
Network Working Group P. Gutmann
Internet-Draft University of Auckland
Intended status: Standards Track M. Pritikin
Expires: March 23, 2016 Cisco
 September 20, 2015

Simple Certificate Enrolment Protocol
draft-gutmann-scep-01.txt

Abstract

 This document specifies the Simple Certificate Enrolment Protocol
 (SCEP), a Public Key Infrastructure (PKI) communication protocol
 which leverages existing technology by using CMS (formerly known as
 PKCS #7) and PKCS #10 over HTTP. SCEP is the evolution of the
 enrolment protocol sponsored by Cisco Systems, which now enjoys wide
 support in both client and server implementations, as well as being
 relied upon by numerous other industry standards that work with
 certificates.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 23, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Gutmann & Pritikin Expires March 23, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SCEP September 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Conventions Used in This Document 5

2. SCEP Overview . 5
2.1. SCEP Entities . 5
2.1.1. Requester . 5
2.1.2. Certification Authority 6
2.1.3. Registration Authority 6
2.1.4. CA/RA Certificate Distribution 7

2.2. Requester authentication 8
2.3. Enrolment authorization 9
2.4. Certificate Enrolment/Renewal/Update 10
2.4.1. Client State Transitions 10

2.5. Certificate Access 12
2.6. CRL Access . 13
2.7. Certificate Revocation 14
2.8. Mandatory-to-Implement Functionality 14

3. SCEP Secure Message Objects 14
3.1. SCEP pkiMessage . 15
3.1.1. Signed Transaction Attributes 16
3.1.1.1. transactionID 18
3.1.1.2. messageType 19
3.1.1.3. pkiStatus . 19
3.1.1.4. failInfo . 20
3.1.1.5. senderNonce and recipientNonce 20

3.1.2. SCEP pkcsPKIEnvelope 20
3.2. SCEP pkiMessage types 21
3.2.1. PKCSReq/RenewalReq/UpdateReq 21
3.2.2. CertRep . 21
3.2.2.1. CertRep SUCCESS 22
3.2.2.2. CertRep FAILURE 23
3.2.2.3. CertRep PENDING 23

3.2.3. CertPoll (GetCertInitial) 23
3.2.4. GetCert . 24
3.2.5. GetCRL . 24

3.3. Degenerate certificates-only CMS Signed-Data 25
3.4. CA Capabilities . 25
3.4.1. GetCACaps HTTP Message Format 25
3.4.2. CA Capabilities Response Format 25

4. SCEP Transactions . 27
4.1. Get CA Certificate 27
4.1.1. Get CA Certificate Response Message Format 28

Gutmann & Pritikin Expires March 23, 2016 [Page 2]

Internet-Draft SCEP September 2015

4.1.1.1. CA Certificate Response Message Format 28
4.1.1.2. CA/RA Certificate Response Message Format 28

4.2. Certificate Enrolment/Renewal/Update 28
 4.2.1. Certificate Enrolment/Renewal/Update Response Message 28

4.3. Poll for Requester Initial Certificate 29
4.3.1. Polling Response Message Format 29

4.4. Certificate Access 30
4.4.1. Certificate Access Response Message Format 30

4.5. CRL Access . 30
4.5.1. CRL Access Response Message Format 30

4.6. Get Next Certification Authority Certificate 30
4.6.1. Get Next CA Response Message Format 31

5. SCEP Transport . 31
5.1. HTTP GET and POST Message Formats 31
5.1.1. Response Message Format 32

5.2. SCEP HTTP Messages 33
5.2.1. GetCACert . 33
5.2.1.1. GetCACert Response 33
5.2.1.1.1. CA Certificate Only Response 33
5.2.1.1.2. CA and RA Certificates Response 33

5.2.2. PKCSReq/RenewalReq/UpdateReq 34
5.2.2.1. PKCSReq/RenewalReq/UpdateReq Response 34

5.2.3. CertPoll . 34
5.2.3.1. CertPoll Response 35

5.2.4. GetCert . 35
5.2.4.1. GetCert Response 35

5.2.5. GetCRL . 35
5.2.5.1. GetCRL Response 35

5.2.6. GetNextCACert . 35
5.2.6.1. GetNextCACert Response 35

6. Contributors/Acknowledgements 36
7. IANA Considerations . 36
8. Security Considerations 36
8.1. General Security . 37
8.2. Use of the CA keypair 37
8.3. Challenge Password 38
8.4. Transaction ID . 38
8.5. Nonces and Replay . 38
8.6. GetCACaps Issues . 38
8.7. Unnecessary cryptography 38
8.8. GetNextCACert . 39

9. References . 39
9.1. Normative References 39
9.2. Informative References 40

Appendix A. SCEP State Transitions 40
Appendix B. Background Notes 43

 Authors' Addresses . 44

Gutmann & Pritikin Expires March 23, 2016 [Page 3]

Internet-Draft SCEP September 2015

1. Introduction

 Public key technology is widely available and increasingly widely
 deployed. X.509 certificates serve as the basis for several
 standards-based security protocols in the IETF, such as TLS [14], S/
 MIME [13], and and IKE/IPsec [12]. When an X.509 certificate is
 issued by other than the certificate subject (a self-issued
 certificate), there typically is a need for a certificate management
 protocol. Such a protocol enables a PKI client to request a
 certificate, certificate renewal, certificate update, or certificate
 revocation from a Certification Authority (CA).

 This specification defines a protocol, Simple Certificate Enrolment
 Protocol (SCEP), for certificate management and certificate and CRL
 queries in a closed environment. While widely deployed, this
 protocol omits some certificate management features, e.g. certificate
 revocation transactions, which can significantly enhance the security
 achieved in a PKI. The IETF protocol suite currently includes two
 further certificate management protocols with more comprehensive
 functionality: Certificate Management Protocol (CMP) [10] and
 Certificate Management over CMS (CMC) [9]. Environments that do not
 require interoperability with SCEP implementations MAY consider using
 the above-mentioned certificate management protocols, however anyone
 considering this step should be aware that the high level of
 complexity of these two protocols has resulted in serious
 interoperability problems and corresponding lack of industry support.
 SCEP's simplicity, while being a drawback in terms of its limited
 functionality, also makes deployment relatively straightforward, so
 that it enjoys widespread industry support and ready interoperability
 across a wide range of platforms. While implementers are encouraged
 to investigate one of the more comprehensive alternative certificate
 management protocols in addition to the protocol defined in this
 specification, anyone wishing to deploy them should proceed with
 caution, and consider support and interoperability issues before
 committing to their use.

 The protocol supports the following general operations:

 o CA and Registration Authority (RA) public key distribution.
 o Certificate enrolment.
 o Certificate renewal/update.
 o Certificate query.
 o CRL query.

 SCEP makes extensive use of CMS [3] and PKCS #10 [6].

Gutmann & Pritikin Expires March 23, 2016 [Page 4]

Internet-Draft SCEP September 2015

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [1].

2. SCEP Overview

 This section provides a high level overview of the functionality of
 SCEP.

2.1. SCEP Entities

 The entity types defined in SCEP are

 o The Requester, or client (Section 2.1.1).
 o The Server, which may be either a Certification Authority (CA)
 (Section 2.1.2) or a Registration Authority (RA) (Section 2.1.3).

2.1.1. Requester

 The requester is sometimes called a "client" in this document. It is
 the client of the SCEP exchange.

 The requester MAY submit SCEP messages for itself or it MAY submit
 SCEP messages on behalf of peers as described in Registration
 Authority (Section 2.1.3). This section focuses on the requester
 that is obtaining certificates for its own use.

 Before a requester can start a PKI transaction, it MUST have at least
 one appropriate key pair for use when signing the SCEP pkiMessage
 (Section 3.1).

 The message types, being based on CMS [3] and PKCS #10 [6], fully
 support algorithm agility but the requester has to use a key type
 that is supported by the server. Specifically, they must employ a
 PKC algorithm capable of both encryption and signing. RSA is the
 only widely-used algorithm that has these properties.

 A requester MUST have the following information locally configured:

 1. The Certification Authority IP address or fully qualified domain
 name.
 2. The Certification Authority HTTP CGI script path (this usually
 has a default value, see Section 5.1).
 3. The identifying information that is used for authentication of
 the Certification Authority in Section 4.1.1, typically a
 certificate fingerprint. This information MAY be obtained from

Gutmann & Pritikin Expires March 23, 2016 [Page 5]

Internet-Draft SCEP September 2015

 the user, or presented to the end user for manual authorization
 during the protocol exchange (e.g. the user indicates acceptance
 of a fingerprint via a user-interface element).

 The requester MAY maintain multiple independent configurations
 appropriate for multiple Certification Authorities. Doing so does
 not effect the protocol operation and is not in scope of this
 document.

2.1.2. Certification Authority

 A SCEP Certification Authority (CA) is the entity that signs client
 certificates. A certification authority MAY enforce any arbitrary
 policies and apply them to certification requests. The certification
 authority MAY reject any request. If the client has already been
 issued a certificate for this keypair the server MAY return the
 previously created certificate. The requester MUST NOT assume any of
 the fields in the certification request, except for the public key,
 will be the same in the certificate issued.

 The certification authority MAY include a cRLDistributionPoint
 extension in every certificate it issues, make CRLs available via
 HTTP [11] or LDAP, or answer CRL queries itself. In the latter case
 it SHOULD be online at all times.

