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Abstract

   This document specifies an update of TLS 1.2 for long-term support,
   one that incoporates as far as possible what's already deployed for
   TLS 1.2 but with the security holes and bugs fixed.  This represents
   a stable, known-good version that can be deployed to systems that
   can't roll out ongoing patches and updates every time a new attack on
   standard TLS appears.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 26, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
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   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   TLS [2] and DTLS [5], by nature of their enormous complexity and the
   inclusion of large amounts of legacy material, contain numerous
   security issues that have been known to be a problem for many years
   and that keep coming up again and again in attacks (there are too
   many of these to provide references for in the standard manner, and
   in any case more will have been published by the time you read this).
   This document presents a minimal, known-good set of mechanisms that
   defend against all currently-known weaknesses in TLS, that would have
   defended against them ten years ago, and that have a good chance of
   defending against them ten years from now, providing the long-term
   stability that's required by many systems in the field.  This long-
   term stability is particularly important in light of the fact that
   widespread mainstream adoption of new versions of TLS has been shown
   to take 15 years or more [21].

   In particular, this document takes inspiration from numerous
   published analyses of TLS [11] [12] [13] [14] [15] [16] [17] [18]
   [19] [20] along with two decades of implementation and deployment
   experience to select a standard interoperable feature set that
   provides the best chance of long-term stability and resistance to
   attack.  This is intended for use in systems that need to run in a
   fixed configuration for a long period of time after they're deployed,
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   with little or no ability to roll out patches every month or two when
   the next attack on TLS is published.

   Unlike the full TLS 1.2, TLS-LTS is not meant to be all things to all
   people.  It represents a fixed, safe solution that's appropriate for
   users who require a simple, secure, and long-term stable means of
   getting data from A to B.  This represents the majority of the non-
   browser uses of TLS, particularly for embedded systems that are most
   in need of a long-term stable protocol definition.

       [Note: There is currently a TLS 1.2 LTS test server running
        at https://82.94.251.205:8443.  This uses the extension
        value 26 until a value is permanently assigned for LTS
        use.  To connect, your implementation should accept
        whatever certificate is presented by the server or use PSK
        with name = "plc", password = "test".  For embedded
        systems testing, note that the server talks HTTP and not
        DNP3 or ICCP, so you'll get an error if you try and connect
        with a PLC control centre that expects one of those
        protocols].

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [1].

2.  TLS-LTS Negotiation

   The use of TLS-LTS is negotiated via TLS/DTLS extensions as defined
   in TLS Extensions [4].  On connecting, the client includes the
   tls_lts extension in its Client Hello if it wishes to use TLS-LTS.
   If the server is capable of meeting this requirement, it responds
   with a tls_lts extension in its Server Hello.  The "extension_type"
   value for this extension MUST be TBD (0xTBD) and the "extension_data"
   field of this extension is empty.  The client and server MUST NOT use
   TLS-LTS unless both sides have successfully exchanged tls_lts
   extensions.

   In the case of session resumption, once TLS-LTS has been negotiated
   implementations MUST retain the use of TLS-LTS across all subsequent
   resumed sessions.  In other words if TLS-LTS is enabled for the
   current session then the resumed session MUST also use TLS-LTS.  If a
   client attempts to resume a TLS-LTS session as a non-TLS-LTS session
   then the server MUST abort the handshake.

https://82.94.251.205:8443
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3.  TLS-LTS

   TLS-LTS specifies a few simple restrictions on the huge range of TLS
   suites, options and parameters to limit the protocol to a known-good
   subset, as well as making minor corrections to prevent or at least
   limit various attacks.

