
TLS Working Group P. Gutmann
Internet-Draft University of Auckland
Intended status: Standards Track October 23, 2016
Expires: April 26, 2017

TLS 1.2 Update for Long-term Support
draft-gutmann-tls-lts-06

Abstract

 This document specifies an update of TLS 1.2 for long-term support,
 one that incoporates as far as possible what's already deployed for
 TLS 1.2 but with the security holes and bugs fixed. This represents
 a stable, known-good version that can be deployed to systems that
 can't roll out ongoing patches and updates every time a new attack on
 standard TLS appears.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Gutmann Expires April 26, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS-LTS October 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Conventions Used in This Document 3

2. TLS-LTS Negotiation . 3
3. TLS-LTS . 4
3.1. Encryption/Authentication 4
3.2. Message Formats . 6
3.3. Miscellaneous . 7
3.4. Implementation Issues 7
3.5. Use of TLS Extensions 10
3.6. Downgrade Attack Prevention 11
3.7. Rationale . 11

4. Security Considerations 13
5. IANA Considerations . 13
6. Acknowledgements . 13
7. References . 13
7.1. Normative References 13
7.2. Informative References 14

 Author's Address . 15

1. Introduction

 TLS [2] and DTLS [5], by nature of their enormous complexity and the
 inclusion of large amounts of legacy material, contain numerous
 security issues that have been known to be a problem for many years
 and that keep coming up again and again in attacks (there are too
 many of these to provide references for in the standard manner, and
 in any case more will have been published by the time you read this).
 This document presents a minimal, known-good set of mechanisms that
 defend against all currently-known weaknesses in TLS, that would have
 defended against them ten years ago, and that have a good chance of
 defending against them ten years from now, providing the long-term
 stability that's required by many systems in the field. This long-
 term stability is particularly important in light of the fact that
 widespread mainstream adoption of new versions of TLS has been shown
 to take 15 years or more [21].

 In particular, this document takes inspiration from numerous
 published analyses of TLS [11] [12] [13] [14] [15] [16] [17] [18]
 [19] [20] along with two decades of implementation and deployment
 experience to select a standard interoperable feature set that
 provides the best chance of long-term stability and resistance to
 attack. This is intended for use in systems that need to run in a
 fixed configuration for a long period of time after they're deployed,

Gutmann Expires April 26, 2017 [Page 2]

Internet-Draft TLS-LTS October 2016

 with little or no ability to roll out patches every month or two when
 the next attack on TLS is published.

 Unlike the full TLS 1.2, TLS-LTS is not meant to be all things to all
 people. It represents a fixed, safe solution that's appropriate for
 users who require a simple, secure, and long-term stable means of
 getting data from A to B. This represents the majority of the non-
 browser uses of TLS, particularly for embedded systems that are most
 in need of a long-term stable protocol definition.

 [Note: There is currently a TLS 1.2 LTS test server running
 at https://82.94.251.205:8443. This uses the extension
 value 26 until a value is permanently assigned for LTS
 use. To connect, your implementation should accept
 whatever certificate is presented by the server or use PSK
 with name = "plc", password = "test". For embedded
 systems testing, note that the server talks HTTP and not
 DNP3 or ICCP, so you'll get an error if you try and connect
 with a PLC control centre that expects one of those
 protocols].

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [1].

2. TLS-LTS Negotiation

 The use of TLS-LTS is negotiated via TLS/DTLS extensions as defined
 in TLS Extensions [4]. On connecting, the client includes the
 tls_lts extension in its Client Hello if it wishes to use TLS-LTS.
 If the server is capable of meeting this requirement, it responds
 with a tls_lts extension in its Server Hello. The "extension_type"
 value for this extension MUST be TBD (0xTBD) and the "extension_data"
 field of this extension is empty. The client and server MUST NOT use
 TLS-LTS unless both sides have successfully exchanged tls_lts
 extensions.

