
Network Working Group B. Haase
Internet-Draft Endress + Hauser Liquid Analysis
Intended status: Informational January 6, 2020
Expires: July 9, 2020

CPace, a balanced unversally composable PAKE
draft-haase-cpace-00

Abstract

 This document describes CPace which is a protocol for two parties
 that share a low-entropy secret (password) to derive a strong shared
 key without disclosing the secret to offline dictionary attacks.
 This method was tailored for constrained devices, is compatible with
 any group of both prime- and non-prime order, and comes with a
 security proof providing composability guarantees.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 9, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Haase Expires July 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Notation . 3
3. Definition CPace . 3
3.1. Setup . 3
3.2. Protocol Flow . 6
3.3. CPace . 7

4. Ciphersuites . 8
4.1. CPACE-X25519-ELLIGATOR2_SHA512-SHA512 9
4.2. CPACE-P256-SSWU_SHA256-SHA256 11

5. Security Considerations 13
6. IANA Considerations . 15
7. Acknowledgments . 15
8. References . 15
8.1. Normative References 15
8.2. Informative References 16

Appendix A. CPace25519 Test Vectors 17
A.1. X25519 test vectors 17
A.2. Elligator2 test vectors 18
A.3. Test vectors for the secret generator G 19
A.4. Test vectors for CPace DH 20
A.5. Test vectors for intermediate session key generation . . 21

 Author's Address . 22

1. Introduction

 This document describes CPace which is a protocol for two parties
 that share a low-entropy secret (password) to derive a to derive a
 strong shared key without disclosing the secret to offline dictionary
 attacks. The CPace method was tailored for constrained devices and
 specifically considers efficiency and hardware side-channel attack
 mitigations at the protocol level. CPace is designed to be
 compatible with any group of both prime- and non-prime order and
 explicitly handles the complexity of cofactor clearing on the protcol
 level. CPace comes with a security proof providing composability
 guarantees. As a protocol, CPace is designed to be compatible with
 so-called "x-coordinate-only" Diffie-Hellman implementations on
 elliptic curve groups.

 CPace is designed to be suitable as both, a building block within a
 larger protocol construction using CPace as substep, and as a
 standalone protocol.

Haase Expires July 9, 2020 [Page 2]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 It is considered, that for composed larger protocol constructions,
 the CPace subprotocol might be best executed in a separate
 cryptographic hardware, such as secure element chipsets. The CPace
 protocol design aims at considering the resulting constraints.

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Definition CPace

3.1. Setup

 Let C be a group in which there exists a subgroup of prime order p
 where the computational Diffie-Hellman (CDH) problem is hard. C has
 order p*c where p is a large prime; c will be called the cofactor.
 Let I be the unit element in C, e.g., the point at infinity in if C
 is an elliptic curve group. We denote the operations in the group
 using addition and multiplication operators, e.g. P + (P + P) = P +
 2 * P = 3 * P. We refer to a sequence of n additions of an element
 in P as scalar multiplication by n and use the notation
 scalar_multiply(P,n).

 With F we denote a field that may be associated with C, e.g. the
 prime base field used for representing the coordinates of points on
 an elliptic curve.

 We assume that for any element P in C there is a representation
 modulo negation, encode_group_element_mod_neg(P) as a byte string
 such that for any Q in C with Q != P and Q != -P,
 encode_group_element_mod_neg(P) != encode_group_element_mod_neg(Q).
 It is recommended that encodings of the elements P and -P share the
 same result string. Common choices would be a fixed (per-group)
 length encoding of the x-coordinate of points on an elliptic curve C
 or its twist C' in Weierstrass form, e.g. according to [IEEE1363] in
 case of short Weierstrass form curves. For curves in Montgomery form
 correspondingly the u-coordinate would be encoded, as specified,
 e.g., by the encodeUCoordinate function from [RFC7748].

 With J we denote the group modulo negation associated to C. Note
 that in J the scalar multiplication operation scalar_multiply is well
 defined since scalar_multiply(P,s) == -scalar_multiply(-P,s) while
 arbitrary additions of group elements are no longer available.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7748

Haase Expires July 9, 2020 [Page 3]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 With J' be denote a second group modulo negation that might share the
 byte-string encoding function encode_group_element_mod_neg with J
 such for a given byte string either an element in J or J' is encoded.
 If the x-coordinate of an elliptic curve point group is used for the
 encoding, J' would commonly be corresponding to the group of points
 on the elliptic curve's quadratic twist. Correspondingly, with p' we
 denote the largest prime factor of the order of J' and its cofactor
 with c'.

