
Network Working Group P.Gutmann
draft-gutmann-cms-rtcs-01.txt University of Auckland
Expires September 2004 March 2004

Real-time Certificate Status Facility for CMS - (RTCS)

Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Note that other groups may also
distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may
be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet-Drafts as reference material or to cite them
other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

Copyright (C) The Internet Society (2003). All Rights Reserved.

1. Abstract

This document describes how the Cryptographic Message Syntax may be used for
communicating certificate status information in a manner suitable for use with
CMS data and CMS-related messaging mechanisms such as S/MIME.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in
uppercase, as shown) are to be interpreted as described in [RFC2119], except
when they appear in ASN.1 constructs, in which case they follow [X.680]

https://datatracker.ietf.org/doc/html/draft-gutmann-cms-rtcs-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

2. Problem analysis

This section examines the problems that need to be solved by the protocol, and
provides a rationale for design decisions. Section 3 defines the protocol
based on the design decisions.

2.1 Overview

When the OCSP protocol was defined, the design was based on full compatibility
with CRL-based mechanisms and the use of a nonstandard message format
incompatible with the Cryptographic Message Syntax. This requires the use of
a complex means of certificate identification that has resulted in
interoperability problems among implementations, a design unsuited for high-
throughput, real-time operation, the inability to provide an unambiguous
certificate status response (the only thing that a CRL can say with certainty
is "revoked"), and an online responder tied to an offline mechanism (some CAs
issue CRLs only once or twice a day, even though they have an online, real-
time certificate store available). A more practical problem is that it makes
it impossible to implement an OCSP responder using a standard CMS toolkit or
implementation, or not based on CRLs, for example one that consults a
certificate database or in-memory hash table to determine the presence or
absence of a valid certificate.

Just as the original OCSP responses were designed for completely CRL-
compatible operation, this document specifies a response type that is designed
for real-time status operation, providing a response not from a stored CRL
using CRL-only mechanisms but directly from a live certificate store or in-
memory hash table. This allows the responder to provide extended information
not possible with CRLs, combined a high level of performance and CMS-
compatibility not possible with the original OCSP design.

In abstract terms, the responder is providing an implementation of an
authenticated dictionary D that responds to membership queries from relying
parties. An OCSP responder answers the question "Is x excluded from D?",
while an RTCS responder answers the question "Is x present in D?".

When returning a response, the responder is merely indicating that the queried
certificate is currently present in its set of valid certificates in a
standard CMS-compatible manner. It is purely an authenticated dictionary
service and does not verify the certificate in any way. Relying parties
requiring external verification services should use the PKIX standard
mechanisms for this [RFC3379] and not RTCS. Specifically, RTCS does not
provide, and should not be assumed to provide, any of the functionality of
DPD/DPV. It is purely a mechanism for running a high-performance CMS-
compatible certificate status responder directly from a CA certificate

https://datatracker.ietf.org/doc/html/rfc3379

store/in-memory table.

Some of the issues that need to be addressed in order to perform this task are
covered in the following subsections.

2.2 Use of standard/flexible data formats

The format used for OCSP responses is an incomplete reinvention of the
standard CMS format that lacks a number of CMS features, leading to various
implementation/deployment difficulties. For example, some responders need to
provide confidentiality protection for their responses, since returning an
indication that a certificate has been revoked may be interpreted as a
statement about the veracity of the organisation that owns the certificate,
leading to potential liability concerns (the same problem is faced by some
CAs, who have to password-protect or encrypt their CRLs). Similarly, some
users require confidentiality protection on requests in order to prevent
traffic analysis by outsiders, for the same reasons that protection of
responses is required. These operations are trivial to implement using the
standard CMS format, but impossible with the OCSP reinvention of CMS,
requiring the use of ad-hoc/proprietary extensions.

Responders that operate in resource-constrained environments (see section 2.6)
or that require high-throughput operation (see section 2.5) may choose to
authenticate their responses with a low-overhead MAC rather than a high-
overhead signature. Again, this is impossible with the OCSP format but
trivial with CMS.

Finally, CMS is the standard format for signed/encrypted/MAC'ed data. Using
this format rather than an incompatible reinvention of the format allows for
simple implementations based on existing code. In the case of the OCSP
specification, more than half the ASN.1 is dedicated to reinventing the CMS
message format; omitting this unnecessary step considerably simplifies the
specification and the task of implementation.

