
Network Working Group P. Gutmann
Internet-Draft University of Auckland
Intended status: Informational June 9, 2019
Expires: December 11, 2019

Simple Certificate Enrolment Protocol
draft-gutmann-scep-14

Abstract

 This document specifies the Simple Certificate Enrolment Protocol
 (SCEP), a PKI protocol that leverages existing technology by using
 CMS (formerly known as PKCS #7) and PKCS #10 over HTTP. SCEP is the
 evolution of the enrolment protocol sponsored by Cisco Systems, which
 enjoys wide support in both client and server implementations, as
 well as being relied upon by numerous other industry standards that
 work with certificates.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 11, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Gutmann Expires December 11, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft SCEP June 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
1.1. Conventions Used in This Document 4

2. SCEP Overview . 4
2.1. SCEP Entities . 4
2.1.1. Client . 4
2.1.2. Certificate Authority 5

2.2. CA Certificate Distribution 5
2.3. Client authentication 6
2.4. Enrolment authorisation 7
2.5. Certificate Enrolment/Renewal 8
2.5.1. Client State Transitions 8

2.6. Certificate Access 10
2.7. CRL Access . 11
2.8. Certificate Revocation 11
2.9. Mandatory-to-Implement Functionality 11

3. SCEP Secure Message Objects 12
3.1. SCEP Message Object Processing 14
3.2. SCEP pkiMessage . 14
3.2.1. Signed Transaction Attributes 14
3.2.1.1. transactionID 16
3.2.1.2. messageType 17
3.2.1.3. pkiStatus . 17
3.2.1.4. failInfo and failInfoText 17
3.2.1.5. senderNonce and recipientNonce 18

3.2.2. SCEP pkcsPKIEnvelope 18
3.3. SCEP pkiMessage types 19
3.3.1. PKCSReq/RenewalReq 19
3.3.2. CertRep . 19
3.3.2.1. CertRep SUCCESS 20
3.3.2.2. CertRep FAILURE 20
3.3.2.3. CertRep PENDING 20

Gutmann Expires December 11, 2019 [Page 2]

Internet-Draft SCEP June 2019

3.3.3. CertPoll (GetCertInitial) 21
3.3.4. GetCert and GetCRL 21

3.4. Degenerate certificates-only CMS Signed-Data 22
3.5. CA Capabilities . 22
3.5.1. GetCACaps HTTP Message Format 22
3.5.2. CA Capabilities Response Format 22

4. SCEP Transactions . 25
4.1. HTTP POST and GET Message Formats 25
4.2. Get CA Certificate 26
4.2.1. Get CA Certificate Response Message Format 27
4.2.1.1. CA Certificate Response Message Format 27
4.2.1.2. CA Certificate Chain Response Message Format . . 27

4.3. Certificate Enrolment/Renewal 27
4.3.1. Certificate Enrolment/Renewal Response Message . . . 28

4.4. Poll for Client Initial Certificate 28
4.4.1. Polling Response Message Format 29

4.5. Certificate Access 29
4.5.1. Certificate Access Response Message Format 29

4.6. CRL Access . 29
4.6.1. CRL Access Response Message Format 29

4.7. Get Next Certificate Authority Certificate 29
4.7.1. Get Next CA Response Message Format 30

5. SCEP Transaction Examples 30
5.1. Successful Transactions 30
5.2. Transactions with Errors 31

6. Contributors/Acknowledgements 34
7. IANA Considerations . 34
8. Security Considerations 35
8.1. General Security . 35
8.2. Use of the CA private key 35
8.3. ChallengePassword Shared Secret Value 36
8.4. Lack of Certificate Issue Confirmation 36
8.5. GetCACaps Issues . 37
8.6. Lack of PoP in Renewal Requests 37
8.7. Traffic Monitoring 38
8.8. Unnecessary cryptography 38
8.9. Use of SHA-1 . 38

9. References . 39
9.1. Normative References 39
9.2. Informative References 40

Appendix A. Background Notes 41
 Author's Address . 44

1. Introduction

 X.509 certificates serve as the basis for several standardised
 security protocols such as TLS [23], S/MIME [20], and IKE/IPsec [19].
 When an X.509 certificate is issued there typically is a need for a

Gutmann Expires December 11, 2019 [Page 3]

Internet-Draft SCEP June 2019

 certificate management protocol to enable a PKI client to request or
 renew a certificate from a Certificate Authority (CA). This
 specification defines a protocol, Simple Certificate Enrolment
 Protocol (SCEP), for certificate management and certificate and CRL
 queries.

 The SCEP protocol supports the following general operations:

 o CA public key distribution.
 o Certificate enrolment and issue.
 o Certificate renewal.
 o Certificate query.
 o CRL query.

 SCEP makes extensive use of CMS [10] and PKCS #10 [13].

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in [1]
 and [5] when, and only when, they appear in all capitals, as shown
 here.

 This document uses the Augmented Backus-Naur Form (ABNF) notation as
 specified in [6] for defining formal syntax of commands. Non-
 terminals not defined in [6] are defined in Section 4.1.

2. SCEP Overview

 This section provides an overview of the functionality of SCEP.

2.1. SCEP Entities

 The entity types defined in SCEP are a client requesting a
 certificate and a Certificate Authority (CA) that issues the
 certificate. These are described in the following sections.

2.1.1. Client

 A client MUST have the following information locally configured:

 1. The CA's fully qualified domain name or IP address.
 2. Any identification and/or authorisation information required by
 the CA before a certificate will be issued, as described in

Section 3.3.1.
 3. The identifying information that is used for authentication of
 the CA in Section 4.2.1, typically a certificate fingerprint.

Gutmann Expires December 11, 2019 [Page 4]

Internet-Draft SCEP June 2019

2.1.2. Certificate Authority

 A SCEP CA is the entity that signs client certificates. A CA may
 enforce policies and apply them to certificate requests, and may
 reject a request for any reason.

 Since the client is expected to perform signature verification and
 optionally encryption using the CA certificate, the keyUsage
 extension in the CA certificate MUST indicate that it is valid for
 digitalSignature and keyEncipherment (if the key is to be used for
 en/decryption) alongside the usual CA usages of keyCertSign and/or
 cRLSign.

2.2. CA Certificate Distribution

 If the CA certificate(s) have not previously been acquired by the
 client through some other means, the client MUST retrieve them before
 any PKI operation (Section 3) can be started. Since no public key
 has yet been exchanged between the client and the CA, the messages
 cannot be secured using CMS, and the CA certificate request and
 response data is instead transferred in the clear.

 If an intermediate CA is in use, a certificates-only CMS Signed-Data
 message with a certificate chain consisting of all CA certificates is
 returned. Otherwise the CA certificate itself is returned.

 The CA certificate MAY be provided out-of-band to the client.
 Alternatively, the CA certificate fingerprint MAY be used to
 authenticate a CA Certificate distributed by the GetCACert response
 (Section 4.2) or via HTTP certificate-store access [17]. The
 fingerprint is created by calculating a SHA-256 hash over the whole
 CA certificate (for legacy reasons, a SHA-1 hash may be used by some
 implementations).

 After the client gets the CA certificate, it SHOULD authenticate it
 in some manner unless this is deemed unnecessary, for example because
 the device is being provisioned inside a trusted environment. For
 example it could compare its fingerprint with locally configured,
 out-of-band distributed, identifying information, or by some
 equivalent means such as a direct comparison with a locally-stored
 copy of the certificate.

 Intermediate CA certificates, if any, are signed by a higher-level CA
 so there is no need to authenticate them against the out-of-band
 data. Since intermediate CA certificates are rolled over more
 frequently than long-lived top-level CA certificates, clients MUST
 verify intermediate-level CA certificates before use during protocol

Gutmann Expires December 11, 2019 [Page 5]

Internet-Draft SCEP June 2019

 exchanges in case the intermediate CA certificate has expired or
 otherwise been invalidated.

 When a CA certificate expires, certificates that have been signed by
 it may no longer be regarded as valid. CA key rollover provides a
 mechanism by which the CA can distribute a new CA certificate which
 is valid in the future once the current certificate has expired.
 This is done via the GetNextCACert message (section Section 4.7).

2.3. Client authentication

 As with every protocol that uses public-key cryptography, the
 association between the public keys used in the protocol and the
 identities with which they are associated must be authenticated in a
 cryptographically secure manner. Communications between the client
 and the CA are secured using SCEP Secure Message Objects as explained
 in Section 3, which specifies how CMS is used to encrypt and sign the
 data. In order to perform the signing operation the client uses an
 appropriate local certificate:

 1. If the client does not have an appropriate existing certificate
 then a locally generated self-signed certificate MUST be used.
 The keyUsage extension in the certificate MUST indicate that it
 is valid for digitalSignature and keyEncipherment (if available).
 The self-signed certificate SHOULD use the same subject name and
 key as in the PKCS #10 request. In this case the messageType is
 PKCSReq (see Section 3.2.1.2).
 2. If the client already has a certificate issued by the SCEP CA and
 the CA supports renewal (see Section 2.5), that certificate
 SHOULD be used. In this case the messageType is RenewalReq (see

Section 3.2.1.2).
 3. Alternatively, if the client has no certificate issued by the
 SCEP CA but has credentials from an alternate CA then the
 certificate issued by the alternate CA MAY be used in a renewal
 request as described above. The SCEP CA's policy will determine
 whether the request can be accepted or not.

 Note that although the above text describes several different types
 of operations, for historical reasons most implementations always
 apply the first one even if an existing certificate already exists.
 For this reason support for the first case is mandatory while support
 for the latter ones are optional (see Section 2.9).