 Let scalar_cofactor_clearing(s) be a cofactor clearing function
 taking an integer input argument and returning an integer as result.
 For any s, scalar_cofactor_clearing(s) is REQUIRED to be of the form
 c * s1. I.e. it MUST return a multiple of the cofactor. An example
 of such a function may be the cofactor clearing and clamping
 functions decodeScalar25519 and decodeScalar448 as used in the X25519
 and X448 protocols definitions of [RFC7748]. In case of prime-order
 groups with c == 1, it is RECOMMENDED to use the identity function
 with scalar_cofactor_clearing(s) = s.

 Let scalar_mult_cc(P,s) be a joint "scalar multiplication and
 cofactor clearing" function of an integer s and an string-encoded
 value P, where P could represent an element either on J or J'. If P
 is an element in J or J', the scalar_mult_cc function returns a
 string encoding of an element in J or J' respectively, such that the
 result of scalar_mult_cc(P,s) encodes (scalar_cofactor_clearing(s) *
 P).

 Let scalar_mult_ccv(P,s) be a "scalar multiplication cofactor
 clearing and verify" function of an integer s and an encoding of a
 group element P. Unlike scalar_mult_cc, scalar_mult_ccv additionally
 carries out a verification that checks that the computational Diffie-
 Hellman problem (CDH) is hard in the subgroup (in J or J') generated
 by the encoded element SP = scalar_mult_cc(P,s). In case that the
 verification fails (SP might be of low order or on the wrong curve),
 scalar_mult_ccv is REQUIRED to return the encoding of the identity
 element I. Otherwise scalar_mult_ccv(P,S) is REQUIRED to return the
 result of scalar_mult_cc(P,s). A common choice for scalar_mult_ccv
 for Montgomery curves with twist security would be the X25519 and
 X448 Diffie-Hellman functions as specified in [RFC7748]. For curves
 in short Weierstrass form, scalar_mult_ccv could be implemented by
 the combination of a point verification of the input point with a
 scalar multiplication. Here scalar_mult_ccv SHALL return the
 encoding of the neutral element I if the input point P was not on the
 curve C.

 Let P=map_to_group_mod_neg(r) be a mapping operation that maps a
 string r to an encoding of an element P in J. Common choices would
 be the combination of map_to_base and map_to_curve methods as defined

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748

Haase Expires July 9, 2020 [Page 4]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 in the hash2curve draft [HASH2CURVE]. Note that we don't require and
 RECOMMEND cofactor clearing here since this complexity is already
 included in the definition of the scalar multiplication operation
 calar_mult_cc above. Additionally requiring cofactor clearing also
 in map_to_group_mod_neg() would result in efficiency loss.

 || denotes concatenation of strings. We also let len(S) denote the
 length of a string in bytes. Finally, let nil represent an empty
 string, i.e., len(nil) = 0.

 Let H(m) be a hash function from arbitrary strings m to bit strings
 of a fixed length. Common choices for H are SHA256 or SHA512
 [RFC6234]. H is assumed to segment messages m into blocks m_i of
 byte length H_block. E.g. the blocks used in SHA512 have a size of
 128 bytes.

 Let strip_sign_information(P) be function that takes a string
 encoding of an element P in J and strips any information regarding
 the sign of P, such that strip_sign_information(P) =
 strip_sign_information(-P). For short Weierstrass (Montgomery)
 curves this function will return a string encoding the x-coordinate
 (u-coordinate). The purpose of defining this function is for
 allowing for x-coordinate only scalar multiplication algorithms. The
 sign is to be stripped before generating the intermediate session key
 ISK.

 With ISK we denote the intermediate session key output string
 provided by CPace that is generated by a hash operation on the
 Diffie-Hellman result. It is RECOMMENDED to apply ISK to a KDF
 function prior to using the key in a higher-level protocol.

 KDF(Q) is a key-derivation function that takes an string and derives
 key of length L. A common choice for a KDF would be HMAC-SHA512.

 With DSI we denote domain-separation identifier strings that may be
 prepended to the inputs of Hash and KDF functions.