2.3 Certificate identification

OCSP defines a complex certificate identifier that takes portions of the
certificate, hashes some (making reference to the original value impossible),
doesn't hash others, and even requires a hash of data from other certificates
to be included as part of the identifier, making it impossible to query the
status of a single, standalone certificate. The OCSP identifier is also
incompatible with all existing identifiers, including the one traditionally
used by CMS. Real-world experience has shown that implementors have
considerable difficulty with this identifier, leading to interoperability
problems among implementations.

RTCS should therefore provide a simple, widely-accepted, universally-
applicable identifier for all certificates, regardless of their schema or
encoding. For compatibility with legacy implementations, it also provides a
CRL-compatible identifier, although there are some caveats attached to its use
(see section 3.1).

2.4 Returned status value

Because of its CRL-based origins, OCSP can only return a negative response.
For example, when fed a freshly-issued certificate and asked "Is this a valid
certificate", it can't say "Yes" (a CRL can only answer "revoked"), and when
fed an Excel spreadsheet it can't say "No" (the spreadsheet won't be present
in any CRL). More seriously, CRLs and OCSP are incapable of dealing with a
manufactured-certificate attack in which an attacker issues a certificate
claiming to be from a legitimate CA (since the legitimate CA never issued it,
it won't be in its CRL, therefore a blacklist-based system can't report the
certificate as invalid). This attack is made significantly easier by the
implicit universal cross-certification present in many web browsers, where any
CA can usurp any other CA's certificates. Even without this universal cross-
certification mechanism, standard practice for browsers when encountering an
unknown certificate is to enquire of the user "... do you want to trust
<company_name>?", where company_name is the company running the site the user
is connecting to. Since the certificate is a manufactured certificate being
used in a MITM attack, it won't be present on the CRL of the real CA, and
since it corresponds to the site that the user is connecting to, they are
unlikely to reject it.

The unclear-status problem interacts badly with the one in section 2.3 in that
an unknown response could mean anything from "I couldn't find a CRL for this
certificate" to "I don't know the status of this certificate" to "This may
well be a non-revoked certificate but your software and mine disagree over how
to generate the identifier", and there is no way to determine what the actual
problem is.

To resolve this issue, RTCS should provide a clear, unambiguous response to
any query, either "This certificate is definitely valid right now", "This
certificate is definitely not valid right now", or "The object you have
queried doesn't exist" (standard OCSP can't do any of these).

2.5 Lightweight/realtime operation

OCSP requires that every response from a responder be authenticated with a
signature, whether this is appropriate or not. In cases where high
transaction volumes need to be handled, the overhead of having to sign each

transaction can be prohibitive (this is one of the few areas in which offline
CRLs actually have an advantage over online queries), resulting in scalability
and deployment problems. This lack of scalability is sever enough that
several vendors have resorted to removing replay protection from the protocol
(making it possible for an attacker to undetectably replay old responses)
because this is the only way to get OCSP to scale.

In many cases, a lightweight MAC (in other words CMS AuthenticatedData) is all
that's required to authenticate a response, and where alternative security
measures are used (for example IPsec or the use of a physically secure
network), no explicit authentication (in other words CMS Data) may be
necessary, allowing RTCS queries to proceed at network link/server turnaround
speed. When parties have a long-term relationship (examples being OCSP access
concentrators or in Identrus terminology transaction coordinators) and perform
large numbers of transactions, authenticating the transactions via MACs makes
more sense than signing each one. Similarly, when the producer and consumer
of the information are on opposite sides of the same server room, there is
little need for high-overhead signatures on each message.

A design goal of RTCS then is that, living up to its name, it must be able to
provide high-throughput, low-overhead realtime service to relying parties, via
the flexible selection of data formats provided by CMS.

2.6 Use in constrained environments

As an extension of the previous requirement, the protocol should be capable of
running in resource- or bandwidth-constrained environments. In its most
minimal implementation, RTCS has a small number of fixed-length fields,
allowing it to be used by dropping data into pre-generated CMS PDUs. The very
small message size and minimal processing requirements make it ideal for use
with mobile and remote devices, high-volume transaction systems, and in other
constrained environments.

2.7 Reliance on synchronised clocks

OCSP uses timestamps for all responses, assuming that the relying party and
responder somehow have perfectly synchronised clocks. This is rarely the
case, with systems having been encounted with clocks that are as much as
decades out of sync [Gutmann]. RTCS, almost by definition, does not rely on
synchronised clocks for its operation, although it can make use of them when
they are available.

3. RTCS

RTCS is designed to provide online, real-time certificate status information
using the CMS message format, in a manner that meets all of the design goals
given in section 2.