 Since the client is expected to perform encryption and signature
 verification using the CA certificate, the keyUsage extension in the
 CA certificate MUST indicate that it is valid for digitalSignature
 and keyEncipherment use alongside the usual CA usages of keyCertSign
 and/or cRLSign.

 If a client times out from polling for a pending request it can
 resynchronize by reissuing the original request with the original
 subject name, key, and transactionID. The CA SHOULD return the
 status of the original transaction, including the certificate if it
 was granted.

2.1.3. Registration Authority

 A SCEP Registration Authority (RA) is a SCEP server that performs
 validation and authorization checks of the SCEP requester but
 forwards the certification requests to the CA. The RA's name does
 not appear in the issuer field of resulting certificates.

 Distribution of RA certificates is covered in Section 2.1.4. In
 order to securely communicate with an RA using SCEP Secure Message
 Objects (Section 3) the client specifies the RA as the recipient of
 subsequent SCEP pkiMessages (see Section 3.1.2).

Gutmann & Pritikin Expires March 23, 2016 [Page 6]

Internet-Draft SCEP September 2015

 In order to service certification requests the RA must pass the
 requests to the CA server for signing. The RA MAY use SCEP to
 communicate with the CA, in which case the RA acts as both a SCEP
 server (between the client and the RA) and a SCEP requester (between
 the RA and the CA). The RA MAY respond to client certificate
 requests with a PENDING response while communicating with the CA; for
 example if the CA must manually authorize a certification request and
 thus returns PENDING to the RA the RA may respond with PENDING to the
 client while polling the CA.

 [Question: How does the client know whether an RA is in use? The
 spec talks about the use of an RA as if both sides somehow know
 that an RA rather than a CA is being used, but there's no obvious
 way for the client to know this. The presence of multiple certs
 in the cert chain can't be used as an indicator because some CAs
 use distinct encryption and signing certs].

2.1.4. CA/RA Certificate Distribution

 If the CA and/or RA certificates have not previously been acquired by
 the requester in some other means, the requester MUST retrieve the
 CA/RA certificates before any PKI operation (Section 3) can be
 started.

 Since no public key has yet been exchanged between the requester and
 the CA/RA, the messages cannot be secured using CMS [3], and the data
 is instead transferred in the clear.

 If an RA is in use, a certificates-only CMS [3] Signed-Data message
 with a certificate chain consisting of both RA and CA certificates is
 returned. Otherwise the CA certificate itself is returned. The
 transport protocol (Section 5) MUST indicate which one is returned.

 The SCEP server CA certificate MAY be provided out-of-band to the
 SCEP requester. Alternatively, the CA certificate fingerprint MAY be
 used to authenticate a CA Certificate distributed by the GetCACert
 response (Section 4.1) or via HTTP [11]. The fingerprint is created
 by calculating a SHA-1, SHA-256, or SHA-512 hash over the whole CA
 certificate.

 After the requester gets the CA certificate, it SHOULD authenticate
 the CA certificate by comparing the CA certificate fingerprint with
 the locally configured, out-of-band distributed, identifying
 information. RA certificates, if any, are signed by the CA so there
 is no need to authenticate them against the out-of-band data.
 Clients SHOULD verify the RA certificate signatures before use during
 protocol exchanges.

Gutmann & Pritikin Expires March 23, 2016 [Page 7]

Internet-Draft SCEP September 2015

 Because a long time can pass between queries from a requester to a
 CA/RA and because RA certificates can change at any time, it is
 recommended that a requester not store RA certificates. Instead, the
 requester SHOULD retrieve the CA/RA certificates before each
 operation.

2.2. Requester authentication

 As with every protocol that uses public-key cryptography, the
 association between the public keys used in the protocol and the
 identities with which they are associated must be authenticated in a
 cryptographically secure manner. This requirement is needed to
 prevent a man-in-the-middle (MITM) attack, in which an adversary can
 manipulate the data as it travels between the protocol participants
 and subvert the security of the protocol.

 The communication between the requester and the certification
 authority are secured using SCEP Secure Message Objects (Section 3)
 which specifies how CMS [3] is used to encrypt and sign the data. In
 order to perform the signing operation the client uses an appropriate
 local certificate:

 1. If the requester does not have an appropriate existing
 certificate then a locally generated self-signed certificate MUST
 be used. The self-signed certificate SHOULD use the same subject
 name as in the PKCS #10 request. In this case the messageType is
 PKCS10Req (see Section 3.1.1.2).
 2. If the requesting system already has a certificate issued by the
 SCEP server, and the server supports renewal (see Section 2.4),
 that certificate SHOULD be used. In this case the messageType is
 RenewalReq (see Section 3.1.1.2).
 3. If the requesting system has no certificate issued by the new CA,
 but has credentials from an alternate CA the certificate issued
 by the alternate CA MAY be used. Policy settings on the new CA
 will determine if the request can be accepted or not. This is
 useful when enrolling with a new administrative domain using a
 certificate from the old domain as credentials. In this case the
 messageType is UpdateReq (see Section 3.1.1.2).

 Note that although the above text describes three different types of
 operations, in practice most implementations always apply the first
 one even if an existing certificate already exists. For this reason
 support for the first case is mandatory while support for the latter
 two are optional (see Section 2.8).

 During the certificate enrolment process, the requester MUST use the
 selected certificate's key when signing the CMS [3] envelope (see

Gutmann & Pritikin Expires March 23, 2016 [Page 8]

Internet-Draft SCEP September 2015

Section 3). The server's CertResp then uses the same certificate's
 public key when encrypting the response (see Section 3.2.2).

 [Question: This is another area where the semantics were never
 defined, what happens during a renewal or update? For an
 enrolment the signing cert contains the key that's also in the
 request, but what about for a renewal or update where they're
 quite probably different keys? Should the envelope be
 encrypted to the key in the request or the signing key?].

 When the certification authority creates the CMS [3] envelope
 containing the issued certificate, it SHOULD use the public key and
 identifying information conveyed in the above included certificate.
 This will inform the end entity of which private key is needed to
 open the envelope. Note that when a client enrolls for separate
 encryption and signature certificates, it MAY use the signature
 certificate to sign both requests, and then expect its encryption
 certificate to be used to encrypt both responses. In any case, the
 RecipientInfo on the envelope MUST reflect the key used to encrypt
 the request.

 [Question: Another undefined area, how is this dual-cert
 operation supposed to work? Does the CA look up a previously-
 issued encryption cert? Does anyone even care about this?].

2.3. Enrolment authorization

 PKCS #10 [6] specifies a PKCS #9 [5] challengePassword attribute to
 be sent as part of the enrolment request. When utilizing the
 challengePassword, the server distributes a shared secret to the
 requester which will uniquely associate the enrolment request with
 the requester.

 Inclusion of the challengePassword by the SCEP client is OPTIONAL and
 allows for unauthenticated authorization of enrolment requests
 (which, however, requires manual approval of each certificate issue,
 see below), or for renewal or update requests which are authenticated
 by being signed with an existing certificate. The CMS [3] envelope
 protects the privacy of the challengePassword.

 A client that is performing certificate renewal or update as per
Section 2.4 SHOULD omit the challengePassword but MAY send the

 originally distributed password in the challengePassword attribute.
 In the former case the SCEP CA MUST authenticate the request based on
 the certificate used to sign the renewal or update request. In the
 latter case the SCEP CA MAY use either the challengePassword or the
 previously issued certificate (or both), depending on CA policy, to
 authenticate the request. The SCEP server MUST NOT attempt to

Gutmann & Pritikin Expires March 23, 2016 [Page 9]

Internet-Draft SCEP September 2015

 authenticate a client based on a self-signed certificate unless it
 has been verified through out-of-band means such as a certificate
 fingerprint.

 To perform the authorization in manual mode the requester's messages
 are placed in the PENDING state until the CA operator authorizes or
 rejects them. Manual authorization is used when the client has only
 a self-signed certificate that hasn't been previously authenticated
 by the CA and/or a challengePassword is not available. The SCEP
 server MAY either reject unauthorized certification requests or mark
 them for manual authorization according to CA policy.

2.4. Certificate Enrolment/Renewal/Update

 A requester starts an enrolment (Section 3.2.1) transaction by
 creating a certificate request using PKCS #10 [6] and sends it to the
 CA/RA enveloped using CMS [3] (Section 3).

 If the CA supports certificate renewal or update then a new
 certificate with new validity dates can be issued, even though the
 old one is still valid, if the CA policy permits. The server MAY
 automatically revoke the old client certificate. To renew or update
 an existing certificate, the client uses the RenewalReq or UpdateReq
 message (see Section 3.2) and signs it with the existing client
 certificate. The client SHOULD use a new keypair when requesting a
 new certificate, but MAY request a new certicate using the old
 keypair.

 If the CA/RA returns a CertRep (Section 3.2.2) message with status
 set to PENDING, the requester enters into polling mode by
 periodically sending a CertPoll (Section 3.2.3) PKI message to the
 CA/RA, until the CA/RA operator completes the manual authentication
 (approving or denying the request).

 In general, the requester will send a single PKCSReq/RenewalReq/
 UpdateReq (Section 3.2.1) message, followed by 0 or more CertPoll
 (Section 3.2.3) messages, if polling mode is entered.

 In general, the CA/RA will send 0 or more CertRep (Section 3.2.2)
 messages with status set to PENDING, followed by a single CertRep
 (Section 3.2.2) with status set to either SUCCESS or FAILURE.

2.4.1. Client State Transitions

 The requester state transitions during enrolment operation are
 indicated in Figure 1.