 Let IHF(salt, username, pw, sigma) be an iterated hash function that
 take a salt value, a user name and a password as input. IHF is
 designed to slow down brute-force attackers as controlled by a
 workload parameter set sigma. State of the art iterated hash
 functions are designed for requiring a large amount of memory for its
 operation and will be referred to as memory-hard hash functions
 (MHF). Scrypt [RFC7914] or Argon2 are common examples of a MHF
 primitive.

 Let A and B be two parties. A and B may also have digital
 representations of the parties' identities such as Media Access

https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc7914

Haase Expires July 9, 2020 [Page 5]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 Control addresses or other names (hostnames, usernames, etc). We
 denote the parties' representation and the parties themselves both by
 using the identifiers A and B.

 With CI we denote a string that SHALL be formed by the concatenation
 of the identifiers A and B and an an OPTIONAL associated data string.
 AD includes information which A and B might want to authenticate in
 the protocol execution. CI = A || B || AD; . One first example of
 CI data is an encoding of the concatenation of IP addresses and port
 numbers of both parties. AD might include a list of supported
 protocol versions if CPace were used in a higher-level protocol which
 negotiates use of a particular version. Including this list would
 ensure that both parties agree upon the same set of supported
 protocols and therefore prevent downgrade attacks.

 We also assume that A and B share a common encoding of a password
 related string PRS. Typically PRS is a low-entropy secret such as a
 user-supplied password (pw) or a personal identification number.
 Note that CPace is NOT RECOMMENDED to be used in conjunction with
 user datbases that include more than one user account. CPace does
 not provide mechanisms for agreeing on user names, deriving salt
 values and agreeing on workload parameters, as required by the MHF
 functions that should be used for such databases. In such settings
 it is RECOMMENDED to use CPace as a subcomponent of the higher-level
 AuCPace protocol.

 Let sid be a session id byte string chosen for each protocol session
 before protocol execution; The length len(sid) SHOULD be larger or
 equal to 16 bytes.

 With ZPAD we denote a zero-padding string that is appended to PRS
 such that DSI||PRS has a length of at least H_block. CPace aims at
 mixing in entropy of PRS into the full internal state of the hash
 function before any adversary-known variable information (ADVI)
 enters the hashing algorithm. ADVI such as party identities or
 session IDs might be partially controlled by an adversary.
 Correlations of ADVI with the bare PRS string are considered to be
 easier exploitable by side-channel methods in comparison to a pre-
 hashed representation of PRS.

3.2. Protocol Flow

 CPace is a one round protocol to establish an intermediate shared
 secret ISK with implicit mutual authentication. Prior to invocation,
 A and B are provisioned with public (CI) and secret information (PRS)
 as prerequisite for running the protocol. During the first round, A
 sends a public share Ya to B, and B responds with its own public
 share Yb. Both A and B then derive a shared secret ISK. ISK is

Haase Expires July 9, 2020 [Page 6]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 meant to be used for producing encryption and authentication keys by
 a KDF function outside of the scope of CPace. Prior to entering the
 protocol, A and B agree on a sid string. sid is typically pre-
 established by a higher-level protocol invocing CPace. If no such
 sid is available from a higher-level protocol, a suitable approach is
 to let A choose a fresh random sid string and send it to B together
 with Ya. This method is shown in the setup protocol section below.

 This sample trace is shown below.

 A B
 | (setup protocol |
 (sample sid) | and sid) |
 |----------------->|

 | |
 (compute Ya) | Ya |
 |----------------->|
 | Yb | (compute Yb)
 |<-----------------|
 | (verify data) |
 | (derive ISK) |

3.3. CPace

 Both parties start with agreed values on the sid string, the channel
 identifier CI and the password-related string PRS.

 The channel identifier, CI, SHOULD include an encoding of the
 communication channel used by both parties A and B, such as, e.g., IP
 and port numbers of both parties.

 To begin, A calculates a generator G = map_to_group_mod_neg(DSI1 ||
 PRS || ZPAD || sid || CI).

 A picks ya randomly and uniformly according to the requirement of the
 group J and calculates Ya=scalar_mult_cc (G,ya). A then transmits Ya
 to B.

