
Internet Engineering Task Force D.-H. Gan/R. Guerin/S. Kamat
INTERNET DRAFT Juniper Networks, Inc./IBM/IBM
 T. Li/E. Rosen
 Juniper Networks, Inc./Cisco
 21 November 1997

 Setting up Reservations on Explicit Paths using RSVP
 draft-guerin-expl-path-rsvp-01.txt

Status of This Memo

 This document is an Internet-Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months, and may be updated, replaced, or obsoleted by other documents
 at any time. It is not appropriate to use Internet Drafts as
 reference material, or to cite them other than as a ``working draft''
 or ``work in progress.''

 To learn the current status of any Internet-Draft, please check
 the ``1id-abstracts.txt'' listing contained in the internet-drafts
 Shadow Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Abstract

 This document presents motivations for extensions to RSVP in order to
 enable setting up of reservations on explicit routes. The advantages
 of providing this support are discussed in the context of MPLS and
 QoS routing. An approach to providing these extensions by means of
 opaque routing objects in RSVP messages is presented.

Guerin, et al. Expires 26 May 1998 [Page i]

Internet Draft RSVP on Explicit Paths 21 November 1997

 Contents

Status of This Memo i

Abstract i

 1. Introduction 1

 2. Bandwidth Reservation for Explicit Route in an MPLS Environment 1

 3. QoS Routing with Explicit Routes 3
 3.1. QoS path management 4
 3.2. Enforcing high level admission control policies 6

 4. Mechanism for Reservation Set Up on Explicit Paths 7
 4.1. Explicit Route Object 7
 4.1.1. Subobjects 7
 4.1.2. Applicability 8
 4.1.3. Semantics of the Explicit Route Object 8
 4.1.4. Strict and Loose subobjects 9
 4.1.5. Loops . 10
 4.2. Subobject semantics 10
 4.2.1. Subobject 1: The IPv4 prefix 10
 4.2.2. Subobject 2: The IPv6 address 10
 4.2.3. Subobject 32: The autonomous system number . . . 10
 4.2.4. Subobject 64: MPLS label switched path
 termination 10
 4.3. Processing of the Explicit Route Object 11
 4.3.1. Selection of the next hop 11
 4.3.2. Adding subobjects to the explicit route object . 12
 4.3.3. Error subcodes 13

 5. Conclusions 13

Guerin, et al. Expires 26 May 1998 [Page ii]

Internet Draft RSVP on Explicit Paths 21 November 1997

1. Introduction

 The purpose of this document is to introduce and motivate extensions
 to RSVP to enable setting up of reservations on explicit routes.
 Enabling reservations on explicit routes can be useful in several
 different contexts. In particular, it can be used to ensure that
 certain flows use a ``label switched'' path as in the MPLS context
 [CDF+97] or to facilitate the management of QoS paths computed by a
 QoS capable router as in [GKO+97]. In this document, we describe
 further these potential benefits, and show how they can be attained
 with minimal impact to RSVP. It should be pointed out that the focus
 of this document is on unicast flows as there are many other issues
 that need to be addressed to consider the use of explicit routes for
 multicast flows.

 In the context of unicast flows, explicit routes are to be specified
 through a new Explicit_Route object in RSVP. This object, like policy
 objects, is opaque to RSVP which only needs to ensure its delivery to
 routing. Routing is responsible for processing the Explicit_Route
 object, and will use the information it contains to construct its
 response to a Route_Query from RSVP.

 Sections 2 and 3 motivate the need for explicit route support within
 RSVP in the context of MPLS and QoS routing respectively. Section
 4 describes the specific mechanism of setting up reservations on
 explicit paths. This includes specification of a format for the

 Explicit_Route object and the interactions between RSVP and routing
 in this context.

2. Bandwidth Reservation for Explicit Route in an MPLS Environment

 Consider the following topology:

 A---B---C---D
 | |
 E-------F

 Let us suppose that this topology exists in the network of an
 Internet Service Provider (ISP). We suppose further that node A has
 an interface to one of the ISP's subscribers, S1, and node B has
 an interface to a different subscriber, S2. Finally, we suppose
 that both subscribers are generating packets that are addressed to
 destinations reachable only through node D.

