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1. Introduction

This document describes AuCPace which is an augmented password-

authenticated key-establishment (PAKE) protocol for two parties.

Both sides the client B and the server A establish a high-entropy

session key SK, based on a secret (password) which may be of low

entropy for the client B and a password-verifier stored on the

server. The protocol is designed such that disclosing the secret to

offline dictionary attacks is prevented. Upon server compromise

(stealing A's database), the adversary must first succeed with a

dictionary search for the clear-text password before being able to

impersonate the client.¶



1.1. Outcome of the CFRG PAKE selection process

AuCPace was one of the two finalists of the CFRG PAKE selection

process for the augmented pake protocol use-case in which ultimately

OPAQUE was selected as general recommendation of the CFRG working

group. OPAQUE and strong AuCPace share the security model and

security guarantees but come with specific advantages and drawbacks.

The key advantage of OPAQUE in comparison with AuCPace is that one

communication round less than AuCPace is required, allowing for

easier integration into TLS 1.3. Applications where the number of

communication round-trips are considered critical are encouraged to

consider OPAQUE.

The key advantages of AuCPace in comparison are much smaller

password verifiers and the possibility to run AuCPace in conjunction

with legacy-style password dictionaries that store the conventional

triples of (username, salt, password hash). Moreover AuCPace

provides a certain level of resilience with respect to adversaries

with access to large-scale quantum computers ("quantum annoying

property") which OPAQUE does not provide.

1.2. Key design objectives for AuCPace

The AuCPace protocol was specifically tailored for constrained

server devices. As such, the computationally complex password hash

operation is refered to the clients. AuCPace is also designed for

enabling a smooth migration of legacy user credential databases.

AuCPace is designed to be compatible with any group of both prime-

and non-prime order and comes with a security proof providing

composability guarantees. AuCPace uses CPace as a building block

which is described in a separate internet draft document.

AuCPace moreover designed to provide flexibility and a smooth

migration process for applications that today don't use a PAKE

protocol for authentication but work with conventional password

verifier databases instead.

2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.
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3. Definitions for AuCPace

3.1. Setup

Let C be a group in which there exists a subgroup of prime order p

where the computational simultaneous Diffie-Hellman (SDH) problem is

hard. C has order p*c where p is a large prime; c will be called the

cofactor. Let I be the unit element in C, e.g., the point at

infinity in if C is an elliptic curve group. We denote the

operations in the group using addition and multiplication operators,

e.g. P + (P + P) = P + 2 * P = 3 * P. We refer to a sequence of n

additions of an element in P as scalar multiplication by n. With B

we denote a generator of the prime-order subgroup in C that we call

the base point.

With F we denote a field that may be associated with C, e.g. the

prime base field used for representing the coordinates of points on

an elliptic curve.

We assume that for any element P in C there is a representation

modulo negation, encode_group_element_mod_neg(P) as a byte string

such that for any Q in C with Q != P and Q != -P,

encode_group_element_mod_neg(P) != encode_group_element_mod_neg(Q).

It is recommended that encodings of the elements P and -P share the

same result string. Common choices would be a fixed (per-group)

length encoding of the x-coordinate of points on an elliptic curve C

or its twist C' in Weierstrass form, e.g. according to [IEEE1363] in

case of short Weierstrass form curves. For curves in Montgomery form

correspondingly the u-coordinate would be encoded, as specified,

e.g., by the encodeUCoordinate function from [RFC7748].

With J we denote the group modulo negation associated to C. Note

that in J the scalar multiplication operation is well defined since

scalar_multiply(P,s) == -scalar_multiply(-P,s) while arbitrary

additions of group elements are no longer available.

With J' be denote a second group modulo negation that might share

the byte-string encoding function encode_group_element_mod_neg with

J such for a given byte string either an element in J or J' is

encoded. If the x-coordinate of an elliptic curve point group is

used for the encoding, J' would commonly be corresponding to the

group of points on the elliptic curve's quadratic twist.

Correspondingly, with p' we denote the largest prime factor of the

order of J' and its cofactor with c'.

Let scalar_cofactor_clearing(s) be a cofactor clearing function

taking an integer input argument and returning an integer as result.

For any s, scalar_cofactor_clearing(s) is REQUIRED to be of the form

c * s1. I.e. it MUST return a multiple of the cofactor. An example
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of such a function may be the cofactor clearing and clamping

functions decodeScalar25519 and decodeScalar448 as used in the

X25519 and X448 protocols definitions of [RFC7748]. In case of

prime-order groups with c == 1, it is RECOMMENDED to use the

identity function with scalar_cofactor_clearing(s) = s.

Let scalar_mult_cc(P,s) be a joint "scalar multiplication and

cofactor clearing" function of an integer s and an string-encoded

value P, where P could represent an element either on J or J'. If P

is an element in J or J', the scalar_mult_cc function returns a

string encoding of an element in J or J' respectively, such that the

result of scalar_mult_cc(P,s) encodes (scalar_cofactor_clearing(s) *

P).

Let si = invert_scalar_mult_cc(P,s) be a function such that for any

point Z in the prime-order subgroup of J,

invert_scalar_mult_cc(scalar_mult_cc(Q,s),s) == Q. A typical

implemention will involve calculating the inverse in the prime field

mod p on the scalar generated by scalar_cofactor_clearing(s).