3.1 RTCS requests

An RTCS request consists of an indication of the type of reply required from
the responder and a list of certificates for which information is required:

 RtcsRequest ::= CMS { RtcsRequests IDENTIFIED BY rtcsRequest }

 rtcsRequest OBJECT IDENTIFIER { 1 3 6 1 4 1 3029 4 1 4 }

 RtcsResponseType OBJECT IDENTIFIER ::= {
 rtcsBasic { 1 3 6 1 4 1 3029 4 1 5 },
 rtcsExtended { 1 3 6 1 4 1 3029 4 1 6 },
 ...
 }

 RtcsRequests ::= SEQUENCE {
 responseType RtcsResponseType DEFAULT rtcsBasic,
 requests SEQUENCE OF RtcsRequestInfo,
 attributes Attributes OPTIONAL
 }

 responseType is the type of response requested from the responder. If the
 responder cannot provide the requested response type, if MUST return an
 rtcsBasic response instead.

 requests is the sequence of identifiers for the certificates being queried.

 attributes is normally unnecessary, but is provided for use when the
 encapsulating CMS type doesn't provide for the conveyance of attributes. If
 the encapsulating CMS type supports the conveyance of attributes, they MUST
 be included in the CMS encapsulation rather than in the RTCS request
 attributes field.

As the ASN.1 above indicates, any of the standard CMS encapsulation types may
be used to contain the RTCS request, providing authentication and/or
confidentiality as required.

 RtcsRequestInfo ::= SEQUENCE {

 certHash OtherHash,
 legacyID IssuerAndSerialNumber OPTIONAL
 }

 certHash is an SHA-1 hash of the certificate. Almost everything implements
 this (variously as "fingerprint" or "thumbprint" or under some similar
 name), the ID type is widely recognised, and interoperability/correctness
 checking is trivial to achieve. The full definition of OtherHash is given
 in [RFC3126], however as used here it SHOULD be regarded as a pure sha1Hash:

 sha1Hash ::= OCTET STRING SIZE(20)

 legacyID is provided when backwards-compatibility with CRL-based legacy
 implementations or implementations that only support the traditional CMS
 certificate identifier are required. The full definition is given in
 [RFC3369]. This identifier is the standard certificate identifier for CMS
 and S/MIME, and may be trivially generated from any X.509 certificate. This
 identifier MUST be included when it is known that the responder is a legacy
 implementation, and SHOULD be used when the client is unclear as to the
 status of the responder. It MAY be omitted in resource-constrained
 environments, or when the client knows that the responder is capable of
 handling the certHash. See the security considerations for a note on this
 identifier type.

3.1.1 Additional requirements

Since RTCS doesn't depend on synchronised clocks, implementations operating in
environments where replay attacks are a concern MUST use the randomNonce
extension [RFC2985] to ensure freshness of replies. For the avoidance of any
doubt, when no replay protection is required (for example when other security
measures such as link encryption/authentication or a physically secure link
are in place), no nonce is required. When replay protection is required and
the request or response is communicated using a CMS data type with no
provision for communicating attributes (for example CMS Data or CMS
EnvelopedData), the nonce MUST be communicated in the rtcsRequest attributes
field. If the request or response is communicated using a CMS data type that
supports the communication of attributes (for example CMS SignedData or CMS
AuthenticatedData), the nonce MUST be communicated as a CMS authenticated
attribute. RTCS implementations MUST support Data requests and SignedData
responses, SHOULD support SignedData requests, and MAY support other standard
CMS message types and combinations such as Data requests and responses or
EncrypteData requests and responses.

3.1.2 Zone transfers

https://datatracker.ietf.org/doc/html/rfc3126
https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc2985

Sometimes it may be desirable for a client to obtain all of the information
held by an RTCS responder, for example for mirroring/replication purposes. To
provide for RTCS zone transfers, a certHash of all zero bits is used to
indicate that it the responder should send information on all certificates
that it is authoritative for, and a certHash of all one bits is used to
indicate that the responder should send information on all certificates.
Responders MAY implemenent this facility by checking for these special
certHash values and responding appropriately.

Since zone transfers can consume significant resources, responders SHOULD
enforce some form of security controls on these requests, for example by
requiring them to be authenticated via CMS SignedData or AuthenticatedData, or
by only allowing them when the request is conveyed via a trusted/secure link.

3.1.3 Implementation notes and rationale

The certHash identifier meets the requirements in section 2.3 (use of a
widely-accepted, simple, universal identifier for certificates) and section
2 (ability to be used in a constrained environment).