Gutmann & Pritikin Expires March 23, 2016 [Page 10]

Internet-Draft SCEP September 2015

 CertPoll
 +----<---+
 | | CertRep(PENDING),
 | | CertPoll send-timeout,
 | | new-poll timer
 | |
 [CERT-NONEXISTENT] -----+---> [CERT-REQ-PENDING] [CERT-ISSUED]
 ^ PKCSReq | | ^
 | RenewalReq | | |
 | UpdateReq | +---------------+
 | | CertRep(SUCCESS)
 +--------------------------+
 CertRep(FAILURE),
 PKCS/Update/RenewalReq send-timeout,
 max-time/max-polls exceeded

 Figure 1: State Transition Diagram

 The certificate issue process starts at the state CERT-NONEXISTENT.

 Sending a PKCSReq/RenewalReq/UpdateReq message changes the state to
 CERT-REQ-PENDING. If there is no response, or sending is not
 possible, the state reverts back to CERT-NONEXISTENT.

 Receiving a CertRep message with pkiStatus set to SUCCESS changes the
 state to CERT-ISSUED.

 Receiving a CertRep message with pkiStatus set to FAILURE changes the
 state to CERT-NONEXISTENT.

 If the server sends back a CertRep message with pkiStatus set to
 PENDING, the requester will keep polling by sending a CertPoll
 message to the server, until either a CertRep message with status set
 to SUCCESS or FAILURE is received, or the maximum number of polls has
 been exceeded.

 If the maximum number of polls has been exceeded or a CertRep message
 with pkiStatus set to FAILURE is received while in the CERT-REQ-
 PENDING state, the end entity will transition to the CERT-NONEXISTENT
 state, and the SCEP client can eventually initiate another enrolment
 request. It is important to note that, as long as the requester does
 not change its subject name or keys, the same transactionID may be
 used in the "new" transaction. This is important because based on
 this transactionID, the certification authority can recognize this as
 an existing transaction instead of a new one.

Gutmann & Pritikin Expires March 23, 2016 [Page 11]

Internet-Draft SCEP September 2015

 A successful transaction in automatic mode:

 REQUESTER CA SERVER

 PKCSReq: PKI cert. enrolment msg
 --------------------------------> CertRep: pkiStatus = SUCCESS
 certificate attached
 <------------------------------
 Receive issued certificate.

 A successful transaction in manual mode:

 REQUESTER CA SERVER

 PKCSReq: PKI cert. enrolment msg
 --------------------------------> CertRep: pkiStatus = PENDING
 <------------------------------
 CertPoll: polling msg
 --------------------------------> CertRep: pkiStatus = PENDING
 <------------------------------
 <manual identity authentication>

 CertPoll: polling msg
 --------------------------------> CertRep: pkiStatus = SUCCESS
 certificate attached
 <------------------------------
 Receive issued certificate.

2.5. Certificate Access

 A certificate query message is defined for clients to retrieve a copy
 of their own certificate from the CA. It allows clients that do not
 store their certificates locally to obtain a copy when needed. This
 functionality is not intended to provide a general purpose
 certificate store access service, which may be achieved via HTTP [11]
 or LDAP.

 To query a certificate from the certification authority, a requester
 sends a request consisting of the certificate's issuer name and
 serial number. This assumes that the requester has saved the issuer
 name and the serial number of the issued certificate from the
 previous enrolment transaction. The transaction to query a
 certificate consists of one GetCert (Section 3.2.4) message and one
 CertRep (Section 3.2.2) message, as shown below.

Gutmann & Pritikin Expires March 23, 2016 [Page 12]

Internet-Draft SCEP September 2015

 REQUESTER CA SERVER

 GetCert: PKI certificate query msg
 -------------------------------> CertRep: pkiStatus = SUCCESS
 certificate attached
 <-----------------------------
 Receive the certificate.

2.6. CRL Access

 SCEP clients MAY request a CRL via one of three methods:

 1. If the CA supports CRL Distribution Points (CRLDPs) [7], then the
 CRL MAY be retrieved via the mechanism specified in the CRDLP.
 2. If the CA supports HTTP [11], then the CRL MAY be retrieved via
 the AuthorityInfoAcces [7] location specified in the certificate.
 3. Only if the CA does not support CRDLPs or HTTP access should a
 CRL query be composed by creating a GetCRL message consisting of
 the issuer name and serial number from the certificate whose
 revocation status is being queried.

 The server SHOULD NOT support the GetCRL method because:

 o It does not scale well due to the unnecessary cryptography (see
Section 8).

 o It requires the CA to be a high-availability service.
 o Only limited information to determine the CRL scope is provided
 (see [7]).

 The message is sent to the SCEP server in the same way as the other
 SCEP requests. The transaction to retrieve a CRL consists of one
 GetCRL PKI message and one CertRep PKI message, which contains only
 the CRL (no certificates) in a degenerate certificates-only CMS [3]
 Signed-Data message (Section 3.3), as shown below.

 REQUESTER CA SERVER

 GetCRL: PKI CRL query msg
 ---------------------------------->
 CertRep: CRL attached
 <-----------------------------
 Receive the CRL

Gutmann & Pritikin Expires March 23, 2016 [Page 13]

Internet-Draft SCEP September 2015

2.7. Certificate Revocation

 SCEP does not specify a method to request certificate revocation. In
 order to revoke a certificate, the requester must contact the CA
 using a non-SCEP defined mechanism.

2.8. Mandatory-to-Implement Functionality

 At a minimum, all SCEP implementations compliant with this
 specification MUST support GetCACert (Section 4.1), PKCSReq
 (Section 3.2.1) (and its associated response messages), communication
 of binary data via HTTP POST (Section 5.1), and the AES and SHA-256
 algorithms to secure pkiMessages (Section 3.1).

 For historical reasons implementations MAY support communications of
 binary data via HTTP GET (Section 5.1), and the triple DES and SHA-1
 algorithms to secure pkiMessages (Section 3.1).

3. SCEP Secure Message Objects

 CMS [3] is a general enveloping mechanism that enables both signed
 and encrypted transmission of arbitrary data. SCEP messages that
 require confidentiality use two layers of CMS [3], as shown in
 Figure 2. By applying both enveloping and signing transformations,
 the SCEP message is protected both for the integrity of its end-to-
 end transaction information and the confidentiality of its
 information portion. The advantage of this technique over the
 conventional transaction message format is that the signed
 transaction type information and the status of the transaction can be
 determined prior to invoking security handling procedures specific to
 the information portion being processed.

 Some messages do not require enveloping, in which case the Enveloped-
 Data in Figure 2 is omitted.

Gutmann & Pritikin Expires March 23, 2016 [Page 14]

Internet-Draft SCEP September 2015

 pkiMessage {
 contentType = signedData
 content {
 pkcsPKIEnvelope { -- Optional
 contentType = envelopedData
 content {
 recipientInfo
 contentType = data
 content {
 messageData -- Typically PKCS #10 request
 }
 }
 }
 signerInfo {
 signedAttrs {
 transactionID
 messageType
 pkiStatus
 failInfo
 senderNonce
 recipientNonce
 }
 signature
 }
 }
 }

 Figure 2: CMS Layering

 When a particular SCEP message carries data, this data is carried in
 the messageData. CertRep messages will lack any signed content and
 consist only of a pkcsPKIEnvelope (Section 3.1.2).

 Note: The remainder of this document will refer only to
 'messageData', but it is understood to always be encapsulated in the
 pkcsPKIEnvelope (Section 3.1.2). The format of the data in the
 messageData is defined by the messageType attribute (see Section 3.1)
 of the Signed-Data. If there is no messageData to be transmitted,
 the entire pkcsPKIEnvelope MUST be omitted.

3.1. SCEP pkiMessage

 The basic building block of all secured SCEP messages is the SCEP
 pkiMessage. It consists of a CMS [3] Signed-Data content type. The
 following restrictions apply:

Gutmann & Pritikin Expires March 23, 2016 [Page 15]

Internet-Draft SCEP September 2015

 o The contentType in contentInfo MUST be data ({pkcs-7 1}) as
 defined in CMS [3].
 o The signed content, if present (e.g. FAILURE and PENDING CertRep
 messages will lack any signed content), MUST be a pkcsPKIEnvelope
 (Section 3.1.2), and MUST match the messageType attribute.
 o The SignerInfo MUST contain a set of authenticatedAttributes (see
 CMS [3] as well as Section 3.1.1 in this document).

 At a minimum, all messages MUST contain the following
 authenticatedAttributes:

 o A transactionID attribute (see Section 3.1.1.1).
 o A messageType attribute (see Section 3.1.1.2).
 o A senderNonce attribute (see Section 3.1.1.5).
 o Any attributes required by CMS [3].

 If the message is a response, it MUST also include the following
 authenticatedAttributes:

 o A pkiStatus attribute (see Section 3.1.1.3).
 o A recipientNonce attribute (see Section 3.1.1.5).

3.1.1. Signed Transaction Attributes

 The following transaction attributes are encoded as authenticated
 attributes, and are carried, as specified in CMS [3], in the
 SignerInfo for this Signed-Data.