3.1.  Encryption/Authentication

   TLS-LTS restricts the more or less unlimited TLS 1.2 with its more
   than three hundred cipher suites, over forty ECC parameter sets, and
   zoo of supplementary algorithms, parameters, and parameter formats,
   to just two, one traditional one with DHE + AES-CBC + HMAC-SHA-256 +
   RSA-SHA-256/PSK and one ECC one with ECDHE-P256 + AES-GCM + HMAC-
   SHA-256 + ECDSA-P256-SHA-256/PSK with uncompressed points:

   o  TLS-LTS implementations MUST support
      TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
      TLS_DHE_PSK_WITH_AES_128_CBC_SHA256,
      TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 and
      TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256.  For these suites, SHA-256
      is used in all locations in the protocol where a hash function is
      required, specifically in the PRF and per-packet MAC calculations
      (as indicated by the _SHA256 in the suite) and also in the client
      and server signatures in the CertificateVerify and
      ServerKeyExchange messages.

       [Note: There's a gap in the suites with
        TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 missing, there's
        currently a draft in progress to fill the gap,

draft-mattsson-tls-ecdhe-psk-aead, which can be used to
        replace the placeholder TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256].

   TLS-LTS only permits encrypt-then-MAC, not MAC-then-encrypt, fixing
   20 years of attacks on this mechanism:

   o  TLS-LTS implementations MUST implement encrypt-then-MAC [6] rather
      than the earlier MAC-then-encrypt.

   TLS-LTS adds a hash of all messages leading up to the calculation of
   the master secret into the master secret to protect against the use
   of manipulated handshake parameters:

   o  TLS-LTS implementations MUST implement extended master secret [8]
      to protect handshake and crypto parameters.

   TLS-LTS drops the MAC truncation in the Finished message, which
   serves no obvious purpose and leads to security concerns:

https://datatracker.ietf.org/doc/html/draft-mattsson-tls-ecdhe-psk-aead
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   o  The length of verify_data (verify_data_length) in the Finished
      message MUST be equal to the length of the output of the hash
      function used for the PRF.  For the mandatory TLS-LTS cipher
      suites this hash is always SHA-256, so the value of
      verify_data_length will be 32 bytes.  For other suites, the size
      depends on the hash algorithm associated with the suite.  For
      example for SHA-512 it would be 64 bytes.

   TLS-LTS signs a hash of the client and server hello messages for the
   ServerKeyExchange rather than signing just the client and server
   nonces, avoiding various attacks that build on the fact that standard
   TLS doesn't authenticate previously-exchanged parameters when the
   ServerKeyExchange message is sent:

   o  When generating the ServerKeyExchange signature, the signed_params
      value is updated to replace the client_random and server_random
      with a hash of the full Client Hello and Server Hello using the
      hash algorithm for the chosen cipher suite.  In other words the
      value being signed is changed from:

   digitally-signed struct {
       opaque client_random[32];
       opaque server_random[32];
       ServerDHParams params;
       } signed_params;

      to:

   digitally-signed struct {
       opaque client_server_hello_hash;
       ServerDHParams params;
       } signed_params;

      For the mandatory TLS-LTS cipher suites the hash algorithm is
      always SHA-256, so the length of the client_server_hello_hash is
      32 bytes.  For other suites, the size depends on the hash
      algorithm associated with the suite.  For example for SHA-512 it
      would be 64 bytes.

   (In terms of side-channel attack prevention, it would be preferable
   to include a non-public quantity into the data being signed since
   this reduces the scope of attack from a passive to an active one,
   with the attacker needing to initiate their own handshakes in order
   to carry out their attack.  However no shared secret value has been
   established at this point so only public data can be signed).

   The choice of key sizes is something that will never get any
   consensus because there are so many different worldviews involved.
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   TLS-LTS makes only general recommendations on best practices and
   leaves the choice of which key sizes are appropriate to implementers
   and policy makers:

   o  Implementations SHOULD choose public-key algorithm key sizes that
      are appropriate for the situation, weighted by the value of the
      information being protected, the probability of attack and
      capabilities of the attacker(s), any relevant security policies,
      and the ability of the system running the TLS implementation to
      deal with the computational load of large keys.  For example a
      SCADA system being used to switch a ventilator on and off doesn't
      require anywhere near the keysize-based security of a system used
      to transfer classified data.