 In the case of session resumption, once TLS-LTS has been negotiated
 implementations MUST retain the use of TLS-LTS across all subsequent
 resumed sessions. In other words if TLS-LTS is enabled for the
 current session then the resumed session MUST also use TLS-LTS. If a
 client attempts to resume a TLS-LTS session as a non-TLS-LTS session
 then the server MUST abort the handshake.

https://82.94.251.205:8443

Gutmann Expires April 26, 2017 [Page 3]

Internet-Draft TLS-LTS October 2016

3. TLS-LTS

 TLS-LTS specifies a few simple restrictions on the huge range of TLS
 suites, options and parameters to limit the protocol to a known-good
 subset, as well as making minor corrections to prevent or at least
 limit various attacks.

3.1. Encryption/Authentication

 TLS-LTS restricts the more or less unlimited TLS 1.2 with its more
 than three hundred cipher suites, over forty ECC parameter sets, and
 zoo of supplementary algorithms, parameters, and parameter formats,
 to just two, one traditional one with DHE + AES-CBC + HMAC-SHA-256 +
 RSA-SHA-256/PSK and one ECC one with ECDHE-P256 + AES-GCM + HMAC-
 SHA-256 + ECDSA-P256-SHA-256/PSK with uncompressed points:

 o TLS-LTS implementations MUST support
 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
 TLS_DHE_PSK_WITH_AES_128_CBC_SHA256,
 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 and
 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256. For these suites, SHA-256
 is used in all locations in the protocol where a hash function is
 required, specifically in the PRF and per-packet MAC calculations
 (as indicated by the _SHA256 in the suite) and also in the client
 and server signatures in the CertificateVerify and
 ServerKeyExchange messages.

 [Note: There's a gap in the suites with
 TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 missing, there's
 currently a draft in progress to fill the gap,

draft-mattsson-tls-ecdhe-psk-aead, which can be used to
 replace the placeholder TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256].

 TLS-LTS only permits encrypt-then-MAC, not MAC-then-encrypt, fixing
 20 years of attacks on this mechanism:

 o TLS-LTS implementations MUST implement encrypt-then-MAC [6] rather
 than the earlier MAC-then-encrypt.

 TLS-LTS adds a hash of all messages leading up to the calculation of
 the master secret into the master secret to protect against the use
 of manipulated handshake parameters:

 o TLS-LTS implementations MUST implement extended master secret [8]
 to protect handshake and crypto parameters.

 TLS-LTS drops the MAC truncation in the Finished message, which
 serves no obvious purpose and leads to security concerns:

https://datatracker.ietf.org/doc/html/draft-mattsson-tls-ecdhe-psk-aead

Gutmann Expires April 26, 2017 [Page 4]

Internet-Draft TLS-LTS October 2016

 o The length of verify_data (verify_data_length) in the Finished
 message MUST be equal to the length of the output of the hash
 function used for the PRF. For the mandatory TLS-LTS cipher
 suites this hash is always SHA-256, so the value of
 verify_data_length will be 32 bytes. For other suites, the size
 depends on the hash algorithm associated with the suite. For
 example for SHA-512 it would be 64 bytes.

 TLS-LTS signs a hash of the client and server hello messages for the
 ServerKeyExchange rather than signing just the client and server
 nonces, avoiding various attacks that build on the fact that standard
 TLS doesn't authenticate previously-exchanged parameters when the
 ServerKeyExchange message is sent:

 o When generating the ServerKeyExchange signature, the signed_params
 value is updated to replace the client_random and server_random
 with a hash of the full Client Hello and Server Hello using the
 hash algorithm for the chosen cipher suite. In other words the
 value being signed is changed from:

 digitally-signed struct {
 opaque client_random[32];
 opaque server_random[32];
 ServerDHParams params;
 } signed_params;

 to:

 digitally-signed struct {
 opaque client_server_hello_hash;
 ServerDHParams params;
 } signed_params;

 For the mandatory TLS-LTS cipher suites the hash algorithm is
 always SHA-256, so the length of the client_server_hello_hash is
 32 bytes. For other suites, the size depends on the hash
 algorithm associated with the suite. For example for SHA-512 it
 would be 64 bytes.

 (In terms of side-channel attack prevention, it would be preferable
 to include a non-public quantity into the data being signed since
 this reduces the scope of attack from a passive to an active one,
 with the attacker needing to initiate their own handshakes in order
 to carry out their attack. However no shared secret value has been
 established at this point so only public data can be signed).