Guerin, et al. Expires 26 May 1998 [Page 1]

Internet Draft RSVP on Explicit Paths 21 November 1997

 In order to make the best provisioning of its bandwidth, the ISP may
 decide that such packets from S1 should follow the route A-B-E-F-D,
 while such packets from S2 should follow the route B-C-D. Further,
 the ISP may want to reserve resources for each of these "flows", so
 that it can schedule transmissions along the respective routes in a
 way that corresponds to whatever agreements the ISP has made to the
 particular subscribers.

 Putting this decision into effect in a conventional IP network is
 extremely difficult, since it requires that two packets going through
 B, with the same destination, be sent on separate routes. Therefore,
 ISPs tend to use ATM or Frame Relay networks to provide this level of
 bandwidth management. ATM and Frame Relay networks also provide the
 capability to support whatever resources reservations are necessary.

 MPLS [CDF+97] provides a way for an ISP to obtain this functionality
 without the need to resort to ATM or Frame Relay. In MPLS, node A
 can apply a "label" to packets from S1 which must pass through D;
 node B can apply a label to packets from S2 which must pass through
 D. When a labeled packet is transmitted, the label is sent along with
 it. Once a packet is labeled, the forwarding decision is based only
 on the label, NOT on the contents of the packet header. Thus there
 is nothing to prevent packet P1 from traveling the A-B-E-F-D path,
 while packet P2 travels the B-C-D path, even if P1 and P2 happen to
 have the very same destination address.

 Of course, MPLS must incorporate some "path setup" procedure whereby
 paths that differ from the "normal" IP routing can get explicitly set
 up. MPLS must also incorporate some means of performing resource
 reservation along these paths. While a resource reservation protocol
 could be designed exclusively for MPLS, it would seem to make most
 sense to use RSVP for that purpose; after all, RSVP was designed to
 be the resource reservation protocol of the internet.

 This requires some modification of RSVP. As currently specified,
 there is no way to force an RSVP Path message to follow any path
 other than the "normal" path to a particular destination. So if a
 different MPLS path were set up for certain flows, there is currently
 no way to get the Path message to follow that path.

 If RSVP control messages could carry opaque objects that are
 meaningful to routing and RSVP's interface to routing is broadened
 as in [GKR97] so that RSVP could pass such objects to routing, then
 this difficulty can be overcome. The Path messages could carry an
 explicit route object. To determine the next hop for the flow, RSVP
 would pass the Explicit Route Object (and other opaque objects if
 present) to routing, which would pass back the identity of the next
 hop, and a modified Explicit Route Object. This would force the Path

Guerin, et al. Expires 26 May 1998 [Page 2]

Internet Draft RSVP on Explicit Paths 21 November 1997

 message to follow the path of the corresponding MPLS flow and ensure
 that resources are reserved along the MPLS path.

 The general ability to carry an opaque routing object in RSVP
 messages further enables one to combine the setup of an MPLS path
 with resource reservation along the same path. This could be
 achieved by having a second opaque routing object carry an MPLS flow
 identifier (label) in conjunction with the explicit route object.
 The definition of such an MPLS label object is deferred to another
 draft. Clearly, this approach has the advantage of avoiding a second
 round trip to make reservations along the MPLS path when the path set
 up itself must be done first. The need to have a second round trip
 seems to simply add latency and complexity, without adding any value.

3. QoS Routing with Explicit Routes

 An objective of QoS routing is to choose for each flow the path that
 has the best likelihood of meeting the flow's QoS requirements,

 while still making efficient use of network resources. In order
 to achieve this goal, QoS routing requires knowledge of network
 resource availability and of the QoS requirements of the flows.
 This information can be provided in a number of ways (e.g., see
 [CNRS97, GKR97] for possible approaches) and is then used by a QoS
 path selection algorithm to identify an appropriate path for a flow.
 The selection of a path and the distribution of the information
 needed to make that selection, however, only represent a subset of
 the functions needed to support QoS routing. There are two other
 important issues that a QoS routing solution must address to meet its
 objectives. These are:

 1. Management of QoS paths of individual flows, and

 2. Enforcing high level admission control policies.

 Management of QoS paths includes not only setting up the paths
 correctly, but also maintaining or adjusting them in response to
 failures and changes in the network. High level (call) admission
 policies are needed (see [CNRS97] for a discussion of this issue) to
 control how selected paths are being used so as to preserve the long
 term efficiency of the network. For example, a suitable path might
 be found for a flow, but rejected by the high level admission control
 because of its cost to the network, e.g., it is using a large number
 of links which could alternatively be used to support several such
 other calls to different destinations.