Gutmann & Pritikin Expires March 23, 2016 [Page 16]

Internet-Draft SCEP September 2015

 +----------------+-----------------+--------------------------------+
 | Attribute | Encoding | Comment |
 +----------------+-----------------+--------------------------------+
transactionID	PrintableString	Unique ID for this transaction
		as a text string
messageType	PrintableString	Decimal value as a numeric
		text string
pkiStatus	PrintableString	Decimal value as a numeric
		text string
failInfo	PrintableString	Decimal value as a numeric
		text string
senderNonce	OCTET STRING	Random nonce as a 16-byte
		binary data string
recipientNonce	OCTET STRING	Random nonce as 16-byte binary
		data string
 +----------------+-----------------+--------------------------------+

Gutmann & Pritikin Expires March 23, 2016 [Page 17]

Internet-Draft SCEP September 2015

 The OIDs used for these attributes are as follows:

 +-------------------+---+
 | Name | ASN.1 Definition |
 +-------------------+---+
id-VeriSign	OBJECT_IDENTIFIER ::= {2 16 US(840) 1
	VeriSign(113733)}
id-pki	OBJECT_IDENTIFIER ::= {id-VeriSign pki(1)}
id-attributes	OBJECT_IDENTIFIER ::= {id-pki attributes(9)}
id-transactionID	OBJECT_IDENTIFIER ::= {id-attributes
	transactionID(7)}
id-messageType	OBJECT_IDENTIFIER ::= {id-attributes
	messageType(2)}
id-pkiStatus	OBJECT_IDENTIFIER ::= {id-attributes
	pkiStatus(3)}
id-failInfo	OBJECT_IDENTIFIER ::= {id-attributes
	failInfo(4)}
id-senderNonce	OBJECT_IDENTIFIER ::= {id-attributes
	senderNonce(5)}
id-recipientNonce	OBJECT_IDENTIFIER ::= {id-attributes
	recipientNonce(6)}
 +-------------------+---+

 The attributes are detailed in the following sections.

3.1.1.1. transactionID

 A PKI operation is a transaction consisting of the messages exchanged
 between a requester and the server. The transactionID is a text
 string generated by the client when starting a transaction. The
 client MUST generate a unique string as the transaction identifier,
 which MUST be used for all PKI messages exchanged for a given
 enrolment, encoded as a PrintableString.

 One means of generating the transactionID is as a SHA-1, SHA-256, or
 SHA-512 hash of the public key value in the enrolment request when
 encoded as an X.509 SubjectPublicKeyInfo [7] (in other words the
 exact binary form in which it appears in both the request and the
 resulting certificate) and then coverting it into a text string using
 base64 encoding or ASCII hex digits. This allows the SCEP client to

Gutmann & Pritikin Expires March 23, 2016 [Page 18]

Internet-Draft SCEP September 2015

 automatically generate the same transactionID for any given public
 key. The SCEP protocol requires that transactionIDs be unique, so
 that subsequent polling queries can be matched with previous
 transactions. When separate signing and encryption certificates are
 requested by the client, using distinct keypairs ensures that
 distinct transactionIDs are also used when the transactionID is
 created by hashing the X.509 SubjectPublicKeyInfo.

 [Question: Again with the separate-certificate stuff...].

 When using the certificate query and CRL query messages defined in
 this protocol, the transactionID is required so that the requester
 can match the response message with the outstanding request message.
 For a non-enrolment message (for example GetCert and GetCRL), the
 transactionID SHOULD be some value unique to the client.

3.1.1.2. messageType

 The messageType attribute specifies the type of operation performed
 by the transaction. This attribute MUST be included in all PKI
 messages. The following message types are defined:

 o CertRep ("3") -- Response to certificate or CRL request.
 o RenewalReq ("17") -- PKCS #10 [6] certificate request for renewal
 of an existing certificate.
 o UpdateReq ("18") -- PKCS #10 [6] certificate request for update of
 a certificate issued by a different CA.
 o PKCSReq ("19") -- PKCS #10 [6] certificate request.
 o CertPoll ("20") -- Certificate polling in manual enrolment.
 o GetCert ("21") -- Retrieve a certificate.
 o GetCRL ("22") -- Retrieve a CRL.

 Undefined message types are treated as an error.

3.1.1.3. pkiStatus

 All response messages MUST include transaction status information,
 which is defined as pkiStatus attribute:

 o SUCCESS ("0") -- request granted.
 o FAILURE ("2") -- request rejected. When pkiStatus is FAILURE, the
 failInfo attribute, as defined in Section 3.1.1.4, MUST also be
 present.
 o PENDING ("3") -- request pending for manual approval.

 Undefined pkiStatus attributes are treated as an error.

Gutmann & Pritikin Expires March 23, 2016 [Page 19]

Internet-Draft SCEP September 2015

3.1.1.4. failInfo

 The failInfo attribute MUST contain one of the following failure
 reasons:

 o badAlg ("0") -- Unrecognized or unsupported algorithm identifier.
 o badMessageCheck ("1") -- integrity check failed.
 o badRequest ("2") -- transaction not permitted or supported.
 o badTime ("3") -- The signingTime attribute from the CMS [3]
 authenticatedAttributes was not sufficiently close to the system
 time (see Section 3.1.1.6).
 o badCertId ("4") -- No certificate could be identified matching the
 provided criteria.

 [Question: Is there any demand for a free-form UTF8String
 attribute to explain what really went wrong? Trying to sort
 out an error when all you ever get back is the near-universal
 badRequest is almost impossible, adding a failInfoText
 attribute to address this could be quite useful since it
 would allow expressing information such as a failure to meet
 CA policy, or indeed anything more complex than "no go away"].

 Undefined failInfo attributes are treated as an error.

3.1.1.5. senderNonce and recipientNonce

 The attributes of senderNonce and recipientNonce are a 16 byte random
 number generated for each transaction. These are intended to prevent
 replay attacks.

 When a sender sends a PKI message to a recipient, a senderNonce MUST
 be included in the message. The recipient MUST copy the senderNonce
 into the recipientNonce of the reply as a proof of liveliness. The
 original sender MUST verify that the recipientNonce of the reply
 matches the senderNonce it sent in the request. If the nonce does
 not match, the message MUST be rejected.

 [Question: What does this do for polling? Polling messages can
 get lost so nonces will go out of sync, is there a need to
 chain XXXReqs to polls via nonces? If not, why do we have two
 nonces?].

3.1.2. SCEP pkcsPKIEnvelope

 The information portion of a SCEP message is carried inside an
 Enveloped-Data content type, as defined in CMS [3], with the
 following restrictions:

Gutmann & Pritikin Expires March 23, 2016 [Page 20]

Internet-Draft SCEP September 2015

 o contentType in encryptedContentInfo MUST be data ({pkcs-7 1}) as
 defined in CMS [3].
 o encryptedContent MUST be the SCEP message being transported (see

Section 4), and must match the messageType authenticated Attribute
 in the pkiMessage.

 The CMS [3] content-encryption key is encrypted using the public key
 of the recipient of the message, i.e. the RA or the CA public key (if
 sent from the requester), or the requester public key (if sent as a
 reply to the requester).

3.2. SCEP pkiMessage types

 All of the messages in this section are pkiMessages (Section 3.1),
 where the type of the message MUST be specified in the 'messageType'
 authenticated Attribute. Each section defines a valid message type,
 the corresponding messageData formats, and mandatory authenticated
 attributes for that type.

3.2.1. PKCSReq/RenewalReq/UpdateReq

 The messageData for this type consists of a PKCS #10 [6]
 Certification Request. The certification request MUST contain at
 least the following items:

 o The subject Distinguished Name.
 o The subject public key.
 o For a PKCSReq and if authorisation based on a password is being
 used, a challengePassword attribute.

 In addition to the authenticatedAttributes required for a valid CMS
 [3] message, the pkiMessage MUST include the following attributes:

 o A transactionID (Section 3.1.1.1) attribute.
 o A messageType (Section 3.1.1.2) attribute set to PKCSReq,
 RenewalReq, or UpdateReq as appropriate.
 o A senderNonce (Section 3.1.1.5) attribute.

 The pkcsPKIEnvelope for this message type is protected using the
 public key of the recipient as detailed in Section 3.1.2, e.g. either
 the CA or RA public key.

3.2.2. CertRep

 The messageData for this type consists of a degenerate certificates-
 only CMS [3] Signed-Data message (Section 3.3). The exact content
 required for the reply depends on the type of request this message is
 a reply to. They are detailed in Section 3.2.2.1 and in Section 4.

Gutmann & Pritikin Expires March 23, 2016 [Page 21]

Internet-Draft SCEP September 2015

 In addition to the authenticatedAttributes required for a valid CMS
 [3], this pkiMessage MUST include the following attributes:

 o The transactionID (Section 3.1.1.1) attribute copied from the
 request we are responding to.
 o A messageType (Section 3.1.1.2) attribute set to CertRep.
 o A senderNonce (Section 3.1.1.5) attribute.
 o A recipientNonce attribute (Section 3.1.1.5) copied from the
 senderNonce from the request that this is a response to.
 o A pkiStatus (Section 3.1.1.3) set to the status of the reply.

 The pkcsPKIEnvelope for this message type is protected using the
 public key of the recipient as detailed in Section 3.1.2. For
 example if a self-signed certificate was used to send the original
 request then this self-signed certificate's public key is used to
 encrypt the content-encryption key of the SUCCESS response's
 pkcsPKIEnvelope.

 Note that although it may appear that the senderNonce serves no
 purpose in this message, it is required if the CertRep contains a
 PENDING status since the nonce will be used in subsequent polling
 operations.

3.2.2.1. CertRep SUCCESS

 When the pkiStatus attribute is set to SUCCESS, the messageData for
 this message consists of a degenerate certificates-only CMS [3]
 Signed-Data message (Section 3.3). The content of this degenerate
 certificates-only Signed-Data depends on what the original request
 was, as outlined below.

