
Workgroup:

Deterministic Networking Working Group

Internet-Draft:

draft-guo-detnet-vpfc-planning-01

Published: 16 February 2023

Intended Status: Standards Track

Expires: 20 August 2023

Authors: D. Guo

New H3C Technologies Co., Ltd

G. Wen

New H3C Technologies Co., Ltd

K. Yao

China Mobile

G. Peng

Beijing University of Posts and Telecommunications

Deterministic Networking (DetNet) Controller Plane - VPFC Planning

Scheme Based on VPFP in Large-scale Deterministic Networks

Abstract

The cycle-based queuing and forwarding is an effective method to

ensure that the transmission has a definite upper bound of jitter,

as well as latency. The prerequisite for this method is to ensure

that queuing resources do not conflict. In large-scale deterministic

networks (LDNs), how to avoid the queuing resources conflict of this

method is an open problem. This document presents a scheme of

planning virtue periodic forwarding channel (VPFC) based on virtual

periodic forwarding path (VPFP) in LDNs. The scheme can solve the

queuing resources conflict of cycle-specified queuing and forwarding

in nonlinear topology domain, thus ensuring the bounded latency of

DetNet flow in the same periodic forwarding domain.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 August 2023.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/


Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction (informative)

1.1.  Problem Statement

1.2.  Document Roadmap

2.  Terminology and Definitions (informative)

3.  VPFP/VPFC and Configuration Data Models (normative)

3.1.  VPFP: Virtual Periodic Forwarding Path

3.2.  VPFC: Virtual Periodic Forwarding Channel

3.3.  Configuration Data Model

4.  Resources Planning and Reservation Model (informative)

4.1.  Theoretical Model

4.1.1.  Measurement and Calibration

4.1.2.  Mapping Function and Scheduling Cycle Conflict

Resolution

4.1.3.  Proposed Resources Planning Scheme

4.2.  Detailed Description of resources Reservation Scheme

4.2.1.  Establish New resources Metrics

4.2.2.  Resources Reservation Corresponding to the Scheduling

Cycle

4.2.3.  Resources of Scheduling Cycle Description

4.2.4.  Mapping Function

4.2.5.  Resources Demand

4.2.6.  Resources Reservation Process

4.2.7.  Resources Reservation Results

5.  Resources-Related Processing Flow (informative)

5.1.  Collection Process of Cycle Resources

5.2.  Process Flow of Reserving Cycle Resources

5.2.1.  Reservation Calculation for Resources with Specified

Cycle

5.2.2.  Reservation Calculation for Resources with Non-Specified

Cycle

5.2.3.  Execution of Cycle Resources Reservation

5.2.4.  Resources Reservation for PREOF

¶

¶

https://trustee.ietf.org/license-info


5.2.5.  Bandwidth Increase Procedure

5.2.6.  Reroute

5.2.7.  Reclaiming Reserved Resources

6.  Security Considerations

7.  IANA Considerations

8.  Acknowledgements

9.  Contributors

10. Informative References

Authors' Addresses

1. Introduction (informative)

As described in [I-D.ietf-detnet-scaling-requirements], LDNs need to

support not only large amounts of flows and devices, but also large

single-hop propagation latency and accommodate a variety of data

plane queuing and forwarding mechanisms to carry App-flows with

different levels of SLA. For some App-flows with strict requirements

on delivery delay and delay variation (jitter), it is necessary to

adopt a mechanism based on cyclic queuing and forwarding similar to

CQF [IEEE802.1Qch]. These mechanisms are extended for WAN and make

forwarding in DetNet transit nodes lightweight, without per-flow and

per-hop state, and suitable for high-performance hardware

implementation.

[I-D.qiang-detnet-large-scale-detnet] presents the overall framework

and key method for LDNs. Because of different bearing methods, CSQF 

[I-D.chen-detnet-sr-based-bounded-latency] and TCQF 

[I-D.eckert-detnet-mpls-tc-tcqf] propose different methods for LDNs.

For multi-hop forwarding with these LDN methods, the delay variation

(jitter) does not exceed the length of 2 cycles. These LDN methods

are all based on CQF extensions, which are cycle-based queuing and

forwarding schemes. All these methods need to work with some

resources reservation scheme, but none of them gives how to realize

the resources reservation scheme in detail. This document proposes a

VPFC planning scheme based on VPFP to meet this demand.

1.1. Problem Statement

The resources reservation method of queuing and forwarding with

specified cycle is very different from the traditional resources

reservation method. Traditional resources reservation methods, such

as RSVP-TE [RFC3473], only consider bandwidth availability for best-

effort flows, that is, the reserved bandwidth meets the Peak Data

Rate (PDR) of the service flow at the macroscopic level, which do

not take into account the injection time of the packets at the

microscopic level. The result of applying these methods to the

resources reservation of cyclic queuing and forwarding is that the

bandwidth resources meet the transmission demand at the macroscopic

level, but there may be no resources in a specific cycle. If this

¶

¶



problem remains unsolved, the prerequisite of CSQF/TCQF bounded

latency cannot be satisfied.

Figure 1: Multiple Flows Converging

The prerequisite of CSQF/TCQF is that the data corresponding to a

cycle can be forwarded during the cycle. In a single path model, the

prerequisite of CSQF/TCQF is easy to meet, but in reality, networks

are all nonlinear topologies, and to ensure the prerequisite, more

work needs to be done.

For example, as shown in Figure 1, three flows (or aggregation of

multiple service flows) flow1, flow2, and flow3 are injected into

PE1, PE2, and PE3 respectively, and are converged on P4 after being

forwarded. On the macroscopic level, the converged traffic of flow1,

¶

 [1]>> +-----+ [1]>>

-------| PE1 |------

       +-----+If0   \

                     \                               ^ |

                      \                              ^ |

                       \                            [3]|

                        \     [1]>>                    |If0

 [2]>> +-----+ [2]>>  +-----+ If2    +-----+        +-----+

-------| PE2 |--------| P1  |--------| P3  |        | PE4 |

       +-----+If0     +-----+ ---    +-----+        +-----+

                         |   If3 \   If1|[1]         ^ |

                         |   [2]>>\     | v          ^ |

                         |         \    | v  [1]>>  [3]|

                         |          \   |    [2]>>     |If1

 [3]>> +-----+ [3]>>  +-----+ [3]>>  +-----+ [3]>>  +-----+

-------| PE3 |--------| P2  |--------| P4  |--------| P5  |

       +-----+If0     +-----+If2     +-----+If3     +-----+

                                                 [1][2]|If2

                                                  v  v |

                                                  v  v |

                                                       |

                                                    +-----+

                                                    | PE5 |

                                                    +-----+

                                                 [1][2]|If0

                                                  v  v |

                                                  v  v |

                                                       |

[N] : Flow N

>/^/v : Direction of flows, Left/Up/Down

IfN : Interface N of the Router

¶



flow2 and flow3 does not exceed the bandwidth of the outgoing

interface of P4 (set to intf3).

In a certain scenario (which is definitely unavoidable in practical

applications), the three DetNet flows arrive at P4 within the same

cycle interval and need to be forwarded to P5 through intf3. Assume

that all physical links have 100Gbps bandwidth and the cycle

interval is planned to be 10us, so about 125,000 bytes of data can

be transmitted within this interval. Also assume for each of the

three flows, 125,000 bytes of data reaches P4 within 10us, but no

data arrives within 990us after that. In the micro of 10us time

interval, each flow rate reaches 100G bps over a 10us time interval,

but only 1G bps per flow over a 1ms time interval. In this case, if

the traffic arriving at P4 at the same time is scheduled in the same

cycle of Intf3 of P4, a conflict will occur in this cycle (the

deterministic data that arrives cannot be sent within the specified

cycle, resulting in additional random queuing delay, thereby

affecting the deterministic forwarding of the next node), and the

theoretical prerequisite of CSQF cannot be guaranteed. Therefore,

the theoretical upper boundary of end-to-end jitter of CSQF, which

should be less than two cycles, cannot be achieved. Especially after

multi-hop accumulation, the jitter will exceed the upper limit that

the App-flow can tolerate.

For a small-scale deterministic network, the conflict in the domain

is not very prominent, but in an LDN, multiple App-flows access to

the deterministic domain from different edge devices, and the

topology formed by the forwarding paths is nonlinear. After further

consideration of factors such as time injection, different link

bandwidths, etc., the situation becomes very complicated. For an

LDN, this document presents a general scheme to avoid the conflict

of resources in the domain for cycle-based queuing and forwarding.

Note: To simplify the description, CSQF is used in the following

examples.

1.2. Document Roadmap

In the following chapters, Section 2 gives the definition of

relevant terminology; Section 3 specifies VPFP, VPFC and their

configuration data models in our proposed scheme in detail; 

Section 4 describes the resources planning and reservation model in

detail, in which Section 4.1 describes the relevant principles, and 

Section 4.2.1 describes the resources planning and reservation

scheme in detail on the basis of Section 4.1. The resources

reservation process involved in it is detailed in Section 5

separately due to too much content. In Section 5, the detailed

processing flow related to resources is given.

¶

¶

¶

¶

¶



MCPE

Forwarding Path

Virtual Periodic Forwarding Path(VPFP)

Virtual Periodic Forwarding Channel (VPFC)

NQA

TWAMP

CSPF

2. Terminology and Definitions (informative)

This document uses the terms defined as [RFC8655], [RFC8938],

[I-D.ietf-detnet-controller-plane-framework] and [RFC9320].

Moreover, the following terms are used in this document:

Management/Control Plane Entity.

Traditional best-effort forwarding path.

In the forwarding path, the virtual path forwarding based on the

cycle and the mapping relationship between cycles is called a

VPFP.

A forwarding channel established on VPFP.