 In the rest of this section, we articulate how explicit routes can
 facilitate handling of these two issues. However, before doing

Guerin, et al. Expires 26 May 1998 [Page 3]

Internet Draft RSVP on Explicit Paths 21 November 1997

 so, we briefly compare, in the context of QoS routing, the use of
 explicit routes versus the hop-by-hop routing approach presented in
 [GKO+97].

 A hop-by-hop routing solution has the benefits of requiring the
 least changes to RSVP and possibly offering added flexibility (see
 [GKH97] for details), but this does come at a cost. Specifically,
 with hop-by-hop routing, there are multiple decision points (each
 hop) involved in selecting a path, with each making independent
 decisions. As a result, end-to-end control of a path requires
 coordination between the multiple decision points, and this can
 often be a complex task. For example, even in the context of a link

 state routing protocol such as OSPF where all routers in a domain
 compute their routes using the same algorithm applied to a common
 topology database, no single router has complete knowledge of the
 actual path being followed. This is because inconsistencies during
 routing transients as well as equal cost multi-path considerations,
 independently affect local path selection decisions. Additional
 mechanisms are, therefore, needed to coordinate these independent
 decisions.

 On the other hand, when explicit routes are used, selection of the
 entire path is made at a single decision point (the first router in
 the path). In the rest of this section, we expand on the benefits of
 a single decision point in the context of both QoS path management
 and high level call admission.

3.1. QoS path management

 In best-effort routing, route changes occur relatively infrequently,
 and mostly when local interfaces change state or when routing
 updates are received from the routing protocol. With QoS routing,
 changes that would result in the selection of a new route for a
 given destination and QoS requirements are much more frequent, as
 they typically occur each time a metric update is received. If such
 changes were to trigger re-routing of existing QoS flows, this would
 translate into disruption of service to already established flows.
 Furthermore, this could also increase routing instability as such
 re-routing may trigger additional metric updates and cause further
 re-routing. Keeping a flow's routing state, i.e., the path on which
 it has established a reservation, ``pinned'' as long as the path
 remains satisfactory for the flow (and the network) is one possible
 approach to this problem. Path pinning, however, has a number of
 implications for QoS routing.

 First, path pinning requires knowledge that the path being pinned is
 adequate. This includes several aspects. First and foremost, the

Guerin, et al. Expires 26 May 1998 [Page 4]

Internet Draft RSVP on Explicit Paths 21 November 1997

 pinned path should be loop free. When an explicit route is used,
 this is readily achieved as the node selecting the explicit route can
 ensure it is free of any loop. In contrast, when hop-by-hop routing
 is used, the coordination of the multiple decision points involved in
 the selection of the path requires not only that all nodes rely on

 the same routing algorithm, but also imposes close coupling with RSVP
 states to detect the formation of loops (see [GKH97] for details).
 Such a coupling adds some complexity, but more importantly, it can
 prevent the flow of data on the pinned path until after resources
 have been successfully reserved on the entire path (see again [GKH97]
 for details). In the case where reservations are successful on only
 a portion of the path, this means that the data may not be able to
 take advantage of such partial reservations. This is obviously
 undesirable, and while this can possibly be remedied (see also
 [GKH97] for possible approaches), solutions come at the cost of added
 signaling and processing complexity.

 Besides being loop free, a pinned path must also be capable of
 satisfying the QoS requirements of the flow. Hence, it is important
 either to ensure the availability of resources on a pinned path,
 or to provide simple mechanisms to unpin it in case the required
 resources are not available when they are being requested, e.g., when
 an RSVP RESV message is received. Hence, the ability to detect such
 conditions and trigger the unpinning of a path is required. This can
 be achieved using similar mechanisms in both explicit and hop-by-hop
 routing cases using the approach of [GKH97]. Note that unpinning a
 path only implies that QoS routing is being queried anew to determine
 if the current path is still the correct one, or to find if a new
 and better one now exists. In particular, unpinning a path does not
 result in removal of existing path or reservation states. This is
 because although the existing pinned path may not fully satisfy the
 requirements of the flow, it may be the best one currently available.
 In that case any (partial) reservation that may exist on the current
 path should be maintained as it represents the best possible QoS
 available to the flow.