Let scalar_mult_ccv(P,s) be a "scalar multiplication cofactor

clearing and verify" function of an integer s and an encoding of a

group element P. Unlike scalar_mult_cc, scalar_mult_ccv additionally

carries out a verification that checks that the computational

simultaneous Diffie-Hellman problem (SDH) is hard in the subgroup

(in J or J') generated by the encoded element SP =

scalar_mult_cc(P,s). In case that the verification fails (SP might

be of low order or on the wrong curve), scalar_mult_ccv is REQUIRED

to return the encoding of the identity element I. Otherwise

scalar_mult_ccv(P,S) is REQUIRED to return the result of

scalar_mult_cc(P,s). A common choice for scalar_mult_ccv for

Montgomery curves with twist security would be the X25519 and X448

Diffie-Hellman functions as specified in [RFC7748]. For curves in

short Weierstrass form, scalar_mult_ccv could be implemented by the

combination of a point verification of the input point with a scalar

multiplication. Here scalar_mult_ccv SHALL return the encoding of

the neutral element I if the input point P was not on the curve C.

Let P=map_to_group_mod_neg(r) be a mapping operation that maps a

string r to an encoding of an element P in J. Common choices would

be the combination of map_to_base and map_to_curve methods as

defined in the hash2curve draft [HASH2CURVE]. Note that we don't

require and RECOMMEND cofactor clearing here since this complexity

is already included in the definition of the scalar multiplication

operation calar_mult_cc above. Additionally requiring cofactor

clearing also in map_to_group_mod_neg() would result in efficiency

loss.
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|| denotes concatenation of strings. We also let len(S) denote the

length of a string in bytes. Finally, let nil represent an empty

string, i.e., len(nil) = 0.

[f,g,h] denotes alternatives where exactly one of the comma-

separated options is to be chosen.

Let H(m) be a hash function from arbitrary strings m to bit strings

of a fixed length. Common choices for H are SHA256 or SHA512 

[RFC6234]. H is assumed to segment messages m into blocks m_i of

byte length H_block. E.g. the blocks used in SHA512 have a size of

128 bytes.

Let strip_sign_information(P) be function that takes a string

encoding of an element P in J and strips any information regarding

the sign of P, such that strip_sign_information(P) =

strip_sign_information(-P). For short Weierstrass (Montgomery)

curves this function will return a string encoding the x-coordinate.

The purpose of defining this function is for allowing for x-

coordinate only scalar multiplication algorithms. The sign is to be

stripped before generating the intermediate session key ISK.

With ISK we denote the intermediate session key output string

provided by CPace that is generated by a hash operation on the

Diffie-Hellman result.

MAC(msg,key) is a message authentication code. Common examples are

HMAC_SHA512, a block cipher based MAC or a hash-function based tag.

AEAD(msg,key) is used for denoting an authenticated encryption

scheme. A common example would be AES128GCM or Salsa20Poly1305.

KDF(Q) is a key-derivation function that takes a string and derives

key of length L. Common choices for KDF are HMAC_SHA512.

With DSI we denote domain-separation identifier strings that may be

prepended to the inputs of Hash and KDF functions.

Let IHF(salt, username, pw, sigma) be an iterated hash function that

takes a salt value, a user name and a password as input. IHF is

designed to slow down brute-force attackers as controlled by a

workload parameter set sigma. State of the art iterated hash

functions are designed for requiring a large amount of memory for

its operation and will be referred to as memory-hard hash functions

(MHF). Scrypt [RFC7914] or Argon2 are common examples of a MHF

primitive.

With PRS we denote a string that is a required input of the CPace

subprotocol and generated by the AuCPace protocol.
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Let A and B be two parties. A and B may also have digital

representations of the parties' identities such as Media Access

Control addresses or other names (hostnames, usernames, etc). We

denote the parties' representation and the parties themselves both

by using the identifiers A and B.

With CI we denote a string that is a required input of the CPace

subprotocol. CI is generated together with PRS by the AuCPace

augmentation layer. CI SHALL be formed by the concatenation of the

identifiers A and B and an associated data string AD, CI = A || B ||

AD;

With uad we denote an optional string that is specifying user-

associated data in a password file entry, such as authorization

rights or permissions or account expiration dates. Specification of

this string is outside of the scope of the AuCPace protocol.

Let sid be a session id byte string chosen for each protocol session

before protocol execution; The length len(sid) SHOULD be larger or

equal to 16 bytes.

4. Access to server-side password verifiers databases

AuCPace is an asymmetric PAKE protocol. I.e. while one party, the

client B, is in possession of a clear-text password pw, the other

party, the server A, is not given access to the cleartext password

but only to a password verifier. The way how such a password

verifier is maintained by a server party is essential for the

AuCPace protocol construction.

4.1. User credential database and password verifier types

With respect to the use of user credantial databases, AuCPace is

flexible and supports three different database types.

Firstly, the conventional approach as used for logins without a PAKE

protocol is supported (as used e.g. for the password over https:/

approach). Here the server stores a tuple of four elements in his

password database file, (username, uad, salt, w) with w = IHF(salt,

username, pw, sigma) ). With uad, we denote user-accociated data

such as permissions. The salt value is a nonce used for the IHF

function. Upon a login request, the user transmits the username and

the clear-text password pw to the server. The server looks up the

database, retrieves the salt value, calculates the IHF function with

the given inputs and compares the result with the registered

password verifier w. We refer to this setting as "legacy password

verifier database" (LPVD) setting.