Gutmann & Pritikin Expires March 23, 2016 [Page 22]

Internet-Draft SCEP September 2015

 +--------------+--+
 | Request-type | Reply-contents |
 +--------------+--+
PKCSReq	The reply MUST contain at least the issued
	certificate in the certificates field of the
	Signed-Data. The reply MAY contain additional
	certificates, but the issued certificate MUST be
	the leaf certificate. The reply MUST NOT contain
	a CRL.
RenewalReq	Same as PKCSReq
UpdateReq	Same as PKCSReq
CertPoll	Same as PKCSReq
GetCert	The reply MUST contain at least the requested
	certificate in the certificates field of the
	Signed-Data. The reply MAY contain additional
	certificates, but the requested certificate MUST
	be the leaf certificate. The reply MUST NOT
	contain a CRL.
GetCRL	The reply MUST contain the CRL in the crls field
	of the Signed-Data. The reply MUST NOT contain a
	certificate.
 +--------------+--+

3.2.2.2. CertRep FAILURE

 When the pkiStatus attribute is set to FAILURE, the reply MUST also
 contain a failInfo (Section 3.1.1.4) attribute set to the appropriate
 error condition describing the failure. The pkcsPKIEnvelope
 (Section 3.1.2) MUST be omitted.

3.2.2.3. CertRep PENDING

 When the pkiStatus attribute is set to PENDING, the pkcsPKIEnvelope
 (Section 3.1.2) MUST be omitted.

3.2.3. CertPoll (GetCertInitial)

 This message is used for certificate polling. For unknown reasons it
 was referred to as "GetCertInitial" in earlier drafts. The
 messageData for this type consists of an IssuerAndSubject:

Gutmann & Pritikin Expires March 23, 2016 [Page 23]

Internet-Draft SCEP September 2015

 issuerAndSubject ::= SEQUENCE {
 issuer Name,
 subject Name
 }

 The issuer is set to the subjectName of the CA (in other words the
 intended issuerName of the certificate that's being requested). The
 Subject is set to the subjectName used when requesting the
 certificate.

 In addition to the authenticatedAttributes required for a valid CMS
 [3], this pkiMessage MUST include the following attributes:

 o The same transactionID (Section 3.1.1.1) attribute from the
 original PKCSReq/RenewalReq/UpdateReq message.
 o A messageType (Section 3.1.1.2) attribute set to CertPoll.
 o A senderNonce (Section 3.1.1.5) attribute.
 o A recipientNonce attribute (Section 3.1.1.5) copied from the
 senderNonce from the request that this is a response to.

3.2.4. GetCert

 The messageData for this type consists of an IssuerAndSerialNumber as
 defined in CMS [3] which uniquely identifies the certificate being
 requested.

 In addition to the authenticatedAttributes required for a valid CMS
 [3], this pkiMessage MUST include the following attributes:

 o A transactionID (Section 3.1.1.1) attribute.
 o A messageType (Section 3.1.1.2) attribute set to GetCert.
 o A senderNonce (Section 3.1.1.5) attribute.

 A self-signed certificate MAY be used in the signed envelope. This
 enables the requester to request their own certificate if they were
 unable to store it previously.

3.2.5. GetCRL

 The messageData for this type consists of a IssuerAndSerialNumber as
 defined in CMS [3] containing the issuer name and serial number of
 the certificate whose revocation status is being checked.

 In addition to the authenticatedAttributes required for a valid CMS
 [3], this pkiMessage MUST include the following attributes:

 o A transactionID (Section 3.1.1.1) attribute.

Gutmann & Pritikin Expires March 23, 2016 [Page 24]

Internet-Draft SCEP September 2015

 o A messageType (Section 3.1.1.2) attribute set to GetCRL.
 o A senderNonce (Section 3.1.1.5) attribute.

3.3. Degenerate certificates-only CMS Signed-Data

 CMS [3] includes a degenerate case of the CMS [3] Signed-Data content
 type, in which there are no signers. The use of such a degenerate
 case is to disseminate certificates and CRLs. For SCEP the content
 field of the ContentInfo value of a degenerate certificates-only
 Signed-Data MUST be omitted.

 When carrying certificates, the certificates are included in the
 'certificates' field of the Signed-Data. When carrying a CRL, the
 CRL will be included in the 'crls' field of the Signed-Data.

3.4. CA Capabilities

 In order to provide support for future enhancements to the protocol,
 CAs SHOULD implement the GetCACaps message to allow clients to query
 which functionality is available from the CA.

3.4.1. GetCACaps HTTP Message Format

 This message requests capabilities from a CA, with the format:

 "GET" CGI-PATH CGI-PROG "?operation=GetCACaps"

 with the message components as described in Section 5. The response
 is a list of text capabilities, as defined in Section 3.4.2. CA
 servers SHOULD support the GetCACaps message and MUST support it when
 they implement any extended functonality beyond the mandatory-to-
 implement basics Section 2.8.

3.4.2. CA Capabilities Response Format

Gutmann & Pritikin Expires March 23, 2016 [Page 25]

Internet-Draft SCEP September 2015

 The response for a GetCACaps message is a list of CA capabilities, in
 plain text, separated by <LF> characters, as follows (quotation marks
 are NOT sent):

 +--------------------+--+
 | Keyword | Description |
 +--------------------+--+
"AES"	CA Supports the AES encryption algorithm.
"DES3"	CA Supports the triple DES encryption
	algorithm.
"GetNextCACert"	CA Supports the GetNextCACert message.
"POSTPKIOperation"	PKIOPeration messages may be sent via HTTP
	POST.
"Renewal"	CA Supports the Renewal CA operation.
"SHA-1"	CA Supports the SHA-1 hashing algorithm.
"SHA-256"	CA Supports the SHA-256 hashing algorithm.
"SHA-512"	CA Supports the SHA-512 hashing algorithm.
"Update"	CA Supports the Update CA operation.
 +--------------------+--+

 The client SHOULD use SHA-256 or SHA-512 in preference to SHA-1
 hashing, and AES in preference to triple DES if they are supported by
 the CA.

 Announcing some of these capabilities is redundant since they're
 required as mandatory-to-implement functionality (see Section 2.8),
 but it may be useful to announce them in order to deal with old
 implementations that would otherwise default to obsolete, insecure
 algorithms and mechanisms.

 The server MUST use the texual case specified here, but clients
 SHOULD ignore the textual case when processing this message. A
 client MUST be able to accept and ignore any unknown keywords that
 might be sent back by a CA.

 If the CA supports none of the above capabilities the SCEP server
 SHOULD return an empty message. A server MAY simply return an HTTP
 error. A client that receives an empty message or an HTTP error
 SHOULD interpret the response as if none of the requested
 capabilities are supported by the CA.

Gutmann & Pritikin Expires March 23, 2016 [Page 26]

Internet-Draft SCEP September 2015

 (Note that at least one widely-deployed server implementation
 supports several of the above operations but doesn't support the
 GetCACaps message to indicate that it supports them. This means that
 the equivalent of GetCACaps must be performed through server
 fingerprinting, which can be done using the ID string "Microsoft-
 IIS").

 The Content-type of the reply SHOULD be "text/plain". Clients SHOULD
 ignore the Content-type, as older server implementations of SCEP may
 send various Content-types.

 Example:

 GET /cgi-bin/pkiclient.exe?operation=GetCACaps

 might return:

 AES
 SHA-256
 GetNextCACert
 POSTPKIOperation

 This means that the CA supports modern crypto algorithms, the
 GetNextCACert message, and allows PKIOperation messages
 (PKCSReq/RenewalReq/UpdateReq, GetCert, CertPoll, ...) to be sent
 using HTTP POST.

4. SCEP Transactions

 This section describes the SCEP Transactions, without explaining the
 transport. The transport of each message is discussed in Section 5.
 Some of the transaction-requests have no data to send, i.e. the only
 data is the message-type itself (e.g. a GetCACert message has no
 additional data).

 In this section, each SCEP transaction is specified in terms of the
 complete messages exchanged during the transaction.

4.1. Get CA Certificate

 To get the CA certificate(s), the requester sends a GetCACert message
 to the server. There is no request data associated with this message
 (see Section 5.2.1).

Gutmann & Pritikin Expires March 23, 2016 [Page 27]

Internet-Draft SCEP September 2015

4.1.1. Get CA Certificate Response Message Format

 The response depends on whether the responding server has RA
 certificates or only a single CA certificate. The server MUST
 indicate which response it is sending via the transport protocol used
 (see Section 5.2.1).

 All returned certificates MUST conform to PKIX [7].

 If the requester does not have a certificate path to a trust anchor
 certificate, the SHA-1, SHA-256, or SHA-512 fingerprint of the
 returned CA certificate (communicated via out-of-band means) may be
 used to verify it.

4.1.1.1. CA Certificate Response Message Format

 If the server does not have any RA Certificates, the response
 consists of a single X.509 CA certificate.

4.1.1.2. CA/RA Certificate Response Message Format

 If the server has RA Certificates, the response consists of a
 degenerate certificates-only CMS [3] Signed-Data (Section 3.3)
 containing the CA and RA certificates, with the RA certificate(s) as
 the leaf certificate(s).

4.2. Certificate Enrolment/Renewal/Update

 A PKCSReq/RenewalReq/UpdateReq (Section 3.2.1) message is used to
 perform a certificate enrolment, renewal, or update transaction.