 There are other instances where a path needs to be unpinned. For
 example, when one of the links or nodes on the path fails. In such
 cases, it is important to notify all nodes on the current path, so
 that they can unpin it and query QoS routing to possibly find an
 alternate path. This can again be achieved using similar mechanisms
 in both the explicit route and hop-by-hop routing cases [GKH97].
 However, when a reservation is already in place, it is also desirable
 to identify links on which resources are already reserved for the
 flow. This is important so that these existing reservations be
 taken into account when searching for an alternate path, i.e., avoid
 the ``stepping on one's shadow'' problem. This is made easier in
 the case of explicit route by the knowledge of the entire path.

Guerin, et al. Expires 26 May 1998 [Page 5]

Internet Draft RSVP on Explicit Paths 21 November 1997

 Knowledge of the entire path is also useful in the context of high
 level admission control, and we now briefly review this issue and the
 benefits of explicit routes in that context.

3.2. Enforcing high level admission control policies

 As pointed out in the framework document for QoS routing [CNRS97],
 some form of higher level admission control and administrative
 control of routing behavior may be necessary within an AS. This
 is because QoS routing has to balance the sometimes conflicting
 requirements of high network resource utilization and improved
 chances of successful resource reservation for individual flows.
 For example, when current load in the network suggests a QoS path
 that is much longer than the ``usual'' path, admitting the flow
 along such a path may actually deny service to later flows that
 would have been admissible along segments of this long path. Hence,
 this could negatively affect the overall network utilization. In
 such situations, a high level admission control policy may find it
 desirable not to admit the flow based on routing decision alone. One
 possible approach is to compare the length of the path returned by
 QoS routing to that of a ``usual'' path, and decide whether or not
 to use the path depending on this comparison as well as possibly
 other factors such as overall network load. Conversely, if a flow
 has been already set up and later a much more efficient path becomes
 available, it might be desirable to reroute the flow along the new
 path. This is particularly true if the current path only supports a
 fraction of the desired reservation, while the new path may be able
 to accommodate the complete reservation.

 In all such instances, these decisions are greatly facilitated when
 a single entity is responsible for determining and controlling
 the entire path. Hence, such controls are more readily performed
 when routing is done using explicit routes instead of hop-by-hop
 routing. This is not to say that they are not feasible with
 hop-by-hop routing, but distributed decisions and knowledge generally
 complicate such tasks. For example, transient inconsistent routing
 information at multiple routers can lead to the pinning of a long
 but loop-free path, without any single router on the path being
 aware of the problem. Hence, it becomes difficult to identify and
 rectify such bad routing choices. Solutions to this problem require
 the introduction of additional signaling information to coordinate
 information and decisions across the nodes on the path, e.g., a
 policy object carried in PATH messages that specifies a limit on
 the acceptable path length. This would in turn add to the overall
 signaling and processing overhead, and may all but eliminate the
 potentially greater simplicity of hop-by-hop routing. On the other

Guerin, et al. Expires 26 May 1998 [Page 6]

Internet Draft RSVP on Explicit Paths 21 November 1997

 hand, the single decision point of explicit routes avoids most of
 these problems.

4. Mechanism for Reservation Set Up on Explicit Paths

4.1. Explicit Route Object

 As stated earlier, explicit routes are to be specified through a new
 Explicit_route object in RSVP. RSVP PATH messages will carry this
 object. The format of the explicit route object is described below.

 0 1 2 3
 +-------------+-------------+-------------+-------------+
 | Length (bytes) | Class-Num | C-Type |
 +-------------+-------------+-------------+-------------+
 | |
 // (Object contents) //
 | |
 +-------------+-------------+-------------+-------------+

Class-Num

The Class-Num indicates that the object is POLICY_DATA.

C-Type

The C-Type for an Explicit Route Object is XXX [TBD].

 If a PATH message contains multiple explicit route objects, only the
 first object is meaningful. Subsequent explicit route objects may be
 ignored and should not be propagated.