 B picks yb randomly and uniformly. B then calculates G =
 map_to_group_mod_neg(DSI1 || PRS || ZPAD || sid || CI) and Yb =
 scalar_mult_cc(G,yb). B then calculates K = scalar_mult_ccv(Ya,yb).
 B MUST abort if K is the encoding of the neutral element I.
 Otherwise B sends Yb to A and proceeds as follows. B strips the sign
 information from K, Ya and Yb to obtain the strings Ks, Yas and Ybs
 by using the strip_sign_information() function. B returns ISK =
 H(DSI2 || sid || Ks || Yas || Ybs).

Haase Expires July 9, 2020 [Page 7]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 Upon reception of Yb, A calculates K = scalar_mult_ccv(Yb,ya). A
 MUST abort if K is the neutral element I. If K is different from I,
 A strips the sign information from K, Ya and Yb and returns ISK =
 H(DSI2 || sid || Ks || Yas || Ybs).

 K and Ks are shared values, though they MUST NOT be used as a shared
 secret key. Note that calculation of ISK from Ks includes the
 protocol transcript and prevents key malleability with respect to
 man-in-the-middle attacks from active adversaries.

 Upon completion of this protocol, the session key ISK returned by A
 and B will be identical by both parties if and only if the supplied
 input parameters sid, PRS and CI match on both sides and the
 information on the public elements in J were not modified by an
 adversary.

4. Ciphersuites

 This section documents CPACE ciphersuite configurations. A
 ciphersuite is REQUIRED to specify all of,

 o a group modulo negation J with an associated
 encode_group_element_mod_neg function

 o scalar_mult_cc(P,s) and scalar_mult_ccv(P,s) functions operating
 on encodings of elements P in J

 o a mapping function map_to_group_mod_neg(r) converting byte strings
 r into elements in J

 o a strip_sign_information(Q) function operating on string
 representations of elements Q

 o a hash function H

 o and domain separation strings DSI1, DSI2

 Currently, detailed specifications are available for CPACE-
 X25519-ELLIGATOR2_SHA512-SHA512 and CPACE-P256-SSWU_SHA256-SHA256.
 These cipher suites are specifically designed for suitability also
 with constrained hardware. It is recommended that cipher suites for
 short Weierstrass curves are specified in line with the corresponding
 definitions for NIST-P256. Cipher suites for modern Montgomery or
 Edwards curves are recommended to be specified in line with the
 definitions for Curve25519.

Haase Expires July 9, 2020 [Page 8]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 +------------+--------------------------+------------------+
 | J | map_to_group_mod_neg | KDF |
 +------------+--------------------------+------------------+
 | X25519 | ELLIGATOR2_SHA512 | SHA512 [RFC6234] |
 | | | |
 | NIST P-256 | SSWU_SHA256 [HASH2CURVE] | SHA256 [RFC6234] |
 +------------+--------------------------+------------------+

 Table 1: CPace Ciphersuites

4.1. CPACE-X25519-ELLIGATOR2_SHA512-SHA512

 This cipher suite targets particularly constrained targets and
 implements specific optimizations. It uses the group of points on
 the Montgomery curve Curve25519 for constructing J. The base field F
 is the prime field built upon the prime 2^255 - 19. The Diffie-
 Hellmann protocol X25519 and the group are specified in [RFC7748].
 The encode_group_element_mod_neg(P) is implemented by the
 encodeUCoordinate(P) function defined in [RFC7748]. The neutral
 element I is encoded as a 32 byte zero-filled string.

 The domain separation strings are defined as DSI1 = "CPace25519-1",
 DSI2 = "CPace25519-2" (twelve-byte ASCII encoding without ANSI-C
 style trailing zeros).

 Both, scalar_mult_cc and scalar_mult_ccv, are implemented by the
 X25519 function specified in [RFC7748].

 The secret scalars ya and yb used for X25519 shall be sampled as
 uniformly distributed 32 byte strings.

 The map_to_group_mod_neg function is implemented as follows. First
 the byte length of the ZPAD zero-padding string is determined such
 that len(ZPAD) = max(0, H_block_SHA512 - len(DSI1 || PRS)), with
 H_block_SHA512 = 128 bytes. Then a byte string u is calculated by
 use of u = SHA512(DSI1||PRS||ZPAD||sid||CI). The resulting string is
 interpreted as 512-bit integer in little-endian format according to
 the definition of decodeLittleEndian() from [RFC7748]. The resulting
 integer is then reduced to the base field as input to the Elligator2
 map specified in [HASH2CURVE] to yield the secret generator G =
 Elligator2(u).