 The choice of key sizes is something that will never get any
 consensus because there are so many different worldviews involved.

Gutmann Expires April 26, 2017 [Page 5]

Internet-Draft TLS-LTS October 2016

 TLS-LTS makes only general recommendations on best practices and
 leaves the choice of which key sizes are appropriate to implementers
 and policy makers:

 o Implementations SHOULD choose public-key algorithm key sizes that
 are appropriate for the situation, weighted by the value of the
 information being protected, the probability of attack and
 capabilities of the attacker(s), any relevant security policies,
 and the ability of the system running the TLS implementation to
 deal with the computational load of large keys. For example a
 SCADA system being used to switch a ventilator on and off doesn't
 require anywhere near the keysize-based security of a system used
 to transfer classified data.

 One way to avoid having to use very large public keys is to switch
 the keys periodically. For example for DH keys this can be done by
 regenerating DH parameters in a background thread and rolling them
 over from time to time. If this isn't possible, an alternative
 option is to pre-generate a selection of DH parameters and choose one
 set at random for each new handshake, or again roll them over from
 time to time from the pre-generated selection, so that an attacker
 has to attack multiple sets of parameters rather than just one.

3.2. Message Formats

 TLS-LTS sends the full set of DH parameters, X9.42/FIPS 186 style,
 not p and g only, PKCS #3 style. This allows verification of the DH
 parameters, which the current format doesn't allow:

 o TLS-LTS implementations MUST send the DH domain parameters as { p,
 q, g } rather than { p, g }. This makes the ServerDHParams field:

 struct {
 opaque dh_p<1..2^16-1>;
 opaque dh_q<1..2^16-1>;
 opaque dh_g<1..2^16-1>;
 opaque dh_Ys<1..2^16-1>;
 } ServerDHParams; /* Ephemeral DH parameters */

 Note that this uses the standard DLP parameter order { p, q, g },
 not the erroneous { p, g, q } order from the X9.42 DH
 specification.
 o The domain parameters MUST either be compared for equivalence to a
 set of known-good parameters provided by an appropriate standards
 body or they MUST be verified as specified in FIPS 186 [9].
 Examples of the former may be found in RFC 3526 [22].

https://datatracker.ietf.org/doc/html/rfc3526

Gutmann Expires April 26, 2017 [Page 6]

Internet-Draft TLS-LTS October 2016

 Note that while other sources of DH parameters exist, these should be
 treated with a great deal of caution. For example RFC 5114 [23]
 provides no source for the values used, leading to suspicions that
 they may be trapdoored, and RFC 7919 [24] mandates fallback to RSA if
 the one specific DH parameter set for each key size specified in the
 standard isn't automatically chosen by both client and server.

 Industry standards bodies may consider restricting domain parameters
 to only allow known-good values such as those referenced in the above
 standard, or ones generated by the standards body. This makes
 checking easier, but has the downside that restricting the choice to
 a small set of values makes them a more tempting target for well-
 resourced attackers. In addition it requires that the values be
 carefully generated, and the generation process well-documented, to
 produce a so-called NUMS (Nothing Up My Sleeve) number that avoids
 any suspicion of it having undesirable hidden properties (the
 standard mentioned above, RFC 5114 [23], does not contain NUMS
 values).

 In any case signing the Client/Server Hello messages and the use of
 Extended Master Secret makes active attacks that manipulate the
 domain parameters on the fly far more difficult than they would be
 for standard TLS.

3.3. Miscellaneous

 TLS-LTS drops the need to send the current time in the random data,
 which serves no obvious purpose and leaks the client/server's time to
 attackers:

 o TLS-LTS implementations SHOULD NOT include the time in the Client/
 Server Hello random data. The data SHOULD consist entirely of
 random bytes.

 [Note: A proposed downgrade-attack prevention mechanism
 may make use of these bytes, see section 3.6].

 TLS-LTS drops compression and rehandshake, which have led to a number
 of attacks:

 o TLS-LTS implementations MUST NOT implement compression or
 rehandshake.