4.1.1. Subobjects

 The contents of an explicit route object are a series of variable
 length data items called subobjects. Each subobject has the form:

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+------//--------------+
|L| Type | Length | (Subobject contents) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+------//--------------+

L

Guerin, et al. Expires 26 May 1998 [Page 7]

Internet Draft RSVP on Explicit Paths 21 November 1997

The L bit is an attribute of the subobject. The L bit is
set if the subobject represents a loose hop in the explicit
route. If the bit is not set, the subobject represents a
strict hop in the explicit route.

Type

The Type indicates the type of contents of the subobject.
Currently defined values are:

0 Reserved
1 IPv4 prefix
2 IPv6 prefix
32 Autonomous system number
64 MPLS label switched path termination

Length

The Length contains the total length of the subobject in
bytes, including the L, Type and Length fields. The Length
must always be a multiple of 4, and at least 4.

4.1.2. Applicability

 The Explicit Route Object is intended to only be used for unicast
 situations. Applications of explicit routing to multicast are a
 topic for further research.

 The Explicit Route Object is only to be used when all routers along
 the explicit route support RSVP and the Explicit Route Object. The
 mechanisms for determining that such support is present are beyond
 the scope of this document.

4.1.3. Semantics of the Explicit Route Object

 An explicit route is a particular path in the network topology.
 Typically, the explicit route is computed by a node, with the intent
 of directing traffic down that path.

 An explicit route is described as a list of groups of nodes along the
 explicit route. Certain operations to be performed along the path
 can also be encoded in the explicit route.

Guerin, et al. Expires 26 May 1998 [Page 8]

Internet Draft RSVP on Explicit Paths 21 November 1997

 In addition to the ability to identify specific nodes along the
 path, an explicit route can identify a group of nodes that must be
 traversed along the path. This capability allows the routing system
 a significant amount of local flexibility in fulfilling a request
 for an explicit route. In turn, this allows the generator of the
 explicit route to have imperfect information about the details of the
 path.

 The explicit route is encoded as a series of subobjects contained in
 an explicit route object. Each subobject may identify a group of
 nodes in the explicit route or may be an operation to be performed
 along the path. An explicit route is then a path including all
 of the identified groups of nodes, with the specified operations
 occurring along the path.

 To simplify the discussion, we call each group of nodes an abstract
 node. Thus, we can also say that an explicit route is a path
 including all of the abstract nodes, with the specified operations
 occurring along that path.

 As an example, consider an explicit route that consists solely of
 autonomous system number subobjects. Each subobject corresponds to
 an autonomous system in the network topology. Each autonomous system
 is an abstract node. In this case, the explicit route is a path
 including each of the specified autonomous systems. There may be
 multiple hops within each autonomous system.

4.1.4. Strict and Loose subobjects

 The L bit in the subobject is a one-bit attribute. If the L bit is
 set, then the value of the attribute is `loose.' Otherwise, the
 value of the attribute is `strict.' For brevity, we say that if
 the value of the subobject attribute is `loose' then it is a `loose
 subobject.' Otherwise, it's a `strict subobject.' Further, we say
 that the abstract node of a strict or loose subobject is a strict
 or a loose node, respectively. Loose and strict nodes are always
 interpreted relative to their prior abstract nodes.

 The path between a strict node and its prior node MUST include only
 network nodes from the strict node and its prior abstract node.

 The path between a loose node and its prior node MAY include other
 network nodes which are not part of the strict node or its prior
 abstract node.

 The L bit has no meaning in operation subobjects.

Guerin, et al. Expires 26 May 1998 [Page 9]

Internet Draft RSVP on Explicit Paths 21 November 1997

4.1.5. Loops

 While the explicit route object is of finite length, the existence
 of loose nodes implies that it is possible to construct forwarding
 loops during transients in the underlying routing protocol. This may
 be detected by the originator of the explicit route through the use
 of another opaque route object called the Record Route object. The
 Record Route object is used to collect detailed path information and
 is useful for loop detection as well as diagnostic purposes. The
 definition of Record Route object is deferred to another draft.

4.2. Subobject semantics

4.2.1. Subobject 1: The IPv4 prefix

 The contents of an IPv4 prefix subobject are a 4 octet IPv4 address,
 1 octet of prefix length, and 1 octet of padding. The abstract node
 represented by this subobject is the set of nodes which have an IP
 address which lies within this prefix. Note that a prefix length of
 32 indicates a single IPv4 node.