Network quality analyzer.

Two-Way Active Measurement Protocol.

Constrained Shortest Path First.

3. VPFP/VPFC and Configuration Data Models (normative)

In an LDN, multiple intersecting VPFPs form a mesh topology. In

order to meet the transmission requirements of a specific DetNet

flow, one or more VPFCs needs to be planned on one or more VPFPs.

This section specifies VPFP, VPFC and their configuration data

models in detail.

3.1. VPFP: Virtual Periodic Forwarding Path

¶

¶

¶

¶

¶

¶

¶

¶

¶



Figure 2: VPFP: Virtual Periodic Forwarding Path

When there is a transmission requirement of a deterministic service

flow, the forwarding path needs to be calculated in advance. Then

add cycle-based queuing and forwarding capabilities, and establish

cycle-to-cycle mapping relationships between adjacent nodes. We

further abstract this mapping relationship as a function. After the

mapping function is added to the forwarding path, a VPFP is formed.

Virtual Periodic Forwarding Path (VPFP):

A virtual forwarding path based on the cycles and the mapping

functions between the cycles is called a VPFP. The mapping function

is established between an outgoing interface scheduling cycle of an

upstream node and an outgoing interface scheduling cycle of a

                f1

 [1]>> +-----+ [1]>>

-------| PE1 |------

       +-----+If0   \

                     \                               ^ |

                      \                              ^ |

                       \       f2                   [3]|

                g1      \     [1]>>                    |If0

 [2]>> +-----+ [2]>>  +-----+ [2]>>                 +-----+

-------| PE2 |--------| P1  |------                 | PE4 |

       +-----+If0     +-----+If3   \                +-----+

                         |          \                ^ |

                         |           \       f3/h3   ^ |h4

                         |            \      [1]>>  [3]|

                h1       |     h2      \     [2]>>     |If1

 [3]>> +-----+ [3]>>  +-----+ [3]>>  +-----+ [3]>>  +-----+

-------| PE3 |--------| P2  |--------| P3  |--------| P4  |

       +-----+If0     +-----+If2     +-----+If3     +-----+

                                                 [1][2]|If2

                                                  v  v |

                                                  v  v |f4/f5

                                                       |

                                              <<[1] +-----+

                                              ------| PE5 |

                                                 If0+-----+

                                                    [2]|If1

                                                     v |

                                                     v |

                                                       |

[N] : Flow N

>/</^/v : Direction of flows, Left/Right/Up/Down

IfN : Interface N of the Router

fN/gN/hN : Mapping functions

¶



downstream node, and the upstream node and the downstream must be

adjacent nodes. The VPFP has the following characteristics:

The outbound interface of each node in the forwarding path

supports cycle-based forwarding;

In each segment link of the path, there is a mapping relationship

between the scheduling cycle of the outbound interface of the

upstream node and the scheduling cycle of the outbound interface

of the downstream node;

The sending cycle on the upstream node and the mapping relationship

together determine the forwarding cycle on the outbound interface of

the downstream node.

Taking the topology in Figure 2 as an example, the topology data

adds a function relationship description:

((PE1,Intf0), (P1,Intf3)): f1;

((P1,Intf3), (P3,Intf3)): f2;

((P3,intf3), (P4,intf2)): f3;

((P4,Intf2), (PE5,Intf0)): f4;

((P4,intf2), (PE5,Intf1)): f5;

((PE2,Intf0), (P1,intf3)): g1;

((PE3,intf0), (P2,intf2)): h1;

((P2,intf2), (P3,intf3)): h2;

((P3,intf3), (P4,intf1)): h3;

((P4,intf1), (PE4,Intf0)): h4.

The controller plane maintains the mapping function between the

scheduling cycles of the outgoing interfaces of each pair of

adjacent nodes. This function can be unique or multiple. Once the

path is determined, the function is also determined. When the

resources reservation fails, the physical path carrying the VPFP can

be changed, or the mapping function in the VPFP can be changed to

calculate the reserved resources again (TBD).

The forwarding path carrying the VPFP is generated by the MCPE or

network administrator after calculating the path, and the mapping

function is generated by the calibration after

measurement(Section 4.1.1). As shown in Figure 2, assuming that

there are three deterministic flow paths, the VPFPs form are:

VPFP1: (PE1,Intf0) f1 (P1,Intf3) f2 (P3,Intf3) f3 (P4,Intf2) f4

(PE5,Intf0)

VPFP2: (PE2,Intf0) g1 (P1,intf3) f2 (P3,intf3) f3 (P4,intf2) f5

(PE5,Intf1)

VPFP3: (PE3,intf0) h1 (P2,intf2) h2 (P3,intf3) h3 (P4,intf1) h4

(PE4,Intf0)

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶



Where f1~5, g1, h1~3 are injective functions, see Section 4.1.2 for

details.

3.2. VPFC: Virtual Periodic Forwarding Channel

After the cycle-based resources reservation is completed in the one

or more VPFPs, one or more VPFCs are planned in the paths.

Virtual Periodic Forwarding Channel (VPFC): a forwarding channel

established within VPFP. The basic elements of a VPFC are:

VPFCID(VPFC Identifier).VPFCID is an integer that uniquely

identifies a VPFC within the same deterministic periodic

forwarding domain.

VPFP. VPFP is the path that carries the VPFC, see Section 3.1 for

detail;

Cycle Info. Cycle Info contains the scheduling cycle and the

allocated resources corresponding to the scheduling cycle,

describes the bandwidth and periodicity characteristics of the

VPFC, and is the result of resources reservation. For details,

see Section 4.2.7.

A forwarding path can carry multiple VPFPs. When all the mapping

relationships along the path are determined, a unique VPFP is

determined. Multiple VPFCs can be established in one VPFP.

3.3. Configuration Data Model

Figure 3: VPFP & VPFC configuration data model

If the cycle mapping mode is stack mode, the VPFP parameters(see 

Figure 3) should be deployed to the head node of the VPFP (e.g.,

¶

¶

¶

*

¶

*

¶

*

¶

¶

User                  Network Operator

        flow/service

+--+     info model    +---+

|  | <---------------> | X |    management/control

+--+                   +-+-+       plane entity

                         ^

                         | VPFP&VPFC configuration

                         |        data model

                  +------------+

                  v      |     |

                 +-+     |     v  network

                 +-+     v    +-+  nodes

                        +-+   +-+

                        +-+



ingress PE) to generate the information for directing forwarding. If

the cycle mapping mode is swap mode, VPFP related information needs

to be deployed to each node of VPFP, including Ingress PE, P, and

Egress PE. In both mode, the VPFC pararmters should be deployed to

the head node of the VPFP. The specific process is beyond the scope

of this document.

Take the stack mode as an example, assuming the VPFP for a DetNet

flow is:

VPFP1 = (PE1,Intf0) f1 (P1,Intf3) f2 (P3,Intf3) f3 (P4,Intf2) f4

(PE5,Intf0)

Assuming the successfully reserved result list on PE1 is:

{

(VPFP1): (intf0,Cycle0,1),

(VPFP1): (intf0,Cycle1,1),

(VPFP1): (intf0,Cycle2,1),

(VPFP1): (intf0,Cycle3,1),

(VPFP1): (intf0,Cycle4,1),

(VPFP1): (intf0,Cycle5,1),

(VPFP1): (intf0,Cycle6,1),

(VPFP1): (intf0,Cycle7,1),

}

The VPFC consists of a VPFP and resources reserved along the VPFP.

When the MCPE deploys the VFPC to the head node of the VPFP, the

parameters that need to be configured are summarized as below.

Figure 4: VPFC configuration data structure

Note: A vpfcid uniquely identifies a VPFC, and a vpfpid uniquely

identifies a VPFP. For PREOF, a returned result list may create

multiple VPFCs, each corresponding to a VPFP in PREOF paths.

¶

¶

¶

¶

¶

¶

+-- uint16 vpfcid # Virtual Periodic Forwarding Channel Identifier

+-- uint16 vpfpid # virtual periodic forwarding path identifier

+-- if_config[oif] # Outgoing InterFace configuration

    +-- uint16 cycles # Number of cycles involved in resources

                      # reservation

    +-- cycleinfo[0..cycles-1] #Cycle Info

        +--uint16 cycleid #Cycle ID

        +--uint16 res #Number of Resources

¶



Figure 5: VPFP configuration data structure

In the head node (e.g., Ingress PE) of the VPFP, the forwarding

information is generated based on the vpfp configuration, which is

used for cyclic queueing and forwarding, as well as packet

encapsulating in the CSQF domain. At the same time, according to the

configuration information of VPFC, the selection of the scheduling

cycle in the head node is strictly stipulated, which is used to

realize the PSPF function similar to [IEEE802.1Qci].

With these configuration data models, the creation, deletion, and

modification operations of VPFP and VPFC can be achieved.

4. Resources Planning and Reservation Model (informative)

The establishment of periodic forwarding resources system is a

complex system engineering. It is more realistic to establish the

system based on the existing best-effort system. The whole process

needs the cooperation of user plane, management/control plane and

data plane. To show the overall framework of resources reservation,

the content shown in Figure 6 is copied from [RFC9016]. The

management/control plane entity (MCPE) is responsible for the

managing, planning, reserving, and recycling of cyclic forwarding

resources for deterministic service flows. To get a sense of the

whole picture, the main resources planning related processes are

listed as follows:

+-- uint16 vpfpid # virtual periodic forwarding path identifier

+-- uint8 cycles # is the number of cycles used across all

                 # interfaces in the CSQF/TCQF domain.

+-- policy_info [policy] # Policy information, e.g. SRv6 policy

+-- pipe_info[0..cycles-1] # The scheduling cycle pipeline

                           # corresponding to each scheduling cycle

                           # on the head node

    +-- uint8 hops # Number of hops

    +-- map_info[0..hops-1] # The mapping target in each pipeline

                            # is a specific scheduling cycle

        +--uint8 out_cycle #output cycle

¶

¶

¶



Figure 6: Usage of Information Models (Flow, Service, and

Configuration)

The data plane generates topology information. IGP (OSPF or IS-

IS) collects the network topology information. Using the

powerful route selection and calculation capabilities of BGP

protocol, BGP-LS protocol summarizes the topology information

discovered by IGP protocol and sends it to the MCPE

(management/control plane entity,see Figure 6). The MCPE stores

this information in the topology database of the control plane.