3.4. Implementation Issues

 TLS-LTS requires that RSA signature verification be done as encode-
 then-compare, which fixes all known padding-manipulation issues:

https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc7919
https://datatracker.ietf.org/doc/html/rfc5114

Gutmann Expires April 26, 2017 [Page 7]

Internet-Draft TLS-LTS October 2016

 o TLS-LTS implementations MUST verify RSA signatures by using
 encode-then-compare as described in PKCS #1 [10], meaning that
 they encode the expected signature result and perform a constant-
 time compare against the recovered signature data.

 The constant-time compare isn't strictly necessary for security in
 this case, but it's generally good hygiene and is explicitly required
 when comparing secret data values:

 o All operations on crypto- or security-related values SHOULD be
 performed in a manner that's as timing-independent as possible.
 For example compares of MAC values such as those used in the
 Finished message and data packets SHOULD be performed using a
 constant-time memcmp() or equivalent so as not to leak timing data
 to an attacker.

 TLS-LTS recommends that implementations take measures to protect
 against side-channel attacks:

 o Implementations SHOULD take steps to protect against timing
 attacks, for example by using constant-time implementations of
 algorithms and by using blinding for non-randomised algorithms
 like RSA.

 o Implementations SHOULD take steps to protect against fault
 attacks, in particular for the extremely brittle ECC algorithms
 whose typical failure mode if a fault occurs is to leak the
 private key. One simple countermeasure is to use the public key
 to verify any signatures generated before they are sent over the
 wire.

 Authentication mechanisms for protocols run over TLS typically have
 separate authentication procedures for the tunnelled protocol and the
 encapsulating TLS session. The leads to an issue known as the
 channel binding problem in which the tunnelled protocol isn't tied to
 the encapsulating TLS session and can be manipulated by an attacker
 once it passes the TLS endpoint. Channel binding ties the
 cryptographic protection offered by TLS to the protocol that's being
 run over the TLS tunnel:

 o Implementations that require authentication for protocols run over
 TLS SHOULD consider using channel bindings to tie the application-
 level protocol to the TLS session, specifically the tls_unique
 binding, which makes use of the contents of the first TLS Finished
 message sent in an exchange to bind to the tunneled application-
 level protocol [3].

Gutmann Expires April 26, 2017 [Page 8]

Internet-Draft TLS-LTS October 2016

 The original description of the tls_unique binding contains a long
 note detailing problems that arise due to rehandshake issues and how
 to deal with them. Since TLS-LTS doesn't allow rehandshakes, these
 problems don't exist, so no special handling is required.

 The TLS protocol has historically and somewhat arbitrarily been
 described as a state machine, which has led to numerous
 implementation flaws when state transitions weren't very carefully
 considered and enforced [20]. A safer and more logical means of
 representing the protocol is as a ladder diagram, which hardcodes the
 transitions into the diagram and removes the need to juggle a large
 amount of state:

 o Implementations SHOULD consider representing/implementing the
 protocol as a ladder diagram rather than a state machine, since
 the state-diagram form has led to numerous implementation errors
 in the past which are avoided through the use of the ladder
 diagram form.

 TLS-LTS mandates the use of cipher suites that provide so-called
 Perfect Forward Secrecy (PFS), in which an attacker can't record
 sessions and decrypt them at a later date. The PFS property is
 however impacted by the TLS session cache and session tickets, which
 allow an attacker to decrypt old sessions. The session cache is
 relatively short-term and only allows decryption while a session is
 held in the cache, but the use of long-term keys in combination with
 session tickets means that an attacker can decrypt any session used
 with that key, defeating PFS:

 o Implementations SHOULD consider the impact of using session caches
 and session tickets on PFS. Security issues in this area can be
 mitigated by using short session cache expiry times, and avoiding
 session tickets or changing the key used to encrypt them
 periodically.