 CPace25519 returns a session key ISK of 64 bytes length by a single
 invocation of SHA512(DSI2||sid||K||Ya||Yb). Since the encoding does
 not incorporate the sign from the very beginning Qs =
 strip_sign_information(Q) == Q for this cipher suite.

https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748

Haase Expires July 9, 2020 [Page 9]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 The following sage code could be used as reference implementation for
 the mapping and key derivation functions.

 <CODE BEGINS>

 def littleEndianStringToInteger(k):
 bytes = [ord(b) for b in k]
 return sum((bytes[i] << (8 * i)) for i in range(len(bytes)))

 def map_to_group_mod_neg_CPace25519(sid, PRS, CI):
 m = hashlib.sha512()
 p = 2^255 - 19

 H_block_SHA512 = 128
 DSI1 = b"CPace25519-1"
 ZPAD_len = max(0,H_block_SHA512 - len(CI) - len(PRS))
 ZPAD = ZPAD_len * "\0"

 m.update(DSI1)
 m.update(PRS)
 m.update(ZPAD)
 m.update(sid)
 m.update(CI)
 u = littleEndianStringToInteger(m.digest())
 return map_to_curve_elligator2_curve25519(u % p)

 def generate_ISK_CPace25519(sid,K,Ya,Yb):
 m = hashlib.sha512(b"CPace25519-2")
 m.update(sid)
 m.update(K)
 m.update(Ya)
 m.update(Yb)
 return m.digest()

 <CODE ENDS>

 The definitions above aim at making the protocol suitable for
 outsourcing CPace to secure elements (SE) where nested hash function
 constructions such as defined in [RFC5869] have to be considered to
 be particularly costly. As a result, the task of generating session
 keys by a strong KDF function is left out of the scope of the CPace
 protocol. This fact is expressed by the naming of the intermediate
 shared Key ISK. The definitions above regarding the mapping deviate
 from the definition in the encode_to_curve function from [HASH2CURVE]
 by significantly reducing the amount of hash invocations. Moreover,
 the CPace protocol specification, unlike the hash-to-curve draft
 specification also considers the risk of side-channel leakage during
 the hashing of PRS by introducing the ZPAD padding. Mitigating

https://datatracker.ietf.org/doc/html/rfc5869

Haase Expires July 9, 2020 [Page 10]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 attacks of an adversary that analyzes correlations between publicly
 known information with the low-entropy PRS strings was considered
 relevant in important settings. We also avoid the overhead of
 redundant cofactor clearing, by making the Diffie-Hellman protocol
 responsible for this task (and not the mapping algorithm). Due to
 its use in Ed25519 [RFC8032], SHA512 is considered to be the natural
 hash choice for Curve25519. The 512 bit output of SHA512 moreover
 allows for removing any statistical bias stemming from the non-
 canonical base field representations, such that the overhead of the
 HKDF_extract/HKDF_expand sequences from [HASH2CURVE] are considered
 not necessary (in line with the assessments regarding Curve25519 in
 [HASH2CURVE]).

4.2. CPACE-P256-SSWU_SHA256-SHA256

 This cipher suite targets applications that do not as agressively
 focus on efficiency, bandwidth and code size as the Curve25519
 implementation. Instead it aims at reusing existing encoding and
 curve standards wherever possible.

 It uses the group of points on the NIST P-256 curve which is defined
 in short Weierstrass form for constructing J [RFC5480]. The base
 field F is the prime field built upon the Solinas prime p =
 2^256-2^224+2^192+2^96-1. Encoding of full group elements requires
 both, x and y coordinates. In order to facilitate point validation
 and in order to be in line with recent TLS 1.3 requirements,
 implementations MUST encode both, x and y coordinates. It is
 RECOMMENDED to use the uncompressed format from [SEC1] using the 0x04
 octet prefix. The strip_sign_information() function returns the
 substring from the SEC1 representation encoding the x-coordinate of
 the curve point.

 NIST P-256 is of prime order and does not require cofactor clearing.
 The scalar_cofactor_clearing function is the identity function with
 scalar_cofactor_clearing(s) == s

 The domain separation strings are defined as DSI1 = "CPace-P256-1",
 DSI2 = "CPace-P256-2".