The certificate hash is a universal identifier in that it doesn't care what
type or version of certificate is used, whether it's encoded in DER or BER or
XER, or whether the certificate even has a DN. It works with X.509
certificates (v1, v2, or v3) with or without extensions, X.509 attribute
certificates (v1 or v2), special-case certificates such as X9.68 domain
certificates, and any other certificate or certificate-like object that may
appear in the future. The hash does not require writing, testing, documenting
and maintaining the programming logic needed to handle DN complexity, and is
immune to the DN-based problems that affect OCSP.

The backup legacyID may be used with CRL-based legacy implementations, or in
situations where the certificate store is implemented as an LDAP directory
that identifies certificates by DN. This ensures full backwards compatibility
with CRL-based implementations, and an ability to function with LDAP
directories that isn't possible with OCSP since it destroys the DN by hashing
it.

Implementations are required to support at least the rtcsBasic response type,
falling back to this type if the requested type can't be provided. This
ensures that at least some form of response is always provided, even if it
consists only of an indication that no definitive status is available.

A resource- or bandwidth-constrained environment may use a pre-generated RTCS
query and copy the certHash directly into a fixed location in the query. This
makes RTCS amenable for use in crypto tokens or mobile devices or high-volume

transaction systems that don't have the resources to handle a full
implementation and that merely populate a pre-generated query with a fresh
nonce and 20-byte certHash.

The full definition of OtherHash, from [RFC3126], is:

 OtherHash ::= CHOICE {
 sha1Hash OCTET STRING SIZE(20),
 otherHash OtherHashAlgAndValue
 }

 OtherHashAlgAndValue ::= SEQUENCE {
 hashAlgorithm AlgorithmIdentifier,
 hashValue OCTET STRING
 }

The intent here is that if a weakness is found in SHA-1, an alternative hash
algorithm may be substituted in its place. Since every Internet security
protocol ever created would require replacing if SHA-1 was broken this is
probably a lesser concern, but an alternative is provided here anyway. In
standard usage the above simplies to a straight SHA-1 hash.

A pure boolean response (corresponding to a present/absent check in the
authenticated dictionary) provides for considerable efficiency improvments on
the server, since such a check can be implemented using a mechanism such as a
(suitably tuned) Bloom filter that takes advantage of the fact that the query
material is already pre-hashed by the client. Clients should submit basic
queries (which allow for a simple boolean response) if possible, rather than
asking for a full response every time simply because it's available.
Conversely, servers may perform a simple boolean lookup initially on the
assumption that the majority of certificates being queried will be valid, and
only fall back to a more time-consuming full lookup if the initial boolean
lookup returns a response of 'false'.

RTCS zone transfers work in the same way as, and have the same implications
as, DNS zone transfers. Any standard reference on DNS operations or DNS
security will contain further details on this issue. A typical configuration
would contain an RTCS primary and secondary responder, just as with DNS
servers, with synchronisation being performed via RTCS zone transfers. An
alternative strategy, used by some DNS servers, is one in which one server is
used for updates and one or more further servers, updated via zone transfers,
are used to respond to queries. Again, standard DNS practice provides
guidance on building a high-availability, fault-tolerant system on this basis.
In fact a scheme similar to RTCS that uses DNS instead of its own specific
protocol has already been in general use in Europe as part of the X-Road
project.

https://datatracker.ietf.org/doc/html/rfc3126

The means of requesting an RTCS zone transfer has been chosen so that a client
or server implemenetation can choose not to provide for zone transfers without
any special-case handling for requests or responses. A client requesting a
zone transfer from a responder that doesn't support them will receive a no-
information response as it would when querying a nonexistant certificate.

3.2 RTCS response

RTCS provides for two response types, a basic response when only a simple
yes/no status is required, and a full response when extended information is
required.

 RTCSRESPONSE ::= TYPE-IDENTIFIER

 RtcsResponse ::= CMS { RTCSRESPONSE.&Type({ RtcsResponseTypes }{ @.type-
id }) }

 RtcsResponseTypes RTCSRESPONSE ::= {
 rtcsResponseBasic | rtcsResponseExtended,
 ...
 }

 rtcsResponseBasic RTCSRESPONSE ::= {
 SYNTAX RtcsResponsesBasic ID { rtcsBasic }
 }

 rtcsResponseExtended RTCSRESPONSE ::= {
 SYNTAX RtcsResponsesExtended ID { rtcsExtended }
 }

As the ASN.1 above indicates, any of the standard CMS encapsulation types may
be used to contain the RTCS response, providing authentication and/or
confidentiality as required.