 Another form of cacheing that can affect security is the reuse of the
 supposedly-ephemeral value y = g^x mod p. Instead of computing a
 fresh value for each session, some servers compute the y value once
 and then reuse it across multiple TLS sessions. If this is done then
 an attacker can compute the discrete log value from one TLS session
 and reuse it to attack later sessions:

 o Implementations SHOULD consider the impact of reusing the y = g^x
 mod p value across multiple TLS sessions, and avoid this reuse if
 possible. Where the reuse of y is unavoidable, it SHOULD be
 refreshed as often as is feasible. One way to do this is to
 compute it as a background task so that a fresh value is available
 when required.

Gutmann Expires April 26, 2017 [Page 9]

Internet-Draft TLS-LTS October 2016

 TLS-LTS protects its handshake by including cryptographic integrity
 checks of preceding messages in subsequent messages, defeating
 attacks that build on the ability to manipulate handshake messages to
 compromise security. What's authenticated at various stages is a log
 of preceding messages in the exchange. The simplest way to implement
 this, if the underlying API supports it, is to keep a running hash of
 all messages (which will be required for the final Finished
 computation) and peel off a copy of the current hash state to
 generate the hash value required at various stages during the
 handshake. If only the traditional { Begin, [Update, Update, ...],
 Final } hash API interface is available then several parallel chains
 of hashing will need to be run in order to terminate the hashing at
 different points during the handshake.

3.5. Use of TLS Extensions

 TLS-LTS is inspired by Grigg's Law that "there is only one mode and
 that is secure". Because it mandates the use of known-good
 mechanisms, much of the signalling and negotiation that's required in
 standard TLS to reach the same state becomes redundant. In
 particular, TLS-LTS removes the need to use the following extensions:

 o The signature_algorithms extension, since the use of SHA-256 with
 RSA or ECDSA is implicit in TLS-LTS.

 o The elliptic_curves and ec_point_formats extensions, since the use
 of P256 with uncompressed points is implicit in TLS-LTS.

 o The universally-ignored requirement that all certificates provided
 by the server must be signed by the algorithm(s) specified in the
 signature_algorithms extension is removed both implicitly by not
 sending the extension and explicitly by removing this requirement.

 o The encrypt_then_mac extension, since the use of encrypt-then-MAC
 is implicit in TLS-LTS.

 o The extended_master_secret extension, since the use of extended
 Master Secret is implicit in TLS-LTS.

 TLS-LTS implementations that wish to communicate only with other TLS-
 LTS implementations MAY omit these extensions, with the presence of
 tls_lts implying signature_algorithms = RSA/ECDSA + SHA-256,
 elliptic_curves = P256, ec_point_formats = uncompressed,
 encrypt_then_mac = TRUE, and extended_master_secret = TRUE.
 Implementations that wish to communicate with legacy implementations
 and wish to use the capabilities described by the extensions outside
 of TLS-LTS MUST include these extensions in their Client Hello.

Gutmann Expires April 26, 2017 [Page 10]

Internet-Draft TLS-LTS October 2016

 Conversely, although all of the above extensions are implied by TLS-
 LTS, if a client requests TLS-LTS in its Client Hello then it doesn't
 expect to see them returned in the Server Hello if TLS-LTS is
 indicated. The handling of extensions during the Client/Server Hello
 exchange is therefore as follows:

 +-------------------------+--------------------+--------------------+
 | Client Hello | Server Chooses | Server Hello |
 +-------------------------+--------------------+--------------------+
TLS-LTS	TLS-LTS	TLS-LTS
TLS-LTS,	TLS-LTS	TLS-LTS
EMS/EncThenMAC/...		
TLS-LTS,	EMS/EncThenMAC/...	EMS/EncThenMAC/...
EMS/EncThenMAC/...		
 +-------------------------+--------------------+--------------------+

 Table 1: Use of TLS-LTS Extensions

 TLS-LTS capabilities are indicated purely by the presence of the
 tls_lts extension, not the plethora of other extensions that it's
 comprised of. This allows an implementation that needs to be
 backwards-compatible with legacy implementations to specify
 individual options for use with non-TLS-LTS implementations via a
 range of extensions, and specify the use of TLS-LTS via the tls_lts
 extension.

3.6. Downgrade Attack Prevention

 The use of the TLS-LTS improvements relies on an attacker not being
 able to delete the TLS-LTS extension from the Client/Server Hello
 messages. This is achieved through the SCSV [7] signalling
 mechanism.