MCPE measures the transmission delay between nodes through NQA

or TWAMP. This delay is a relatively coarse granularity in

accuracy, usually in milliseconds.

MCPE obtains the link transmission delay measurement results

through NETCONF [RFC6241]/YANG [RFC6020] and uses the results

with less accurate delay info to update the topology data.

User (see Figure 6) provides flow information required to

establish a session (see [RFC9016] for specific parameters)

MCPE uses CSPF to calculate the end-to-end path to obtain an

optimal path, or multiple paths with close propagation delays

for PREOF.

The MCPE performs accurate segmentation measurement on the

forwarding path (the measurement mechanism with microsecond-

level accuracy needs to be solved). According to the

measurement results and the resident delay in the node, the

correlation mapping is established to form VPFP. VPFP is

delivered to the data plane and integrated into the forwarding

table to direct data forwarding.

User                  Network Operator

        flow/service

 /\      info model    +---+

/  \ <---------------> | X |    management/control

----                   +-+-+       plane entity

                         ^

                         |   configuration

                         |     info model

                  +------------+

                  v      |     |

                 +-+     |     v  network

                 +-+     v    +-+  nodes

                        +-+   +-+

                        +-+

1. 

¶

2. 

¶

3. 

¶

4. 

¶

5. 

¶

6. 

¶



MCPE uses the resources planning scheme provided in this

document to reserve resources (see Section 4 and Section 5 for

details). After the planning is successful, the result forms

VPFC.

MCPE delivers the planned resources to the head node (e.g.,

Ingress PE) of VPFP, and creates VPFC. (The VPFP&VPFC

configuration data models are defined in Section 3.3)

The head node of VPFP (network node in Figure 6, Ingress PE)

schedules the data of the DetNet flow according to the cycle

resources owned by the VPFC to which the DetNet flow belongs.

As stated in [RFC8557], whether a distributed alternative without a

PCE can be valuable could be studied. For example, such an

alternative could be to build a solution similar to that in 

[RFC3209]. But the focus of current work on DetNet should be to

provide a centralized method first. The solution provided in this

document belongs to the centralized solution, and can make the

implementation of resources reservation by data plane devices as

lightweight and stateless as possible.

In the following contents of this chapter, Section 4.1 first

describes the basic principles, in which the measurement and

calibration in Section 4.1.1 are the prerequisite for establishing

the function mapping of VPFP. Section 4.1.2 describes how to use the

characteristics of mapping functions to resolve scheduling cycle

planning conflicts; combined with the theory in Section 4.1.2, 

Section 4.1.3 briefly introduces the overall process of resources

planning. Based on the principles of Section 4.1, Section 4.2

describes the complete scheme of resources reservation in detail,

including various data models involved in the scheme. Due to too

much content, the resources reservation process involved is

elaborated separately in Section 5.

4.1. Theoretical Model

4.1.1. Measurement and Calibration

7. 

¶

8. 

¶

9. 

¶

¶

¶



Figure 7: Timing model for DetNet or TSN

As shown in Figure 7, [RFC9320] highly abstracts the timing model of

the DetNet transit node. In a large-scale deterministic network, the

implementation of some DetNet transit nodes is a distributed

architecture, and the processing delay in these nodes varies widely,

which is the operation that contributes the most to the delay

jitter. In cycle-based queuing and forwarding, the jitter introduced

by various operations needs to be fully considered, so that the end-

to-end transmission delay can reach a definite bound.

      DetNet transit node A            DetNet transit node B

   +-------------------------+       +------------------------+

   |              Queuing    |       |              Queuing   |

   |   Regulator subsystem   |       |   Regulator subsystem  |

   |   +-+-+-+-+ +-+-+-+-+   |       |   +-+-+-+-+ +-+-+-+-+  |

-->+   | | | | | | | | | +   +------>+   | | | | | | | | | +  +--->

   |   +-+-+-+-+ +-+-+-+-+   |       |   +-+-+-+-+ +-+-+-+-+  |

   |                         |       |                        |

   +-------------------------+       +------------------------+

   |<->|<------>|<------->|<->|<---->|<->|<------>|<------>|<->|<--

2,3  4      5        6      1    2,3   4      5        6     1   2,3

                1: Output delay             4: Processing delay

                2: Link delay               5: Regulation delay

                3: Frame preemption delay   6: Queuing delay

¶



Figure 8: Mapping relationship between scheduling cycles of outbound

interfaces of upstream and downstream nodes

Taking CSQF as an example, before forwarding, it is necessary to

establish a mapping relationship between the scheduling cycles of

the outgoing interfaces of upstream and downstream nodes, and the

process is completed by measurement and calibration. (In order to

simplify the description, the specific interface of the Node A is

uniformly replaced by the Node A, and similar for Node B.)

As shown in Figure 8, taking 8 cycles as an example, Node A and Node

B are two adjecent CSQF nodes. Node A is the upstream node, and Node

B is the downstream node. To know which cycle is being scheduled in

Node B (for example, cycle 2 in Figure 8) when packets sent from a

certain cycle in Node A (for example, cycle 0 in Figure 8) reaches

it, a measurement should be applied. The specific implementation of

the measurement is beyond the scope of this demo, and will not be

described here. After the measurement is done, the forwarding cycle

in Node B for these packets should be decided, which should take

into account the processing delay variant in the device. In this

example, for packets sent in cycle 0 of Node A, cycle 6 is chosen as

forwarding cycle in Node B. The packets sent in cycle 1 of Node A

       A

+-----+--------+

|  0  |********|\                       B

+-----+--------+ \               +-----+--------+

|  1  |        |  \              |  0  |        |

+-----+--------+   \             +-----+--------+

|  2  |        |    \            |  1  |        |

+-----+--------+     \           +-----+--------+

|  3  |        |      \          |  2  |********| <-- CTQ

+-----+--------+       \         +-----+--------+

|  4  |        |        \        |  3  |        |\<-- TRQ

+-----+--------+         \       +-----+--------+ \

|  5  |        |          \      |  4  |        |  \

+-----+--------+           \     +-----+--------+   \ <-- JTR

|  6  |        |            \    |  5  |        |  /

+-----+--------+             \   +-----+--------+ /

|  7  |        |              \->|  6  |********|/<-- SRQ

+-----+--------+                 +-----+--------+

                                 |  7  |        |

                                 +-----+--------+

CTQ : Current transmitting queue when the packet arrives

TRQ : Theoretical receiving queue for the packet

SRQ : Safe receiving queue for the packet

JTR : Jitter of the node

¶



are assigned to cycle 7 of Node B, and so on. This is the task to be

done by calibration.

After calibration, the scheduling cycles of A and that of B have the

following mapping relationship:

0 --> 6

1 --> 7

2 --> 0

3 --> 1

4 --> 2

5 --> 3

6 --> 4

7 --> 5.

In terms of jitter absorption in Figure 8, it is feasible to assign

the packet sent in the 0th scheduling cycle of Node A to the queue

in the 6th or 7th or 0th scheduling cycle of Node B. So there is

more than one mapping that can be calibrated.

4.1.2. Mapping Function and Scheduling Cycle Conflict Resolution

As described in Section 4.1.1, after the calibration is completed, a

definite mapping relationship is established between the scheduling

cycles of the outbound interface of the two adjacent nodes. This

relationship can be regarded as a function f: its domain is the

scheduling cycle range of Node A, 0~7, and its range is the

scheduling cycle range of Node B, 0~7. Further constraint can be

imposed on the mapping relationship: during calibration, any

scheduling cycle in A has one and only one scheduling cycle in B

which is calibrated with it. Under this constraint, the function f

becomes an injective function.

¶

¶

¶

¶

¶



Figure 9: Schematic diagram of multiple flows convergence with cycle

mapping function

The cycle planning is further constrained: in the same CSQF domain,

all interface plan the same number of scheduling cycles. Under this

constraint, all mapping functions have the same domain and range.

Note:Different interfaces of the same node can belong to different

domains, and the cross-domain processing is beyond the scope of this

document.

It is assumed that the calibrated mapping between the scheduling

cycles of the outbound interfaces of the upstream and downstream

nodes described in Figure 9 also satisfies the injective function

relationship, and the calibrated relationship between the scheduling

cycles of the outbound interfaces of PE1 and P1 is the functional

relationship f1, and the calibrated mapping relationship between the

scheduling cycles of the outbound interfaces of P1 and P3 is the

functional relationship f2. The mapping relationship between the PE

and the scheduling cycles of the P3 outbound interface satisfies the

composite function f:

f = f2(f1)

According to the property of injective function, f is also an

injective function.