3.2.1 RTCS basic response

This is a straightforward yes/no response type:

 RtcsResponsesBasic ::= SEQUENCE OF RtcsResponseBasic

 RtcsResponseBasic ::= SEQUENCE {
 certHash OtherHash,
 status BOOLEAN
 }

A returned value 'true' indicates that the certificate is valid right now.
This is a clear, unambiguous response that is useful for relying parties who,
having a certificate at hand, simply want to know whether they can safely use
it or not, and no more. A returned value 'false' indicates that the
certificate is not valid right now, either because it has been explicitly
rendered invalid in some manner (for example by being revoked) or because no
definitive status information is available. Relying parties who require
further information SHOULD use the extended response type defined in section
3.2.2.

3.2.2 RTCS extended response

This is an extended response type returning more information than the basic
RTCS response:

 RtcsResponsesExtended ::= SEQUENCE OF RtcsResponseExtended

 RESPONSEINFO ::= CLASS {
 &status CertStatus UNIQUE,
 &StatusInfo OPTIONAL
 } WITH SYNTAX { &status [WITH DETAILS IN &StatusInfo] }

 RtcsResponseExtended ::= SEQUENCE {
 certHash OtherHash,
 status RESPONSEINFO.&status({ CertStatus }),
 statusInfo RESPONSEINFO.&StatusInfo({ CertStatus }{ @status }),
 attributes [0] Attributes OPTIONAL
 }

 ResponseTypes RESPONSEINFO ::= {
 { statusOK } |
 { statusNotOK WITH DETAILS IN InvalidityInfo } |
 { statusNonAuthoritative
 WITH DETAILS IN NonAuthoritativeInfo } |
 { statusNoInformation },
 ...
 }

 CertStatus ::= ENUMERATED {
 statusOK (0),
 statusNotOK (1),
 statusNonAuthoritative (2),
 statusNoInformation (3),
 ...
 }

In order to provide time information without requiring synchronised clocks
(see section 2.7), RTCS uses a relative time value that provides the time as
seen by the responder alongside the time at which an event occurred. This
eliminates the need for the responder and relying party to have precisely
synchronised clocks. The relying party may use the absolute time if they have
a mechanism for precise clock synchronisation with the responder, or the
difference between the two times to determine how far in the past relative to
its own clock the event took place.

 RelativeTimeInfo ::= SEQUENCE {
 responderTime GeneralizedTime,
 eventTime GeneralizedTime
 }

3.2.2.1 Extended status OK

This status value is identical to the basic response equivalent and indicates
that the certificate is valid right now.

3.2.2.2 Extended status not-OK

If the certificate has been revoked or rendered invalid in some form, the
responder will return a "not-OK" response:

 InvalidityInfo ::= SEQUENCE {
 invalidityTime RelativeTimeInfo OPTIONAL,
 invalidityReason CRLReason OPTIONAL
 }

 invalidityTime indicates the time at which the revocation or invalidation
 took place, if available.

 invalidityReason provides the reason why the certificate was revoked or
 rendered invalid, if available.

3.2.2.3 Extended status non-authoritative response

This response type may appear when the response is non-authoritative. This
situation can occur when the responder being queried obtains information by
chaining to another, authoritative responder (an origin server in HTTP
terminology) which is temporarily unavailable. Authoritative responders MUST
NOT return the statusNonAuthoritative status. Non-authoritative responders
may either indicate that no authoritative response is available by omitting
the NonAuthoritativeInfo, or provide a non-authoritative response (for example
from cached data) in NonAuthoritativeInfo:

 NonAuthCertStatus ::= CertStatus (EXCEPT statusNonAuthoritative)

 NonAuthoritativeInfo ::= SEQUENCE {
 lastAuthTime RelativeTime,
 status RESPONSEINFO.&status({ NonAuthCertStatus }),
 statusInfo RESPONSEINFO.&StatusInfo({ NonAuthCertStatus }{ @status })
 }

 lastAuthTime indicates the time at which the last authoritative response was
 obtained.

 The other fields are as defined in section 3.2.2.

3.2.2.4 Extended status no information available

This status value indicates that the queried object doesn't exist, being
neither a valid, nor an invalid, certificate (it could for example be a forged
certificate from a third party, or an Excel spreadsheet). Note that this
differs from the OCSP "unknown" response, which could mean all manner of
things (see section 2.4).

3.2.3 Implementation notes and rationale

The response returned is not intended to be an intrusion into DPD/DPV
territory, but simply represents the only response an authenticated dictionary
can return. Just as a CRL can only say with certainty "revoked", so an
authenticated dictionary can only say with certainty "present" (and
conversely, "not present").