   One way to avoid having to use very large public keys is to switch
   the keys periodically.  For example for DH keys this can be done by
   regenerating DH parameters in a background thread and rolling them
   over from time to time.  If this isn't possible, an alternative
   option is to pre-generate a selection of DH parameters and choose one
   set at random for each new handshake, or again roll them over from
   time to time from the pre-generated selection, so that an attacker
   has to attack multiple sets of parameters rather than just one.

3.2.  Message Formats

   TLS-LTS sends the full set of DH parameters, X9.42/FIPS 186 style,
   not p and g only, PKCS #3 style.  This allows verification of the DH
   parameters, which the current format doesn't allow:

   o  TLS-LTS implementations MUST send the DH domain parameters as { p,
      q, g } rather than { p, g }.  This makes the ServerDHParams field:

   struct {
       opaque dh_p<1..2^16-1>;
       opaque dh_q<1..2^16-1>;
       opaque dh_g<1..2^16-1>;
       opaque dh_Ys<1..2^16-1>;
       } ServerDHParams;     /* Ephemeral DH parameters */

      Note that this uses the standard DLP parameter order { p, q, g },
      not the erroneous { p, g, q } order from the X9.42 DH
      specification.
   o  The domain parameters MUST either be compared for equivalence to a
      set of known-good parameters provided by an appropriate standards
      body or they MUST be verified as specified in FIPS 186 [9].
      Examples of the former may be found in RFC 3526 [22].

https://datatracker.ietf.org/doc/html/rfc3526
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   Note that while other sources of DH parameters exist, these should be
   treated with a great deal of caution.  For example RFC 5114 [23]
   provides no source for the values used, leading to suspicions that
   they may be trapdoored, and RFC 7919 [24] mandates fallback to RSA if
   the one specific DH parameter set for each key size specified in the
   standard isn't automatically chosen by both client and server.

   Industry standards bodies may consider restricting domain parameters
   to only allow known-good values such as those referenced in the above
   standard, or ones generated by the standards body.  This makes
   checking easier, but has the downside that restricting the choice to
   a small set of values makes them a more tempting target for well-
   resourced attackers.  In addition it requires that the values be
   carefully generated, and the generation process well-documented, to
   produce a so-called NUMS (Nothing Up My Sleeve) number that avoids
   any suspicion of it having undesirable hidden properties (the
   standard mentioned above, RFC 5114 [23], does not contain NUMS
   values).

   In any case signing the Client/Server Hello messages and the use of
   Extended Master Secret makes active attacks that manipulate the
   domain parameters on the fly far more difficult than they would be
   for standard TLS.

3.3.  Miscellaneous

   TLS-LTS drops the need to send the current time in the random data,
   which serves no obvious purpose and leaks the client/server's time to
   attackers:

   o  TLS-LTS implementations SHOULD NOT include the time in the Client/
      Server Hello random data.  The data SHOULD consist entirely of
      random bytes.

       [Note: A proposed downgrade-attack prevention mechanism
        may make use of these bytes, see section 3.6].

   TLS-LTS drops compression and rehandshake, which have led to a number
   of attacks:

   o  TLS-LTS implementations MUST NOT implement compression or
      rehandshake.

3.4.  Implementation Issues

   TLS-LTS requires that RSA signature verification be done as encode-
   then-compare, which fixes all known padding-manipulation issues:

https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc7919
https://datatracker.ietf.org/doc/html/rfc5114
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   o  TLS-LTS implementations MUST verify RSA signatures by using
      encode-then-compare as described in PKCS #1 [10], meaning that
      they encode the expected signature result and perform a constant-
      time compare against the recovered signature data.

   The constant-time compare isn't strictly necessary for security in
   this case, but it's generally good hygiene and is explicitly required
   when comparing secret data values:

   o  All operations on crypto- or security-related values SHOULD be
      performed in a manner that's as timing-independent as possible.
      For example compares of MAC values such as those used in the
      Finished message and data packets SHOULD be performed using a
      constant-time memcmp() or equivalent so as not to leak timing data
      to an attacker.