 During the certificate enrolment process, the client MUST use the
 selected certificate's key when signing the CMS envelope (see

Section 3). This certificate will be either the self-signed one
 matching the PKCS #10 request or the CA-issued one used to authorise
 a renewal, and MUST be included in the signedData certificates field

Gutmann Expires December 11, 2019 [Page 6]

Internet-Draft SCEP June 2019

 (possibly as part of a full certificate chain). If the key being
 certified allows encryption then the CA's CertResp will use the same
 certificate's public key when encrypting the response.

 Note that in the case of renewal operations this means that the
 request will be signed and authenticated with the key in the
 previously-issued certificate rather than the key in the PKCS #10
 request, and the response may similarly be returned encrypted with
 the key in the previously-issued certificate. This has security
 implications, see Section 8.6.

2.4. Enrolment authorisation

 PKCS #10 [13] specifies a PKCS #9 [12] challengePassword attribute to
 be sent as part of the enrolment request. When utilizing the
 challengePassword, the CA distributes a shared secret to the client
 which will be used to authenticate the request from the the client.
 It is RECOMMENDED that the challengePassword be a one-time
 authenticator value to limit the ability of an attacker who can
 capture the authenticator from the client or CA to re-use it to
 request further certificates.

 Inclusion of the challengePassword by the SCEP client is RECOMMENDED,
 however its omission allows for unauthenticated authorisation of
 enrolment requests (which may, however, require manual approval of
 each certificate issue if other security measures to control issue
 aren't in place, see below). Inclusion is OPTIONAL for renewal
 requests that are authenticated by being signed with an existing
 certificate. The CMS envelope protects the privacy of the
 challengePassword.

 A client that is performing certificate renewal as per Section 2.5
 SHOULD omit the challengePassword but MAY send the originally
 distributed shared secret in the challengePassword attribute. The
 SCEP CA MAY use the challengePassword in addition to the previously
 issued certificate that signs the request to authenticate the
 request. The SCEP CA MUST NOT attempt to authenticate a client based
 on a self-signed certificate unless it has been verified through out-
 of-band means such as a certificate fingerprint.

 To perform the authorisation in manual mode the client's request is
 placed in the PENDING state until the CA operator authorises or
 rejects it. Manual authorisation is used when the client has only a
 self-signed certificate that hasn't been previously authenticated by
 the CA and/or a challengePassword is not available. The SCEP CA MAY
 either reject unauthorised requests or mark them for manual
 authorisation according to CA policy.

Gutmann Expires December 11, 2019 [Page 7]

Internet-Draft SCEP June 2019

2.5. Certificate Enrolment/Renewal

 A client starts an enrolment transaction (Section 3.3.1) by creating
 a certificate request using PKCS #10 and sends it to the CA enveloped
 using CMS (Section 3).

 If the CA supports certificate renewal and if the CA policy permits
 then a new certificate with new validity dates can be issued even
 though the old one is still valid. To renew an existing certificate,
 the client uses the RenewalReq message (see Section 3.3) and signs it
 with the existing client certificate. The client SHOULD use a new
 keypair when requesting a new certificate, but MAY request a new
 certificate using the old keypair.

 If the CA returns a CertRep message (Section 3.3.2) with status set
 to PENDING, the client enters into polling mode by periodically
 sending a CertPoll message (Section 3.3.3) to the CA until the CA
 operator completes the manual authentication (approving or denying
 the request). The frequency of the polling operation is a CA/client
 configuration issue, and may range from seconds or minutes when the
 issue process is automatic but not instantaneous, through to hours or
 days if the certificate issue operation requires manual approval.

 If polling mode is being used then the client will send a single
 PKCSReq/RenewalReq message (Section 3.3.1), followed by 0 or more
 CertPoll messages (Section 3.3.3). The CA will in return send 0 or
 more CertRep messages (Section 3.3.2) with status set to PENDING in
 response to CertPolls, followed by a single CertRep message
 (Section 3.3.2) with status set to either SUCCESS or FAILURE.

2.5.1. Client State Transitions

 The client state transitions during the SCEP process are indicated in
 Figure 1.

Gutmann Expires December 11, 2019 [Page 8]

Internet-Draft SCEP June 2019

 CertPoll
 +-----<----+
 | |
 | | CertRep(PENDING)
 | |
 [CERT-NONEXISTENT] ------> [CERT-REQ-PENDING] ---------> [CERT-ISSUED]
 ^ PKCSReq | CertRep(SUCCESS)
 | RenewalReq |
 | |
 +-----------------------+
 CertRep(FAILURE) or
 Max-time/max-polls exceeded

 Figure 1: State Transition Diagram

 The certificate issue process starts at state CERT-NONEXISTENT.
 Sending a PKCSReq/RenewalReq message changes the state to CERT-REQ-
 PENDING.

 If the CA returns a CertRep message with pkiStatus set to SUCCESS
 then the state changes to CERT-ISSUED.

 If the CA returns a CertRep message with pkiStatus set to FAILURE or
 there is no response then the state reverts back to CERT-NONEXISTENT.

 If the CA returns a CertRep message with pkiStatus set to PENDING
 then the client will keep polling by sending a CertPoll message until
 either a CertRep message with status set to SUCCESS or FAILURE is
 received or a timeout occurs or the maximum number of polls has been
 exceeded.

 A successful transaction in automatic mode:

 CLIENT CA SERVER

 PKCSReq: PKI cert. enrolment message
 --------------------------------> CertRep: pkiStatus = SUCCESS
 Certificate attached
 <------------------------------
 Receive issued certificate.

Gutmann Expires December 11, 2019 [Page 9]

Internet-Draft SCEP June 2019

 A successful transaction in manual mode:

 CLIENT CA SERVER

 PKCSReq: PKI cert. enrolment message
 --------------------------------> CertRep: pkiStatus = PENDING
 <------------------------------
 CertPoll: Polling message
 --------------------------------> CertRep: pkiStatus = PENDING
 <------------------------------
 <Manual identity authentication>

 CertPoll: Polling message
 --------------------------------> CertRep: pkiStatus = SUCCESS
 Certificate attached
 <------------------------------
 Receive issued certificate.

2.6. Certificate Access

 A certificate query message is defined for clients to retrieve a copy
 of their own certificate from the CA. It allows clients that do not
 store their certificates locally to obtain a copy when needed. This
 functionality is not intended to provide a general purpose
 certificate access service, which may be instead be achieved via HTTP
 certificate-store access [17] or LDAP.

 To retrieve a certificate from the CA, a client sends a request
 consisting of the certificate's issuer name and serial number. This
 assumes that the client has saved the issuer name and the serial
 number of the issued certificate from the previous enrolment
 transaction. The transaction to retrieve a certificate consists of
 one GetCert (Section 3.3.4) message and one CertRep (Section 3.3.2)
 message, as shown below.

 CLIENT CA SERVER

 GetCert: PKI certificate query message
 -------------------------------> CertRep: pkiStatus = SUCCESS
 Certificate attached
 <-----------------------------
 Receive the certificate.

Gutmann Expires December 11, 2019 [Page 10]

Internet-Draft SCEP June 2019

2.7. CRL Access

 SCEP clients MAY request a CRL via one of three methods:

 1. If the CA supports the CRL Distribution Points (CRLDPs) extension
 [14] in issued certificates, then the CRL MAY be retrieved via
 the mechanism specified in the CRDLP.
 2. If the CA supports HTTP certificate-store access [17], then the
 CRL MAY be retrieved via the AuthorityInfoAcces [14] location
 specified in the certificate.
 3. Only if the CA does not support CRDLPs or HTTP access should a
 CRL query be composed by creating a GetCRL message consisting of
 the issuer name and serial number from the certificate whose
 revocation status is being queried.

 The message is sent to the SCEP CA in the same way as the other SCEP
 requests. The transaction to retrieve a CRL consists of one GetCRL
 PKI message and one CertRep PKI message, which contains only the CRL
 (no certificates) in a degenerate certificates-only CMS Signed-Data
 message (Section 3.4), as shown below.

 CLIENT CA SERVER

 GetCRL: PKI CRL query message
 ---------------------------------->
 CertRep: CRL attached
 <-----------------------------
 Receive the CRL

2.8. Certificate Revocation

 SCEP does not specify a method to request certificate revocation. In
 order to revoke a certificate, the client must contact the CA using a
 non-SCEP defined mechanism.

2.9. Mandatory-to-Implement Functionality

 At a minimum, all SCEP implementations compliant with this
 specification MUST support GetCACaps (Section 3.5.1), GetCACert
 (Section 4.2), PKCSReq (Section 3.3.1) (and its associated response
 messages), communication of binary data via HTTP POST (Section 4.1),
 and the AES128-CBC [7] and SHA-256 [8] algorithms to secure
 pkiMessages (Section 3.2).

Gutmann Expires December 11, 2019 [Page 11]

Internet-Draft SCEP June 2019

 For historical reasons implementations MAY support communications of
 binary data via HTTP GET (Section 4.1), and the triple DES-CBC and
 SHA-1 algorithms to secure pkiMessages (Section 3.2).
 Implementations MUST NOT support the obsolete and/or insecure single
 DES and MD5 algorithms used in earlier versions of this
 specification, since the unsecured nature of GetCACaps means that an
 in-path attacker can trivially roll back the encryption used to these
 insecure algorithms, see Section 8.5.