Secondly, AuCPace supports an AuCPace password verifier database

setting (APVD) setting. Here the database is already adapted for use
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in conjunction with AuCPace. This setting differs from LPVD by the

fact that instead of the direct output of the IHF, w = IHF(salt,

username, pw, sigma), an AuCPace password verifier W is maintained

in the database. W is calculated from the legacy-style value w by W

= scalar_mult_cc(B,w). It is possible to calculate W from a LPVD

entry on the fly and without knowledge of the clear-text password

upon a remote login request. It is also easily possible to migrate

the format of a LPVD database to an APVD database by calling the

scalar multiplication function for each entry.

Thirdly, AuCPace supports the *strong* AuCPace password verifier

database setting (sAPVD) setting, which differs from APVD and LPVD

by the fact that the salt entry in the database, as used for the

IHF, is replaced by a salt-derivation parameter q, as will be

detailed below. With this strong AuCPace verifier type, the AuCPace

protocol provides the additional security guarantee of pre-

computation attack resistance. Note that migrating LPVD or APVD

database records to sAPVD entries is *not* possible, because

calculating the strong sAPVD password verifiers requires the clear-

text passwords.

4.2. Encoding of passwords and user names

For AuCPace usernames and passwords are encoded as strings according

to the definitions of [RFC8265], i.e. case-preserving unicode

encoding SHALL be employed.

4.3. AuCPace database interface for retrieving password verifiers

In the course of the authentication protocoll, the AuCPace server

implementation will need to interface to an user credential database

for retrieving password verifiers.

Database lookup is implemented by use of string-encoded user names.

AuCPace needs an interface equivalent to a function pvr =

lookup_pw_verifier_record(username). I.e. a lookup returns a

password verfier record pvr, based on a username string. It is

REQUIRED that for the purpose of pvr record lookup in databases and

for the database contents, the "case preservation" according to 

[RFC8265] is employed, both for the string encoding of the username

and the password.

The content in the pvr records will depend on the application

scenarios, LPVD, APVD and sAPVD as defined above. Password verifier
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records pvr as returned from the database are REQUIRED to be

composed of the following components.

A password verifier from either one of the following two options

(w or W).

LPVD case: A binary encoding of the actual password verifier

that has been calculated as a function of the username, the

password, a salt value by use of an iterated hash function pv

= w = IHF(username,password,salt, sigma).

APVD and sAPVD cases: An encoding of an element in J, W =

scalarmult_cc(B,w), which has been calculated by a scalar

multiplication using the base point B. The secret scalar, w,

has been calculated by an iterated hash function just as in

the case above, w = IHF(username,password,salt, sigma).

sigma, a binary encoding specifying the type and the workload

parametrization of the iterated hash function IHF that has been

used for calculating w or W.

A salt derivation entry which is either

LPVD and APVD cases: a binary string encoding of the salt

value itself or,

sAPVD case: an encoding of a secret scalar q for a group

scalar multiplication such that the salt value used for

calculating w or W could be calculated from the tuple salt =

strong_AuCPace_salt_derivation(q,username,password).

In case that a database lookup on a server yields a legacy password

database record (LPVD case that includes an entry w), the AuCPace

implementation SHALL convert this record into a AuCPace database

record (APVD case) by replacing w with W=scalarmult_cc(B,w).

The AuCPace application protocol, thus, only needs to consider the

two different APVD and sAPVD scenarios. In case of the APVD

scenario, the salt value used for the IHF execution is returned by

the database lookup, while in the sAPVD case the salt value is

replaced by the secret scalar.

4.4. Derivation of the salt value for strong AuCPace

For strong AuCPace the salt value used for the IHF is not explicitly

included in the password verifier record pvr. Instead only the

parameter q is stored. q serves for deriving the salt value. In

order to determine the salt value, strong AuCPace uses a function
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salt = strong_AuCPace_salt_derivation(q,username,password). This

function implements the following sequence of operations.

First Z, an element in J, is calculated by use of a Z =

map_username_password_to_J(username || password). function, e.g.

by use of a hash function such as SHA512 and a mapping such as

Elligator2.

The salt value is then determined by applying the scalar q and

the group element Z to the scalar multiplication function, salt =

strip_sign_information(scalarmult_cc(Z,q)).

Deriving the salt value, thus, requires access to all of, username,

clear text password and secret key q. If the database is stolen, an

adversary is not able to derive the salt value without having access

to the clear-text password.

Note that the method above which derives the salt directly from Z

and q will typically only be used when creating a new password

database entry. The AuCPace protocol uses a secret scalar r for,

masking the value of Z. The approach exploits the relation q * Z ==

((Z * r) * q) * (1/r). More explicitly the sequence is as follows:

The client, B, having access to the username and the clear-text

password calculates Z. It aims at deriving the salt value.

B samples a fresh scalar r and calculates U = scalarmult_cc(Z,r).

B sends U to A.

A fetches q from the database and calculates UQ =

scalarmult_cc(U,q). A sends UQ back to A.

