
TLS Working Group P. Gutmann
Internet-Draft University of Auckland
Intended status: Standards Track March 20, 2016
Expires: September 21, 2016

TLS 1.2 Long-term Support Profile
draft-gutmann-tls-lts-02

Abstract

 This document specifies a profile of TLS 1.2 for long-term support,
 one that represents what's already deployed for TLS 1.2 but with the
 security holes and bugs fixed. This represents a stable, known-good
 profile that can be deployed now to systems that can't roll out
 patches every month or two when the next attack on TLS is published.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 21, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Gutmann Expires September 21, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS-LTS March 2016

Table of Contents

1. Introduction . 2
1.1. Conventions Used in This Document 3

2. TLS-LTS . 3
2.1. Rationale . 3

3. The TLS-LTS Profile . 3
3.1. Encryption/Authentication 3
3.2. Message Formats . 5
3.3. Miscellaneous . 6
3.4. Implementation Issues 6
3.5. Use of TLS Extensions 7
3.6. Downgrade Attack Prevention 8
3.7. Rationale . 8

4. Security Considerations 9
5. IANA Considerations . 9
6. Acknowledgements . 9
7. References . 9
7.1. Normative References 9
7.2. Informative References 10

 Author's Address . 11

1. Introduction

 TLS [2] and DTLS [4], by nature of their enormous complexity and the
 inclusion of large amounts of legacy material, contain numerous
 security issues that have been known to be a problem for many years
 and that keep coming up again and again in attacks (there are simply
 too many of these to provide references for, and in any case more
 will have been published by the time you read this). This document
 presents a minimal, known-good profile of mechanisms that defend
 against all currently-known weaknesses in TLS, that would have
 defended against them ten years ago, and that have a good chance of
 defending against them ten years from now, providing the long-term
 stability that's required by many systems in the field.

 In particular it takes inspiration from numerous published analyses
 of TLS [10] [11] [12] [13] [14] [15] [16] [17] [18] along with two
 decades of implementation and deployment experience to select a
 standard interoperable feature set that provides the best chance of
 long-term stability and resistance to attack. This is intended for
 use in systems that need to run in a fixed configuration for a long
 time after they're deployed, with little or no ability to roll out
 patches every month or two when the next attack on TLS is published.

 Unlike the full TLS 1.2, TLS-LTS is not meant to be all things to all
 people. It represents a fixed, safe solution that's appropriate for
 users who require a simple, secure, and long-term stable means of

Gutmann Expires September 21, 2016 [Page 2]

Internet-Draft TLS-LTS March 2016

 getting data from A to B. This represents the majority of the non-
 browser use of TLS, particularly in the embedded systems that are
 most in need of a long-term stable protocol profile.

 [Note: Because this is a rapidly-evolving document but the posting
 blackout before IETF 95 makes putting new versions online in the
 usual location difficult, updates will temporarily be posted to

http://www.cs.auckland.ac.nz/~pgut001/pubs/tls-lts.txt for comment
 until the draft-submission process is open again].

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [1].

2. TLS-LTS

 The use of TLS-LTS is negotiated via TLS/DTLS extensions as defined
 in TLS Extensions [3]. On connecting, the client includes the
 tls_lts extension in its client_hello if it wishes to use the TLS-LTS
 profile. If the server is capable of meeting this requirement, it
 responds with an tls_lts in its server_hello. The "extension_type"
 value for this extension SHALL be TBD (0xTBD) and the
 "extension_data" field of this extension SHALL be empty. The client
 and server MUST NOT use the TLS-LTS profile unless both sides have
 successfully exchanged tls_lts extensions.

2.1. Rationale

 The use of extensions precludes use with SSL 3.0, but then it's
 likely that anything still using this nearly two decades-old protocol
 will be vulnerable to any number of other attacks anyway, so there
 seems little point in bending over backwards to accomodate SSL 3.0.

3. The TLS-LTS Profile

 The TLS-LTS profile specifies a few simple restrictions on the huge
 range of TLS suites, options and parameters to limit the protocol to
 a known-good subset, as well as making minor corrections to limit
 various attacks.

3.1. Encryption/Authentication

 TLS-LTS restricts the more or less unlimited TLS 1.2 with its more
 than three hundred cipher suites, over forty ECC parameter sets, and
 zoo of supplementary algorithms, parameters, and parameter formats,
 to just two, one traditional one with DHE + AES-CBC + HMAC-SHA-256 +

http://www.cs.auckland.ac.nz/~pgut001/pubs/tls-lts.txt
https://datatracker.ietf.org/doc/html/draft-submission

Gutmann Expires September 21, 2016 [Page 3]

Internet-Draft TLS-LTS March 2016

 RSA-SHA-256/PSK and one ECC one with ECDHE-P256 + AES-GCM + HMAC-
 SHA-256 + ECDSA-P256-SHA-256/PSK with uncompressed points:

 o TLS-LTS implementations MUST support
 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
 TLS_DHE_PSK_WITH_AES_128_CBC_SHA256,
 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 and
 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256.