The returned status value meets the requirements in section 2.4 (use of an
unambiguous status value) and section 2.7 (no reliance on synchronised

clocks). The basic response meets the requirements in section 2.6 (use in
resource-constrained environments) as well as being the response type of
choice in environments where the relying party only cares about a yes/no
indicator. This follows the credit card authorisation model, where the
merchant only really cares about accepted/declined, and not a 15-page
financial statement about why the transaction wasn't accepted. This usage
model is exemplified by one commercial S/MIME implementation that boiled the
entire certificate checking process down to a single value
bCanUseTheDamnThing, because that was the only information that mattered to
the user. The response format meets the requirements in section 2.5
(lightweight/realtime operation) since it allows heavyweight signatures or
lightweight MACs to be used as required.

For relying parties requiring full information, the extended response provides
further details.

A resource-constrained environment may request a basic response and copy the
status directly from a fixed location in the response. This makes RTCS
amenable for use in crypto tokens or mobile devices that don't have the
resources to handle a full implementation. Note however that clients should
not assume that response information occurs in the same order as request
information when more than one certificate is being queried in an RTCS
request. That is, if request information for a certificate is present at
position n in the RTCS request then it is not safe to assume that the returned
response will similarly contain the certificate status at position n.
Instead, clients should use the certificate identifier to match response
information to request information.

Responders can be operated in one of two modes. In the most common mode, the
responder is authoritative and returns responses directly from the certificate
store or a shapshot of the certificate store. In the less common mode, the
responder acts as an access concentrator/transaction coordinator/proxy for
other responders. The following discussion of non-authoritative responses and
responders borrows from DNS concepts and terminology, which faces a similar
situation when handling DNS queries.

When a responder is non-authoritative, it may not be able to return a response
to a query directly from the authoritative source, or for performance reasons
may return a cached response, just as with DNS and HTTP servers. In this case
the responder can return the last authoritative response, along with an
indication as to how low ago the response was authoritative. The relying
party can then make a decision, based on the age of the cached response and
the value of the data involved, to rely on the cached information or to wait
for a fresh, authoritative response to become available.

Note that the use of the term "authoritative" differs slightly from its use in
DNS. In DNS, cacheing for load-distribution purposes is very common, and

mechanisms to handle it are built ito the DNS, whereas with RTCS it would only
be used when there isn't a requirement for a hard real-time response.
However, RTCS can return an authoritative response (via an access
concentrator/transaction coordinator/proxy) without the responder which is
being queried itself being authoritative. In HTTP terminology, the source of
the authoritative response is an origin server, with caches acting as
intermediaries to improve performance. In this case the response is regarded
as being authoritative, since it is being forwarded from an authoritative
source/origin server. Only a cached response is non-authoritative. This
differs from DNS, where the authority of an answer and the authority of a DNS
server are synonymous. Further discussion of this style of cacheing model may
be found in section 13 of [RFC2616]. This document is recommended reading for
anyone considering the use of response cacheing for RTCS performance
enhancement purposes.

The HTTP protocol allows the client to override cacheing behaviour on the
server through the "Cache-control: no-cache" directive, which indicates that
the server must provide an authoritative response. In RTCS this is controlled
by the server, with an explicit indication in the response as to whether it is
authoritative or not. In other words, the server always provides some form of
response, and leaves it to the client to decide whether to utilise it or not.
This is based on the view that the client is in a far better position to judge
this than the server, since the client/relying party is the one that runs the
risk if a decision arising from the validity of the certificate is wrong and
not the responder.

[Note: Should add a max-age extension to requests to allow a forced end-to-end
 reload].

3.2.4 High-speed/High-volume Responder Design

The simple yes/no response option may be used in applications where a high-
speed response is required or a high volume of transactions is expected.
Observe that the certHash identifier consitutes the application of a high-
quality hash function, which should give a perfectly flat distribution of hash
values, with all the work being performed by the client. The responder merely
has to select n bits of the hash value and perform a lookup in a table of 2^n
bits (with appropriate handling of hash chaining/overflows, this is a standard
problem from the literature). This means of implementing a certificate status
responder is probably the fastest certificate status query mechanism possible.

The use of the CMS format allows further optimisation for high-speed
operation, either by taking advantage of hardware acceleration or by using
low-overhead MACs instead of high-overhead signatures. PKCS #11 [PKCS11]
directly supports the CMS message format, allowing responses to be generated
directly by the crypto hardware. Alternatively, CMS supports the use of MACs
rather than signatures, allowing responses to be generated with minimal

https://datatracker.ietf.org/doc/html/rfc2616#section-13

overhead in resource-constrained or high-volume applications.