 The length of the IPv4 prefix subobject is 8 octets. The contents of
 the 1 octet of padding must be zero on transmission and must not be
 checked on receipt.

4.2.2. Subobject 2: The IPv6 address

 TBD

4.2.3. Subobject 32: The autonomous system number

 The contents of an autonomous system (AS) number subobject are a
 2 octet autonomous system number. The abstract node represented
 by this subobject is the set of nodes belonging to the autonomous
 system.

 The length of the AS number subobject is 4 octets.

4.2.4. Subobject 64: MPLS label switched path termination

 The contents of an MPLS label switched path termination subobject
 are 2 octets of padding. The subobject is an operation subobject.
 This object is only meaningful if there is a Label Object in the PATH
 message.

Guerin, et al. Expires 26 May 1998 [Page 10]

Internet Draft RSVP on Explicit Paths 21 November 1997

 If a Label Object is present in the PATH message, then this PATH
 message is being used to establish a Label Switched Path. In this
 case, this subobject indicates that the prior abstract node should
 remove one level of label from all packets following this Label
 Switched Path.

 The length of the MPLS label termination subobject is 4 octets.

4.3. Processing of the Explicit Route Object

4.3.1. Selection of the next hop

 A PATH message containing an explicit route object must determine

 the next hop for this path. Selection of this next hop may involve
 a selection from a set of possible alternatives. The mechanism for
 making a selection from this set is implementation dependent and is
 outside of the scope of this specification. Selection of particular
 paths is also outside of the scope of this specification, but it is
 assumed that each node will make a best effort attempt to determine
 a loop-free path. Note that such best efforts may be overridden by
 local policy.

 To determine the next hop for the path, a node performs the following
 steps:

 1) The node receiving the RSVP message must first evaluate the first
 subobject. If the node is not part of the abstract node described by
 the first subobject, it has received the message in error, and should
 return a "Bad initial subobject" error. If the first subobject is an
 operation subobject, the message is in error, and the system should
 return a "Bad Explicit Routing Object" error. If there is no first
 subobject, the message is also in error and the system should return
 a "Bad Explicit Routing Object" error.

 2) If there is no second subobject, this indicates the end of the
 explicit route. The explicit route object should be removed from
 the PATH message. This node may or may not be the end of the path.
 Processing continues with section 4.3.2, where a new explicit route
 object may be added to the PATH message.

 3) Next, the node evaluates the second subobject. If the subobject
 is an operation subobject, the node records the subobject, deletes it
 from the explicit route object and continues processing with step 2,
 above. Note that this changes the third subobject into the second
 subobject in subsequent processing. The precise operations to be
 performed by this node must be defined by the operation subobject.

Guerin, et al. Expires 26 May 1998 [Page 11]

Internet Draft RSVP on Explicit Paths 21 November 1997

 4) If node is also a part of the abstract node described by the
 second subobject, then the node deletes the first subobject and
 continues processing with step 2, above. Note that this makes the
 second subobject into the first subobject of the next iteration.

 5) The node determines if it is topologically adjacent to the
 abstract node described by the second subobject. If so, the node

 selects a particular next hop which is a member of the abstract node.
 The node then deletes the first subobject and continues processing
 with section 4.3.2.

 6) Next, the node selects a next hop within the abstract node of the
 first subobject that is along the path to the abstract node of the
 second subobject. If no such path exists then there are two cases:

 6a) If the second subobject is a strict subobject, then there is an
 error and the node should return a "Bad strict node" error.

 6b) Otherwise, if the second subobject is a loose subobject, then the
 node selects any next hop that is along the path to the next abstract
 node. If no path exists, then there is an error, and the node should
 return a "Bad loose node" error.

 7) Finally, the node replaces the first subobject with any subobject
 that denotes an abstract node containing the next hop. This is
 necessary so that when the explicit route is received by the next
 hop, it will be accepted.

4.3.2. Adding subobjects to the explicit route object

 After selecting a next hop, the node may alter the explicit route in
 the following ways.

 If, as part of executing the algorithm in section 4.3.1, the explicit
 route object is removed, the node may add a new explicit route
 object.