3. SCEP Secure Message Objects

 CMS is a general enveloping mechanism that enables both signed and
 encrypted transmission of arbitrary data. SCEP messages that require
 confidentiality use two layers of CMS, as shown using ASN.1-like
 pseudocode in Figure 2. By applying both enveloping and signing
 transformations, the SCEP message is protected both for the integrity
 of its end-to-end transaction information and the confidentiality of
 its information portion.

Gutmann Expires December 11, 2019 [Page 12]

Internet-Draft SCEP June 2019

 pkiMessage {
 contentType = signedData { pkcs-7 2 },
 content {
 digestAlgorithms,
 encapsulatedContentInfo {
 eContentType = data { pkcs-7 1 },
 eContent { -- pkcsPKIEnvelope, optional
 contentType = envelopedData { pkcs-7 3 },
 content {
 recipientInfo,
 encryptedContentInfo {
 contentType = data { pkcs-7 1 },
 contentEncrAlgorithm,
 encryptedContent {
 messageData -- Typically PKCS #10 request
 }
 }
 }
 }
 },
 certificates, -- Optional
 crls, -- Optional
 signerInfo {
 signedAttrs {
 transactionID,
 messageType,
 pkiStatus,
 failInfo, -- Optional
 senderNonce / recipientNonce,
 },
 signature
 }
 }
 }

 Figure 2: CMS Layering

 When a particular SCEP message carries data, this data is carried in
 the messageData. CertRep messages will lack any signed content and
 consist only of a pkcsPKIEnvelope (Section 3.2.2).

 The remainder of this document will refer only to 'messageData', but
 it is understood to always be encapsulated in the pkcsPKIEnvelope
 (Section 3.2.2). The format of the data in the messageData is
 defined by the messageType attribute (see Section 3.2) of the Signed-
 Data. If there is no messageData to be transmitted, the entire
 pkcsPKIEnvelope MUST be omitted.

Gutmann Expires December 11, 2019 [Page 13]

Internet-Draft SCEP June 2019

 Samples of SCEP messages are available through the JSCEP project [18]
 in the src/samples directory.

3.1. SCEP Message Object Processing

 Creating a SCEP message consists of several stages. The content to
 be conveyed (in other words the messageData) is first encrypted, and
 the encrypted content is then signed.

 The form of encryption to be applied depends on the capabilities of
 the recipient's public key. If the key is encryption-capable (for
 example RSA) then the messageData is encrypted using the recipient's
 public key with the CMS KeyTransRecipientInfo mechanism. If the key
 is not encryption-capable (for example DSA or ECDSA) then the
 messageData is encrypted using the challengePassword with the CMS
 PasswordRecipientInfo mechanism.

 Once the messageData has been encrypted, it is signed with the
 sender's public key. This completes the SCEP message that is then
 sent to the recipient.

 Note that some early implementations of this specification dealt with
 non-encryption-capable keys by omitting the encryption stage, based
 on the text in Section 3 that indicated that "the EnvelopedData is
 omitted". This alternative processing mechanism SHOULD NOT be used
 since it exposes in cleartext the challengePassword used to authorise
 the certificate issue.

3.2. SCEP pkiMessage

 The basic building block of all secured SCEP messages is the SCEP
 pkiMessage. It consists of a CMS Signed-Data content type. The
 following restrictions apply:

 o The eContentType in encapsulatedContentInfo MUST be data ({pkcs-7
 1}).
 o The signed content, if present (FAILURE and PENDING CertRep
 messages will lack any signed content), MUST be a pkcsPKIEnvelope
 (Section 3.2.2), and MUST match the messageType attribute.
 o The SignerInfo MUST contain a set of authenticatedAttributes
 (Section 3.2.1).

3.2.1. Signed Transaction Attributes

 At a minimum, all messages MUST contain the following
 authenticatedAttributes:

 o A transactionID attribute (see Section 3.2.1.1).

Gutmann Expires December 11, 2019 [Page 14]

Internet-Draft SCEP June 2019

 o A messageType attribute (see Section 3.2.1.2).
 o A fresh senderNonce attribute (see Section 3.2.1.5). Note however
 the comment about senderNonces and polling in Section 3.3.2
 o Any attributes required by CMS.

 If the message is a CertRep, it MUST also include the following
 authenticatedAttributes:

 o A pkiStatus attribute (see Section 3.2.1.3).
 o A failInfo and optional failInfotext attribute (see

Section 3.2.1.4) if pkiStatus = FAILURE.
 o A recipientNonce attribute (see Section 3.2.1.5) copied from the
 senderNonce in the request that this is a response to.

 The following transaction attributes are encoded as authenticated
 attributes, and are carried in the SignerInfo for this Signed-Data.

 +----------------+-----------------+--------------------------------+
 | Attribute | Encoding | Comment |
 +----------------+-----------------+--------------------------------+
transactionID	PrintableString	Unique ID for this transaction
		as a text string
messageType	PrintableString	Decimal value as a numeric
		text string
pkiStatus	PrintableString	Decimal value as a numeric
		text string
failInfo	PrintableString	Decimal value as a numeric
		text string
failInfoText	UTF8String	Descriptive text for the
		failInfo value
senderNonce	OCTET STRING	Random nonce as a 16-byte
		binary data string
recipientNonce	OCTET STRING	Random nonce as a 16-byte
		binary data string
 +----------------+-----------------+--------------------------------+

Gutmann Expires December 11, 2019 [Page 15]

Internet-Draft SCEP June 2019

 The OIDs used for these attributes are as follows:

 +----------------------+--+
 | Name | ASN.1 Definition |
 +----------------------+--+
id-VeriSign	OBJECT_IDENTIFIER ::= {2 16 US(840) 1
	VeriSign(113733)}
id-pki	OBJECT_IDENTIFIER ::= {id-VeriSign pki(1)}
id-attributes	OBJECT_IDENTIFIER ::= {id-pki
	attributes(9)}
id-transactionID	OBJECT_IDENTIFIER ::= {id-attributes
	transactionID(7)}
id-messageType	OBJECT_IDENTIFIER ::= {id-attributes
	messageType(2)}
id-pkiStatus	OBJECT_IDENTIFIER ::= {id-attributes
	pkiStatus(3)}
id-failInfo	OBJECT_IDENTIFIER ::= {id-attributes
	failInfo(4)}
id-senderNonce	OBJECT_IDENTIFIER ::= {id-attributes
	senderNonce(5)}
id-recipientNonce	OBJECT_IDENTIFIER ::= {id-attributes
	recipientNonce(6)}
id-scep	OBJECT IDENTIFIER ::= {id-pkix TBD1}
id-scep-failInfoText	OBJECT IDENTIFIER ::= {id-scep 1}
 +----------------------+--+

 The attributes are detailed in the following sections.

3.2.1.1. transactionID

 A PKI operation is a transaction consisting of the messages exchanged
 between a client and the CA. The transactionID is a text string
 provided by the client when starting a transaction. The client MUST
 use a unique string as the transaction identifier, encoded as a
 PrintableString, which MUST be used for all PKI messages exchanged
 for a given operation such as a certificate issue.

Gutmann Expires December 11, 2019 [Page 16]

Internet-Draft SCEP June 2019

 Note that the transactionID must be unique, but not necessarily
 randomly generated. For example it may be a value assigned by the CA
 to allow the client to be identified by their transactionID, using a
 value such as the client device's EUI or RTU ID or a similar unique
 identifier. This can be useful when the client doesn't have a pre-
 assigned Distinguished Name that the CA can identify their request
 through, for example when enrolling SCADA devices.

3.2.1.2. messageType

 The messageType attribute specifies the type of operation performed
 by the transaction. This attribute MUST be included in all PKI
 messages. The following message types are defined:

 o CertRep ("3") -- Response to certificate or CRL request.
 o RenewalReq ("17") -- PKCS #10 certificate request authenticated
 with an existing certificate.
 o PKCSReq ("19") -- PKCS #10 certificate request authenticated with
 a shared secret.
 o CertPoll ("20") -- Certificate polling in manual enrolment.
 o GetCert ("21") -- Retrieve a certificate.
 o GetCRL ("22") -- Retrieve a CRL.

 Message types not defined above MUST be treated as an error unless
 their use has been negotiated through GetCACaps (Section 3.5.1).

3.2.1.3. pkiStatus

 All response messages MUST include transaction status information,
 which is defined as a pkiStatus attribute:

 o SUCCESS ("0") -- Request granted.
 o FAILURE ("2") -- Request rejected. In this case the failInfo
 attribute, as defined in Section 3.2.1.4, MUST also be present.
 o PENDING ("3") -- Request pending for manual approval.

 PKI status values not defined above MUST be treated as an error
 unless their use has been negotiated through GetCACaps
 (Section 3.5.1).

3.2.1.4. failInfo and failInfoText

 The failInfo attribute MUST contain one of the following failure
 reasons:

 o badAlg ("0") -- Unrecognized or unsupported algorithm.
 o badMessageCheck ("1") -- Integrity check (meaning signature
 verification of the CMS message) failed.

Gutmann Expires December 11, 2019 [Page 17]

Internet-Draft SCEP June 2019

 o badRequest ("2") -- Transaction not permitted or supported.
 o badTime ("3") -- The signingTime attribute from the CMS
 authenticatedAttributes was not sufficiently close to the system
 time. This condition may occur if the CA is concerned about
 replays of old messages.
 o badCertId ("4") -- No certificate could be identified matching the
 provided criteria.

 Failure reasons not defined above MUST be treated as an error unless
 their use has been negotiated through GetCACaps (Section 3.5.1).