B retrieves the salt by inverting the blinding with the scalar r

using salt =

strip_sign_information(invert_cofactor_cleared_scalar(UQ,r)).

4.5. Specification of the workload parameter sigma

AuCPace does not require the use of a specific iterated hash

function IHF. Still it is strongly RECOMMENDED to use AuCPace in

conjunction with state-of-the art memory-hard hash functions MHF

with a secure workload parametrization. The workload parameter sigma

shall encode all of the following.

The algorithm family, such as Argon2i, scrypt or PBKDF2-HMAC-

SHA256.

The workload parameter specification, e.g. the iteration count

for PBKDF2 or the parameters N,r and p of the scrypt algorithm.
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4.6. Result of the database parameter lookup

Summing up, the lookup process for user credential data for AuCPace

SHALL provide all of the following information in the course of the

session establishment protocol.

The iterated hash function specification sigma.

A salt-derivation parameter and its type. The salt derivationn

parameter is either a salt scalar q or the salt value itself.

Correspondingly the type of the salt-derivation parameter is

either "AuCPace" or "strong AuCPace".

An AuCPace password verifier W = scalarmult_cc(B,IHF(salt,

username, pw, sigma)).

For handling the case of failed lookups, if a given user name does

not have an entry, the database shall define a default parameter set

sigma_default and a default salt-derivation parameter for password

hashing. Moreover and a secret string database_seed shall be chosen

specifically for each distinct server A. In case of failed lookups

the following procedure SHALL be used. A random value w shall be

sampled. The password verifier W shall be calculated as W =

map_to_group(w). The parameters q or salt shall be respectively

calculated as [q,salt] = H(name || database_seed).

5. Authentication session

5.1. Authentication Protocol Flow

AuCPace is a protocol run between two parties, A and B, for

establishing a shared secret key with explicit mutual

authentication. AuCPace is implemented by four messages as indicated

by the numbers in the figure below. The roles of the two parties are

different. Party B, the client, is provided a user name and a

password as input. Party A, the server, has access to a user

credentials database that stores password verifiers. Both parties

share a channel identifier string CI characterizing the

communication channel (e.g. information on IP addresses and port

numbers of both sides).

The channel identifier, CI, SHOULD include an encoding of the

identities of both parties A and B if these are available prior to

starting the communication protocol.

Both sides also share a common subsession ID (ssid) string. ssid

could be pre-established by a higher-level protocol invocing

AuCPace. If no such ssid is available from a higher-level protocol,

a suitable approach is including ssid in the first message from B to

A as shown in the figure below.
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5.2. AuCPace

Both parties start with agreed values on the ssid string. The server

side has access to a user credentials database. The client side

holds a user name, a clear-text password to be used for the

authentication session. Both sides share an encoding CI specifying

the communication channel, such as IP addresses and port numbers.

To begin, B calculates an element Z =

map_username_password_to_J(username || password) in J.

B then picks r randomly and uniformly according to the requirements

for group J scalars and calculates U = scalar_mult_cc(Z,r).

B then sends (name,U) to A.

A then queries its database for the user name and retrieves the

information as specified in section Section 4.6 , i.e. the set

(W,sigma,salt-derivation parameter [q,salt]). (Note that according

to the specification of the database lookup, such a set is provided,

even if there is no database entry for the given user name.)

A picks x randomly and uniformly according to the requirements for

group J scalaras and calculates X = scalarmult_cc(B,x) and WX =

                A                  B

                |       ssid       |

                |<1----------------| (sample ssid)

       ---------- AuCPace protocol -----------

 In: ssid       |                  | In: name, passw.

                |     name,U       |     ssid

                |<1----------------|

 DB lookup      |                  |

                |[UQ,salt],X,sigma |

 det. CI,PRS    |----------------2>| det. CI,PRS

       ---------------------------------------

In: CI, PRS,   || (CPace substep)  || In: CI, PRS,

    ssid       ||                  ||     ssid

               ||        Ya        ||

               ||----------------2>||

               ||        Yb        ||

  Output: ISK  ||<3----------------|| Output: ISK

       ---------------------------------------

     expl.auth. |        Tb        | expl.auth.

                |<3----------------|

                |        Ta        |

                |----------------4>|

     Output: SK |                  | Output: SK
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scalarmult_ccv(W,x). A MUST abort if WX is the neutral element (this

indicates an error in the database contents).

A strips the sign information from WX to obtain WXs. A picks ya

randomly and uniformly. A then calculates G =

map_to_group_mod_neg(DSI1 || WXs || ZPAD || ssid || CI) and Ya =

scalar_mult_cc(G,ya). I.e. WXs takes over the role of CPace's PRS

string.

The following operations will variate, depending on the type of

salt-derivation entry in the database.

If the salt derivation parameter is for strong AuCPace, A

calculates UQ = scalarmult_cc(U,q) and sends (UQ,X,sigma,Ya) to

B. B then calculates salt as salt =

strip_sign_information(inverse_scalarmult_cc(UQ,r)).

If the salt derivation parameter is for AuCPace, A sends

(salt,X,sigma,Ya) to B.

B then calculates w = IHF(salt, username, pw, sigma) and XW =

scalarmult_ccv(X,w). B MUST abort, if XW is the neutral element I.