   TLS-LTS recommends that implementations take measures to protect
   against side-channel attacks:

   o  Implementations SHOULD take steps to protect against timing
      attacks, for example by using constant-time implementations of
      algorithms and by using blinding for non-randomised algorithms
      like RSA.

   o  Implementations SHOULD take steps to protect against fault
      attacks, in particular for the extremely brittle ECC algorithms
      whose typical failure mode if a fault occurs is to leak the
      private key.  One simple countermeasure is to use the public key
      to verify any signatures generated before they are sent over the
      wire.

   Authentication mechanisms for protocols run over TLS typically have
   separate authentication procedures for the tunnelled protocol and the
   encapsulating TLS session.  The leads to an issue known as the
   channel binding problem in which the tunnelled protocol isn't tied to
   the encapsulating TLS session and can be manipulated by an attacker
   once it passes the TLS endpoint.  Channel binding ties the
   cryptographic protection offered by TLS to the protocol that's being
   run over the TLS tunnel:

   o  Implementations that require authentication for protocols run over
      TLS SHOULD consider using channel bindings to tie the application-
      level protocol to the TLS session, specifically the tls_unique
      binding, which makes use of the contents of the first TLS Finished
      message sent in an exchange to bind to the tunneled application-
      level protocol [3].
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   The original description of the tls_unique binding contains a long
   note detailing problems that arise due to rehandshake issues and how
   to deal with them.  Since TLS-LTS doesn't allow rehandshakes, these
   problems don't exist, so no special handling is required.

   The TLS protocol has historically and somewhat arbitrarily been
   described as a state machine, which has led to numerous
   implementation flaws when state transitions weren't very carefully
   considered and enforced [20].  A safer and more logical means of
   representing the protocol is as a ladder diagram, which hardcodes the
   transitions into the diagram and removes the need to juggle a large
   amount of state:

   o  Implementations SHOULD consider representing/implementing the
      protocol as a ladder diagram rather than a state machine, since
      the state-diagram form has led to numerous implementation errors
      in the past which are avoided through the use of the ladder
      diagram form.

   TLS-LTS mandates the use of cipher suites that provide so-called
   Perfect Forward Secrecy (PFS), in which an attacker can't record
   sessions and decrypt them at a later date.  The PFS property is
   however impacted by the TLS session cache and session tickets, which
   allow an attacker to decrypt old sessions.  The session cache is
   relatively short-term and only allows decryption while a session is
   held in the cache, but the use of long-term keys in combination with
   session tickets means that an attacker can decrypt any session used
   with that key, defeating PFS:

   o  Implementations SHOULD consider the impact of using session caches
      and session tickets on PFS.  Security issues in this area can be
      mitigated by using short session cache expiry times, and avoiding
      session tickets or changing the key used to encrypt them
      periodically.

   Another form of cacheing that can affect security is the reuse of the
   supposedly-ephemeral value y = g^x mod p.  Instead of computing a
   fresh value for each session, some servers compute the y value once
   and then reuse it across multiple TLS sessions.  If this is done then
   an attacker can compute the discrete log value from one TLS session
   and reuse it to attack later sessions:

   o  Implementations SHOULD consider the impact of reusing the y = g^x
      mod p value across multiple TLS sessions, and avoid this reuse if
      possible.  Where the reuse of y is unavoidable, it SHOULD be
      refreshed as often as is feasible.  One way to do this is to
      compute it as a background task so that a fresh value is available
      when required.
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   TLS-LTS protects its handshake by including cryptographic integrity
   checks of preceding messages in subsequent messages, defeating
   attacks that build on the ability to manipulate handshake messages to
   compromise security.  What's authenticated at various stages is a log
   of preceding messages in the exchange.  The simplest way to implement
   this, if the underlying API supports it, is to keep a running hash of
   all messages (which will be required for the final Finished
   computation) and peel off a copy of the current hash state to
   generate the hash value required at various stages during the
   handshake.  If only the traditional { Begin, [ Update, Update, ... ],
   Final } hash API interface is available then several parallel chains
   of hashing will need to be run in order to terminate the hashing at
   different points during the handshake.