 The failInfoText is a free-form UTF-8 text string that provides
 further information in the case of pkiStatus = FAILURE. In
 particular it may be used to provide details on why a certificate
 request was not granted that go beyond what's provided by the near-
 universal failInfo = badRequest status. Since this is a free-form
 text string intended for interpretation by humans, implementations
 SHOULD NOT assume that it has any type of machine-processable
 content.

3.2.1.5. senderNonce and recipientNonce

 The senderNonce and recipientNonce attributes are a 16 byte random
 number generated for each transaction. These are intended to prevent
 replay attacks.

 When a sender sends a PKI message to a recipient, a fresh senderNonce
 MUST be included in the message. The recipient MUST copy the
 senderNonce into the recipientNonce of the reply as a proof of
 liveliness. The original sender MUST verify that the recipientNonce
 of the reply matches the senderNonce it sent in the request. If the
 nonce does not match then the message MUST be rejected.

 Note that since SCEP exchanges consist of a single request followed
 by a single response, the use of distinct sender and recipient nonces
 is redundant since the client sends a nonce in its request and the CA
 responds with the same nonce in its reply. In effect there's just a
 single nonce, identified as senderNonce in the client's request and
 recipientNonce in the CA's reply.

3.2.2. SCEP pkcsPKIEnvelope

 The information portion of a SCEP message is carried inside an
 EnvelopedData content type, as defined in CMS, with the following
 restrictions:

 o contentType in encryptedContentInfo MUST be data ({pkcs-7 1}).

Gutmann Expires December 11, 2019 [Page 18]

Internet-Draft SCEP June 2019

 o encryptedContent MUST be the SCEP message being transported (see
Section 4), and must match the messageType authenticated Attribute

 in the pkiMessage.

3.3. SCEP pkiMessage types

 All of the messages in this section are pkiMessages (Section 3.2),
 where the type of the message MUST be specified in the 'messageType'
 authenticated Attribute. Each section defines a valid message type,
 the corresponding messageData formats, and mandatory authenticated
 attributes for that type.

3.3.1. PKCSReq/RenewalReq

 The messageData for this type consists of a PKCS #10 Certificate
 Request. The certificate request MUST contain at least the following
 items:

 o The subject Distinguished Name.
 o The subject public key.
 o For a PKCSReq and if authorisation based on a shared secret is
 being used, a challengePassword attribute.

 In addition the message must contain the the authenticatedAttributes
 specified in Section 3.2.1.

3.3.2. CertRep

 The messageData for this type consists of a degenerate certificates-
 only CMS Signed-Data message (Section 3.4). The exact content
 required for the reply depends on the type of request that this
 message is a response to. The request types are detailed in

Section 3.3.2.1 and in Section 4. In addition the message must
 contain the the authenticatedAttributes specified in Section 3.2.1.

 Earlier versions of this specification required that this message
 include a senderNonce alongside the recipientNonce, which was to be
 used to chain to subsequent polling operations. However if a single
 message was lost during the potentially extended interval over which
 polling could take place (see Section 5 for an example of this) then
 if the implementation were to enforce this requirement the overall
 transaction would fail even though nothing had actually gone wrong.
 Because of this issue, implementations mostly ignored the requirement
 to carry this nonce over to subsequent polling messages or to verify
 its presence. More recent versions of the specification no longer
 require the chaining of nonces across polling operations.

Gutmann Expires December 11, 2019 [Page 19]

Internet-Draft SCEP June 2019

3.3.2.1. CertRep SUCCESS

 When the pkiStatus attribute is set to SUCCESS, the messageData for
 this message consists of a degenerate certificates-only CMS Signed-
 Data message (Section 3.4). The content of this degenerate
 certificates-only Signed-Data depends on what the original request
 was, as outlined below.

 +--------------+--+
 | Request-type | Reply-contents |
 +--------------+--+
PKCSReq	The reply MUST contain at least the issued
	certificate in the certificates field of the
	Signed-Data. The reply MAY contain additional
	certificates, but the issued certificate MUST be
	the leaf certificate.
RenewalReq	Same as PKCSReq
CertPoll	Same as PKCSReq
GetCert	The reply MUST contain at least the requested
	certificate in the certificates field of the
	Signed-Data. The reply MAY contain additional
	certificates, but the requested certificate MUST
	be the leaf certificate.
GetCRL	The reply MUST contain the CRL in the crls field
	of the Signed-Data.
 +--------------+--+

3.3.2.2. CertRep FAILURE

 When the pkiStatus attribute is set to FAILURE, the reply MUST also
 contain a failInfo (Section 3.2.1.4) attribute set to the appropriate
 error condition describing the failure. The reply MAY also contain a
 failInfoText attribute providing extended details on why the
 operation failed, typically to expand on the catch-all failInfo =
 badRequest status. The pkcsPKIEnvelope (Section 3.2.2) MUST be
 omitted.

3.3.2.3. CertRep PENDING

 When the pkiStatus attribute is set to PENDING, the pkcsPKIEnvelope
 (Section 3.2.2) MUST be omitted.

Gutmann Expires December 11, 2019 [Page 20]

Internet-Draft SCEP June 2019

3.3.3. CertPoll (GetCertInitial)

 This message is used for certificate polling. For unknown reasons it
 was referred to as "GetCertInitial" in earlier versions of this
 specification. The messageData for this type consists of an
 IssuerAndSubject:

 issuerAndSubject ::= SEQUENCE {
 issuer Name,
 subject Name
 }

 The issuer is set to the subjectName of the CA (in other words the
 intended issuerName of the certificate that's being requested). The
 subject is set to the subjectName used when requesting the
 certificate.

 Note that both of these fields are redundant, the CA is identified by
 the recipientInfo in the pkcsPKIEnvelope (or in most cases simply by
 the server that the message is being sent to) and the client/
 transaction being polled is identified by the transactionID. Both of
 these fields can be processed by the CA without going through the
 cryptographically expensive process of unwrapping and processing the
 issuerAndSubject. For this reason implementations SHOULD assume that
 the polling operation will be controlled by the recipientInfo and
 transactionID rather than the contents of the messageData. In
 addition the message must contain the the authenticatedAttributes
 specified in Section 3.2.1.

3.3.4. GetCert and GetCRL

 The messageData for these types consist of an IssuerAndSerialNumber
 as defined in CMS which uniquely identifies the certificate being
 requested, either the certificate itself for GetCert or its
 revocation status via a CRL for GetCRL. In addition the message must
 contain the the authenticatedAttributes specified in Section 3.2.1.

 These message types, while included here for completeness, apply
 unnecessary cryptography and messaging overhead to the simple task of
 transferring a certificate or CRL (see Section 8.8). Implementations
 SHOULD prefer HTTP certificate-store access [17] or LDAP over the use
 of these messages.

Gutmann Expires December 11, 2019 [Page 21]

Internet-Draft SCEP June 2019

3.4. Degenerate certificates-only CMS Signed-Data

 CMS includes a degenerate case of the Signed-Data content type in
 which there are no signers. The use of such a degenerate case is to
 disseminate certificates and CRLs. For SCEP the content field of the
 ContentInfo value of a degenerate certificates-only Signed-Data MUST
 be omitted. When carrying certificates, the certificates are
 included in the 'certificates' field of the Signed-Data. When
 carrying a CRL, the CRL is included in the 'crls' field of the
 Signed-Data.

3.5. CA Capabilities

 In order to provide support for future enhancements to the protocol,
 CAs MUST implement the GetCACaps message to allow clients to query
 which functionality is available from the CA.

3.5.1. GetCACaps HTTP Message Format

 This message requests capabilities from a CA, with the format:

 "GET" SP SCEPPATH "?operation=GetCACaps" SP HTTP-version CRLF

 as described in Section 4.1.

3.5.2. CA Capabilities Response Format

Gutmann Expires December 11, 2019 [Page 22]

Internet-Draft SCEP June 2019

 The response for a GetCACaps message is a list of CA capabilities, in
 plain text and in any order, separated by <CR><LF> or <LF>
 characters. This specification defines the following keywords
 (quotation marks are not sent):

 +--------------------+--+
 | Keyword | Description |
 +--------------------+--+
"AES"	CA supports the AES128-CBC encryption
	algorithm.
"DES3"	CA supports the triple DES-CBC encryption
	algorithm.
"GetNextCACert"	CA supports the GetNextCACert message.
"POSTPKIOperation"	CA supports PKIOPeration messages sent via
	HTTP POST.
"Renewal"	CA supports the Renewal CA operation.
"SHA-1"	CA supports the SHA-1 hashing algorithm.
"SHA-256"	CA supports the SHA-256 hashing algorithm.
"SHA-512"	CA supports the SHA-512 hashing algorithm.
"SCEPStandard"	CA supports all mandatory-to-implement
	sections of the SCEP standard. This keyword
	implies "AES", "POSTPKIOperation", and
	"SHA-256", as well as the provisions of
	Section 2.9.
 +--------------------+--+

 The table above lists all of the keywords that are defined in this
 specification. A CA MAY provide additional keywords advertising
 further capabilities and functionality. A client MUST be able to
 accept and ignore any unknown keywords that might be sent by a CA.

 The CA MUST use the text case specified here, but clients SHOULD
 ignore the text case when processing this message. Clients MUST
 accept the standard HTTP-style <CR><LF>-delimited text as well as the
 <LF>- delimited text specified in an earlier version of this
 specification.

 The client SHOULD use SHA-256 in preference to SHA-1 hashing and
 AES128-CBC in preference to triple DES-CBC if they are supported by
 the CA. Although the CMS format allows any form of AES and SHA-2 to

Gutmann Expires December 11, 2019 [Page 23]

Internet-Draft SCEP June 2019

 be specified, in the interests of interoperability the de facto
 universal standards of AES128-CBC and SHA-256 SHOULD be used.