 [1]>> +-----+ [1]>>

-------| PE1 |------

       +-----+  f1  \

                     \

                      \

                       \

                        \      f2

 [2]>> +-----+ [2]>>  +-----+ [1]>>

-------| PE2 |--------| P1  |------

       +-----+  g1    +-----+ [2]>>\

                               g2   \

                                     \

                                      \      [1]>>

                                       \     [2]>>

 [3]>> +-----+ [3]>>  +-----+ [3]>>  +-----+ [3]>>  +-----+

-------| PE3 |--------| P2  |--------| P3  |--------| P4  |

       +-----+  h1    +-----+  h2    +-----+        +-----+

[N] : Flow N

 >  : Direction of flows

fN/gN/hN : Mapping functions

¶

¶

¶

¶

¶



Similarly, we can get:

g = g2(g1)

h = h2(h1)

and g, h are both injective functions, where g2 is the mapping

relationship between the scheduling cycle of outbound interface of

P1 and the scheduling cycle of outbound interface of P3, and h2 is

the mapping relationship between the scheduling cycle of outbound

interface of P2 and the scheduling cycle of outbound interface of

P3.

With the above constraints,assume the flow from PE1, PE2, and PE3

conflicts at P3, that is, they are mapped to the same scheduling

cycle. Let the scheduling cycles of flow in PE1, PE2, and PE3 be a,

b, and c respectively, the following situation occurs:

The function values of f(a), g(b) and h(c) appear the same, which is

a conflict. According to the property of the injective function, if

a is changed to d (d!= a), then f(d) != f(a), so f(d) != g(b) and

f(d) != h(c). Similarly, changing the input of function g or h can

also achieve the effect of eliminating conflict.

At the same time, it is easy to draw the following conclusions:

For f = f2(f1), if d != a, then f(d) != f(a) and f1(d) != f1(a).

Further generalize this conclusion: Suppose that the ordered set

<f1, f2, ..., fn> is a set composed of injective functions(where n

is a natural number), and the domain and range are both A, A={x|

0<=x<k , x and k are natural numbers}. The composite function

composed of the first i (1<=i<=n) functions is denoted as:

f[i] = fi(fi-1(...(f1))).

Let the proper subsets B and C of set A satisfy the condition:

The union of B and C is A, the intersection of B and C is empty set,

then for any b in B and any c in C, f[i](b) != f[i](c).

When planning the usage of scheduling cycles, the scheduling cycles

that have been traversed in the scheduling cycles of the head node

of VPFP (e.g., Ingress PE) are regarded as set B, and the scheduling

cycles that have not been traversed are regarded as set C. When a

conflict for a scheduling cycle occurs when converging with other

paths, a new scheduling cycle c is selected from C, and the new c

and the set elements that have been traversed in set B as input

produce different results. That is, there will be no cycle planning

conflicts starting from the same head node along the currently

planning VPFP. In this way, it is only necessary to judge whether

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



there is a conflict with other path aggregation, and if there is no

conflict, the scheduling cycle planning is successful.

Note: When there are multiple mapping relationships that can be

calibrated, each calibrated relationship corresponds to a function.

In multiple planning, different function mappings can be used each

time.

4.1.3. Proposed Resources Planning Scheme

Under the prerequisite of rational utilization of resources,the key

issue to ensure that the theoretical conditions of CSQF are

satisfied is to plan a VPFC to be scheduled during a certain cycle

of the interface of the corresponding node. In other words, the

forwarding capability corresponding to the specified cycle interval

on the interface of the corresponding node is allocated to the VPFC.

The common feature of cycle-based forwarding is that all data is

first buffered and then forwarded in a specific cycle interval.

Combined with this feature, the more abstract forwarding capability

during a cycle can be converted into the cache resources required

for the specific data that can be forwarded during this cycle. The

problem is transformed into a buffer resources reservation problem,

that is, the buffer resources is reserved for the deterministic

flows that are allowed to be scheduled during the cycle (referred to

as resources reservation for cyclic forwarding), and the

deterministic flows that do not have buffer resources reserved are

not scheduled during the cycle.

According to the conclusion in Section 4.1.2, the resources in the

CSQF domain can be reasonably planned. When a scheduling cycle

conflict occurs on the convergence point or the outbound interface

with small bandwidth and the traffic entering from other paths,

change the planning cycle of the head node, then perform cycle

calculation along the VPFP and try to reserve resources. After the

attempt is successful, the conflict can be eliminated.

At the same time, because the mapping functions along the VPFP are

injection functions, we can regard the scheduling cycle and

buffering resources of the non-head node's aggregation interface or

low-bandwidth outbound interface to be shared as a common resources,

and allocate this common resources to the head nodes with

deterministic transmission requirements. The resources allocated on

the head node and the VPFP constitute the VPFC of our scheme.

The injective function also strictly constrains the corresponding

relationship between the head node and convergent node resources.

Therefore, the head node only needs to save the allocated resources

of its own node, and does not need to save the allocated resources

of the non-head node (including sink node). The non-head node does

¶

¶

¶

¶

¶



not need to save the resources allocation state, and the resources

allocation state is saved by the MCPE, so as to achieve the

lightweight implementation of the resources reservation of the non-

head node (e.g., P node).

While the head node of VPFP performs VPFC scheduling strictly

according to the resources allocated to the VPFC, conflicts can be

avoided on the non-head node's aggregation interface or low-

bandwidth outbound interface sharing transmission. Scheduling

strictly according to allocated resources on the head node is a key

issue, which will be further studied in other literatures.

According to [RFC8655], service flows can be aggregated and

resources can be reserved for the aggregated flows. With our

solution, the aggregated flows share the scheduled resources

reserved on the edge nodes, and the resources competition is

localized. The delay jitter caused by the aggregated flows will also

be local, and it is easier to realize the time delay bounded. In

order to further optimize the jitter of the member service flows in

the aggregate flow, only the scheduling resources allocated to the

edge nodes of the aggregate flow need to be further refined, and

this arrangement will not cause the change of global resources

allocation.

By separating resources planning from measurement and calibration,

there is no need to consider the problem of path aggregation when

performing calibration after measurement, which can greatly reduce

the complexity of calibration.

4.2. Detailed Description of resources Reservation Scheme

In Section 4.1, we give a highly abstract description of the

principle and method of our resources reservation scheme, and give a

very high-level idea. This section discusses the scheme in detail,

including quantitative representation of forwarding resources

corresponding to the scheduling cycle, and description of the main

elements involved in the scheme. The detailed process of resources

reservation in this scheme is described in Section 5.

4.2.1. Establish New resources Metrics

Forwarding resources are a relatively vague concept. They include

not only bandwidth resources, but also device storage resources. For

example, high-speed on-chip caches inside ASICs are often measured

in units of bytes rather than bps. It is not enough to consider

bandwidth only when reserving resources, we have to establish a new

resources metric in bytes or bytes of a certain length, for example,

64 bytes is one resources unit. The comprehensive capability of one

cycle is measured in new resources units, which covers cache

¶

¶

¶

¶

¶



capacity, cycle interval time, and interface bandwidth. In this way,

the three dimensions of cycle duration, cache capacity, and physical

bandwidth are simplified into one dimension: the number of resources

units, so as to simplify the implementation of resources

reservation.

For example, assuming that the backbone network is uniformly divided

into a 10us scheduling cycle and one resources unit has 64 bytes,

the data that can be transmitted on a 400G interface in each

scheduling cycle is about 7812 resources units, 1953 on a 100G

interface, 195 on a 10G interface, and 19 on a 1G interface. The

amount of resources that can be provided by the scheduling cycle of

an interface is given by the comprehensive evaluation of the

implementation specifications of devices such as interface bandwidth

and storage resources. Resources planning is done based on this

quantity, which simplifies implementation.

4.2.2. Resources Reservation Corresponding to the Scheduling Cycle

¶

¶



Figure 10: Scheduling cycle resources of the interface

This section extends the description of the method described in 

Section 4.1 in conjunction with the constraints of Section 4.2.1.

According to the theory in Section 4.1, if the scheduling cycle a of

PE1 is mapped to the scheduling cycle c of P1, and the scheduling

cycle b of PE2 is also mapped to the scheduling cycle c of P1, then

a cycle conflict occurs. The conflict can be resolved by adjusting

the scheduling cycle a or b, but if P1 has multiple units of

resources in the same scheduling cycle, it is allowed to allocate

resources in the same scheduling cycle to PE1 and PE2 as needed,

thereby increasing the utilization of resources in the scheduling

cycle.

 [1]>> +-----+ [1]>>

-------| PE1 |------

       +-----+      \

                     \

                      \

                       \

                        \

 [2]>> +-----+ [2]>>  +-----+ [1]>>

-------| PE2 |--------| P1  |------

       +-----+        +-----+ [2]>>\

                                    \

                                     \

                                      \      [1]>>

                                       \     [2]>>

 [3]>> +-----+ [3]>>  +-----+ [3]>>  +-----+ [3]>>  +-----+

-------| PE3 |--------| P2  |--------| P3  |--------| P4  |

       +-----+        +-----+        +-----+        +-----+

Resourc of the interfaces:

                 T=10us      Buffers

            +-----+        +--------+

          / |  T  | =====> |   1    |

          | +-----+        +--------+

          | |  T  |        |   1    |

N cycles <  +-----+        +--------+

          | | ... |        |  ...   |

          | +-----+        +--------+

          \ |  T  |        |  1953  |

            +-----+        +--------+

[N] : Flow N

 >  : Direction of flows

¶

¶



Based on the resources metrics proposed in Section 4.2.1, the

resources of the scheduling cycle are uniformly quantified. As shown

in Figure 10, assuming the data rates of all physical links are

100Gbps, and the length of the scheduling cycle is 10us, each

scheduling cycle can transmit 1953 64-byte data resources units.

Because of multiple resources belonging to one cycle, instead of

explicitly judging whether a scheduling cycle conflict occurs, it is

changed to judge whether the resources corresponding to the

scheduling cycle on the path meet the demand. If the demand for

resources can be satisfied, the corresponding resources are

reserved. Otherwise, the MCPE chooses another scheduling cycle as

the input of the function, and tries iterative calculation and

resources reservation again.