 For the scalar_mult_cc function operating on the internally generated
 points, a conventional scalar multiplication on P-256 is used, i.e.
 without the need of further verification checks. The scalar_mult_ccv
 function that operates on remotely generated points includes the
 mandatory verification as follows. First from the encoded point the
 x and y coordinates are decoded. These points are used for verifying
 the curve equation. If the point is not on the curve,
 scalar_mult_ccv returns the neutral element I. If the point is on

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc5480

Haase Expires July 9, 2020 [Page 11]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 the curve, scalar_mult_ccv calls scalar_mult_cc and returns the
 result of the scalar multiplication.

 For P-256, the map_to_group_mod_neg function is implemented as
 follows. The zero-padding string length is calculated as len(ZPAD) =
 max(0, H_block_SHA256 - len(DSI1 || PRS)) with H_block_SHA256 = 64.
 For the mapping to the curve, a 32 byte string U1 = SHA256(DSI1 ||
 PRS || ZPAD || sid || CI) is calculated. From U1 a second 32 byte
 value is calculated as U2 = SHA256(U1). The concatenation of U1 and
 U2 is interpreted as a 512 bit integer u by use of the u =
 OS2IP(U1 || U2) function from [HASH2CURVE]. This value is reduced to
 a 32 byte representation of a field element fu = u % p. The
 coordinates (x,y) in F of the secret generator G are calculated as
 (x,y) = map_to_curve_simple_swu_3mod4(fu) function from [HASH2CURVE].

 As hash function H SHA256 is chosen, returning a session key ISK of
 32 bytes length with ISK=SHA256(DSI2 || sid || Ks || Yas || Ybs).

 The following sage code could be used as reference implementation for
 the mapping and key derivation functions.

Haase Expires July 9, 2020 [Page 12]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 <CODE BEGINS>

 def map_to_group_mod_neg_CPace_P256(sid, PRS, CI):
 m = hashlib.sha256()

 H_block_SHA256 = 64
 DSI1 = b"CPace-P256-1"
 ZPAD_len = max(0,H_block_SHA256 - len(CI) - len(PRS))
 ZPAD = ZPAD_len * "\0"

 m.update(DSI1)
 m.update(PRS)
 m.update(ZPAD)
 m.update(sid)
 m.update(CI)
 U1 = m.digest()
 U2 = hashlib.sha256(U1).digest()
 u = OS2I(U1 + U2)
 return map_to_curve_simple_swu_3mod4(u)

 def generate_ISK_CPace_P256(sid,K,Ya,Yb):
 m = hashlib.sha256(b"CPace-P256-2")
 m.update(sid)
 m.update(strip_sign_information(K))
 m.update(strip_sign_information(Ya))
 m.update(strip_sign_information(Yb))
 return m.digest()

 <CODE ENDS>

 Similarly to the Curve25519 implementation, the definitions above aim
 at making the protocol suitable for outsourcing to secure elements
 where hash function invocations have to be considered to be
 particularly costly. As a result, the task of generating session
 keys by a strong KDF function is left out of the scope of the CPace
 protocol. The naming of ISK as intermediate shared key reflects this
 fact. Also the method for calculating the generator has been
 optimized for reducing the number of hash calculations in comparison
 to the suggestions [HASH2CURVE].

5. Security Considerations

 A security proof of CPace is found in [cpace_paper].

 Elements received from a peer MUST be checked by a proper
 implementation of the scalar_mult_ccv method. Failure to properly
 validate group elements can lead to attacks. The Curve25519-based
 cipher suite employs the twist security feature of the curve for

Haase Expires July 9, 2020 [Page 13]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 point validation. As such, it is mandatory to check that all low-
 order points on both the curve and the twist are mapped on the
 neutral element by the X25519 function. Corresponding test vectors
 are provided in the appendix.

 The choices of random numbers MUST be uniform. Randomly generated
 values (e.g., ya and yb) MUST NOT be reused.

 CPace is NOT RECOMMENDED to be used in conjunction with applications
 supporting different username/password pairs. In this case it is
 RECOMMENDED to use CPace as building block of the augmented AuCPace
 protocol.

 If CPace is used as a building block of higher-level protocols, it is
 RECOMMENDED that sid is generated by the higher-level protocol and
 passed to CPace. It is RECOMMENDED sid, is generated by sampling
 ephemeral random strings.