 Announcing some of these capabilities individually is redundant since
 they're required as mandatory-to-implement functionality (see

Section 2.9) whose presence as a whole is signalled by the
 "SCEPStandard" capability, but it may be useful to announce them in
 order to deal with older implementations that would otherwise default
 to obsolete, insecure algorithms and mechanisms.

 If the CA supports none of the above capabilities it SHOULD return an
 empty message. A CA MAY simply return an HTTP error. A client that
 receives an empty message or an HTTP error SHOULD interpret the
 response as if none of the capabilities listed are supported by the
 CA.

 Note that at least one widely-deployed server implementation supports
 several of the above operations but doesn't support the GetCACaps
 message to indicate that it supports them, and will close the
 connection if sent a GetCACaps message. This means that the
 equivalent of GetCACaps must be performed through server
 fingerprinting, which can be done using the ID string "Microsoft-
 IIS". Newer versions of the same server, if sent a SCEP request
 using AES and SHA-2, will respond with an invalid response that can't
 be decrypted, requiring the use of 3DES and SHA-1 in order to obtain
 a response that can be processed even if AES and/or SHA-2 are
 allegedly supported. In addition the server will generate CA
 certificates that only have one, but not both, of the keyEncipherment
 and digitalSignature keyUsage flags set, requiring that the client
 ignore the keyUsage flags in order to use the certificates for SCEP.

 The Content-type of the reply SHOULD be "text/plain". Clients SHOULD
 ignore the Content-type, as older implementations of SCEP may send
 various Content-types.

 Example:

 GET /cgi-bin/pkiclient.exe?operation=GetCACaps HTTP/1.1

Gutmann Expires December 11, 2019 [Page 24]

Internet-Draft SCEP June 2019

 might return:

 AES
 GetNextCACert
 POSTPKIOperation
 SCEPStandard
 SHA-256

 This means that the CA supports modern crypto algorithms, the
 GetNextCACert message, allows PKIOperation messages (PKCSReq/
 RenewalReq, GetCert, CertPoll, ...) to be sent using HTTP POST, and
 is compliant with the final version of the SCEP standard.

4. SCEP Transactions

 This section describes the SCEP Transactions and their HTTP [11]
 transport mechanism.

 Note that SCEP doesn't follow best current practices on usage of
 HTTP. In particular it recommends ignoring some Media Types and
 hardcodes specific URI paths. Guidance on the appropriate
 application of HTTP in these circumstances may be found in [16].

4.1. HTTP POST and GET Message Formats

 SCEP uses the HTTP "POST" and "GET" HTTP methods [11] to exchange
 information with the CA. The following defines the ABNF syntax of
 HTTP POST and GET methods sent from a client to a CA:

 POSTREQUEST = "POST" SP SCEPPATH "?operation=" OPERATION
 SP HTTP-version CRLF

 GETREQUEST = "GET" SP SCEPPATH "?operation=" OPERATION
 "&message=" MESSAGE SP HTTP-version CRLF

 where:

 o SCEPPATH is the HTTP URL path for accessing the CA. Clients
 SHOULD set SCEPPATH to the fixed string "/cgi-bin/pkiclient.exe"
 unless directed to do otherwise by the CA.
 o OPERATION depends on the SCEP transaction and is defined in the
 following sections.
 o HTTP-version is the HTTP version string, which is "HTTP/1.1" for
 [11].

Gutmann Expires December 11, 2019 [Page 25]

Internet-Draft SCEP June 2019

 o SP and CRLF are space and carriage return/linefeed as defined in
 [6].

 The CA will typically ignore SCEPPATH since it's unlikely to be
 issuing certificates via a web server. Clients SHOULD set SCEPPATH
 to the fixed string "/cgi-bin/pkiclient.exe" unless directed to do
 otherwise by the CA. The CA SHOULD ignore the SCEPPATH unless its
 precise format is critical to the CA's operation.

 Early SCEP drafts performed all communications via "GET" messages,
 including non-idempotent ones that should have been sent via "POST"
 messages, see [16] for details. This has caused problems because of
 the way that the (supposedly) idempotent GET interacts with caches
 and proxies, and because the extremely large GET requests created by
 encoding CMS messages may be truncated in transit. These issues are
 typically not visible when testing on a LAN, but crop up during
 deployment over WANs. If the remote CA supports POST, the CMS-
 encoded SCEP messages MUST be sent via HTTP POST instead of HTTP GET.
 This applies to any SCEP message except GetCACert, GetNextCACert, and
 GetCACaps, and avoids the need for base64- and URL-encoding that's
 required for GET messaging. The client can verify that the CA
 supports SCEP messages via POST by looking for the "SCEPStandard" or
 "POSTPKIOperation" capability (See Section 3.5.2).

 If a client or CA uses HTTP GET and encounters HTTP-related problems
 such as messages being truncated, seeing errors such as HTTP 414
 ("Request URI too long"), or simply having the message not sent/
 received at all, when standard requests to the server (for example
 via a web browser) work, then this is a symptom of the problematic
 use of HTTP GET. The solution to this problem is to update the
 implementation to use HTTP POST instead. In addition when using GET
 it's recommended to test the implementation from as many different
 network locations as possible to determine whether the use of GET
 will cause problems with communications.

 When using GET messages to communicate binary data, base64 encoding
 as specified in [9] Section 4 MUST be used. The base64 encoded data
 is distinct from "base64url" and may contain URI reserved characters,
 thus it MUST be escaped as specified in [15] in addition to being
 base64 encoded. Finally, the encoded data is inserted into the
 MESSAGE portion of the HTTP GET request.

4.2. Get CA Certificate

 To get the CA certificate(s), the client sends a GetCACert message to
 the CA. The OPERATION MUST be set to "GetCACert". There is no
 request data associated with this message.

Gutmann Expires December 11, 2019 [Page 26]

Internet-Draft SCEP June 2019

4.2.1. Get CA Certificate Response Message Format

 The response for GetCACert is different between the case where the CA
 directly communicates with the client during the enrolment and the
 case where an intermediate CA exists and the client communicates with
 this CA during the enrolment.

4.2.1.1. CA Certificate Response Message Format

 If the CA does not have any intermediate CA certificates, the
 response consists of a single X.509 CA certificate. The response
 will have a Content-Type of "application/x-x509-ca-cert".

 "Content-Type: application/x-x509-ca-cert"

 <binary X.509>

4.2.1.2. CA Certificate Chain Response Message Format

 If the CA has intermediate CA certificates, the response consists of
 a degenerate certificates-only CMS Signed-Data message (Section 3.4)
 containing the certificates, with the intermediate CA certificate(s)
 as the leaf certificate(s). The response will have a Content-Type of
 "application/x-x509-ca-ra-cert". Note that this designation is used
 for historical reasons due to its use in older versions of this
 specification, no special meaning should be attached to the label.

 "Content-Type: application/x-x509-ca-ra-cert"

 <binary CMS>

4.3. Certificate Enrolment/Renewal

 A PKCSReq/RenewalReq (Section 3.3.1) message is used to perform a
 certificate enrolment or renewal transaction. The OPERATION MUST be
 set to "PKIOperation". Note that when used with HTTP POST, the only
 OPERATION possible is "PKIOperation", so many CAs don't check this
 value or even notice its absence. When implemented using HTTP POST
 the message is sent with a Content-Type of "application/x-pki-
 message" and might look as follows:

Gutmann Expires December 11, 2019 [Page 27]

Internet-Draft SCEP June 2019

 POST /cgi-bin/pkiclient.exe?operation=PKIOperation HTTP/1.1
 Content-Length: <length of data>
 Content-Type: application/x-pki-message

 <binary CMS data>

 When implemented using HTTP GET this might look as follows:

 GET /cgi-bin/pkiclient.exe?operation=PKIOperation& \
 message=MIAGCSqGSIb3DQEHA6CAMIACAQAxgDCBzAIBADB2MG \
 IxETAPBgNVBAcTCE......AAAAAA== HTTP/1.1

4.3.1. Certificate Enrolment/Renewal Response Message

 If the request is granted, a CertRep SUCCESS message
 (Section 3.3.2.1) is returned. If the request is rejected, a CertRep
 FAILURE message (Section 3.3.2.2) is returned. If the CA is
 configured to manually authenticate the client, a CertRep PENDING
 message (Section 3.3.2.3) MAY be returned. The CA MAY return a
 PENDING for other reasons.

 The response will have a Content-Type of "application/x-pki-message".

 "Content-Type: application/x-pki-message"

 <binary CertRep message>

4.4. Poll for Client Initial Certificate

 When the client receives a CertRep message with pkiStatus set to
 PENDING, it will enter the polling state by periodically sending
 CertPoll messages to the CA until either the request is granted and
 the certificate is sent back or the request is rejected or some
 preconfigured time limit for polling or maximum number of polls is
 exceeded. The OPERATION MUST be set to "PKIOperation".

 CertPoll messages exchanged during the polling period MUST carry the
 same transactionID attribute as the previous PKCSReq/RenewalReq. A
 CA receiving a CertPoll for which it does not have a matching
 PKCSReq/RenewalReq MUST reject this request.

 Since at this time the certificate has not been issued, the client
 can only use its own subject name (which was contained in the

Gutmann Expires December 11, 2019 [Page 28]

Internet-Draft SCEP June 2019

 original PKCS# 10 sent via PKCSReq/RenewalReq) to identify the polled
 certificate request (but see the note on identification during
 polling in Section 3.3.3). In theory there can be multiple
 outstanding requests from one client (for example, if different keys
 and different key-usages were used to request multiple certificates),
 so the transactionID must also be included to disambiguate between
 multiple requests. In practice however the client SHOULD NOT have
 multiple requests outstanding at any one time, since this tends to
 confuse some CAs.