According to the resources demand of a DetNet flow, starting from

the head node of the VPFP, the functions in the path are

sequentially called along the VPFP for calculation. Firstly, the

first value in the domain of the function associated with the head

node, is used as the input of that function, and then the previous

function's value is used as the input value of the next function for

iterative calculation. Concomitantly, it is judged whether the

resources of the cycle corresponding to each input value and output

value meet the demand. If the resources do not meet the demand, the

current iterative calculation is terminated, and the next value in

the domain of the function associated with the head node is used as

a new input, and the above processing is continued. When all the

values in the domain of the function of the head node are traversed

and fail to meet the demand, no VPFC is successfully planned for the

DetNet flow. If the resources meets the demand, a VPFC is

successfully planned, and the remaining resources corresponding to

the scheduling cycle are updated along the planned VPFC. The

controller plane records the VPFC, and delivers the VPFC to the head

node of the VPFP.

To optimize resources usage, multiple DetNet flows can be aggregated

together to share a VPFC. For example, suppose the cycle duration is

10us and 10 cycles are used, then each cycle will be scheduled once

every 100us. If 1 unit of resources is allocated to a VPFC for a

DetNet flow which sends 1 unit of data every 1ms, then only 1/10 of

the allocated resources is really used. If another DetNet flow

regularly sends 1 unit of data every 3ms, which has the same

forwarding path with the VPFC, then this VPFC can be shared. Of

course, this inevitably introduces jitter, but this jitter is

bounded, unperceived or tolerated by most applications, and can be

eliminated by other methods, which are beyond the scope of this

document.

¶

¶

¶



4.2.3. Resources of Scheduling Cycle Description

Scheduling cycle resources description:

(node, interface, scheduling cycle): (number of available resources,

number of initial resources), where the number of resources is

measured in uniform resources units. For example, in Figure 10,

assuming that the total number of cycles in the domain is uniformed

as 8, the cycle interval is 10us, the PE1's Intf0 is a 10Gbps

interface, and each cycle can forward about 193 units of resources.

For factors that have not been considered, some capabilities need to

be reserved, the number of resources can be initialized as 180. The

resources numbers of PE1's Intf0 are initialized as follows:

(PE1,Intf0,Cycle0): (180,180);

(PE1,Intf0,Cycle1): (180,180);

(PE1,Intf0,Cycle2): (180,180);

(PE1,Intf0,Cycle3): (180,180);

(PE1,Intf0,Cycle4): (180,180);

(PE1,Intf0,Cycle5): (180,180);

(PE1,Intf0,Cycle6): (180,180);

(PE1,Intf0,Cycle7): (180,180);

The P1's Intf3 is a 100Gbps interface, and each cycle can forward

about 1953 units of resources. For factors that have not been

considered, some capabilities need to be reserved, the number of

resources can be initialized as 1900. The resources numbers of P1's

Intf3 are initialized as follows:

(P1,Intf3,Cycle0): (1900, 1900);

(P1,Intf3,Cycle1): (1900, 1900);

(P1,Intf3,Cycle2): (1900, 1900);

(P1,Intf3,Cycle3): (1900, 1900);

(P1,Intf3,Cycle4): (1900, 1900);

(P1,Intf3,Cycle5): (1900, 1900);

(P1,Intf3,Cycle6): (1900, 1900);

(P1,Intf3,Cycle7): (1900, 1900);

The controller plane maintains the resources information of the

scheduling cycle of the interface of each node, and reduces the

number of available resources in the corresponding scheduling cycle

of the interface of the corresponding node after the DetNet flow

path resources reservation is performed.

4.2.4. Mapping Function

Assuming that each node is divided into n equal-length scheduling

cycles, after measurement and calibration, there are n function

mapping relationships:

¶

¶

¶

¶

¶

¶

¶



y = (x+k) mod n, the domain of definition is {x | 0<=x<n, x and n

are natural numbers}, and the value range of the constant k is: {k |

0<=k<n, k and n are natural numbers, n>3}, (In principle, the

scheduling cycle and the number of corresponding CSQF queues can be

less than 3, but in large-scale deterministic networks, it is

unrealistic to be less than or equal to 3, and it is not conducive

to resources planning).

Taking the network in Figure 9 as an example, it is assumed that

each node is divided into 8 (n=8) equal-length scheduling cycles.

After measurement, the function mapping relationships such as f1~2,

g1~2, and h1~2 are obtained by calibration as one of the following 8

functions:

y = (x+0) mod 8, {x | 0<=x<8, x is a natural number};

y = (x+1) mod 8, {x | 0<=x<8, x is a natural number};

y = (x+2) mod 8, {x | 0<=x<8, x is a natural number};

y = (x+3) mod 8, {x | 0<=x<8, x is a natural number};

y = (x+4) mod 8, {x | 0<=x<8, x is a natural number};

y = (x+5) mod 8, {x | 0<=x<8, x is a natural number};

y = (x+6) mod 8, {x | 0<=x<8, x is a natural number};

y = (x+7) mod 8, {x | 0<=x<8, x is a natural number};

As a specific example,these functions can be finally decided as:

f1(x) = (x+3) mod 8, {x | 0<=x<8, x is a natural number};

f2(x) = (x+1) mod 8, {x | 0<=x<8, x is a natural number};

g1(x) = (x+4) mod 8, {x | 0<=x<8, x is a natural number};

g2(x) = (x+5) mod 8, {x | 0<=x<8, x is a natural number};

h1(x) = (x+6) mod 8, {x | 0<=x<8, x is a natural number};

h2(x) = (x+7) mod 8, {x | 0<=x<8, x is a natural number};

The controller plane saves the mapping function which is one of the

components used to describe VPFP.

4.2.5. Resources Demand

The resources demand here is the input for reservation processing

after conversion processing of app-flow's requirements (see 

[RFC9016]), not the original transmission requirement of an app-

flow.

Resources demands are described as a list of requirements:

{sub-demand 1, sub-demand 2, ...}

Each sub-demand looks like:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



(Virtual Periodic Forwarding Path): (Outbound Interface, Scheduling

Cycle, Number of Resources Units Required, Minimum Allocation

Granularity Per Cycle).

The components of the above requirements are described as follows:

"Virtual Periodic Forwarding Path" is used to specify the virtual

periodic forwarding path for allocating resources;

"Outbound Interface" is the outgoing interface of the first node

in the virtual periodic forwarding path;

"Scheduling Cycle" is used to specify which cycle to be selected

in the first node to send data. The resources of the cycle need

to be allocated. The scheduling cycle may not be specified,

indicating that any cycle can be used. Otherwise, the resources

are allocated according to the specified cycle;

"Number of Resources Units Required" is used to specify the

number of resources required by the resources requirement;

"Minimum Allocation Granularity per Cycle" specifies the minimum

number of resources allocated in the same scheduling cycle to

ensure that the same data packet of a deterministic service flow

does not cross the scheduling cycles. For example, if each packet

transmission of a service flow requires 2 resources units, then

the "Minimum Allocation Granularity per Cycle" will be 2, means

at least 2 resources units needs to be allocated from the same

scheduling cycle.

For the transmission requirements of app-flows with strict jitter

upper bound requirements, resources for a specified cycle may be

allocated. For example, a certain DetNet flow has a transmission

requirement of one resources unit, but it is required to be

transmitted in time, and the jitter is less than 2 scheduling

cycles. CSQF can meet this requirement. A unit of resources is

allocated from each cycle along the VPFP, so that no matter when the

data of the service flow arrives, there is always a unit of

resources is ready.

In order to facilitate the following description, the demand list is

further symbolized, and the resources demand is described as the

demand list DemandList:

{SubDemand1, SubDemand2, ...}

SubDemand for each specified cycle is in the form of:

(VPFP): (oif,cycle,res,min);

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶



That is, SubDemand1 is set to "(VPFP): (oif1, cycle1, res1, min1)".

The allocation of sub-requirements for each non-specified cycle is

as follows:

(VPFP): (oif, InvalidCycle, res, min);

That is, SubDemand1 is set to "(VPFP): (oif1, InvalidCycle, res1,

min1)".

where VPFP is described in Section 3.1, for example, VPFP is:

(PE1,Intf0) f1 (P1,Intf3) f2 (P3,Intf3) f3 (P4,Intf2) f4 (PE5,Intf0)

For example, for a flow, its path is the above VPFP, and for its

specified cycle allocation, its resources demand list DemandList on

PE1 can be expressed as:

{

(VPFP): (intf0,Cycle0,1,1),

(VPFP): (intf0,Cycle1,1,1),

(VPFP): (intf0,Cycle2,1,1),

(VPFP): (intf0,Cycle3,1,1),

(VPFP): (intf0,Cycle4,1,1),

(VPFP): (intf0,Cycle5,1,1),

(VPFP): (intf0,Cycle6,1,1),

(VPFP): (intf0,Cycle7,1,1)

}

The above allocation indicates that resources of 0 to 7 cycles are

allocated to the flow, and one unit of resources is allocated from

each cycle; and if the resources list DemandList allocated by the

scheduling cycle is not specified, it can be expressed as:

{(VPFP): (intf0, InvalidCycle, 10, 2)}, where InvalidCycle is the

invalid cycle, defined by the implementation.

4.2.6. Resources Reservation Process

For details, see Section 5.

4.2.7. Resources Reservation Results

The resources allocation result of the specified scheduling cycle is

exactly the same as the resources allocation result of the non-

specified cycle, and it is described as a result list:

{subresult 1, subresult 2, ...}

Each sub-result looks like:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



(path information): (outbound interface, scheduling cycle, number of

resources units).

In order to facilitate the following description, the resources

allocation result list is further symbolized, and the resources

allocation result is the result list ResultList:

{SubResult1,SubResult2, ...}

SubResult of each specified cycle sub-requirement is as follows:

(VPFP): (oif, cycle, res);

That is, SubResult1 is set to (VPFP): (oif1, cycle1, res1).