 The reply MUST be a CertRep (Section 3.2.2) message sent back from
 the server, indicating SUCCESS, FAILURE, or PENDING.

 Precondition: Both the requester and the certification authority have
 completed their initialization process. The requester has already
 been configured with the CA/RA certificate.

 Postcondition: The requester receives the certificate, the request is
 rejected, or the request is pending. A pending response might
 indicate that manual authentication is necessary.

4.2.1. Certificate Enrolment/Renewal/Update Response Message

 If the request is granted, a CertRep (Section 3.2.2) message with
 pkiStatus set to SUCCESS is returned. The reply MUST also contain
 the certificate (and MAY contain any other certificates needed by the
 requester). The issued certificate MUST be the first in the list.

Gutmann & Pritikin Expires March 23, 2016 [Page 28]

Internet-Draft SCEP September 2015

 If the request is rejected, a CertRep (Section 3.2.2) message with
 pkiStatus set to FAILURE is returned. The reply MUST also contain a
 failInfo attribute.

 If the the CA is configured to manually authenticate the requester, a
 CertRep (Section 3.2.2) message with pkiStatus set to PENDING MAY be
 returned. The CA MAY return a PENDING for other reasons.

4.3. Poll for Requester Initial Certificate

 Triggered by a CertRep (Section 3.2.2) with pkiStatus set to PENDING,
 a requester will enter the polling state by periodically sending
 CertPoll messages (Section 3.2.3) to the server, until either the
 request is granted and the certificate is sent back, or the request
 is rejected, or some preconfigured time limit for polling or maximum
 number of polls is exceeded.

 CertPoll messages exchanged during the polling period MUST carry the
 same transactionID attribute as the previous PKCSReq/RenewalReq/
 UpdateReq. A server receiving a CertPoll for which it does not have
 a matching PKCSReq/RenewalReq/UpdateReq MUST ignore this request.

 Since at this time the certificate has not been issued, the requester
 can only use its own subject name (which was contained in the
 original PKCS# 10 sent via PKCSReq/RenewalReq/UpdateReq) to identify
 the polled certificate request. In theory there can be multiple
 outstanding requests from one requester (for example, if different
 keys and different key-usages were used to request multiple
 certificates), so the transactionID must also be included to
 disambiguate between multiple requests. In practice however it's
 safer for the requester to not have multiple requests outstanding at
 any one time, since this tends to confuse some servers.

 PreCondition: The requester has received a CertRep with pkiStatus set
 to PENDING.

 PostCondition: The requester has either received a valid response,
 which could be either a valid certificate (pkiStatus = SUCCESS), or a
 FAILURE message, or the polling period times out.

4.3.1. Polling Response Message Format

 The response messages for CertPoll are the same as in Section 4.2.1.

Gutmann & Pritikin Expires March 23, 2016 [Page 29]

Internet-Draft SCEP September 2015

4.4. Certificate Access

 A requester can query an issued certificate from the SCEP server, as
 long as the requester knows the issuer name and the issuer assigned
 certificate serial number.

 This transaction consists of one GetCert (Section 3.2.4) message sent
 to the server by a requester, and one CertRep (Section 3.2.2) message
 sent back from the server.

 PreCondition: The certification authority has issued the queried
 certificate and the issuer assigned serial number is known.

 PostCondition: Either the certificate is sent back or the request is
 rejected.

4.4.1. Certificate Access Response Message Format

 In this case, the CertRep from the server is same as in
 Section Section 4.2.1, except that the server will only either grant
 the request (SUCCESS) or reject the request (FAILURE).

4.5. CRL Access

 Clients can request a CRL from the SCEP server as described in
Section 2.6.

 PreCondition: The certification authority certificate has been
 downloaded to the end entity.

 PostCondition: CRL sent back to the requester.

4.5.1. CRL Access Response Message Format

 The CRL is sent back to the requester in a CertRep (Section 3.2.2)
 message. The information portion of this message is a degenerate
 certificates-only Signed-Data (Section 3.3) that contains only the
 most recent CRL in the crls field of the Signed-Data.

4.6. Get Next Certification Authority Certificate

 When the CA certificate expires all certificates that have been
 signed by it are no longer valid. CA key rollover provides a
 mechanism by which the server MAY distribute a new CA certificate
 which is valid in the future; when the current certificate has
 expired. When a CA certificate is about to expire, clients need to
 retrieve the CA's next CA certificate (i.e. the rollover

Gutmann & Pritikin Expires March 23, 2016 [Page 30]

Internet-Draft SCEP September 2015

 certificate). This is done via the GetNextCACert message. There is
 no request data associated with this message (see Section 5.2.6).

 Clients MUST store the not-yet-valid CA certificate, and any not-yet-
 valid client certificates obtained, until such time that they are
 valid, at which point clients switch over to using the newly valid
 certificates.

4.6.1. Get Next CA Response Message Format

 The response consists of a Signed-Data CMS [3], signed by the current
 CA (or RA) signing key. Clients MUST validate the signature on the
 the Signed-Data CMS [3] before accepting any of its contents.

 The content of the Signed-Data CMS [3] message is a degenerate
 certificates-only Signed-Data (Section 3.3) message containing the
 new CA certificate and any new RA certificates, as defined in

Section 5.2.1.1.2, to be used when the current CA certificate
 expires.

 If the CA (or RA) does not have the rollover certificate(s) it MUST
 reject the request. It SHOULD also remove the GetNextCACert setting
 from the capabilities until it does have rollover certificates.

 If there are any RA certificates in this response, clients MUST check
 that these RA certificates are signed by the CA, and MUST check
 authorization of these RA certificates (see Section 2.1.3).

5. SCEP Transport

 HTTP [4] is used as the transport protocol for SCEP Message Objects.

5.1. HTTP GET and POST Message Formats

 SCEP uses the HTTP "GET" and "POST" messages to exchange information
 with the CA. The following defines the syntax of a HTTP GET and POST
 messages sent from a requester to a certification authority server:

 "GET" CGI-PATH CGI-PROG "?operation=" OPERATION "&message=" MESSAGE
 "POST" CGI-PATH CGI-PROG "?operation=" OPERATION

 where:

 o CGI-PATH defines the actual CGI path to invoke the CGI program
 that parses the request.

Gutmann & Pritikin Expires March 23, 2016 [Page 31]

Internet-Draft SCEP September 2015

 o CGI-PROG is set to be the string "pkiclient.exe". This is
 intended to be the program that the CA will use to handle the SCEP
 transactions, though the CA may ignore CGI-PROG and use only the
 CGI-PATH, or ignore both if it's not issuing certificates via a
 web server. Typically, setting CGI-PATH/CGI-PROG to "/cgi-bin/
 pkiclient.exe" will satisfy most servers.
 o OPERATION depends on the SCEP transaction and is defined in the
 following sections.
 o MESSAGE depends on the SCEP transaction and is defined in the
 following sections.

 Early SCEP drafts performed all communications via "GET" messages,
 including non-idempotent ones that should have been sent via "POST"
 messages. This has caused problems because of the way that the
 (supposedly) idempotent GET interacts with caches and proxies, and
 because the extremely large GET requests created by encoding CMS
 messages may be truncated in transit. These issues are typically not
 visible when testing on a LAN, but crop up during deployment over
 WANs. If the remote CA supports it, any of the CMS [3]-encoded SCEP
 messages SHOULD be sent via HTTP POST instead of HTTP GET. This is
 allowed for any SCEP message except GetCACert, GetNextCACert, or
 GetCACaps, and avoids the need for base64- and URL-encoding that's
 required for GET messaging. The client can verify that the CA
 supports SCEP messages via POST by looking for the "POSTPKIOperation"
 capability (See Section 3.4.2).

 If your client or server uses HTTP GET and encounters HTTP-related
 problems such as messages being truncated, seeing errors such as HTTP
 414 ("Request URI too long"), or simply having the message not sent/
 received at all, when standard requests to the server (for example
 via a web browser) work, then this is a symptom of the problematic
 use of HTTP GET. The solution to this problem is typically to move
 to HTTP POST instead. In addition when using GET it's recommended to
 test your implementation over the public internet from as many
 locations as possible to determine whether the use of GET will cause
 problems with communications.

 When using GET messages to communicate binary data, base64 encoding
 as specified in [2] MUST be used. The base64 encoded data is
 distinct from "base64url" and may contain URI reserved characters,
 thus it MUST be escaped as specified in [8] in addition to being
 bas64 encoded.

5.1.1. Response Message Format

 For each GET or POST operation, the CA/RA server MUST return a
 Content-Type and appropriate response data, if any.

Gutmann & Pritikin Expires March 23, 2016 [Page 32]

Internet-Draft SCEP September 2015

5.2. SCEP HTTP Messages

 This section describes the OPERATION and MESSAGE values for SCEP
 exchanges.

5.2.1. GetCACert

 The OPERATION MUST be set to "GetCACert".

5.2.1.1. GetCACert Response

 The response for GetCACert is different between the case where the CA
 directly communicates with the requester during the enrolment, and
 the case where a RA exists and the requester communicates with the RA
 during the enrolment.

5.2.1.1.1. CA Certificate Only Response

 The response will have a Content-Type of "application/x-x509-ca-
 cert".

 The body of this response consists of an X.509 CA certificate, as
 defined in Section 4.1.1.1:

 "Content-Type:application/x-x509-ca-cert"

 <binary X.509>

5.2.1.1.2. CA and RA Certificates Response

 The response will have a Content-Type of "application/x-x509-ca-ra-
 cert".