4.4.1. Polling Response Message Format

 The response messages for CertPoll are the same as in Section 4.3.1.

4.5. Certificate Access

 A client can query an issued certificate from the SCEP CA, as long as
 the client knows the issuer name and the issuer assigned certificate
 serial number.

 This transaction consists of one GetCert (Section 3.3.4) message sent
 to the CA by a client, and one CertRep (Section 3.3.2) message sent
 back from the CA. The OPERATION MUST be set to "PKIOperation".

4.5.1. Certificate Access Response Message Format

 In this case, the CertRep from the CA is same as in Section 4.3.1,
 except that the CA will either grant the request (SUCCESS) or reject
 it (FAILURE).

4.6. CRL Access

 Clients can request a CRL from the SCEP CA as described in
Section 2.7. The OPERATION MUST be set to "PKIOperation".

4.6.1. CRL Access Response Message Format

 The CRL is sent back to the client in a CertRep (Section 3.3.2)
 message. The information portion of this message is a degenerate
 certificates-only Signed-Data (Section 3.4) that contains only the
 most recent CRL in the crls field of the Signed-Data.

4.7. Get Next Certificate Authority Certificate

 When a CA certificate is about to expire, clients need to retrieve
 the CA's next CA certificate (i.e. the rollover certificate). This
 is done via the GetNextCACert message. The OPERATION MUST be set to

Gutmann Expires December 11, 2019 [Page 29]

Internet-Draft SCEP June 2019

 "GetNextCACert". There is no request data associated with this
 message.

4.7.1. Get Next CA Response Message Format

 The response consists of a Signed-Data CMS message, signed by the
 current CA signing key. Clients MUST validate the signature on the
 message before trusting any of its contents. The response will have
 a Content-Type of "application/x-x509-next-ca-cert".

 "Content-Type: application/x-x509-next-ca-cert"

 <binary CMS>

 The content of the Signed-Data message is a degenerate certificates-
 only Signed-Data message (Section 3.4) containing the new CA
 certificate(s) to be used when the current CA certificate expires.

5. SCEP Transaction Examples

 The following section gives several examples of client to CA
 transactions. Client actions are indicated in the left column, CA
 actions are indicated in the right column, and the transactionID is
 given in parentheses (for ease of reading small integer values have
 been used, in practice full transaction IDs would be used). The
 first transaction, for example, would read like this:

 "Client Sends PKCSReq message with transactionID 1 to the CA. The CA
 signs the certificate and constructs a CertRep Message containing the
 signed certificate with a transaction ID 1. The client receives the
 message and installs the certificate locally".

5.1. Successful Transactions

 Successful Enrolment Case: Automatic processing

 PKCSReq (1) ----------> CA issues certificate
 <---------- CertRep (1) SUCCESS
 Client installs certificate

Gutmann Expires December 11, 2019 [Page 30]

Internet-Draft SCEP June 2019

 Successful Enrolment Case: Manual authentication required

 PKCSReq (2) ----------> Cert request goes into queue
 <---------- CertRep (2) PENDING
 CertPoll (2) ----------> Still pending
 <---------- CertRep (2) PENDING
 CertPoll (2) ----------> CA issues certificate
 <---------- CertRep (2) SUCCESS
 Client installs certificate

 CA certificate rollover case:

 GetNextCACert ---------->
 <---------- New CA certificate

 PKCSReq* ----------> CA issues certificate with
 new key
 <---------- CertRep SUCCESS
 Client stores certificate
 for installation when
 existing certificate expires.

 * Enveloped for the new CA certificate. The CA will use the envelope
 to determine which key to use to issue the client certificate.

5.2. Transactions with Errors

 In the case of polled transactions that aren't completed
 automatically, there are two potential options for dealing with a
 transaction that's interrupted due to network or software/hardware
 issues. The first is for the client to preserve its transaction
 state and resume the CertPoll polling when normal service is
 restored. The second is for the client to begin a new transaction by
 sending a new PKCSReq/RenewalReq rather than continuing the previous
 CertPoll. Both options have their own advantages and disadvantages.

 The CertPoll continuation requires that the client maintain its
 transaction state for the time when it resumes polling. This is
 relatively simple if the problem is a brief network outage, but less
 simple when the problem is a client crash and restart. In addition
 the CA may treat a lost network connection as the end of a
 transaction, so that a new connection followed by a CertPoll will be
 treated as an error.

Gutmann Expires December 11, 2019 [Page 31]

Internet-Draft SCEP June 2019

 The PKCSReq/RenewalReq continuation doesn't require any state to be
 maintained since it's a new transaction, however it may cause
 problems on the CA side if the certificate was successfully issued
 but the client never received it, since the resumed transaction
 attempt will appear to be a request for a duplicate certificate (see

Section 8.4 for more on why this is a problem). In this case the CA
 may refuse the transaction, or require manual intervention to remove/
 revoke the previous certificate before the client can request another
 one.

 Since the new-transaction resume is more robust in the presence of
 errors and doesn't require special-case handling by either the client
 or CA, clients SHOULD use the new-transaction option in preference to
 the resumed-CertPoll option to recover from errors.

 Resync Case 1: Client resyncs via new PKCSReq (recommended):

 PKCSReq (3) ----------> Cert request goes into queue
 <---------- CertRep (3) PENDING
 CertPoll (3) ----------> Still pending
 X-------- CertRep(3) PENDING
 (Network outage)
 (Client reconnects)
 PKCSReq (4) ---------->
 <---------- CertRep (4) PENDING
 etc...

 Resync Case 2: Client resyncs via resumed CertPoll after a network
 outage (not recommended, use PKCSReq to resync):

 PKCSReq (5) ----------> Cert request goes into queue
 <---------- CertRep (5) PENDING
 CertPoll (5) ----------> Still pending
 X-------- CertRep(5) PENDING
 (Network outage)
 (Client reconnects)
 CertPoll (5) ----------> CA issues certificate
 <---------- CertRep (5) SUCCESS
 Client installs certificate

Gutmann Expires December 11, 2019 [Page 32]

Internet-Draft SCEP June 2019

 Resync Case 3: Special-case variation of case 2 where the CertRep
 SUCCESS rather than the CertRep PENDING is lost (recommended):

 PKCSReq (6) ----------> Cert request goes into queue
 <---------- CertRep (6) PENDING
 CertPoll (6) ----------> Still pending
 <---------- CertRep (6) PENDING
 CertPoll (6) ----------> CA issues certificate
 X-------- CertRep(6) SUCCESS
 (Network outage)
 (Client reconnects)
 PKCSReq (7) ----------> There is already a valid
 certificate with this DN.
 <---------- CertRep (7) FAILURE
 Admin revokes certificate
 PKCSReq (8) ----------> CA issues new certificate
 <---------- CertRep (8) SUCCESS
 Client installs certificate

 Resync Case 4: Special-case variation of case 1 where the CertRep
 SUCCESS rather than the CertRep PENDING is lost (not recommended, use
 PKCSReq to resync):

 PKCSReq (9) ----------> Cert request goes into queue
 <---------- CertRep (9) PENDING
 CertPoll (9) ----------> Still pending
 <---------- CertRep (9) PENDING
 CertPoll (9) ----------> CA issues certificate
 X-------- CertRep(9) SIGNED CERT
 (Network outage)
 (Client reconnects)
 CertPoll (9) ----------> Certificate already issued
 <---------- CertRep (9) SUCCESS
 Client installs certificate

 As these examples indicate, resumption from an error via a resumed
 CertPoll is tricky due to the state that needs to be held by both the
 client and/or the CA. A PKCSReq/RenewalReq resume is the easiest to
 implement since it's stateless and is identical for both polled and
 non-polled transactions, while a CertPoll resume treats the two
 differently (a non-polled transaction is resumed with a PKCSReq/
 RenewalReq, a polled transaction is resumed with a CertPoll). For
 this reason error recovery SHOULD be handled via a new PKCSReq rather
 than a resumed CertPoll.

Gutmann Expires December 11, 2019 [Page 33]

Internet-Draft SCEP June 2019

6. Contributors/Acknowledgements

 The editor would like to thank all of the previous editors, authors
 and contributors: Cheryl Madson, Xiaoyi Liu, David McGrew, David
 Cooper, Andy Nourse, Max Pritikin, Jan Vilhuber, and others for their
 work maintaining the draft over the years. The IETF reviewers
 provided much useful feedback that helped improve the draft, and in
 particular spotted a number of things that were present in SCEP
 through established practice rather than by being explicitly
 described in the text. Numerous other people have contributed during
 the long life cycle of the draft and all deserve thanks. In addition
 several PKCS #7 / CMS libraries contributed to interoperability by
 doing the right thing despite what earlier SCEP drafts required.

 The earlier authors would like to thank Peter William of ValiCert,
 Inc. (formerly of VeriSign, Inc.) and Alex Deacon of VeriSign, Inc.
 and Christopher Welles of IRE, Inc. for their contributions to early
 versions of this protocol and this document.

7. IANA Considerations

 One object identifier for an arc to assign SCEP Attribute Identifiers
 was assigned in the SMI Security for PKIX (1.3.6.1.5.5.7) registry,
 Simple Certificate Enrollment Protocol Attributes denoted as id-scep:

 id-scep OBJECT IDENTIFIER ::= { id-pkix TBD1 }

 (Editor's note: When the OID is assigned, the values in the OID table
 in Section 3.2 will also need to be updated).