 Since CPace is designed to be used as a building block in higher-
 level protocols and for compatibility with constrained hardware, it
 does not by itself include a strong KDF construction. CPace uses a
 simple hash operation for generating its intermediate key ISK. It is
 RECOMMENDED that the ISK is post-processed by a KDF according the
 needs of the higher-level protocol. In case that the CPace protocol
 is delegated to a secure element hardware, it is RECOMMENDED that the
 main processing unit applies a KDF to the externally generated ISK.

 In case that side-channel attacks are to be considered practical for
 a given application, it is RECOMMENDED to focus side-channel
 protections such as masking and redundant execution (faults) on the
 process of calculating the secret generator G. The most critical
 aspect to consider is the processing of the first block of the hash
 that includes the PRS string. The CPace protocol construction
 considers the fact that side-channel protections of hash functions
 might be particularly resource hungry. For this reason, CPace aims
 at minimizing the number of hash functions invocations in the
 specified mapping method.

 CPace is proven secure under the hardness of the computational
 Diffie-Hellmann (CDH) and the computational Double-Diffie-Hellmann
 assumptions in the group J. Still, even for the event that large-
 scale quantum computers (LSQC) will become available, CPace forces an
 active adversary to solve one CDH per password guess. Using the
 wording suggested by S. Tobutu on the CFRG mailing list, CPace is
 "quantum-annoying". For the event that LSQC become ubiquitous, it is
 suggested to consider the replacement of the group operations used in
 CPace with a corresponding commutative group actions on isogenies,
 such as suggested in [IsogenyPAKE]. The fact that CPace does not

Haase Expires July 9, 2020 [Page 14]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 require arbitrary group operations but only the operation set
 available in a group modulo negation allows for commutative isogeny-
 based group actions cryptography as a drop-in replacement.

6. IANA Considerations

 No IANA action is required.

7. Acknowledgments

 Thanks to the members of the CFRG for comments and advice. Any
 comment and advice is appreciated.

 Comments are specifically invited regarding the following aspect.
 The CPace mapping function design is based on the following
 assessments. 1.) Masked, hardware-side-channel-protected hash
 function implementations should be considered highly desirable for
 the calculation of the generators G if an implementation might be
 exposed to physical attacks. 2.) The complexity of such protected
 hash implementations (possibly with lots of boolean-arithmetic
 masking conversions) was assessed critical for constrained hardware.
 Hash operation complexity was also assessed to be critical for secure
 element chipsets that often were assessed to run hash operations in
 software without hardware accellerator support.

 This assessment is not in line with the assumptions for the hash-to-
 curve-05 draft. As a consequence, this draft aimed at more
 aggressively reducing the number of nested hash function invocations
 in comparison to the suggestions of the hash-to-curve-05 draft.

8. References

8.1. Normative References

 [HASH2CURVE]
 Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., and
 C. Wood, "draft-irtf-cfrg-hash-to-curve-05", 2019.

 IRTF draft standard

 [IEEE1363]
 IEEE, ""Standard Specifications for Public Key
 Cryptography", IEEE 1363", 2000.

 IEEE 1363

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-05

Haase Expires July 9, 2020 [Page 15]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
 <https://www.rfc-editor.org/info/rfc5480>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC7914] Percival, C. and S. Josefsson, "The scrypt Password-Based
 Key Derivation Function", RFC 7914, DOI 10.17487/RFC7914,
 August 2016, <https://www.rfc-editor.org/info/rfc7914>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SEC1] SEC, "STANDARDS FOR EFFICIENT CRYPTOGRAPHY, "SEC 1:
 Elliptic Curve Cryptography", version 2.0", May 2009.

8.2. Informative References

 [cpace_paper]
 Haase, B. and B. Labrique, "AuCPace. PAKE protocol
 tailored for the use in the internet of things.", Feb
 2018.

 eprint.iacr.org/2018/286

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5480
https://www.rfc-editor.org/info/rfc5480
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc7914
https://www.rfc-editor.org/info/rfc7914
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Haase Expires July 9, 2020 [Page 16]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 [IsogenyPAKE]
 Taraskin, O., Soukharev, V., Jao, D., and J. LeGrow, "An
 Isogeny-Based Password-Authenticated Key Establishment
 Protocol.", Sep. 2018.

 eprint.iacr.org/2018/886

Appendix A. CPace25519 Test Vectors

 The test vectors for CPace25519 consist of three blocks.