 [If SCSV is used then insert required boilerplate here, however this
 will also require banning weak cipher suites like export ones, which
 is a bit interesting in that it'll required banning something that in
 theory has already been extinct for 15 years. A better option is to
 refer to Karthikeyan Bhargavan's rather clever idea on anti-downgrade
 signalling, which is a more reliable mechanism than SCSV].

3.7. Rationale

 This section addresses the question of why this document specifies a
 long-term support profile for TLS 1.2 rather than going to TLS 1.3.
 The reason for this is twofold. Firstly, we know that TLS, which has
 become more or less the universal substrate for secure communications

Gutmann Expires April 26, 2017 [Page 11]

Internet-Draft TLS-LTS October 2016

 over the Internet, has extremely long deployment times. Much of this
 information is anecdotal (although there are a large number of these
 anecdotes), however one survey carried out in 2015 and 2016
 illustrates the scope of the problem. This study found that the most
 frequently-encountered protocol (in terms of use in observed Internet
 connections) was the fifteen-year-old TLS 1.0, with the next most
 common, TLS 1.2, lagging well behind [21]. This was on the public
 Internet, in the non-public arena (where much of the anecdotal
 evidence comes from, since it's not possible to perform a public
 scan) the most common protocol appears to be TLS 1.0, with
 significant numbers of systems still using the twenty-year-old SSLv3.

 Given that TLS 1.3 is almost a completely new protocol compared to
 the incremental changes from SSLv3 to TLS 1.2, and that the most
 widely-encountered protocol version from that branch is more than
 fifteen years old, it's likely that TLS 1.3 deployment outside of
 constantly-updated web browsers may take one to two decades, or may
 never happen at all given that a move to TLS 1.2 is an incremental
 change from TLS 1.0 while TLS 1.3 requires the implementation of a
 new protocol. This document takes the position that if a protocol
 from the TLS 1.0 - 1.2 branch will remain in use for decades to come,
 it should be the best form of TLS 1.2 available.

 The second reason why this document exists has already been mentioned
 above, that while TLS 1.0 - 1.2 are all from the same fairly similar
 family, TLS 1.3 is an almost entirely new protocol. As such, it
 rolls back the 20 years of experience that we have with all the
 things that can go wrong in TLS and starts again from scratch with a
 new protocol based on bleeding-edge/experimental ideas, mechanisms,
 and algorithms. When SSLv3 was introduced, it used ideas that were
 10-20 years old (DH, RSA, DES, and so on were all long-established
 algorithms, only SHA-1 was relatively new). These were mature
 algorithms with large amounts of research published on them, and yet
 we're still fixing issues with them 20 years later (the DH algorithm
 was published in 1976, SSLv3 dates from 1996, and the latest DH
 issue, Logjam, dates from 2015). With TLS 1.3 we currently have zero
 implementation and deployment experience, which means that we're
 likely to have another 10-20 years of patching holes and fixing
 protocol and implementation problems ahead of us.

 It's for this reason that this specification uses the decades of
 experience we have with SSL and TLS and the huge deployed base of TLS
 1.0 - 1.2 implementations to update TLS 1.2 into a known-good form
 that leverages about 15 years of analysis and 20 years of
 implementation experience, rather than betting on what's almost an
 entirely new protocol based on bleeding-edge/experimental ideas,
 mechanisms, and algorithms, and hoping that it can be deployed in
 less than a decade- or multi-decade time frame. The intent is to

Gutmann Expires April 26, 2017 [Page 12]

Internet-Draft TLS-LTS October 2016

 create a long-term stable protocol specification that can be deployed
 once as a minor update to existing TLS implementations, not deployed
 as a new from-scratch implementation and then patched, updated, and
 fixed constantly for the lifetime of the equipment that it's used
 with.

4. Security Considerations

 This document defines a minimal, known-good subset of TLS 1.2 that
 attempts to address all known weaknesses in the protocol, mostly by
 simply removing known-insecure mechanisms but also by updating the
 ones that remain to take advantage of many years of security research
 and implementation experience. As an example of its efficacy,
 several attacks on standard TLS that emerged after this document was
 first published were countered by the mechanisms specified here, with
 no updates or changes to TLS-LTS implementations being necessary to
 deal with them.