3.5.  Use of TLS Extensions

   TLS-LTS is inspired by Grigg's Law that "there is only one mode and
   that is secure".  Because it mandates the use of known-good
   mechanisms, much of the signalling and negotiation that's required in
   standard TLS to reach the same state becomes redundant.  In
   particular, TLS-LTS removes the need to use the following extensions:

   o  The signature_algorithms extension, since the use of SHA-256 with
      RSA or ECDSA is implicit in TLS-LTS.

   o  The elliptic_curves and ec_point_formats extensions, since the use
      of P256 with uncompressed points is implicit in TLS-LTS.

   o  The universally-ignored requirement that all certificates provided
      by the server must be signed by the algorithm(s) specified in the
      signature_algorithms extension is removed both implicitly by not
      sending the extension and explicitly by removing this requirement.

   o  The encrypt_then_mac extension, since the use of encrypt-then-MAC
      is implicit in TLS-LTS.

   o  The extended_master_secret extension, since the use of extended
      Master Secret is implicit in TLS-LTS.

   TLS-LTS implementations that wish to communicate only with other TLS-
   LTS implementations MAY omit these extensions, with the presence of
   tls_lts implying signature_algorithms = RSA/ECDSA + SHA-256,
   elliptic_curves = P256, ec_point_formats = uncompressed,
   encrypt_then_mac = TRUE, and extended_master_secret = TRUE.
   Implementations that wish to communicate with legacy implementations
   and wish to use the capabilities described by the extensions outside
   of TLS-LTS MUST include these extensions in their Client Hello.
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   Conversely, although all of the above extensions are implied by TLS-
   LTS, if a client requests TLS-LTS in its Client Hello then it doesn't
   expect to see them returned in the Server Hello if TLS-LTS is
   indicated.  The handling of extensions during the Client/Server Hello
   exchange is therefore as follows:

   +-------------------------+--------------------+--------------------+
   |       Client Hello      |   Server Chooses   |    Server Hello    |
   +-------------------------+--------------------+--------------------+
   |         TLS-LTS         |      TLS-LTS       |      TLS-LTS       |
   |                         |                    |                    |
   |         TLS-LTS,        |      TLS-LTS       |      TLS-LTS       |
   |    EMS/EncThenMAC/...   |                    |                    |
   |                         |                    |                    |
   |         TLS-LTS,        | EMS/EncThenMAC/... | EMS/EncThenMAC/... |
   |    EMS/EncThenMAC/...   |                    |                    |
   +-------------------------+--------------------+--------------------+

                    Table 1: Use of TLS-LTS Extensions

   TLS-LTS capabilities are indicated purely by the presence of the
   tls_lts extension, not the plethora of other extensions that it's
   comprised of.  This allows an implementation that needs to be
   backwards-compatible with legacy implementations to specify
   individual options for use with non-TLS-LTS implementations via a
   range of extensions, and specify the use of TLS-LTS via the tls_lts
   extension.

3.6.  Downgrade Attack Prevention

   The use of the TLS-LTS improvements relies on an attacker not being
   able to delete the TLS-LTS extension from the Client/Server Hello
   messages.  This is achieved through the SCSV [7] signalling
   mechanism.

   [If SCSV is used then insert required boilerplate here, however this
   will also require banning weak cipher suites like export ones, which
   is a bit interesting in that it'll required banning something that in
   theory has already been extinct for 15 years.  A better option is to
   refer to Karthikeyan Bhargavan's rather clever idea on anti-downgrade
   signalling, which is a more reliable mechanism than SCSV].