B strips the sign information from XW to obtain XWs. B picks yb

randomly and uniformly. B then calculates G =

map_to_group_mod_neg(DSI1 || XWs || ZPAD || ssid || CI) and Yb =

scalar_mult_cc(G,yb). B then calculates K = scalar_mult_ccv(Ya,yb).

B MUST abort if K is the encoding of the neutral element I.

Otherwise B sends Yb to A and proceeds as follows. B strips the sign

information from K, Ya and Yb to obtain the strings Ks, Yas and Ybs

by using the strip_sign_information() function. B calculates ISK =

H(DSI2 || ssid || Ks || Yas || Ybs).

B calculates Tb = MAC(ISK,DSI4) and Ta_v = MAC(ISK,DSI3) and sends

(Yb,Tb) to A.

Upon reception of Yb, A calculates K = scalar_mult_ccv(Yb,ya). A

MUST abort if K is the neutral element I. If K is different from I,

A strips the sign information from K, Ya and Yb and calculates ISK =

H(DSI2 || ssid || Ks || Yas || Ybs).

A calculates Tb_v = MAC(ISK,DSI4) and Ta = MAC(ISK,DSI3). If the

received authentication tag Tb did not match the verification value

Tb_v A MUST abort. Otherwise A sends Ta to B and returns the session

key SK = KDF(DSI5 || ISK || ssid).

When B receives T_a it compares this to the verification value Ta_v.

B MUST abort if Ta != Ta_v. Otherwise B returns the session key SK =

KDF(DSI5 || ISK || ssid).
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Upon completion of this protocol, the session key SK returned by A

and B will be identical by both parties if and only if the supplied

input parameters ssid and CI match on both sides and the password

verifier in the server database for the user was calculated from the

clear-text password used by B.

6. Authentication of transactions

The AuCPace protocol could also be used for interactive

"transactions" that require explicit authentication by use of a

password. One example of such a transaction is the request for

change of the user's password verifier which involves two

components. Firstly, verification of the transaction with the old

password and, secondly, the transfer of a payload MT containing a

new password verifier for the database.

Another example would be transactions that require special

privileges and need explicit password-based authentication (e.g. as

in "sudo" commands on unix operating systems).

The common feature of such transactions is the confidential transfer

of a transaction payload MT from the client to the server and the

authentication of the transaction based on proven knowledge of a

password. Upon sucessful authentication, the transaction as

specified by MT is processed and a response MR is generated. The

server then transfers MR to the client by use of an AEAD scheme.

6.1. Transaction Protocol Flow

The protocol flow corresponds to the session key generation above

with the difference that the authenticator messages Ta and Tb are

replaced by two transaction messages TMa and TMb.

Before starting the protocol, the client has setup a transaction

message MT.

As above, the channel identifier, CI, SHOULD include an encoding of

the identities of both parties A and B if these are available prior

to starting the communication protocol.

Both sides also share a common subsession ID (ssid) string. ssid

could be pre-established by a higher-level protocol invocing

AuCPace. If no such ssid is available from a higher-level protocol,

a suitable approach is including ssid in the first message from B to

A as shown in the figure below.
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6.2. AuCPace authenticated transactions

The protocol flow is identical to the case of session key generation

except for the fact that the authenticators Ta and Tb are replaced

by TMa and TMb. TMa is generated by TMb = AEAD(MT,ISK), i.e. the

payload MT is encrypted and authenticated by use of ISK. If

verification of the authentication tag of TMb succeeds on the server

the transaction message is decrypted and executed. E.g. upon a

password change transaction message, the new password verifier would

be written to the database of the server. The result of the

transaction execution is encoded in a response message MR and TMa is

calculated as TMa = AEAD(MR,ISK). The client authenticates TMa and

returns the decrypted response message MR upon success.

7. Ciphersuites

This section documents AuCPace ciphersuite configurations. A

ciphersuite is REQUIRED to specify all of,

a group modulo negation J with an associated

encode_group_element_mod_neg function

scalar_mult_cc(P,s) and scalar_mult_ccv(P,s) functions operating

on encodings of elements P in J

                A                  B

                |       ssid       |

                |<1----------------| (sample ssid)

       ---------- AuCPace protocol -----------

 In: ssid       |                  | In: name, passw.

                |     name,U       |     ssid, MT

                |<1----------------|

 DB lookup      |                  |

                |[UQ,salt],X,sigma |

 det. CI,PRS    |----------------2>| det. CI,PRS

       ---------------------------------------

In: CI, PRS,   || (CPace substep)  || In: CI, PRS,

    ssid       ||                  ||     ssid

               ||        Ya        ||

               ||----------------2>||

               ||        Yb        ||

  Output: ISK  ||<3----------------|| Output: ISK

       ---------------------------------------

     expl.auth. |       TMb        | expl.auth.

                |<3----------------|

    process TMb |       TMa        |

                |----------------4>|

                |                  | process TMa

¶

¶

¶

*

¶

*

¶



a mapping function map_to_group_mod_neg(r) converting byte

strings r into elements in J

a strip_sign_information(Q) function operating on string

representations of elements Q

a hash function H for generating the intermediate session key ISK

A message authentication code MAC for authentication tag

generation.

A key derivation function KDF for generating the final session

key SK

and domain separation strings DSI1, DSI2, DSI3, DSI4, DSI5

Currently, detailed specifications are available for CPACE-X25519-

ELLIGATOR2_SHA512-SHA512.