 This assignment created the new SMI Security for SCEP Attribute
 Identifiers ((1.3.6.1.5.5.7.TBD1) registry with the following entries
 with references to this document:

 id-scep-failInfoText OBJECT IDENTIFIER ::= { id-scep 1 }

 Entries in the registry are assigned according to the "Specification
 Required" policy defined in [4].

Section 3.2.1.2 describes a SCEP Message Type Registry and
Section 3.5 describes a SCEP CA Capabilities Registry to be

 maintained by the IANA, defining a number of such code point
 identifiers. Entries in the registry are to be assigned according to
 the "Specification Required" policy defined in [4].

Gutmann Expires December 11, 2019 [Page 34]

Internet-Draft SCEP June 2019

 This document defines four media types for IANA registration:

 "application/x-x509-ca-cert"
 "application/x-x509-ca-ra-cert"
 "application/x-x509-next-ca-cert"
 "application/x-pki-message"

 Note that these are grandfathered media types registered as per
Appendix A of [2].

8. Security Considerations

 The security goal of SCEP is that no adversary can subvert the public
 key/identity binding from that intended. An adversary is any entity
 other than the client and the CA participating in the protocol.

 This goal is met through the use of CMS and PKCS #10 encryption and
 digital signatures using authenticated public keys. The CA's public
 key is authenticated via out-of-band means such as the checking of
 the CA fingerprint and the SCEP client's public key is authenticated
 through manual or pre-shared secret authentication.

8.1. General Security

 Common key-management considerations such as keeping private keys
 truly private and using adequate lengths for symmetric and asymmetric
 keys must be followed in order to maintain the security of this
 protocol. This is especially true for CA keys which, when
 compromised, compromise the security of all relying parties.

8.2. Use of the CA private key

 A CA private key is generally meant for, and is usually flagged as,
 being usable for certificate (and CRL) signing exclusively rather
 than data signing or encryption. The SCEP protocol however uses the
 CA private key to both sign and optionally encrypt CMS transport
 messages. This is generally considered undesirable as it widens the
 possibility of an implementation weakness and provides an additional
 location where the private key must be used (and hence is slightly
 more vulnerable to exposure) and where a side-channel attack might be
 applied.

Gutmann Expires December 11, 2019 [Page 35]

Internet-Draft SCEP June 2019

8.3. ChallengePassword Shared Secret Value

 The security measures that should be applied to the challengePassword
 shared secret depend on the manner in which SCEP is employed. In the
 simplest case, with SCEP used to provision devices with certificates
 in the manufacturing facility, the physical security of the facility
 may be enough to protect the certificate issue process with no
 additional measures explicitly required. In general though the
 security of the issue process depends on the security employed around
 the use of the challengePassword shared secret. While it's not
 possible to enumerate every situation in which SCEP may be utilised,
 the following security measures should be considered.

 o The challengePassword, despite its name, shouldn't be a
 conventional password but a high-entropy shared secret
 authentication string. Using the base64 encoding of a keying
 value generated or exchanged as part of standard device
 authentication protocols like EAP or DNP3 SA makes for a good
 challengePassword. The use of high-entropy shared secrets is
 particulary important when the PasswordRecipientInfo option is
 used to encrypt SCEP messages, see Section 3.1.
 o If feasible, the challengePassword should be a one-time value used
 to authenticate the issue of a single certificate (subsequent
 certificate requests will be authenticated by being signed with
 the initial certificate). If the challengePassword is single-use
 then the arrival of subsequent requests using the same
 challengePassword can then be used to indicate a security breach.
 o The lifetime of a challengePassword can be limited, so that it can
 be used during initial device provisioning but will have expired
 at a later date if an attacker manages to compromise the
 challengePassword value, for example by compromising the device
 that it's stored in.
 o The CA should take appropriate measures to protect the
 challengePassword, for example via physical security measures, or
 by storing it as a salted iterated hash or equivalent memory-hard
 function or as a keyed MAC value if it's not being used for
 encryption, or by storing it in encrypted form if it is being used
 for encryption.

8.4. Lack of Certificate Issue Confirmation

 SCEP provides no confirmation that the issued certificate was
 successfully received and processed by the client. This means that
 if the CertRep message is lost or can't be processed by the client
 then the CA will consider the certificate successfully issued while
 the client won't. If this situation is of concern then the correct
 issuance of the certificate will need to be verified by out-of-band
 means, for example through the client sending a message signed by the

Gutmann Expires December 11, 2019 [Page 36]

Internet-Draft SCEP June 2019

 newly-issued certificate to the CA. This also provides the proof of
 possession that's not present in the case of a renewal operation, see

Section 8.6.

8.5. GetCACaps Issues

 The GetCACaps response is not authenticated by the CA. This allows
 an attacker to perform downgrade attacks on the cryptographic
 capabilities of the client/CA exchange. In particular if the server
 were to support MD5 and single DES then an in-path attacker could
 trivially roll back the encryption to use these insecure algorithms.
 By taking advantage of the presence of large amounts of static known
 plaintext in the SCEP messages, as of 2017 a DES rainbow table attack
 can recover most encryption keys in under a minute, and MD5 chosen-
 prefix collisions can be calculated for a few tens of cents of
 computing time using tools like HashClash. It is for this reason
 that this specification makes single DES and MD5 a MUST NOT feature.
 Note that all known servers support at least triple DES and SHA-1
 (regardless of whether "DES3" and "SHA-1" are indicated in
 GetCACaps), so there should never be a reason to fall all the way
 back to single DES and MD5. One simple countermeasure to a GetCACaps
 downgrade attack is for clients that are operating in an environment
 where on-path attacks are possible and that expect the "SCEPStandard"
 capability to be indicated by the CA but don't see it in the
 GetCACaps response to treat its absence as a security issue, and
 either discontinue the exchange or continue as if "SCEPStandard" had
 been returned. This requires a certain tradeoff between
 compatibility with old servers and security against active attacks.

8.6. Lack of PoP in Renewal Requests

 Renewal operations (but not standard certificate-issue operations)
 are processed via a previously-issued certificate and its associated
 private key, not the key in the PKCS #10 request. This means that a
 client no longer demonstrates proof of possession (PoP) of the
 private key corresponding to the public key in the PKCS #10 request.
 It is therefore possible for a client to re-certify an existing key
 used by a third party, so that two or more certificates exist for the
 same key. By switching out the certificate in a signature, an
 attacker can appear to have a piece of data signed by their
 certificate rather than the original signer's certificate. This, and
 other, attacks are described in S/MIME ESS [21].

 Avoiding these types of attacks requires situation-specific measures.
 For example CMS/SMIME implementations may use the ESSCertID attribute
 from S/MIME ESS [21] or its successor S/MIME ESSv2 [22] to
 unambiguously identify the signing certificate. However since other
 mechanisms and protocols that the certificates will be used with

Gutmann Expires December 11, 2019 [Page 37]

Internet-Draft SCEP June 2019

 typically don't defend against this problem, it's unclear whether
 this is an actual issue with SCEP.

8.7. Traffic Monitoring

 SCEP messages are signed with certificates that may contain
 identifying information. If these are sent over the public Internet
 and real identity information (rather than placeholder values or
 arbitrary device IDs) are included in the signing certificate data,
 an attacker may be able to monitor the identities of the entities
 submitting the certificate requests. If this is an issue then [3]
 should be consulted for guidance.

8.8. Unnecessary cryptography

 Some of the SCEP exchanges use unnecessary signing and encryption
 operations. In particular the GetCert and GetCRL exchanges are
 encrypted and signed in both directions. The information requested
 is public and thus encrypting the requests is of questionable value.
 In addition CRLs and certificates sent in responses are already
 signed by the CA and can be verified by the recipient without
 requiring additional signing and encryption. More lightweight means
 of retrieving certificates and CRLs such as HTTP certificate-store
 access [17] and LDAP are recommended for this reason.

8.9. Use of SHA-1

 The majority of the large numbers of devices that use SCEP today
 default to SHA-1, with many supporting only that hash algorithm with
 no ability to upgrade to a newer one. SHA-1 is no longer regarded as
 secure in all situations, but as used in SCEP it's still safe. There
 are three reasons for this. The first is that attacking SCEP would
 require creating a fully general SHA-1 collision in close to real
 time alongside breaking AES (more specifically, it would require
 creating a fully general SHA-1 collision for the PKCS #10 request,
 breaking the AES encryption around the PKCS #10 request, and then
 creating a second SHA-1 collision for the signature on the encrypted
 data), which won't be feasible for a long time.

 The second reason is that the signature over the message, in other
 words the SHA-1 hash that isn't protected by encryption, doesn't
 serve any critical cryptographic purpose: The PKCS #10 data itself is
 authenticated through its own signature, protected by encryption, and
 the overall request is authorised by the (encrypted) shared secret.
 The sole exception to this will be the small number of
 implementations that support the Renewal operation, which may be
 authorised purely through a signature, but presumably any
 implementation recent enough to support Renewal also supports SHA-2.

Gutmann Expires December 11, 2019 [Page 38]

Internet-Draft SCEP June 2019

 Any legacy implementation that supports the historic core SCEP
 protocol would not be affected.

 The third reason is that SCEP uses the same key for encryption and
 signing, so that even if an attacker were able to capture an outgoing
 Renewal request that didn't include a shared secret (in other words
 one that was only authorised through a signature), break the AES
 encryption, forge the SHA-1 hash in real time, and forward the forged
 request to the CA, they couldn't decrypt the returned certificate,
 which is protected with the same key that was used to generate the
 signature. While Section 8.8 points out that SCEP uses unnecessary
 cryptography in places, the additional level of security provided by
 the extra crypto makes it immune to any issues with SHA-1.