 Otherwise, if the node is a member of the abstract node for the first
 subobject, then a series of subobjects may be inserted before the
 first subobject or may replace the first subobject. Each subobject
 in this series must denote an abstract node that is a subset of the
 current abstract node.

 Alternately, if the first subobject is a loose subobject, an
 arbitrary series of subobjects may be inserted prior to the first
 subobject.

Guerin, et al. Expires 26 May 1998 [Page 12]

Internet Draft RSVP on Explicit Paths 21 November 1997

4.3.3. Error subcodes

 In the processing described above, certain errors need to be reported
 as part of a ``Routing problem'' PathErr message. This section
 defines the subcodes for the errors described above.

Value Error
1 Bad Explicit Routing Object
2 Bad strict node
3 Bad loose node
4 Bad initial subobject

5. Conclusions

 This document provides a motivation for supporting opaque routing
 objects in RSVP to enable setting up resource reservations on
 explicit routes. The benefits of this approach in the contexts of
 MPLS and QoS routing were expounded and a mechanism for supporting
 this feature was discussed.

References

 [CDF+97] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow,
 and A. Viswanathan. A Framework for Multi-Protocol
 Label Switching (draft-ietf-mpls-framework-00.txt).
 INTERNET-DRAFT, Internet Engineering Task Force, May 1997.

 [CNRS97] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick.
 A Framework for QoS-based Routing in the Internet
 (draft-ietf-qosr-framework-00.txt). INTERNET-DRAFT,
 Internet Engineering Task Force, March 1997.

 [GKH97] R. Guerin, S. Kamat, and S. Herzog. QoS Path Management
 with RSVP, (draft-guerin-qos-path-mgt-rsvp-00.txt).
 INTERNET-DRAFT, Internet Engineering Task Force, March
 1997.

 [GKO+97] R. Guerin, S. Kamat, A. Orda, T. Przygienda, and
 D. Williams. QoS Routing Mechanisms and OSPF Extensions,
 (draft-guerin-qos-routing-ospf-01.txt). INTERNET-DRAFT,
 Internet Engineering Task Force, March 1997.

 [GKR97] R. Guerin, S. Kamat, and E. Rosen. Extended RSVP-Routing
 Interface (draft-guerin-ext-rsvp-rtng-intf-00.txt).
 INTERNET-DRAFT, Internet Engineering Task Force, July 1997.

https://datatracker.ietf.org/doc/pdf/draft-ietf-mpls-framework-00.txt
https://datatracker.ietf.org/doc/pdf/draft-ietf-qosr-framework-00.txt
https://datatracker.ietf.org/doc/pdf/draft-guerin-qos-path-mgt-rsvp-00.txt
https://datatracker.ietf.org/doc/pdf/draft-guerin-qos-routing-ospf-01.txt
https://datatracker.ietf.org/doc/pdf/draft-guerin-ext-rsvp-rtng-intf-00.txt

Guerin, et al. Expires 26 May 1998 [Page 13]

Internet Draft RSVP on Explicit Paths 21 November 1997

Authors' Address

 Der-Hwa Gan
 Juniper Networks, Inc.
 385 Ravendale Dr.
 Mountain View, CA 94043
 Email: dhg@juniper.net
 Phone: +1 650 526 8074
 Fax: +1 650 526 8001

 Roch Guerin
 IBM T.J. Watson Research Center
 P.O. Box 704
 Yorktown Heights, NY 10598
 EMAIL: guerin@watson.ibm.com
 VOICE +1 914 784-7038
 FAX +1 914 784-6205

 Sanjay Kamat
 IBM T.J. Watson Research Center
 P.O. Box 704
 Yorktown Heights, NY 10598
 EMAIL: sanjay@watson.ibm.com
 VOICE +1 914 784-7402
 FAX +1 914 784-6205

 Tony Li
 Juniper Networks, Inc.
 385 Ravendale Dr.
 Mountain View, CA 94043
 Email: tli@juniper.net
 Phone: +1 650 526 8006
 Fax: +1 650 526 8001

 Eric Rosen
 Cisco Systems, Inc.
 250 Apollo Drive
 Chelmsford, MA, 01824
 EMAIL: erosen@cisco.com

Guerin, et al. Expires 26 May 1998 [Page 14]