 [Question: There's a gap in the suites with
 TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 missing, although it's
 present for all manner of non-AES ciphers, should we specify
 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 or fill the current hole
 with TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256?].

 TLS-LTS only permits encrypt-then-MAC, not MAC-then-encrypt, fixing
 20 years of attacks on this mechanism:

 o TLS-LTS implementations MUST implement encrypt-then-MAC [5] rather
 than the earlier MAC-then-encrypt.

 TLS-LTS drops the IPsec cargo-cult MAC truncation, which serves no
 obvious purpose and leads to security concerns:

 o TLS-LTS implementations MUST use full-length MAC values (for
 example 256 bits for SHA-256). In particular MAC values MUST NOT
 be truncated to 96 bits/12 bytes, removing the verify_data_length
 constraint in the Finished message.

 TLS-LTS recommends that implementations take measures to protect
 against side-channel attacks:

 o Implementations SHOULD take steps to protect against timing
 attacks, for example by using constant-time implementations of
 algorithms and by using blinding for non-randomised algorithms
 like RSA.

 o Implementations SHOULD take steps to protect against fault
 attacks, in particular for the extremely brittle ECC algorithms
 whose typical failure mode if a fault occurs is to leak the
 private key. One simple countermeasure is to use the public key
 to verify any signatures generated before they are sent over the
 wire.

 TLS-LTS signs a hash of the client and server hello messages for the
 ServerKeyExchange rather than signing just the client and server
 nonces, avoiding various attacks that built on the fact that
 previously-exchanged parameters weren't authenticated at that point:

Gutmann Expires September 21, 2016 [Page 4]

Internet-Draft TLS-LTS March 2016

 o When generating the ServerKeyExchange signature, the signed_params
 value is updated to replace the client_random and server_random
 with a hash of the full ClientHello and ServerHello. In other
 words the value being signed becomes:

 digitally-signed struct {
 opaque client_server_hello_hash;
 ServerDHParams params;
 } signed_params;

 The choice of key sizes is something that will never get any
 consensus because there are so many completely different worldviews
 involved. TLS-LTS makes only general recommendations on best
 practices and leaves the choice of which key sizes are appropriate to
 implementers:

 o Implementations SHOULD choose public-key algorithm key sizes that
 are appropriate for the situation, weighted by the value of the
 information being protected, the probability of attack and
 capabilities of the attacker(s), and the ability of the system
 running the TLS implementation to deal with the computational load
 of large keys. For example a SCADA system being used to switch a
 ventilator on and off doesn't require anywhere near the keysize-
 based security of a system used to transfer classified data.

 One way to avoid having to use very large public keys is to switch
 keys periodically. This can be done by regenerating DH parameters in
 a background thread and rolling them over from time to time. If this
 isn't possible, an alternative is to pre-generate a selection of DH
 parameters and choose one set at random for each new handshake, or
 again rolling them over from time to time, so that an attacker has to
 attack n sets of parameters rather than just one.

 [Question: Should the PRF be replaced with HKDF? There's no
 pressing need for this, but it could be part of the general
 cleanup].

3.2. Message Formats

 TLS-LTS sends the full set of DH parameters, X9.42/FIPS 186 style,
 not p and g only, PKCS #3 style. This allows verification of the DH
 parameters, which the current format doesn't allow:

 o TLS-LTS implementations MUST send the DH domain parameters as { p,
 g, q } rather than { p, g }. This makes the ServerDHParams field:

Gutmann Expires September 21, 2016 [Page 5]

Internet-Draft TLS-LTS March 2016

 struct {
 opaque dh_p<1..2^16-1>;
 opaque dh_g<1..2^16-1>;
 opaque dh_q<1..2^16-1>;
 opaque dh_Ys<1..2^16-1>;
 } ServerDHParams; /* Ephemeral DH parameters */

 The domain parameters MUST be verified as specified in FIPS 186
 [8].

 TLS-LTS adds a hash of all messages leading up to the calculation of
 the master secret into the master secret to protect against the use
 of manipulated handshake parameters:

 o TLS-LTS implementations MUST implement extended master secret [7]
 to protect handshake and crypto parameters.