 This doesn't mean that SCEP implementations should continue to use
 SHA-1 in perpetuity, merely that there's no need for a panicked
 switch to SHA-2.

9. References

9.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", RFC 6838,
 January 2013.

 [3] Farrell, S. and H. Tschofenig, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 7258, May 2014.

 [4] Leiba, B. and T. Narten, "Guidelines for Writing an IANA
 Considerations Section in RFCs", RFC 8126, June 2017.

 [5] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", RFC 8174, May 2017.

 [6] Crocker, R. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 5234, January 2008.

 [7] Technology, U. N. I. O. S. A., "The Advanced Encryption
 Standard (AES)", FIPS 197, November 2001.

 [8] Technology, U. N. I. O. S. A., "Secure Hash Standard
 (SHS)", FIPS 180-3, October 2008.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234

Gutmann Expires December 11, 2019 [Page 39]

Internet-Draft SCEP June 2019

 [9] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [10] Housley, R., "Cryptographic Message Syntax (CMS)",
RFC 5652, September 2009.

 [11] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230, June
 2014.

 [12] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 November 2000.

 [13] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 November 2000.

 [14] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [15] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 3986,
 January 2005.

9.2. Informative References

 [16] Nottingham, M., "Building Protocols with HTTP", November
 2018.

 [17] Gutmann, P., "Internet X.509 Public Key Infrastructure
 Operational Protocols: Certificate Store Access via HTTP",

RFC 4387, February 2006.

 [18] "A Java implementation of the Simple Certificate Enrolment
 Protocol", <https://github.com/jscep/jscep>.

 [19] Alighieri, D., "Internet Key Exchange (IKEv2) Protocol",
RFC 7296, March 1300.

 [20] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [21] Hoffman, P., "Enhanced Security Services for S/MIME",
RFC 2634, June 1999.

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4387
https://github.com/jscep/jscep
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc2634

Gutmann Expires December 11, 2019 [Page 40]

Internet-Draft SCEP June 2019

 [22] Schaad, J., "Enhanced Security Services (ESS) Update:
 Adding CertID Algorithm Agility", RFC 5035, August 2007.

 [23] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, August 2018.

Appendix A. Background Notes

 This specification has spent close to twenty years in the draft
 stage. Its original goal, provisioning IPsec routers with
 certificates, has long since changed to general device/embedded
 system/IoT use. To fit this role, extra features were bolted on in a
 haphazard manner through the addition of a growing list of appendices
 and by inserting additional, often conflicting, paragraphs in various
 locations in the body text. Since existing features were never
 updated as newer ones were added, the specification accumulated large
 amounts of historical baggage over time. If OpenPGP was described as
 "a museum of 1990s crypto" then the SCEP draft was its graveyard.

 About five years ago the specification, which even at that point had
 seen only sporadic re-posts of the existing document, was more or
 less abandoned by its original sponsors. Due to its widespread use
 in large segments of the industry, the specification was rebooted in
 2015, cleaning up fifteen years worth of accumulated cruft, fixing
 errors, clarifying ambiguities, and bringing the algorithms and
 standards used into the current century (prior to the update, the de-
 facto lowest-common denominator algorithms used for interoperability
 were the insecure forty-year-old single DES and broken MD5 hash
 algorithms).

 Note that although the text of the current specification has changed
 significantly due to the consolidation of features and appendices
 into the main document, the protocol it describes is identical on the
 wire to the original (with the unavoidable exception of the switch
 from single DES and MD5 to AES and SHA-2). The only two changes
 introduced, the "SCEPStandard" indicator in GetCACaps and the
 failInfoText attribute, are both optional values and would be ignored
 by older implementations that don't support them, or can be omitted
 from messages if they are found to cause problems.

 Other changes include:

 o Resolved contradictions in the text, for example a requirement
 given as a MUST in one paragraph and a SHOULD in the next, a MUST
 NOT in one paragraph and a MAY a few paragraphs later, a SHOULD
 NOT contradicted later by a MAY, and so on.

https://datatracker.ietf.org/doc/html/rfc5035
https://datatracker.ietf.org/doc/html/rfc8446

Gutmann Expires December 11, 2019 [Page 41]

Internet-Draft SCEP June 2019

 o Merged several later fragmentary addenda placed in appendices (for
 example the handling of certificate renewal) with the body of the
 text.
 o Merged the SCEP Transactions and SCEP Transport sections, since
 the latter mostly duplicated (with occasional inconsistencies) the
 former.
 o Updated the algorithms to ones dating from at least this century.
 o Did the same for normative references to other standards.
 o Updated the text to use consistent terminology for the client and
 CA rather than a mixture of client, requester, requesting system,
 end entity, server, certificate authority, certification
 authority, and CA.
 o Corrected incorrect references to other standards, e.g.
 IssuerAndSerial -> IssuerAndSerialNumber.
 o Corrected errors such as a statement that when both signature and
 encryption certificates existed, the signature certificate was
 used for encryption.
 o Condensed redundant discussions of the same topic spread across
 multiple sections into a single location. For example the
 description of intermediate CA handling previously existed in
 three different locations, with slightly different reqirements in
 each one.
 o Added a description of how pkiMessages were processed, which was
 never made explicit in the original specification. This led to
 creative interpretations that had security problems but were
 employed anyway due to the lack of specific guidance on what to
 do.
 o Relaxed some requirements that didn't serve any obvious purpose
 and that major implementations didn't seem to be enforcing. For
 example the requirement that the self-signed certificate used with
 a request MUST contain a subject name that matched the one in the
 PKCS #10 request was relaxed to a SHOULD because a number of
 implementations either ignored the issue entirely or at worst
 performed some minor action like creating a log entry after which
 they continued anyway.
 o Removed discussion of the transactionID from the security
 considerations, since the instructions there were directly
 contradicted by the discussion of the use of the transactionID in

Section 5.
 o Added a requirement that the signed message include the signing
 certificate(s) in the signedData certificates field. This was
 implicit in the original specification (without it, the message
 couldn't be verified by the CA) and was handled by the fact that
 most PKCS #7/CMS libraries do this by default, but was never
 explicitly mentioned.
 o Clarified sections that were unclear or even made no sense, for
 example the requirement for a "hash on the public key" [sic]
 encoded as a PrintableString.

Gutmann Expires December 11, 2019 [Page 42]

Internet-Draft SCEP June 2019

 o Renamed "RA certificates" to "intermediate CA certificates". The
 original document at some point added mention of RA certificates
 without specifying how the client was to determine that an RA was
 in use, how the RA operations were identified in the protocol, or
 how it was used. It's unclear whether what was meant was a true
 RA or merely an intermediate CA, as opposed to the default
 practice of having certificates issued directly from a single root
 CA certificate. This update uses the term "intermediate CA
 certificates", since this seems to have been the original intent
 of the text.
 o Redid the PKIMessage diagram to match what was specified in CMS,
 the original diagram omitted a number of fields and nested data
 structures which meant that the diagram didn't match either the
 text or the CMS specification.
 o Removed the requirement for a CertPoll to contain a
 recipientNonce, since CertPoll is a client message and will never
 be sent in response to a message containing a senderNonce. See
 also the note in Section 3.3.2.
 o Clarified certificate renewal. This represents a capability that
 was bolted onto the original protocol with (at best) vaguely-
 defined semantics, including a requirement by the CA to guess
 whether a particular request was a renewal or not. In response to
 developer feedback that they either avoided renewal entirely
 because of this uncertainty or hardcoded in particular behaviour
 on a per-CA basis, this specification explicitly identifies
 renewal requests as such, and provides proper semantics for them.
 o Corrected the requirement that "undefined message types are
 treated as an error" since this negates the effect of GetCACaps,
 which is used to define new message types. In particular
 operations such as GetCACaps "Renewal" would be impossible if
 enforced as written, because the Renewal operation was an
 undefined message type at the time.
 o In line with the above, added IANA registries for several entries
 that had previously been defined in an ad-hoc manner in different
 locations in the text.
 o Added the "SCEPStandard" keyword to GetCACaps to indicate that the
 CA complies with the final version of the SCEP standard, since the
 definition of what constitutes SCEP standards compliance has
 changed significantly over the years.
 o Added the optional failInfoText attribute to deal with the fact
 that failInfo was incapable of adequately communicating to clients
 why a certificate request operation had been rejected.
 o Removed the discussion in the security considerations of
 revocation issues, since SCEP doesn't support revocation as part
 of the protocol.
 o Clarified the use of nonces, which if applied as originally
 specified would have made the use of polling in the presence of a
 lost message impossible.

Gutmann Expires December 11, 2019 [Page 43]

Internet-Draft SCEP June 2019

 o Removed the discussion of generating a given transactionID by
 hashing the public key, since this implied that there was some
 special significance in the value generated this way. Since it
 was neither a MUST nor a MAY, it was unsound to imply that servers
 could rely on the value being generated a certain way. In
 addition it wouldn't work if multiple transactions as discussed in

Section 4.4 were initiated, since the deterministic generation via
 hashing would lead to duplicate transactionIDs.
 o Added examples of SCEP messages to give implementers something to
 aim for.

Author's Address

 Peter Gutmann
 University of Auckland
 Department of Computer Science
 Auckland
 New Zealand

 Email: pgut001@cs.auckland.ac.nz

Gutmann Expires December 11, 2019 [Page 44]