 The body of this response consists of a degenerate certificates-only
 CMS [3] Signed-Data (Section 3.3) message containing both CA and RA
 certificates, as defined in Section 4.1.1.2:

 "Content-Type:application/x-x509-ca-ra-cert"

 <binary CMS>

Gutmann & Pritikin Expires March 23, 2016 [Page 33]

Internet-Draft SCEP September 2015

5.2.2. PKCSReq/RenewalReq/UpdateReq

 The OPERATION MUST be set to "PKIOperation". Note that when used
 with HTTP POST, the only OPERATION possible is "PKIOperation", so
 many servers don't check these values, or even notice their absence.

 [Question: Should this be made optional? "POSTPKIOperation"
 already hard-codes POST == PKIOperation, and since many servers
 don't check it, it seems like more of a MAY than a MUST].

 The MESSAGE consists of a PKCSReq, RenewalReq, or UpdateReq SCEP
 message. When implemented using HTTP POST this might look as
 follows:

 POST /cgi-bin/pkiclient.exe?operation=PKIOperation HTTP/1.1
 Content-Length: <length of data>

 <binary CMS data>

 When implemented using HTTP GET this might look as follows:

 GET /cgi-bin/pkiclient.exe?operation=PKIOperation& \
 message=MIAGCSqGSIb3DQEHA6CAMIACAQAxgDCBzAIBADB2MG \
 IxETAPBgNVBAcTCE......AAAAAA== HTTP/1.1

5.2.2.1. PKCSReq/RenewalReq/UpdateReq Response

 The response will have a Content-Type of "application/x-pki-message".

 The body of this response consists of a CertRep SCEP message defined
 in Section 4.2.1. The following is an example of the response:

 "Content-Type:application/x-pki-message"

 <binary CertRep msg>

5.2.3. CertPoll

 The OPERATION MUST be set to "PKIOperation". The MESSAGE consists of
 a CertPoll SCEP message.

Gutmann & Pritikin Expires March 23, 2016 [Page 34]

Internet-Draft SCEP September 2015

5.2.3.1. CertPoll Response

 The body of this response consists of a CertRep SCEP message defined
 in Section 4.3.1.

5.2.4. GetCert

 The OPERATION MUST be set to "PKIOperation". The MESSAGE consists of
 a GetCert SCEP message.

5.2.4.1. GetCert Response

 The body of this response consists of a CertRep SCEP message defined
 in Section 4.4.1.

5.2.5. GetCRL

 The OPERATION MUST be set to "PKIOperation". The MESSAGE consists of
 a GetCRL SCEP message.

5.2.5.1. GetCRL Response

 The body of this response consists of a CertRep SCEP message defined
 in Section 4.5.1.

5.2.6. GetNextCACert

 The OPERATION MUST be set to "GetNextCACert".

5.2.6.1. GetNextCACert Response

 The response will have a Content-Type of "application/x-x509-next-ca-
 cert".

 The body of this response consists of a Signed-Data CMS [3], as
 defined in Section 4.6.1. (This is similar to the GetCert response
 but does not include any of the attributes defined in Section 3.1.1).

 "Content-Type:application/x-x509-next-ca-cert"

 <binary CMS>

Gutmann & Pritikin Expires March 23, 2016 [Page 35]

Internet-Draft SCEP September 2015

6. Contributors/Acknowledgements

 The editor would like to thank all the previous editors, authors and
 contributors: Cheryl Madson, Xiaoyi Liu, David McGrew, David Cooper,
 Andy Nourse, Max Pritikin, Jan Vilhuber, etc for their work
 maintaining the draft over the years. Numerous other people have
 contributed during the long life cycle of the draft and all deserve
 thanks.

 The earlier authors would like to thank Peter William of ValiCert,
 Inc. (formerly of VeriSign, Inc.) and Alex Deacon of VeriSign, Inc.
 and Christopher Welles of IRE, Inc. for their contributions to early
 versions of this protocol and this document.

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 The security goals of SCEP are that no adversary can:

 o Subvert the public key/identity binding from that intended.
 o Discover the identity information in the enrolment requests and
 issued certificates.
 o Cause the revocation of certificates with any non-negligible
 probability.

 Here an adversary is any entity other than the requester and the CA
 (and optionally the RA) participating in the protocol. The adversary
 is computationally limited, but that can manipulate data during
 transmission (that is, can act as a MITM). The precise meaning of
 'computationally limited' depends on the implementer's choice of one-
 way hash functions and cryptographic algorithms.

 The first and second goals are met through the use of CMS [3] and
 PKCS #10 [6] encryption and digital signatures using authenticated
 public keys. The CA's public key is authenticated via out-of-band
 means such as the checking of the CA fingerprint, as specified in

Section 2.1.2, and the SCEP client's public key is authenticated
 through manual or pre-shared secret authentication, as specified in

Section 2.2. The third goal is met through the use of a
 challengePassword for revocation, which is chosen by the SCEP client
 and communicated to the CA protected by the CMS [3] Enveloped-Data,
 as specified in Section 2.7.

Gutmann & Pritikin Expires March 23, 2016 [Page 36]

Internet-Draft SCEP September 2015

 [Question: Uhh, the protocol doesn't support revocation
 requests, should this be removed to match what it actually
 does or should be spec be updated to match the description
 here?].

 The motivation of the first security goal is straightforward. The
 motivation for the second security goal is to protect the identity
 information in the enrolment requests and issued certificates.
 Subsequent protocols can use the certificate in ways that either
 expose the identity information, or protect it, depending on the
 security requirements of those protocols. The motivation for the
 third security goal is to protect the SCEP clients from denial of
 service attacks.

8.1. General Security

 Common key-management considerations such as keeping private keys
 truly private and using adequate lengths for symmetric and asymmetric
 keys must be followed in order to maintain the security of this
 protocol. This is especially true for CA keys, which, when
 compromised, compromise the security of all relying parties.

8.2. Use of the CA keypair

 A CA key pair is generally meant for (and is usually flagged as)
 certificate (and CRL) signing exclusively, rather than data signing
 or encryption. The SCEP protocol, however, uses the CA private key
 to both encrypt and sign CMS [3] transport messages. This is
 generally considered undesirable, as it widens the possibility of an
 implementation weakness, and provides:

 o Another place that the private key must be used (and hence is
 slightly more vulnerable to exposure).
 o Another place where a side channel attack (say, timing or power
 analysis) might be used.
 o Another place that the attacker might somehow insert their own
 data and get it signed by the CA's private key (note that this
 issue is purely theoretical, since the CMS data signed by the CA
 is nothing remotely like a certificate and couldn't be passed off
 as such).

 One solution to this problem is to use RA keys to secure the SCEP
 transport (i.e. message signing and encrypting), which allows the CA
 keys to be used only for their intended purpose of certificate
 signing. An RA can be implemented in two ways, physically separate
 or implicit. In the implicit case, the CA simply creates an extra
 key pair. A physically separate RA allows the CA to be inside the
 secure network, not accessible to hackers at all.

Gutmann & Pritikin Expires March 23, 2016 [Page 37]

Internet-Draft SCEP September 2015

 The corresponding downside of using an RA is that it makes the client
 side considerably more complex, as the key used by the CA to issue
 certificates is no longer the same one used by the client to
 communicate with the CA. This requires that the client keep track of
 multiple keys rather than a single CA key.

8.3. Challenge Password

 The challengePassword sent in the PKCS #10 enrolment request is
 signed and encrypted by way of being encapsulated in a pkiMessage.
 When saved by the CA, care should be taken to protect this password.

 If the challengePassword is used to automatically authenticate an
 enrolment request, it is recommended that some form of one-time
 password be used to minimize damage in the event the data is
 compromised.

8.4. Transaction ID

 CAs/RAs SHOULD NOT rely on the transactionID to be correct or as
 specified in this document. Requesters with buggy software might add
 additional undetected duplicate requests to the CA's queue. A well-
 written CA/RA should never assume the data from a requester is well-
 formed.

8.5. Nonces and Replay

 In order to detect replay attacks, both sides need to maintain state
 information sufficient to detect an unexpected nonce value.

8.6. GetCACaps Issues

 The GetCACaps response is not signed. This allows an attacker to
 perform downgrade attacks on the cryptographic capabilities of the
 client/CA exchange.

8.7. Unnecessary cryptography

 Some of the SCEP exchanges use signing and encryption operations that
 are not necessary. In particular the GetCert and GetCRL exchanges
 are encrypted and signed in both directions. The information
 requested is public and thus signing the requests is of questionable
 value but also CRLs and Certificates, i.e. the respective responses,
 are already signed by the CA and can be verified by the recipient
 without requiring additional signing and encryption.

 This may affect performance and scalability of the CA and could be
 used as an attack vector on the CA (though not an anonymous one).

Gutmann & Pritikin Expires March 23, 2016 [Page 38]

Internet-Draft SCEP September 2015

 The use of CRLDPs as well as other ways of retrieving certificates
 such as HTTP access and LDAP are recommended for CRL access.

8.8. GetNextCACert

 GetNextCACert depends on a 'flag moment' at which every client in the
 PKI infrastructure switches from the current CA certificate (and
 client certificate) to the new CA certificate and client
 certificates. Proper monitoring of the network infrastructure can
 ensure that this will proceed as expected but any errors in
 processing or implementation can result in a failure of the PKI
 infrastructure.

9. References

9.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [3] Housley, R., "Cryptographic Message Syntax (CMS)",
RFC 5652, September 2009.