5. IANA Considerations

 IANA has added the extension code point TBD (0xTBD) for the tls_lts
 extension to the TLS ExtensionType values registry as specified in
 TLS [2].

6. Acknowledgements

 The author would like to thank the members of the TLS mailing list
 and contributors from various embedded systems vendors for their
 feedback on this document.

7. References

7.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [3] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [4] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions", RFC 6066, January 2011.

 [5] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6347

Gutmann Expires April 26, 2017 [Page 13]

Internet-Draft TLS-LTS October 2016

 [6] Gutmann, P., "Encrypt-then-MAC for Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7366, September 2014.

 [7] Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", RFC 7507, April 2015.

 [8] Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley,
 A., and M. Ray, "Transport Layer Security (TLS) Session
 Hash and Extended Master Secret Extension", RFC 7627,
 September 2015.

 [9] "Digital Signature Standard (DSS)", FIPS 186, July 2013.

 [10] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

7.2. Informative References

 [11] Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A.,
 Strub, P., and S. Zanella-Beguelin, "Proving the TLS
 handshake secure (as is)", Springer-Verlag LNCS 8617,
 August 2014.

 [12] Brzuska, C., Fischlin, M., Smart, N., Warinschi, B., and
 S. Williams, "Less is more: relaxed yet compatible
 security notions for key exchange", IACR ePrint
 archive 2012/242, April 2012.

 [13] Dowling, B. and D. Stebila, "Modelling ciphersuite and
 version negotiation in the TLS protocol", Springer-Verlag
 LNCS 9144, June 2015.

 [14] Firing, T., "Analysis of the Transport Layer Security
 protocol", June 2010.

 [15] Gajek, S., Manulis, M., Pereira, O., Sadeghi, A., and J.
 Schwenk, "Universally Composable Security Analysis of
 TLS", Springer-Verlag LNCS 5324, November 2008.

 [16] Jager, T., Kohlar, F., Schaege, S., and J. Schwenk, "On
 the security of TLS-DHE in the standard model", Springer-
 Verlag LNCS 7417, August 2012.

 [17] Giesen, F., Kohlar, F., and D. Stebila, "On the security
 of TLS renegotiation", ACM CCS 2013, November 2013.

https://datatracker.ietf.org/doc/html/rfc7366
https://datatracker.ietf.org/doc/html/rfc7507
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc3447

Gutmann Expires April 26, 2017 [Page 14]

Internet-Draft TLS-LTS October 2016

 [18] Meyer, C. and J. Schwenk, "Lessons Learned From Previous
 SSL/TLS Attacks - A Brief Chronology Of Attacks And
 Weaknesses", Cryptology ePrint Archive 2013/049, January
 2013.

 [19] Krawczyk, H., Paterson, K., and H. Wee, "On the security
 of the TLS protocol", Springer-Verlag LNCS 8042, August
 2013.

 [20] Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A.,
 Fournet, C., Kohlweiss, M., Pironti, A., Strub, P., and J.
 Zinzindohoue, "A Messy State of the Union: Taming the
 Composite State Machines of TLS", IEEE Symposium on
 Security and Privacy 2015, May 2015.

 [21] Holz, R., Amann, J., Mehani, O., Wachs, M., and M. Kaafar,
 "TLS in the Wild: An Internet-Wide Analysis of TLS-Based
 Protocols for Electronic Communication", Network and
 Distributed System Security Symposium 2016, February 2016.

 [22] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)",

RFC 3526, May 2003.

 [23] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
 Groups for Use with IETF Standards", RFC 5114, January
 2008.

 [24] Gillmor, D., "Negotiated Finite Field Diffie-Hellman
 Ephemeral Parameters for Transport Layer Security (TLS)",

RFC 7919, August 2016.

Author's Address

 Peter Gutmann
 University of Auckland
 Department of Computer Science
 University of Auckland
 New Zealand

 Email: pgut001@cs.auckland.ac.nz

https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc7919

Gutmann Expires April 26, 2017 [Page 15]

