 03 - Added more examples. Introduced error conditions and defined
 their handling. Changed listjoin to list. Changed -append to
 -suffix, and allowed -prefix and -suffix to accept list variables.
 Clarified the handling of unicode.

 02 - Added operators and came up with coherent percent-encoding and
 reserved character story. Added large examples section which is
 extracted and tested against the implementation.

 01

 00 - Initial Revision.

Authors' Addresses

 Joe Gregorio (editor)
 Google

 Email: joe@bitworking.org
 URI: http://bitworking.org/

 Roy T. Fielding (editor)
 Day Software

 Email: fielding@day.com
 URI: http://www.day.com/

 Marc Hadley (editor)
 Oracle

 Email: Marc.Hadley@oracle.com
 URI: http://oracle.com/

 Mark Nottingham (editor)

 Email: mnot@pobox.com
 URI: http://mnot.net/

http://bitworking.org/
http://www.day.com/
http://oracle.com/
http://mnot.net/

Gregorio, et al. Expires September 9, 2010 [Page 24]

Internet-Draft URI Template Mar 2010

 David Orchard

 URI: http://www.pacificspirit.com/

Gregorio, et al. Expires September 9, 2010 [Page 25]

http://www.pacificspirit.com/