J map_to_group_mod_neg KDF

X25519 ELLIGATOR2_SHA512 SHA512 [RFC6234]

Table 1: CPace Ciphersuites

7.1. CPACE-X25519-ELLIGATOR2_SHA512-SHA512

This cipher suite targets particularly constrained targets and

implements specific optimizations. It uses the group of points on

the Montgomery curve Curve25519 for constructing J. The base field F

is the prime field built upon the prime p = 2^255 - 19. The Diffie-

Hellmann protocol X25519 and the group are specified in [RFC7748].

The encode_group_element_mod_neg(P) is implemented by the

encodeUCoordinate(P) function defined in [RFC7748]. The neutral

element I is encoded as a 32 byte zero-filled string.

The domain separation strings are defined as DSI1 = "CPace25519-1",

DSI2 = "CPace25519-2", DSI3 = "AuCPace25-Ta", DSI4 = "AuCPace25-Tb",

DSI5 = "AuCPace25519". (ASCII encoding without ANSI-C style trailing

zeros).

Both, scalar_mult_cc and scalar_mult_ccv, are implemented by the

X25519 function specified in [RFC7748].

The secret scalars ya and yb used for X25519 shall be sampled as

uniformly distributed 32 byte strings.

The QI = inverse_scalarmult_cc(Q,s) function is implemented as

follows.

cs = scalar_cofactor_clearing(s)
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csi = 1 / (8 * cs) % p.

QI = UNCLAMPED_X25519(Q, 8 * si).

Where the unclamped X25519 function ommits the setting of bit #254

in the scalar from [RFC7748].

The map_to_group_mod_neg function for the CPace substep is

implemented as follows. First the byte length of the ZPAD zero-

padding string is determined such that len(ZPAD) = max(0,

H_block_SHA512 - len(DSI1 || PRS)), with H_block_SHA512 = 128 bytes.

Then a byte string u is calculated by use of u = SHA512(DSI1||PRS||

ZPAD||sid||CI). The resulting string is interpreted as 512-bit

integer in little-endian format according to the definition of

decodeLittleEndian() from [RFC7748]. The resulting integer is then

reduced to the base field as input to the Elligator2 map specified

in [HASH2CURVE] to yield the secret generator G = Elligator2(u).

The map_to_group_mod_neg function used for the strong AuCPace

substep for calculating the field element Z is implemented

accordingly. First the byte length of the ZPAD zero-padding string

is determined such that len(ZPAD) = max(0, H_block_SHA512 - len(DSI5

|| password)), with H_block_SHA512 = 128 bytes. Then a byte string u

is calculated by use of u = SHA512(DSI5||password||ZPAD||username).

The resulting string is interpreted as 512-bit integer in little-

endian format according to the definition of decodeLittleEndian()

from [RFC7748]. The resulting integer is then reduced to the base

field as input to the Elligator2 map specified in [HASH2CURVE] to

yield the secret generator Z = Elligator2(u).

AuCPace25519 calculates an intermediate session key ISK of 64 bytes

length by a single invocation of SHA512(DSI2||ISK). Since the

encoding does not incorporate the sign from the very beginning Qs =

strip_sign_information(Q) == Q for this cipher suite.

AuCPace25519 calculates authentication tags and session key SK from

ISK of 64 bytes length by a single invocation of Ta = SHA512(DSI3||

ISK), Tb = SHA512(DSI4||ISK) and SK = SHA512(DSI5||ISK).

The following sage code could be used as reference implementation

for the mapping and key derivation functions.
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<CODE BEGINS>

def littleEndianStringToInteger(k):

    bytes = [ord(b) for b in k]

    return sum((bytes[i] << (8 * i)) for i in range(len(bytes)))

def map_to_group_mod_neg_CPace25519(sid, PRS, CI):

    m = hashlib.sha512()

    p = 2^255 - 19

    H_block_SHA512 = 128

    DSI1 = b"CPace25519-1"

    ZPAD_len = max(0,H_block_SHA512 - len(CI) - len(PRS))

    ZPAD = ZPAD_len * "\0"

    m.update(DSI1)

    m.update(PRS)

    m.update(ZPAD)

    m.update(sid)

    m.update(CI)

    u = littleEndianStringToInteger(m.digest())

    return map_to_curve_elligator2_curve25519(u % p)

def map_to_group_mod_neg_StrongAuCPace25519(username, password):

    # Map username and password to field element Z

    DSI = b"AuCPace25519"

    F = GF(2^255 - 19)

    m = hashlib.sha512()

    H_block_SHA512 = 128

    ZPAD_len = max(0,H_block_SHA512 - len(DSI) - len(password))

    ZPAD = ZPAD_len * "\0"

    m.update(DSI)

    m.update(password)

    m.update(ZPAD)

    m.update(username)

    u = littleEndianStringToInteger(m.digest())

    u = F(u)

    Z = map_to_curve_elligator2_curve25519(u)

    return Z

def Inverse_X25519(u_string,scalar_string):