3.3. Miscellaneous

 TLS-LTS drops the need to send the current time in the random data,
 which serves no obvious purpose and leaks the client/server's time to
 attackers:

 o TLS-LTS implementations SHOULD NOT include the time in the Client/
 ServerHello random data. The data SHOULD consists entirely of
 random bytes.

 TLS-LTS drops compression and rehandshake, which have led to a number
 of attacks:

 o TLS-LTS implementations MUST NOT implement compression or
 rehandshake.

3.4. Implementation Issues

 TLS-LTS requires that RSA signature verification be done as encode-
 then-compare, which fixes all known padding-manipulation issues:

 o TLS-LTS implementations MUST verify RSA signatures by using
 encode-then-compare as described in PKCS #1 [9], meaning that they
 encode the expected signature result and perform a constant-time
 compare against the recovered signature data.

 The constant-time compare isn't strictly necessary for security in
 this case, but it's generally good hygiene and is explicitly required
 when comparing secret data values:

Gutmann Expires September 21, 2016 [Page 6]

Internet-Draft TLS-LTS March 2016

 o All operations on crypto- or security-related values SHOULD be
 performed in a manner that's as timing-independent as possible.
 For example compares of MAC values such as those used in the
 Finished message and data packets SHOULD be performed using a
 constant-time memcmp() or equivalent so as not to leak timing data
 to an attacker.

 The TLS protocol has historically and somewhat arbitrarily been
 described as a state machine, which has led to a number of
 implementation flaws when state transitions weren't very carefully
 considered and enforced. A more logical means of representing the
 protocol is as a ladder diagram, which hardcodes the transitions into
 the diagram and removes the need to juggle a large amount of state:

 o Implementations SHOULD consider representing/implementing the
 protocol as a ladder diagram rather than a state machine, since
 the state-diagram form has led to a number of implementation
 errors in the past which are avoided through the use of the ladder
 diagram form.

 TLS-LTS protects its handshake by including cryptographic integrity
 checks of preceding messages in subsequent messages, defeating
 attacks that build on the ability to manipulate handshake messages to
 compromise security. What's authenticated at various stages is a log
 of preceding messages in the exchange. The simplest way to implement
 this, if the underlying API supports it, is to keep a running hash of
 all messages (which will be required for the final Finished
 computation) and peel off a copy of the current hash state to
 generate the hash value required at various stages during the
 handshake. If only the traditional { Begin, [Update, Update, ...],
 Final } hash API interface is available then several parallel chains
 of hashing will need to be run in order to terminate the hashing at
 different points during the handshake.

3.5. Use of TLS Extensions

 TLS-LTS is inspired by Grigg's Law that "there is only one mode and
 that is secure". Because it mandates the use of known-good
 mechanisms, much of the signalling and negotiation that's required in
 standard TLS to reach the same state becomes redundant. In
 particular, TLS-LTS removes the need to use the following extensions:

 o The signature_algorithms extension, since the use of SHA-256 with
 RSA or ECDSA is implicit in TLS-LTS.

 o The elliptic_curves and ec_point_formats extensions, since the use
 of P256 with uncompressed points is implicit in TLS-LTS.

Gutmann Expires September 21, 2016 [Page 7]

Internet-Draft TLS-LTS March 2016

 o The almost universally-ignored requirement that all certificates
 provided by the server must be signed by the algorithm(s)
 specified in the signature_algorithms extension is removed both
 implicitly by not sending the extension and explicitly by removing
 this requirement.

 o The encrypt_then_mac extension, since the use of encrypt-then-MAC
 is implicit in TLS-LTS.

 o The extended_master_secret extension, since the use of extended
 Master Secret is implicit in TLS-LTS.

 TLS-LTS implementations that wish to communicate only with other TLS-
 LTS implementations MAY omit these extensions. Implementations that
 wish to communicate with legacy implementations and wish to use the
 capabilities described by the extensions MUST include these
 extensions.

3.6. Downgrade Attack Prevention

 The use of the TLS-LTS improvements relies on an attacker not being
 able to delete the TLS-LTS extension from the handshake messages.
 This is achieved through the SCSV [10] signalling mechanism. [SCSV
 boilerplate to be filled in later, this will also require banning
 weak cipher suites like export ones. This is a tautology, will have
 to work out how to ban something that in theory has already been
 extinct for 15 years].