The use of pre-shared MAC keys presupposes a long-term relationship between an
initiator and the RTCS responder, for example where an online transaction
processing facility is continuously querying a back-end for certificate status
information. However, CMS also allows MAC keys to be established on the fly
via standard CMS key exchange mechanisms, which may then be cached by the
initiator and RTCS responder for future use. In this manner the initial query
necessitates a (relatively) high-overhead private-key operation to unwrap the
MAC key (the equivalent of a single signed OCSP response), while subsequent
queries can proceed at full speed using MAC'ed messages.

To reduce the load on the server, the MAC key exchange may be initiated by the
server rather than the client. In this way the server performs the
lightweight public-key wrap while the client has to perform the more
heavyweight private-key unwrap.

Further speed optimisations may be obtained by observing that due to the
application of the ASN.1 distinguished encoding rules (DER), standard queries
and responses have a fixed format, so they may be pre-encoded before
transmission and applied as a fixed-format template, and don't need to be
decoded on reception because all of the fields are at fixed locations. This
means that a high-speed responder can pull the hash value directly from a
fixed location in incoming queries, perform the lookup, drop the result into
another fixed location in a response template, and enqueue it for transmission
back to the initiator.

Various network efficiency considerations need to be taken into account when
implementing this certificate distribution mechanism. For example, a
simplistic implementation that performs two writes (the HTTP header and the
certificate written seperately) followed by a read will interact badly with
TCP delayed-ACK and slow-start. This occurs because the TCP MSS is typically
1460 bytes on a LAN (Ethernet) or 512/536 bytes on a WAN, while HTTP headers
are ~200-300 bytes, far less than the MSS. When an HTTP message is first
sent, the TCP congestion window begins at one segment, with the TCP slow-start
then doubling its size for each ACK. Sending the headers separately will send
one short segment and a second MSS-size segment, whereupon the TCP stack will
wait for the responder's ACK before continuing. The responder gets both
segments, then delays its ACK for 200ms in the hopes of piggybacking it on
responder data, which is never sent since it's still waiting for the rest of
the HTTP body from the initiator. This behaviour results in a 200ms (+
assorted RTT) delay in each message sent.

There are various other considerations that need to be taken into account in
order to provide maximum efficiency. These are covered in depth elsewhere
[Spero] [Heidemann] [Nielsen]. In addition, modifications to TCP's behaviour
such as the use of 4K initial windows [RFC3390] (designed to reduce small HTTP

https://datatracker.ietf.org/doc/html/rfc3390

transfer times to a single RTT) should also ameliorate some of these issues.

A rule of thumb for optimal performance is to combine the HTTP header and data
payload into a single write (any reasonable HTTP implementation will do this
anyway, thanks to the considerable body of experience that exists for HTTP
server performance tuning), and to keep the HTTP headers to a minimum to try
and fit data within the TCP MSS. Since this protocol doesn't involve a web
browser, there's no need to include the usual headers covering browser
versions and languages and so on; a minimal set of content-type/encoding and
host and session control information will suffice.

For even better network performance in the presence of large numbers of point
queries (single requests rather than an ongoing sequence of requests), RTCS
should be run directly over UDP (without any HTTP encapsulation), eliminating
the cost of the TCP connection setup and additional protocol overhead. The
fixed-format, compact RTCS queries and responses make them ideal for
transmission over UDP rather than TCP. Further details on scaling this form
of query/response infrastructure may be found in any work that discusses DNS
query handling.

4. Security considerations

The legacyID is based on the assumption that DNs in certificates are unique.
Although all of X.500 is built upon this assumption, it has been claimed that
this may not always be the case. If this is a concern, a DN-based identifier
is insufficient to uniquely identify a certificate and the certHash
alternative should be used. RTCS always transmits the certHash, so this can
always be relied upon to uniquely identify the certificate even in the
presence of duplicate, missing, or arbitrarily broken, DNs.

Appendix A: MIME Wrapping

When RTCS is used in a MIME environment, the S/MIME v3 MIME wrapping rules
apply [RFC2633]. The optional smime-type parameter MUST have the value "rtcs-
request" for RTCS requests with a file name extension "rrq", and "rtcs-
response" for RTCS responses with a file name extension "rrs". All other
details are specified in [RFC2633].