    OrderSubgroup = 2^252 + 27742317777372353535851937790883648493

    SF = GF(OrderSubgroup)

    coFactor = SF(8)

    scalar = clampScalar25519(scalar_string)

    inverse_scalar = 1 /  (SF(scalar) * coFactor)

    inverse_scalar_shifted = Integer(inverse_scalar) * 8

    return X25519(u_string,inverse_scalar_shifted,withClamping=0)



def generate_ISK_CPace25519(sid,K,Ya,Yb):

    m = hashlib.sha512(b"CPace25519-2")

    m.update(sid)

    m.update(K)

    m.update(Ya)

    m.update(Yb)

    return m.digest()

def MAC_SK_AuCPace25519(ISK):

    DSI3 = b"AuCPace25-Ta"

    DSI4 = b"AuCPace25-Tb"

    DSI5 = b"AuCPace25519"

    m = hashlib.sha512(DSI3)

    m.update(ISK)

    Ta = m.digest()

    Ta = Ta[:16]

    m = hashlib.sha512(DSI4)

    m.update(ISK)

    Tb = m.digest()

    Tb = Tb[:16]

    m = hashlib.sha512(DSI5)

    m.update(ISK)

    SK = m.digest()

    return (Ta,Tb,SK)

<CODE ENDS>

Due to its use in Ed25519 [RFC8032], SHA512 is considered to be the

natural hash choice for Curve25519. The 512 bit output of SHA512

moreover allows for removing any statistical bias stemming from the

non-canonical base field representations, such that the overhead of

the HKDF_extract/HKDF_expand sequences from [HASH2CURVE] are

considered not necessary (in line with the assessments regarding

Curve25519 in [HASH2CURVE]).

8. Security Considerations

A security proof covering AuCPace is found in [HL18].

Elements received from a peer MUST be checked by a proper

implementation of the scalar_mult_ccv method. Failure to properly

validate group elements can lead to attacks. The Curve25519-based

cipher suite employs the twist security feature of the curve for

point validation. As such, it is mandatory to check that all low-
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order points on both the curve and the twist are mapped on the

neutral element by the X25519 function. Corresponding test vectors

are provided in the appendix.

The choices of random numbers MUST be uniform. Randomly generated

values (e.g., ya, r, q and yb) MUST NOT be reused.

User credential database lookups for AuCPace might not be executed

in non-constant time. In this case, AuCPace does not provide full

confidentiality with respect to hiding the presence or abscence of a

given user's entry in the database. The fact that in case of

abscence of a record random values are provided instead should be

considered only a mitigation regarding user-enumeration attacks.

If AuCPace is used as a building block of higher-level protocols, it

is RECOMMENDED that ssid is generated by the higher-level protocol

and passed to AuCPace. It is RECOMMENDED that ssid, is generated by

sampling ephemeral random strings.

AuCPace generates the session key SK by a hash function operation on

the intermediate session key ISK. If SK is possibly to be used for

many different sub-protocols and purposes, such as e.g. in TLS1.3,

it is RECOMMENDED to apply SK to a stronger KDF function, such as

HKDF from [RFC5869].

In case that side-channel attacks are to be considered practical for

a given application, it is RECOMMENDED to focus side-channel

protections such as masking and redundant execution (faults) on the

process of calculating the secret generator G. The most critical

aspect to consider is the processing of the first block of the hash

that includes the PRS string. The CPace protocol construction

considers the fact that side-channel protections of hash functions

might be particularly resource hungry. For this reason, AuCPace aims

at minimizing the number of hash functions invocations in the

specified mapping method.

AuCPace is designed also for compatibility with legacy-style user-

credential databases which directly store the output of iterated

hash functions w = IHF(salt, username, pw, sigma). If AuCPace is

used in this configuration, AuCPace provides only the security

guarantees of a balanced PAKE. I.e. in this case, user impersonation

attacks become feasible if the user credential database is stolen.

It is RECOMMENDED to migrate legacy-style databases to an AuCPace

format, by replacing w with W = scalarmult_cc(B,w).

It is RECOMMENDED to use password verifiers for "strong AuCPace" on

such a migrated database upon user password changes in order to

obtain pre-computation attack resistance.
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[RFC2119]

The Map2Point primitive used for (strong) AuCPace and for the CPace

substep needs to be be probabilistically invertible according to the

definition of [CPaceAnalysis]. Use of Elligator2 (for Montgomery or

Edwards curves) or simplified SWU [HASH2CURVE] (otherwise) is

recommended for this purpose.

AuCPace is proven secure under the hardness of the strong

computational simultaneous Diffie-Hellmann (SDH) problem in the

group J as defined in [CPaceAnalysis]. Still, even for the event

that large-scale quantum computers (LSQC) will become available,

AuCPace forces an active adversary to solve one instance of the CDH

problem per password guess. Using the wording suggested by Steve

Thomas on the CFRG mailing list, AuCPace is "quantum-annoying".

Strong AuCPace is pre-computation attack resistant under the CDH and

the gap One-More-DH assumption, modelling the hash2curve primitive

as random oracle hashing to the group. If the map2point primitive

used is probabilistically invertible, the analysis from 

[CPaceAnalysis] applies for instantiating the OPRF used in strong

AuCPace also using single-coordinate Diffie-Hellman using X25519 and

inverse X25519.