Where VPFP is described in Section 3.3, for example:

VPFP is:

(PE1,Intf0) f1 (P1,Intf3) f2 (P3,Intf3) f3 (P4,Intf2) f4 (PE5,Intf0)

List of results after the specified cycle reservation method is

successful:

{

(VPFP): (intf0,Cycle0,1),

(VPFP): (intf0,Cycle1,1),

(VPFP): (intf0,Cycle2,1),

(VPFP): (intf0,Cycle3,1),

(VPFP): (intf0,Cycle4,1),

(VPFP): (intf0,Cycle5,1),

(VPFP): (intf0,Cycle6,1),

(VPFP): (intf0,Cycle7,1),

}

After the reservation of non-specified cycle resources is

successful, the resulting list contains the actually reserved cycles

and their corresponding resources. Suppose the requirements of Flow1

are as follows:

{(VPFP): (intf0, InvalidCycle, 10, 2)}

After the allocation is successful, the result list may be:

{(VPFP): (intf0,Cycle0,10)}

It may also be as follows, when one cycle cannot meet the

transmission demand, it is allocated from multiple cycles:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



{

(VPFP): (intf0, Cycle0, 5),

(VPFP): (intf0, Cycle1, 5)

}

Note: When resources requirements are allocated for multiple

scheduling cycles, ensure that the resources allocated for each

cycle can transmit the full packet in service.

After the resources is successfully reserved, the MCPE needs to

record the VPFC planned for the DetNet flow, which will be used for

the reasons of VPFC recycling, modifying, etc. Since the topology

may change, resources reclamation cannot rely on topology

information. Therefore, it is necessary to save the VPFC allocated

on the PE on the controller plane.

5. Resources-Related Processing Flow (informative)

This section gives a detailed resources-related processing flow. At

the same time, the complex issue of resources recycling will be

briefly covered, and there will be discussions of unresolved issues

related to resources reservation. These discussions do not give any

direction to the solution developer for how they should do with the

forwarding resources recycling, but to point out that these issues

should not be ignored in the implementation.

5.1. Collection Process of Cycle Resources

For simplicity, this solution is based on the existing best-effort

forwarding mechanism and do some extensions. In terms of network

topology and path planning, it directly inherits current

implementation. For example, collecting topology through IGP and

BGP-LS, measuring inter-node delay through NQA or TWAMP, collecting

link delay through NETCONF, planning paths that meet application

delay requirements based on CSPF, are all existing technologies. The

specific implementation is beyond the scope of this document.

In order to implement this solution, it is necessary to add some new

functions on the basis of the existing implementation, including

establishing a resources database in the periodic forwarding domain.

The database needs to include the association relationship of

interface, cycle, and forwarding resources, and also needs to

include the mapping relationship between the outgoing interfaces of

the upstream node and the downstream node. For reference, a new

added process can be:

Plan the scheduling cycle of nodes in the deterministic domain,

including the cycle length and the number.

¶

¶

¶

¶

¶

¶

1. 

¶



Install the planned path, and configure the scheduling cycle to

the interfaces of the nodes along the path;

The MCPE collects the number of resources of the scheduling

cycle on the outgoing interface of each node along the path

through YANG/NETCONF.

The MCPE measures the mapping relationship between the outgoing

interface cycles of the upstream node and the downstream node.

For example, if a packet is sent from cycle 0 in the upstream

node's outgoing interface, and when it reaches the downstream

node, cycle 5 of the downstream node's outgoing interface is

being scheduled, then the mapping relationship between the two

interfaces is 0 to 5. To achieve this, a new measurement method

is needed, which will be described in a separate document

(TBD);

The MCPE collects the cycle mapping information between nodes

and the processing delay inside each node through NETCONF/YANG.

Based on this information, the injective function described in 

Section 4.2.4 is established;

The MCPE uses the collected path information and the cycle

mapping information to establish the path information described

in Section 3.1, and saves them in the control plane.

5.2. Process Flow of Reserving Cycle Resources

When a deterministic service flow session needs to be established,

it sends a request to the MCPE. The MCPE selects a path and allocate

resources according to the flow characteristics. The overall process

is as follows:

When the USER has a deterministic service flow session to

establish, it sends a request and the flow characteristics to

the MCPE, following the format described in [RFC9016];

The MCPE translates the flow characteristics provided by the

USER into resources demands. If there are any interfaces in the

planned path whose periodic resources information has not been

collected by the MCPE, the MCPE will install the interfaces and

collect their resources information as described in 

Section 5.1;

The MCPE translates the resources demand into the resources

units demand as described in Section 4.2.1, and decides whether

the demand type is specified cycle (type 1, see Section 5.2.1)

or un-specified cycle (type 2, Section 5.2.2). The form of the

translated resources demand is described in Section 4.2.5;

2. 

¶

3. 

¶

4. 

¶

5. 

¶

6. 

¶

¶

1. 

¶

2. 

¶

3. 

¶



The MCPE reserves the resources according to the demand type.

See Section 5.2.1 and Section 5.2.2 for detail;

If the resources reservation succeeds, the session will be

established. Otherwise, the MCPE will select a new path and

repeat from step 2, until the timeout is hit;

When successfully planned VPFC, the allocated resources need to

be delivered to the head node of the VPFP. For the

configuration data model, see Section 3.3. The head node of the

VPFP schedules according to the allocated resources. The

implementation of the head node of the VPFP is beyond the scope

of this document and will be described in detail in other

documents (TBD).

After a VPFC is established, the VPFC is scheduled based on the its

buffer resources in the scheduling cycle of the VPFP head node, so

that conflict of periodic data forwarding will not occur in the CSQF

domain.

5.2.1. Reservation Calculation for Resources with Specified Cycle

Assuming the format of the path information calculated by MCPE is as

described in Section 3.1, then VPFP1 is:

(PE1,Intf0) f1 (P1,Intf3) f2 (P3,Intf3) f3 (P4,Intf2) f4 (PE5,Intf0)

The resources demand list for specified cycle is:

{

(VPFP1): (intf0,Cycle0,1,1),

(VPFP1): (intf0,Cycle1,1,1),

(VPFP1): (intf0,Cycle2,1,1),

(VPFP1): (intf0,Cycle3,1,1),

(VPFP1): (intf0,Cycle4,1,1),

(VPFP1): (intf0,Cycle5,1,1),

(VPFP1): (intf0,Cycle6,1,1),

(VPFP1): (intf0,Cycle7,1,1)

}

For the convenience, the node, outgoing interface, and available

resources are respectively abbreviated as cn (Current Node), ci, and

ar. So cn.ci.ar[c] denotes the available resources in cycle c of the

outgoing interface of current node. For the above resources demands

for specified scheduling cycle, perform the following resources

reservation calculation and reservation processing:

Let SubDemand be the first entry(sub-demand) of DemandList. The

format of SubDemand is: (VPFP):(oif,cycle,res,min); Go to 2);

4. 

¶

5. 

¶

6. 

¶

¶

¶

¶

¶

¶

¶

1. 

¶



Get VPFP from SubDemand. Let IngressPE be the first node in

VPFP, and EgressPE be the last node in VPFP. Let cn be

IngressPE. Variant j keeps the value of the current node's

scheduling cycle, let j=cycle. Go to 3);

If cn.ci.ar[j] >= res, it indicates that the available

resources in the current scheduling cycle meet the resources

demand, go to 4); otherwise, the reservation fails, go to 8);

If cn is the EgressPE of VPFP, then the resources reservation

of the entire VPFP for SubDemand completed. Save the result to

ResultList, then go to 5); otherwise, go to 6);

If SubDemand is the last entry in DemandList, it indicates that

all sub-demands have been satisfied, then go to 7); Otherwise,

let SubDemand be the next entry in DemandList, then go to 2);

From VPFP, get the mapping function fx between cn.ci and the

outgoing interface of the next node. Then update cn, let it be

the next node in VPFP, and cn.ci is the corresponding outgoing

interface. Calculate the scheduling cycle for the outgoing

interface of the next node, and update the value of j. That is,

let j=fx(j). Go to 3);

The resources reservation calculation succeed, and the

resources reservation will be performed. For details, see 

Section 5.2.3.

The resources reservation calculation fails, the ResultList

should be recycled. For details, see the overall process at the

beginning of Section 5.2.

5.2.2. Reservation Calculation for Resources with Non-Specified Cycle

Assuming the format of the path calculated by MCPE is as described

in Section 3.1, and VPFP1 is:

(PE1,Intf0) f1 (P1,Intf3) f2 (P3,Intf3) f3 (P4,Intf2) f4

(PE5,Intf0),

and VPFP2 is:

(PE2,Intf0) g1 (P1,intf3) f2 (P3,intf3) f3 (P4,intf2) f5 (PE5,Intf1)

The resources demand list for unspecified cycle is:

{

(VPFP1): (intf0, InvalidCycle, 10,2);

(VPFP2): (intf0, InvalidCycle, 8,2)

},

2. 

¶

3. 

¶

4. 

¶

5. 

¶

6. 

¶

7. 

¶

8. 

¶

¶

¶

¶

¶

¶

¶



Where InvalidCycle means invalid cycle, whose value is defined by

the implementation.