 [4] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [5] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 November 2000.

 [6] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 November 2000.

 [7] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "PKCS #10: Certification Request
 Syntax Specification Version 1.7", RFC 5280, May 2008.

 [8] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc2396

Gutmann & Pritikin Expires March 23, 2016 [Page 39]

Internet-Draft SCEP September 2015

9.2. Informative References

 [9] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, June 2008.

 [10] Adams, C., Farrell, S., Kause, T., and T. Mononen,
 "Internet X.509 Public Key Infrastructure Certificate
 Management Protocol (CMP)", RFC 4210, September 2005.

 [11] Gutmann, P., "Internet X.509 Public Key Infrastructure
 Operational Protocols: Certificate Store Access via HTTP",

RFC 4387, February 2006.

 [12] Alighieri, D., "Internet Key Exchange (IKEv2) Protocol",
RFC 4306, March 1300.

 [13] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [14] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Appendix A. SCEP State Transitions

 SCEP state transitions are indexed by the transactionID attribute.
 The design goal is to ensure the synchronization between the CA and
 the requester under various error situations.

 Each enrolment transaction is uniquely associated with a
 transactionID (carried in the transactionID signed attribute (see

Section 3.1.1.1). Because the enrolment transaction could be
 interrupted by various errors, including network connection errors or
 client reboot, the SCEP client generates a fixed transaction
 identifier as specified in Section 3.1.1.1 which is included in the
 PKCSReq/RenewalReq/UpdateReq. If the CA returns a response of
 PENDING, the requester will poll by periodically sending a CertPoll
 with the same transaction identifier until either a response other
 than PENDING is obtained or the configured maximum time has elapsed.
 This mechanism retains the same transaction identifier throughout the
 enrolment transaction.

 If the client times out or reboots, the client administrator will
 start another transaction with the same key pair. The second
 enrolment will have the same transactionID. At the server side,
 instead of accepting the PKCSReq/RenewalReq/UpdateReq as a new
 request, it can respond as if another CertPoll message had been sent
 with that transaction ID. The second PKCSReq/RenewalReq/UpdateReq

https://datatracker.ietf.org/doc/html/rfc5272
https://datatracker.ietf.org/doc/html/rfc4210
https://datatracker.ietf.org/doc/html/rfc4387
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc5246

Gutmann & Pritikin Expires March 23, 2016 [Page 40]

Internet-Draft SCEP September 2015

 should be taken as a resynchronization message to allow the process
 to resume as the same transaction.

 The following gives several examples of client to CA transactions.

 Client actions are indicated in the left column, CA actions are
 indicated in the right column. A blank action signifies that no
 message was received.

 The first transaction, for example, would read like this:

 "Client Sends PKCSReq message with transactionID 1 to the CA. The CA
 signs the certificate and constructs a CertRep Message containing the
 signed certificate with a transaction ID 1. The client receives the
 message and installs the certificate locally."

 Successful Enrolment Case: no manual authentication

 PKCSReq (1) ----------> CA Signs Cert
 Client Installs Cert <---------- CertRep (1) SIGNED CERT

 Successful Enrolment Case: manual authentication required

 PKCSReq (10) ----------> Cert Request goes into Queue
 Client Polls <---------- CertRep (10) PENDING
 CertPoll (10) ----------> Still pending
 Client Polls <---------- CertRep (10) PENDING
 CertPoll (10) ----------> Still pending
 Client Polls <---------- CertRep (10) PENDING
 CertPoll (10) ----------> Still pending
 Client Polls <---------- CertRep (10) PENDING
 CertPoll (10) ----------> Cert has been signed
 <---------- CertRep (10) SIGNED CERT
 Client Installs Cert

Gutmann & Pritikin Expires March 23, 2016 [Page 41]

Internet-Draft SCEP September 2015

 Resync Case 1 - CA Receives PKCSReq, sends PENDING, eventually grants
 the certificate and returns SUCCESS, with the certificate. The
 SUCCESS gets lost:

 PKCSReq (3) ----------> Cert Request goes into queue
 <---------- CertRep (3) PENDING
 CertPoll (3) ----------> Still pending
 <---------- CertRep (3) PENDING
 CertPoll (3) ----------> Cert has been signed
 X-------- CertRep(3) SIGNED CERT
 (Time Out)
 PKCSReq (3) ----------> Cert already granted
 <---------- CertRep (3) SIGNED CERT
 Client Installs Cert

 Resync Case 2 - CA Receives PKCSReq, sends PENDING, PENDING reply
 gets lost:

 PKCSReq (3) ----------> Cert Request goes into queue
 X-------- CertRep (3) PENDING
 (Time Out)
 PKCSReq (3) ---------->
 <---------- CertRep (3) PENDING
 etc...

 Case when the Certificate is lost, the CA arbitrarily refuses to sign
 a replacement (enforcing name-uniqueness) until the original
 certificate has been revoked (there is no change of name
 information):

 PKCSReq (4) ----------> CA Signs Cert
 <---------- CertRep (4) SIGNED CERT
 Client Installs Cert
 (Client looses Cert)
 PKCSReq (5) ----------> There is already a valid cert with
 this DN.
 <---------- CertRep (5) BAD REQUEST
 Admin Revokes
 PKCSReq (5) ----------> CA Signs Cert
 <---------- CertRep (5) SIGNED CERT
 Client Installs Cert

Gutmann & Pritikin Expires March 23, 2016 [Page 42]

Internet-Draft SCEP September 2015

 CA certificate rollover case:

 GetNextCACert ---------->
 <---------- New CA certificate

 PKCSReq* ----------> CA Signs certificate with NEW
 key
 Client Stores Cert <---------- CertRep - Certificate issued
 for installation when from NEW CA certificate and key
 existing cert expires. pair

 *enveloped for new CA or RA cert and key pair. The CA will use the
 envelope to determine which key and certificate to use to issue the
 client certificate.

Appendix B. Background Notes

 This specification has spent more than fifteen years in the draft
 stage. Its original goal, provisioning IPsec routers with RSA
 certificates, has long since changed to general device/embedded
 system/IoT use. To fit this role, extra features were bolted on in a
 haphazard manner through the addition of a growing list of appendices
 and by inserting additional, often conflicting, paragraphs in various
 locations in the body text. Since existing features were never
 updated as newer ones were added, the specification accumulated large
 amounts of historical baggage over time. If OpenPGP was described as
 "a museum of 1990s crypto" then the SCEP draft was its graveyard.

 About five years ago the specification, which even at that point had
 seen only sporadic re-posts of the existing document, was more or
 less abandoned by its original sponsors. Due to its widespread use
 in large segments of the industry, the specification was rebooted in
 2015, cleaning up fifteen years of accumulated cruft, fixing errors,
 clarifying ambiguities, and bringing the algorithms and standards
 used into the current century (prior to the update, the de-facto
 lowest-common denominator algorithms used for interoperability were
 the forty-year-old single DES and broken MD5 hash algorithms).

 Other changes include:

 o Resolved contradictions in the text, for example a requirement
 given as a MUST in one paragraph and a SHOULD in the next, a MUST
 NOT in one paragraph and a MAY a few paragraphs later, a SHOULD
 NOT contradicted later by a MAY, and so on.

Gutmann & Pritikin Expires March 23, 2016 [Page 43]

Internet-Draft SCEP September 2015

 o Merged several later fragmentary addenda placed in appendices (for
 example the handling of certificate renewal and update) with the
 body of the text.
 o Updated the algorithms to ones dating from at least this century.
 o Did the same for normative references to other standards.
 o Corrected incorrect references to other standards, e.g.
 IssuerAndSerial -> IssuerAndSerialNumber.
 o Corrected errors such as a statement that when both signature and
 encryption certificates existed, the signature certificate was
 used for encryption.
 o Condensed redundant discussions of the same topic spread across
 multiple sections into a single location. For example the
 description of RA certificate handling previously existed in three
 different locations, with slightly different reqirements in each
 one.
 o Relaxed some requirements that didn't serve any obvious purpose
 and that major implementations didn't seem to be enforcing. For
 example the requirement that the self-signed certificate used with
 a request MUST contain a subject name that matched the one in the
 PKCS #10 request was relaxed to a SHOULD because a number of
 implementations either ignored the issue entirely or at worst
 performed some minor action like creating a log entry after which
 they continued anyway.
 o Clarified sections that were unclear or even made no sense, for
 example the requirement for a "hash on the public key [sic]"
 encoded as a PrintableString.
 o Clarified certificate renewal and update. These represent a
 capability that was bolted onto the original protocol with (at
 best) vaguely-defined semantics, including a requirement by the
 server to guess whether a particular request was a renewal or not
 (updates were even more vaguely defined). In response to
 developer feedback that they either avoided renewal/update
 entirely because of this uncertainty or hardcoded in particular
 behaviour on a per-server basis, this specification explicitly
 identifies renewal and update requests as such, and provides
 proper semantics for both. Note that this is still a work in
 progress due to the lack of clarity of the original spec in this
 area, see some of the questions inline with the text.

Authors' Addresses

 Peter Gutmann
 University of Auckland
 Department of Computer Science
 Auckland
 New Zealand

 Email: pgut001@cs.auckland.ac.nz

Gutmann & Pritikin Expires March 23, 2016 [Page 44]

Internet-Draft SCEP September 2015

 Max Pritikin
 Cisco Systems, Inc

Gutmann & Pritikin Expires March 23, 2016 [Page 45]