While the rest of the AuCPace protocol is quantum-annoying, solving

a single discrete logarithm problem will reveal the salt-derivation

parameter q as used in strong AuCPace to the adversary. This will

allow for pre-computing a rainbow table for a given user name. I.e.

the pre-computation attack resistance property will be lost and

security guarantees of strong AuCPace and AuCPace would become

equivalent. (In order maintain strong AuCPace's pre-computation

attack guarantees, a post-quantum instance of an olibvious pseudo-

random function (OPRF) would have to be found and used as

replacement of the Diffie-Hellman OPRF construction employed by

strong AuCPace.)

9. IANA Considerations

No IANA action is required.
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Appendix A. AuCPace25519 Test Vectors

A.1. Inverse X25519 test vectors

######################## /inverse X25519 ##########################

Z :

0x5d7189be6192ffccdb80902ac26c5d38592822a761c7268007200a232a4cd841

r (random scalar input for X25519):

0xe8a70b556490ecdbd52c2927464d4eff557807496af234fc496c9f4221bd4423

U = X25519(Z,r):

0x3e6377b3410a60d0ca65190963ad6dce3aeae178aafad369dc2a59c59acc3ceb

IU = inverse_X25519(U)

0x5d7189be6192ffccdb80902ac26c5d38592822a761c7268007200a232a4cd841

Z :

0x73583bc520f4b9e1245e29b92e6b12dc1c8bc0d9b018a1e2626875db2774974

r (random scalar input for X25519):

0xe22cb510bd45fc6cbcb929353777925d152c2a9a5b924715d7480aad8b64d447

U = X25519(Z,r):

0x545040a9ac1cc13a627dddc0ab4ef0b9128d54476aa98727bd45a86ea2d6de24

IU = inverse_X25519(U)

0x73583bc520f4b9e1245e29b92e6b12dc1c8bc0d9b018a1e2626875db2774974

######################## inverse X25519/ ##########################

¶



A.2. Strong AuCPace25519 salt test vectors

############ /salt derivation for strong AuCPace ##################

DSI5 = 417543506163653235353139 string ('AuCPace25519') of len(12)

pw   = 70617373776f7264 ('password') string of len(8)

ZPAD = 108 zero bytes

name = 757365726e616d65 ('username') string of len(8)

u = SHA512(DSI||password||ZPAD||username) as 512 bit int:

 0xfec497749d249426e4895e05d0bb4f565aa4423f33d19e6b20aa3837eb77d16e

 <<256

 + 0xb8f5b1b51c1557c088356d7ca09bd78f259f1d5f4041d466f4edd40f041a0bb3

u as reduced base field element coordinate:

  0xa242d046f835586749962599c699e609a00f2c0f15f584dce322c5bf7e327be

Z = Elligator2(u) as base field element coordinate:

  0x3c01681e4c6d4a43b527c789bcf6046b53ac14c516dfbbbb0f8916826b537f4b

salt-derivation parameter q:

0xf40546b4544bae5fcc564dc917407ee02300312c8fd558a0b37f48322277962e

ZQ = X25519(Z,q):

0x77412819cad958e14d4a4c09c129456b90733fd13f337ffed6c0a30f7c3a9a50

Blinding scalar r:

0x1698d57693a684a957ae0492bade0dfd6a261dfa2bb4a74c6b0b8b84acf082a8

U = X25519(Z,r):

0xaf2a058fbd974a6122f8316323060d808705701971666121477eba97386a977

UQ = X25519(U,q):

0x610270daff540b5b7adec057e0f8fa1bfe7687649d95f65560a77a2be70e6cb5

ZQ = inverse_X25519(Z,r)

0x77412819cad958e14d4a4c09c129456b90733fd13f337ffed6c0a30f7c3a9a50

############ salt derivation for strong AuCPace/ ##################

¶



A.3. Test vectors for AuCPace password verifier

Author's Address

Bjoern Haase

Endress + Hauser Liquid Analysis

Email: bjoern.m.haase@web.de

###################### /Password verifier #########################

Inputs:

Password: 'password', length 8

User Name: 'username', length 8

Z for username, password:

0x3c01681e4c6d4a43b527c789bcf6046b53ac14c516dfbbbb0f8916826b537f4b

q:

0xf40546b4544bae5fcc564dc917407ee02300312c8fd558a0b37f48322277962e

Salt value salt = X25519(Z,q):

0x77412819cad958e14d4a4c09c129456b90733fd13f337ffed6c0a30f7c3a9a50

####################################################################

Concatenated input to scrypt as password parameter:

'passwordusername', length 16

Salt value Z^q:

0x77412819cad958e14d4a4c09c129456b90733fd13f337ffed6c0a30f7c3a9a50

Password hash w from scrypt with N=1<<15, r=8, p=1

0xd832084ac895c20b4893ba4541daeb41ee8ae6cf99788ac8fda4a125734eb5f2

Password verifier W = X25519(B,w)

0x12511fcfc70fe9c3a8e72b347d7de52927fc253b83edc8271a5e90ecdf958f57

Server private key x =

0x8b2389da423eb4f8979245d5b4527f92eacc1f3ad11581822d56498c44d4aba4

Server Public key X = X25519(B,x)

0x3e97ae1689d3b1c9fbd82e0cc036118f44279f58537a6b13b2db87e62682afd7

Shared secret XW = X25519(W,x)

0x3e97ae1689d3b1c9fbd82e0cc036118f44279f58537a6b13b2db87e62682afd7

###################### Password verifier/ #########################

¶
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