For the above resources demands for non-specified scheduling cycle,

perform the following resources reservation calculation and

reservation processing:

Let SubDemand be the first sub-demand entry of DemandList. The

format of SubDemand is: (VPFP): (oif,cycle,res,min). Go to 2);

Get VPFP from SubDemand. Let IngressPE be the first node in

VPFP, and EgressPE be the last node in VPFP. Let cn be

IngressPE. Some variants are defined: j keeps the value of the

current node's scheduling cycle; c keeps the value of the

scheduling cycle in IngressPE; Demand keeps the number of

resources to be reserved; CandDemandRes keeps the number of

candidate demand resources corresponding to cycle j. The search

starts from the cycle 0 in IngressPE, so the initial values are

: cn=IngressPE; c=j=0; SubDemandRes=res;

CandDemandRes=SubDemandRes; Go to 3);

If cn.ci.ar[j] >= CandDemandRes, it indicates that the

available resources of the current scheduling cycle meet the

resources demand SubDemandRes. Let j=c, go to 4); otherwise, go

to 8);

If cn is the EgressPE of VPFP, It indicates that the available

resources of all scheduling cycles along the VPFP corresponding

to the scheduling cycle c of the head node meet the resources

demand CandDemandRes, then go to 5); otherwise, go to 6);

Record the SubResult currently calculated, where SubResult is

(VPFP): (oif, c, CandDemandRes), add SubResult to the result-

list ResultList, go to 7);

From VPFP, get the mapping function fx between cn.ci and the

outgoing interface of the next node. Then update cn, let it be

the next node in VPFP, and cn.ci is the corresponding outgoing

interface. Calculate the scheduling cycle for the outgoing

interface of the next node, and update the value of j. That is,

let j=fx(j). Go to 3);

If CandDemandRes >= SubDemandRes, it indicates that the

remaining resources demand of SubDemand is met, go to 8);

otherwise, go to 10) ;

If SubDemand is the last entry in DemandList, it indicates that

all sub-demands have been satisfied, then go to step 19);

otherwise, go to 9);

¶

¶

1. 

¶

2. 

¶

3. 

¶

4. 

¶

5. 

¶

6. 

¶

7. 

¶

8. 

¶



Let SubDemand be the next entry in DemandList, then go to 2);

If c<cycles-1, which means c is not the last scheduling cycle,

go to 11); otherwise, it means all cycles of IngressPE have

been traversed, but the resources demands cannot be met, go to

step 20);

Let SubDemandRes = SubDemandRes - CandDemandRes. Go to 12);

If SubDemandRes<min, It indicates that the remaining resources

demand is less than the minimum allocation granularity, then go

to 13); otherwise, go to 14);

Let SubDemandRes=min, which updates the remaining resources

demand as the minimum allocation granularity; go to 14);

Prepare for the next scheduling cycle of IngressPE to be

processed. Let CandDemandRes=SubDemandRes, c=c+1, j=c,

cn=IngressPE. Go to step 3);

If c<cycles-1, which means c is not the last scheduling cycle,

then go to 16); otherwise, it means all cycles of IngressPE

have been traversed, but the resources demands cannot be met,

go to step 20);

Let k=floor(cn.ci.ar[j]/min), where min is the minimum

allocation granularity. Go to 17);

If k>0, it indicates that the available resources of the

current scheduling cycle of the current node meet part of the

resources demand, then go to 18); otherwise go to 14);

Let CandDemandRes=k*min, go to 4);

The resources reservation calculation succeeds, and the

resources reservation will be performed. For details, see 

Section 5.2.3.

The resources reservation calculation fails, release the

resources in the ResultList. For failure handling, see the

overall process at the beginning of Section 5.2.

5.2.3. Execution of Cycle Resources Reservation

After the resources reservation calculation, the resources

reservation is executed. The MCPE traverse the ResultList and

perform the following resources reservation operations:

Let SubResult be the first entry in ResultList. The format of

SubResult is: (VPFP): (oif, cycle, res). Go to 2);

9. ¶

10. 

¶

11. ¶

12. 

¶

13. 

¶

14. 

¶

15. 

¶

16. 

¶

17. 

¶

18. ¶

19. 

¶

20. 

¶

¶

1. 

¶



Get VPFP from SubResult. Let IngressPE be the first node in

VPFP, and EgressPE be the last node in VPFP. Let cn be

IngressPE. Let j be the current cycle, so j=cycle. Go to 3);

Update the resources of the cycle j, that is, the number of

resources of cn.ci.ar[j] is reduced by res. See Section 4.2.3

for the description of the resources of the cycle. Go to 4);

If cn is the EgressPE of VPFP, then the resources reservation

of the entire VPFP completed, go to 5); otherwise, go to 6);

If SubResult is the last entry in ResultList, then the

reservation is completed for all sub-results, go to 7);

otherwise, let SubResult be the next entry in ResultList, go to

2);

From VPFP, get the mapping function fx between cn.ci and the

outgoing interface of the next node. Then update cn, let it be

the next node in VPFP, and cn.ci is the corresponding outgoing

interface. Calculate the cycle for the outgoing interface of

the next node, and update the value of j. That is, let j=fx(j).

Go to 4);

Save ResultList to the database, then return success.

5.2.4. Resources Reservation for PREOF

For a PREOF implementation, each resources reservation demand on a

VPFP forms a sub-demand (see Section 4.2.5). Multiple sub-demands

form a demand list for resources reservation calculation and

reservation (see Section 4.2.1, Section 4.2.2 and Section 4.2.3).

For example, suppose there is a deterministic service flow that

requires two member paths to form a compound path to increase

reliability. Where one of the member paths is VPFP1:

(PE1,Intf0) f1 (P1,Intf3) f2 (P3,Intf3) f3 (P4,Intf2) f4 (PE5,Intf0)

Another Member Path is VPFP2:

(PE1,Intf1) g1 (P2,Intf3) f2 (P5,intf3) f3 (P6,intf2) f5 (PE5,Intf0)

In this example, the DetNet flow is injected from PE1 and copied on

PE1. The original flow and the copy are sent from Intf0 and Intf1

respectively. The original flow and the copy are finally aggregated

on PE5, and the aggregated data flows out from Intf0 of PE5 after

processing. The bandwidth requirement of this service flow is 10

resources units. Due to the multi-path, the jitter caused by unequal

path lengths is greater than the jitter caused by the access PE

scheduling cycle. Therefore, for the PREOF deployment method, the

resources reservation method with a non-specified cycle is more

2. 

¶

3. 

¶

4. 

¶

5. 

¶

6. 

¶

7. ¶

¶

¶

¶

¶



practical. Assuming that the resources demand of the service flow is

10 resources units, and the minimum granularity of resources

allocation in each cycle is 2 resources units, the following non-

specified cycle resources demand list is formed:

{

(VPFP1): (intf0, InvalidCycle, 10,2);

(VPFP2): (intf0, InvalidCycle, 10,2);

},

Where InvalidCycle is the invalid cycle, whose value is defined by

the implementation.

5.2.5. Bandwidth Increase Procedure

When the bandwidth demand of a service flow increases, convert the

newly added bandwidth demand into resources demand to form the

demand list described in Section 4.2.5, and execute the combined

processing flow of Section 4.2.1 and Section 4.2.4 or Section 4.2.2

and Section 4.2.4.

5.2.6. Reroute

For a single path change, the MCPE recycles the old path resources

and reserves demanded resources along the new path.

For the PREOF implementation, the process for one VPFP change is

same as the process for a single path change.

5.2.7. Reclaiming Reserved Resources

Resources recycling is a key issue. The resources recycling process

is relatively complex. In an LDN, resources that have been allocated

will not be used for various reasons. If they are not recycled,

resources "leakage" will occur, reducing the effective utilization

of the network.

The reasons that may trigger the resources recovery include:

DetNet flow deletion;

Changes in service flow demands. One scenario is the flow's

resources demand changes. In this case, the original VPFC may

no longer meet the demand, and needs to be re-planned, so the

allocated resources should be recycled and the new ones should

be reserved. Another scenario is the resources demand of a flow

is reduced. In this case, some resources that have been

reserved for the flow need to be recycled, but no new resources

needs to be reserved.

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2. 

¶



One or more nodes along the VPFP fail. In this case, the

resources reserved by all service flows in the failure nodes

need to be recycled. For PREOF, some resources may serve one

than one VPFPs, in which case the resources can be recycle only

when all the VPFPs fail. The detailed process for node failing

is out of scope of this document and left for further study.

The controller detects a flow failure through monitoring

methods like periodical handshaking. 

[I-D.ietf-detnet-controller-plane-framework] meations the

convergent management plane method. Resources recovery is a

comprehensive and complex problem, and the convergent

management plane method is also suitable.

In PREOF mode, if resources reservation for some member VPFPs

fails, all the resources reserved for all member VPFPs should

be recycled.

As a common resource, the scheduling cycle resources should be

correlated with the OAM module. When OAM detects some failure or

abnormality, recycling of the scheduling cycle resources should be

triggered. Therefore, the scheduling cycle resources recovery is

also a part of the OAM that needs to be enhanced.

6. Security Considerations

The security considerations related to resources reservation are the

same as those described in 

[I-D.ietf-detnet-controller-plane-framework]. In addition, it is

necessary to deal with the errors mentioned in [IEEE802.1Qci] , such

as exceeding SDU, etc. This kind of process includes discarding and

counting the packets, and is usually implemented on the forwarding

plane.

7. IANA Considerations

This document makes no IANA requests.

8. Acknowledgements

The authors express their appreciation and gratitude to Min Liu for

the review and helpful comments.

9. Contributors

The editor wishes to thank and acknowledge the following author for

contributing text to this document.

3. 

¶

4. 

¶

5. 