3.7. Rationale

 A question that may be asked at this point is, why not use TLS 1.3
 instead of creating a secure profile of TLS 1.2? The reason is that
 TLS 1.3 rolls back the 20 years of experience that we have with all
 the things that can go wrong in TLS and starts again from scratch
 with an almost entirely new protocol based on bleeding-edge/
 experimental ideas, mechanisms, and algorithms. When SSLv3 was
 introduced, it used ideas that were 10-20 years old (DH, RSA, DES,
 and so on were all long-established algorithms, only SHA-1 was
 relatively new). These were mature algorithms with large amounts of
 of research published on them, and yet we're still fixing issues with
 them 20 years later (the DH algorithm was published in 1976, SSLv3
 dates from 1996, and the latest DH issue, Logjam, dates from 2015.

 With TLS 1.3 we currently have zero implementation and deployment
 experience, which means that we're likely to have another 10-20 years
 of patching holes and fixing protocol and implementation problems
 ahead of us. It's for this reason that this profile uses the decades
 of experience we have with SSL and TLS to simplify TLS 1.2 into a

Gutmann Expires September 21, 2016 [Page 8]

Internet-Draft TLS-LTS March 2016

 known-good subset that leverages about 15 years of analysis and 20
 years of implementation experience, rather than betting on what's
 almost an entirely new protocol based on bleeding-edge/experimental
 ideas, mechanisms, and algorithms. The intent is to create a long-
 term stable protocol profile that can be deployed once, not deployed
 and then patched, updated, and fixed constantly for the lifetime of
 the equipment that it's used with.

4. Security Considerations

 This document defines a minimal, known-good subset of TLS 1.2 that
 attempts to address all known weaknesses in the protocol, mostly by
 simply removing known-insecure mechanisms but also by updating the
 ones that remain to take advantage of many years of security research
 and implementation experience.

5. IANA Considerations

 IANA has added the extension code point TBD (0xTBD) for the tls_lts
 extension to the TLS ExtensionType values registry as specified in
 TLS [2].

6. Acknowledgements

 The author would like to thank the members of the TLS mailing list
 for their feedback on this document.

7. References

7.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [3] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions", RFC 6066, January 2011.

 [4] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [5] Gutmann, P., "Encrypt-then-MAC for Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7366, September 2014.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7366

Gutmann Expires September 21, 2016 [Page 9]

Internet-Draft TLS-LTS March 2016

 [6] Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", RFC 7507, April 2015.

 [7] Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley,
 A., and M. Ray, "Transport Layer Security (TLS) Session
 Hash and Extended Master Secret Extension", RFC 7627,
 September 2015.

 [8] "Digital Signature Standard (DSS)", FIPS 186, July 2013.

 [9] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

7.2. Informative References

 [10] Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A.,
 Strub, P., and S. Zanella-Beguelin, "Proving the TLS
 handshake secure (as is)", Springer-Verlag LNCS 8617,
 August 2014.

 [11] Brzuska, C., Fischlin, M., Smart, N., Warinschi, B., and
 S. Williams, "Less is more: relaxed yet compatible
 security notions for key exchange", IACR ePrint
 archive 2012/242, April 2012.

 [12] Dowling, B. and D. Stebila, "Modelling ciphersuite and
 version negotiation in the TLS protocol", Springer-Verlag
 LNCS 9144, June 2015.

 [13] Firing, T., "Analysis of the Transport Layer Security
 protocol", June 2010.

 [14] Gajek, S., Manulis, M., Pereira, O., Sadeghi, A., and J.
 Schwenk, "Universally Composable Security Analysis of
 TLS", Springer-Verlag LNCS 5324, November 2008.

 [15] Jager, T., Kohlar, F., Schaege, S., and J. Schwenk, "On
 the security of TLS-DHE in the standard model", Springer-
 Verlag LNCS 7417, August 2012.

 [16] Giesen, F., Kohlar, F., and D. Stebila, "On the security
 of TLS renegotiation", ACM CCS 2013, November 2013.

https://datatracker.ietf.org/doc/html/rfc7507
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc3447

Gutmann Expires September 21, 2016 [Page 10]

Internet-Draft TLS-LTS March 2016

 [17] Meyer, C. and J. Schwenk, "Lessons Learned From Previous
 SSL/TLS Attacks - A Brief Chronology Of Attacks And
 Weaknesses", Cryptology ePrint Archive 2013/049, January
 2013.

 [18] Krawczyk, H., Paterson, K., and H. Wee, "On the security
 of the TLS protocol", Springer-Verlag LNCS 8042, August
 2013.

Author's Address

 Peter Gutmann
 University of Auckland
 Department of Computer Science
 University of Auckland
 New Zealand

 Email: pgut001@cs.auckland.ac.nz

Gutmann Expires September 21, 2016 [Page 11]