3.7.  Rationale

   This section addresses the question of why this document specifies a
   long-term support profile for TLS 1.2 rather than going to TLS 1.3.
   The reason for this is twofold.  Firstly, we know that TLS, which has
   become more or less the universal substrate for secure communications



Gutmann                  Expires April 26, 2017                [Page 11]



Internet-Draft                   TLS-LTS                    October 2016

   over the Internet, has extremely long deployment times.  Much of this
   information is anecdotal (although there are a large number of these
   anecdotes), however one survey carried out in 2015 and 2016
   illustrates the scope of the problem.  This study found that the most
   frequently-encountered protocol (in terms of use in observed Internet
   connections) was the fifteen-year-old TLS 1.0, with the next most
   common, TLS 1.2, lagging well behind [21].  This was on the public
   Internet, in the non-public arena (where much of the anecdotal
   evidence comes from, since it's not possible to perform a public
   scan) the most common protocol appears to be TLS 1.0, with
   significant numbers of systems still using the twenty-year-old SSLv3.

   Given that TLS 1.3 is almost a completely new protocol compared to
   the incremental changes from SSLv3 to TLS 1.2, and that the most
   widely-encountered protocol version from that branch is more than
   fifteen years old, it's likely that TLS 1.3 deployment outside of
   constantly-updated web browsers may take one to two decades, or may
   never happen at all given that a move to TLS 1.2 is an incremental
   change from TLS 1.0 while TLS 1.3 requires the implementation of a
   new protocol.  This document takes the position that if a protocol
   from the TLS 1.0 - 1.2 branch will remain in use for decades to come,
   it should be the best form of TLS 1.2 available.

   The second reason why this document exists has already been mentioned
   above, that while TLS 1.0 - 1.2 are all from the same fairly similar
   family, TLS 1.3 is an almost entirely new protocol.  As such, it
   rolls back the 20 years of experience that we have with all the
   things that can go wrong in TLS and starts again from scratch with a
   new protocol based on bleeding-edge/experimental ideas, mechanisms,
   and algorithms.  When SSLv3 was introduced, it used ideas that were
   10-20 years old (DH, RSA, DES, and so on were all long-established
   algorithms, only SHA-1 was relatively new).  These were mature
   algorithms with large amounts of research published on them, and yet
   we're still fixing issues with them 20 years later (the DH algorithm
   was published in 1976, SSLv3 dates from 1996, and the latest DH
   issue, Logjam, dates from 2015).  With TLS 1.3 we currently have zero
   implementation and deployment experience, which means that we're
   likely to have another 10-20 years of patching holes and fixing
   protocol and implementation problems ahead of us.

   It's for this reason that this specification uses the decades of
   experience we have with SSL and TLS and the huge deployed base of TLS
   1.0 - 1.2 implementations to update TLS 1.2 into a known-good form
   that leverages about 15 years of analysis and 20 years of
   implementation experience, rather than betting on what's almost an
   entirely new protocol based on bleeding-edge/experimental ideas,
   mechanisms, and algorithms, and hoping that it can be deployed in
   less than a decade- or multi-decade time frame.  The intent is to
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   create a long-term stable protocol specification that can be deployed
   once as a minor update to existing TLS implementations, not deployed
   as a new from-scratch implementation and then patched, updated, and
   fixed constantly for the lifetime of the equipment that it's used
   with.

4.  Security Considerations

   This document defines a minimal, known-good subset of TLS 1.2 that
   attempts to address all known weaknesses in the protocol, mostly by
   simply removing known-insecure mechanisms but also by updating the
   ones that remain to take advantage of many years of security research
   and implementation experience.  As an example of its efficacy,
   several attacks on standard TLS that emerged after this document was
   first published were countered by the mechanisms specified here, with
   no updates or changes to TLS-LTS implementations being necessary to
   deal with them.

5.  IANA Considerations

   IANA has added the extension code point TBD (0xTBD) for the tls_lts
   extension to the TLS ExtensionType values registry as specified in
   TLS [2].
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