¶

¶

¶

¶

¶

¶



        Lei Zhou

        New H3C Technologies

        100094

        Email: zhou.leiH@h3c.com

        Shiyin Zhu

        New H3C Technologies

        100094

        Email: zhushiyin@h3c.com

        Zuopin Cheng

        New H3C Technologies

        100094

        Email: czp@h3c.com

        Ning Pan

        New H3C Technologies

        100094

        Email: panning@h3c.com

        Shenchao Xu

        New H3C Technologies

        100094

        Email: xushenchao@h3c.com

        Xusheng Chen

        New H3C Technologies

        100094

        Email: cxs@h3c.com

        Pin Wu

        New H3C Technologies

        100094

        Email: wupin@h3c.com

        Jun Chu

        New H3C Technologies

        100094

        Email: chu.jun@h3c.com

        Wei Wang

        New H3C Technologies

        100094

        Email: david_wang@h3c.com

        Xinmin Liu

        New H3C Technologies

        100094

        Email: liuxinmin@h3c.com

¶



[I-D.chen-detnet-sr-based-bounded-latency]

[I-D.eckert-detnet-mpls-tc-tcqf]

[I-D.ietf-detnet-controller-plane-framework]

[I-D.ietf-detnet-scaling-requirements]

[I-D.qiang-detnet-large-scale-detnet]

[IEEE802.1Qch]

[IEEE802.1Qci]

10. Informative References

Chen, M., Geng, X., and 

Z. Li, "Segment Routing (SR) Based Bounded Latency", Work

in Progress, Internet-Draft, draft-chen-detnet-sr-based-

bounded-latency-01, 7 May 2019, <https://www.ietf.org/

archive/id/draft-chen-detnet-sr-based-bounded-

latency-01.txt>. 

Eckert, T. T., Bryant, S., and A.

G. Malis, "Deterministic Networking (DetNet) Data Plane -

MPLS TC Tagging for Cyclic Queuing and Forwarding (MPLS-

TC TCQF)", Work in Progress, Internet-Draft, draft-

eckert-detnet-mpls-tc-tcqf-03, 11 July 2022, <https://

www.ietf.org/archive/id/draft-eckert-detnet-mpls-tc-

tcqf-03.txt>. 

Malis, A. G., Geng, X., Chen, M., Qin, F., and B. Varga, 

"Deterministic Networking (DetNet) Controller Plane

Framework", Work in Progress, Internet-Draft, draft-ietf-

detnet-controller-plane-framework-03, 30 December 2022, 

<https://www.ietf.org/archive/id/draft-ietf-detnet-

controller-plane-framework-03.txt>. 

Liu, P., Li, Y., Eckert, T. T., Xiong, Q., Ryoo, J., 

zhushiyin, and X. Geng, "Requirements for Large-Scale

Deterministic Networks", Work in Progress, Internet-

Draft, draft-ietf-detnet-scaling-requirements-00, 9

December 2022, <https://www.ietf.org/archive/id/draft-

ietf-detnet-scaling-requirements-00.txt>. 

Qiang, L., Geng, X., Liu, B., Eckert, T. T., Geng, L.,

and G. Li, "Large-Scale Deterministic IP Network", Work

in Progress, Internet-Draft, draft-qiang-detnet-large-

scale-detnet-05, 2 September 2019, <https://www.ietf.org/

archive/id/draft-qiang-detnet-large-scale-detnet-05.txt>.

IEEE, "IEEE Standard for Local and metropolitan area

networks -- Bridges and Bridged Networks - Amendment 29:

Cyclic Queuing and Forwarding", IEEE 802.1Qch-2017, DOI

10.1109/IEEESTD.2017.7961303, 28 June 2017, <https://

doi.org/10.1109/IEEESTD.2017.7961303>. 

IEEE, "IEEE Standard for Local and metropolitan area

networks -- Bridges and Bridged Networks - Amendment 28:

Per-Stream Filtering and Policing", IEEE 802.1Qci-2017, 

https://www.ietf.org/archive/id/draft-chen-detnet-sr-based-bounded-latency-01.txt
https://www.ietf.org/archive/id/draft-chen-detnet-sr-based-bounded-latency-01.txt
https://www.ietf.org/archive/id/draft-chen-detnet-sr-based-bounded-latency-01.txt
https://www.ietf.org/archive/id/draft-eckert-detnet-mpls-tc-tcqf-03.txt
https://www.ietf.org/archive/id/draft-eckert-detnet-mpls-tc-tcqf-03.txt
https://www.ietf.org/archive/id/draft-eckert-detnet-mpls-tc-tcqf-03.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-controller-plane-framework-03.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-controller-plane-framework-03.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-scaling-requirements-00.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-scaling-requirements-00.txt
https://www.ietf.org/archive/id/draft-qiang-detnet-large-scale-detnet-05.txt
https://www.ietf.org/archive/id/draft-qiang-detnet-large-scale-detnet-05.txt
https://doi.org/10.1109/IEEESTD.2017.7961303
https://doi.org/10.1109/IEEESTD.2017.7961303


[RFC3209]

[RFC3473]

[RFC6020]

[RFC6241]

[RFC8557]

[RFC8655]

[RFC8938]

[RFC9016]

[RFC9320]

DOI 10.1109/IEEESTD.2017.8064221, 28 September 2017, 

<https://doi.org/10.1109/IEEESTD.2017.8064221>. 

Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,

and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP

Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001, 

<https://www.rfc-editor.org/info/rfc3209>. 

Berger, L., Ed., "Generalized Multi-Protocol Label

Switching (GMPLS) Signaling Resource ReserVation

Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC

3473, DOI 10.17487/RFC3473, January 2003, <https://

www.rfc-editor.org/info/rfc3473>. 

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020, 

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>. 

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 

<https://www.rfc-editor.org/info/rfc6241>. 

Finn, N. and P. Thubert, "Deterministic Networking

Problem Statement", RFC 8557, DOI 10.17487/RFC8557, May

2019, <https://www.rfc-editor.org/info/rfc8557>. 

Finn, N., Thubert, P., Varga, B., and J. Farkas, 

"Deterministic Networking Architecture", RFC 8655, DOI

10.17487/RFC8655, October 2019, <https://www.rfc-

editor.org/rfc/rfc8655>. 

Varga, B., Ed., Farkas, J., Berger, L., Malis, A., and S.

Bryant, "Deterministic Networking (DetNet) Data Plane

Framework", RFC 8938, DOI 10.17487/RFC8938, November

2020, <https://www.rfc-editor.org/info/rfc8938>. 

Varga, B., Farkas, J., Cummings, R., Jiang, Y., and D.

Fedyk, "Flow and Service Information Model for

Deterministic Networking (DetNet)", RFC 9016, DOI

10.17487/RFC9016, March 2021, <https://www.rfc-

editor.org/info/rfc9016>. 

Finn, N., Le Boudec, J.-Y., Mohammadpour, E., Zhang, J.,

and B. Varga, "Deterministic Networking (DetNet) Bounded

Latency", RFC 9320, DOI 10.17487/RFC9320, November 2022, 

<https://www.rfc-editor.org/info/rfc9320>. 

https://doi.org/10.1109/IEEESTD.2017.8064221
https://www.rfc-editor.org/info/rfc3209
https://www.rfc-editor.org/info/rfc3473
https://www.rfc-editor.org/info/rfc3473
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8557
https://www.rfc-editor.org/rfc/rfc8655
https://www.rfc-editor.org/rfc/rfc8655
https://www.rfc-editor.org/info/rfc8938
https://www.rfc-editor.org/info/rfc9016
https://www.rfc-editor.org/info/rfc9016
https://www.rfc-editor.org/info/rfc9320


Authors' Addresses

Daorong Guo

New H3C Technologies Co., Ltd

Beijing

100094

China

Email: guodaorong@h3c.com

Guangliang Wen

New H3C Technologies Co., Ltd

Beijing

100094

China

Email: wenguangliang@h3c.com

Kehan Yao

China Mobile

Beijing

100053

China

Email: yaokehan@chinamobile.com

Guoyu Peng

Beijing University of Posts and Telecommunications

Beijing

100876

China

Email: guoyupeng@bupt.edu.cn

mailto:guodaorong@h3c.com
mailto:wenguangliang@h3c.com
mailto:yaokehan@chinamobile.com
mailto:guoyupeng@bupt.edu.cn

	Deterministic Networking (DetNet) Controller Plane - VPFC Planning Scheme Based on VPFP in Large-scale Deterministic Networks
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction (informative)
	1.1. Problem Statement
	1.2. Document Roadmap

	2. Terminology and Definitions (informative)
	3. VPFP/VPFC and Configuration Data Models (normative)
	3.1. VPFP: Virtual Periodic Forwarding Path
	3.2. VPFC: Virtual Periodic Forwarding Channel
	3.3. Configuration Data Model

	4. Resources Planning and Reservation Model (informative)
	4.1. Theoretical Model
	4.1.1. Measurement and Calibration
	4.1.2. Mapping Function and Scheduling Cycle Conflict Resolution
	4.1.3. Proposed Resources Planning Scheme

	4.2. Detailed Description of resources Reservation Scheme
	4.2.1. Establish New resources Metrics
	4.2.2. Resources Reservation Corresponding to the Scheduling Cycle
	4.2.3. Resources of Scheduling Cycle Description
	4.2.4. Mapping Function
	4.2.5. Resources Demand
	4.2.6. Resources Reservation Process
	4.2.7. Resources Reservation Results


	5. Resources-Related Processing Flow (informative)
	5.1. Collection Process of Cycle Resources
	5.2. Process Flow of Reserving Cycle Resources
	5.2.1. Reservation Calculation for Resources with Specified Cycle
	5.2.2. Reservation Calculation for Resources with Non-Specified Cycle
	5.2.3. Execution of Cycle Resources Reservation
	5.2.4. Resources Reservation for PREOF
	5.2.5. Bandwidth Increase Procedure
	5.2.6. Reroute
	5.2.7. Reclaiming Reserved Resources


	6. Security Considerations
	7. IANA Considerations
	8. Acknowledgements
	9. Contributors
	10. Informative References
	Authors' Addresses