Appendix B: Use of RTCS with CMS

This document has described a general-purpose CMS-compatible means of
communicating certificate status information. When used in conjunction with
other CMS data, it can be inserted as an authenticated or unauthenticated
attribute if the CMS data type supports this. The object identifier used to

https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc2633

identify RTCS responses communicated as CMS attributes is:

 rtcsData { 1 3 6 1 4 1 3029 3 1 4 }

For example a sender may insert an RTCS response as an authenticated attribute
in SignedData to prove that its certificate was valid at the time of signing.
An S/MIME gateway or forwarder could insert an RTCS response covering the
certificates in the messages it processes as an unauthenticated attribute,
allowing clients behind the gateway to determine the validity of the
certificates used to sign messages they process without having to perform an
RTCS query themselves. This allows RTCS to be used with clients with limited
resources, or in situations where only the messaging gateway (but not clients
located behind it) have general network access for querying RTCS responders.
Note though that in this case the eventual consumer of the information and the
RTCS responder require synchronised clocks, since the information is no longer
being communicated via an interactive, real-time exchange.

Appendix C: Sample RTCS Messages

<<<Omitted from the draft version to keep the size down>>>

References (Normative)

 [RFC2119] "Key words for use in RFCs to Indicate Requirement Levels",
 Scott Bradner, RFC 2119, March 1997.

 [RFC2633] "S/MIME Version 3 Message Specification", RFC 2633,
 Blake Ramsdell, June 1999.

 [RFC2985] "PKCS #9: Selected Object Classes and Attribute Types,
 Version 2.0", RFC 2985, Magnus Nystrom and Burt Kaliski,
 November 2000.

 [RFC3126] "Electronic Signature Formats for long term electronic
 signatures", Harri Rasilainen, Denis Pinkas, John Ross,
 Nick Pope, September 2001.

 [RFC3369] "Cryptographic Message Syntax (CMS)", Russ Housley,
 August 2002.

 [RFC3379] "Delegated Path Validation and Delegated Path Discovery
 Protocol Requirements", Denis Pinkas and Russ Housley,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc2985

 September 2002.

 [X.680] "Information Technology - Abstract Syntax Notation One",
 ITU-T Recommendation X.680 (2002) / ISO/IEC 8824-1:2002,
 2002.

References (Informative)

 [Gutmann] "Lessons Learned in Implementing and Deploying Crypto
 Software", Peter Gutmann, Proceedings of the 2002 Usenix
 Security Symposium, August 2002.

 [Heidemann] "Performance Interactions Between P-HTTP and TCP
 Implementations", J.Heidemann, ACM Computer Communications
 Review, April 1997.

 [Nielsen] "Network Performance Effects of HTTP/1.1, CSS1, and PNG",
 H.Nielsen, J.Gettys, A.Baird-Smith, E.Prud'hommeaux, H.Wium Lie,
 and C.Lilley, 24 June 1997,

http://www.w3.org/Protocols/HTTP/1.0/Performance/Pipeline.html.

 [PKCS11] "PKCS #11 Cryptographic Token Interface Standard, v2.20",
 RSA Laboratories, 2003.

 [RFC2616] "Hypertext Transfer Protocol, HTTP/1.1", Roy Fielding, Jim
 Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
 Leach, and Tim Berners-Lee, June 1999.

 [RFC3390] "Increasing TCP's Initial Window", RFC 3390, M.Allman, S.Floyd,
 and C.Partridge, October 2002.

 [Spero] "Analysis of HTTP Performance Problems", S.Spero, July 1994,
http://www.w3.org/Protocols/HTTP/1.0/HTTPPerformance.html.

Acknowledgements

The author would like to thank Denis Pinkas for providing the motivation to
finish this draft, members of the RTCS cabal and users of the cryptlib toolkit
for feedback on requirements and comments on issues such as use in constrained
environments and handling of superseded certificates, Phil Griffin for ASN.1
technical advice, and an anonymous PKI architect for the observation that
"Learning in 80 ms that the cert was good as of a week ago and to not hope for

http://www.w3.org/Protocols/HTTP/1.0/Performance/Pipeline.html
https://datatracker.ietf.org/doc/html/rfc3390
http://www.w3.org/Protocols/HTTP/1.0/HTTPPerformance.html

fresher information for another week seems of limited, if any, utility to us
or our customers".

Author Address

Peter Gutmann
University of Auckland
Private Bag 92019
Auckland, New Zealand

Email: pgut001@cs.auckland.ac.nz

Full Copyright Statement

Copyright (C) The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or
in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing
Internet standards in which case the procedures for copyrights defined in the
Internet Standards process must be followed, or as required to translate it
into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS"
basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS
OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