 First test vectors for X25519 are provided which is used as combined
 scalar multiplication, cofactor clearing and verification function.
 Specifically, test vectors for the small order points are provided
 for checking that all small order points are mapped to the neutral
 element

 Then test vectors for the Elligator2 primitive are provided.

 Then test vectors for the encoding of the secret generator are
 provided combining the hash operation and the encoding of the
 generator.

 Finally test vectors for a honest party protocol execution are
 provided, including derivation of the session key ISK.

A.1. X25519 test vectors

Haase Expires July 9, 2020 [Page 17]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 ########################### /X25519 ###############################
 Test vectors for X25519 include three values:
 - The scalar encoding prior to co-factor clearing and clamping, s
 - The little-endian byte string encoding of the input point, u
 - The expected little-endian byte string encoding of the result, r

 Test vector for X25519 with a coordinate on J:
 s: a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4
 u: e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c
 r: c3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552

 Test vector for X25519 with a coordinate on the twist J':
 s: 4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d
 u: e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a413
 r: 95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957

 Test vectors for X25519 with coordinates on J and J' that MUST all
 yield the neutral element (0) independent of s:

 s: a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4

 u: 00
 u: 0100
 u: e0eb7a7c3b41b8ae1656e3faf19fc46ada098deb9c32b1fd866205165f49b800
 u: 5f9c95bca3508c24b1d0b1559c83ef5b04445cc4581c8e86d8224eddd09f1157
 u: ecff7f
 u: edff7f
 u: eeff7f
 u: cdeb7a7c3b41b8ae1656e3faf19fc46ada098deb9c32b1fd866205165f49b880
 u: 4c9c95bca3508c24b1d0b1559c83ef5b04445cc4581c8e86d8224eddd09f11d7
 u: d9ff
 u: daff
 u: dbff

 r: 00

 ########################### X25519/ ###############################

A.2. Elligator2 test vectors

 Two test vectors are provided

Haase Expires July 9, 2020 [Page 18]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 #################### /Elligator 2 ##################################

 Vector set 1 as little endian byte strings:
 in: bc149a46d293b0aeea34581349d72f8a5a96cd531102d67379cd9bfadd4ec800
 out:66b68f7575cd282403fc2bd323ff04601203c1ec5516ce247f7c0adbef05d367

 Vector set 1 as base 10 numbers:
 in: 35391373371110637358764021258915994089392966
 2186061014226937583985831318716
 out: 46961069109971370193035504450677895166687682
 601074157241352710439876254742118

 ##

 Vector set 2 as little endian byte strings:
 in: 89cf55d4b5d3f84b1634957ac503a32b84ba11471a96b227bca70a0c3bf26375
 out:1db163c86ceca7621903c9412d6dc71b4ed263b687eed092b194b5e540bba308

 Vector set 2 as base 10 numbers:

 in: 530971929581761349677698694411105058011053992421528586742712709
 85522606362505
 out: 390779123641965710057372702362153599533842156764537839663973068
 2305857171741

 #################### Elligator 2/ ##################################

A.3. Test vectors for the secret generator G

Haase Expires July 9, 2020 [Page 19]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 ###################### /Secret generator G #########################
 Inputs:
 DSI1 = 'CPace25519-1'
 PRS = 'password'
 sid = SHA512('sid'), bytes 0 to 15
 A = 'Ainitiator'
 B = 'Bresponder'
 AD = 'AD'
 ##
 Outputs and intermediate results:

 DSI1 = 435061636532353531392d31 string ('CPace25519-1') of len(12)
 PRS = 70617373776f7264 ('password') string of len(8)
 ZPAD = 98 zero bytes (before mixing in variable data)
 sid = 7e4b4791d6a8ef019b936c79fb7f2c57 string of len(16)
 CI = 41696e69746961746f7242726573706f6e6465724144
 ('AinitiatorBresponderAD') string of len(22)

 u = SHA512(DSI1||PRS||ZPAD||sid||CI) as 512 bit little-endian int:
 (0xced4bf3254970eaec9f304ed422d8fde59e8c4abb0a27c675b4820a0c2c8fd92
 << 256)
 + 0x6dd2899f728ed1620e01e3d7fb9f5cd86e06ee4b5d552bde1524e0cb1e9344e0
 u as reduced base field element coordinate:
 0x2166eb1800faff5408149f0fce62b7d9c6941fc79573a335a1d9b8a80868ed26
 u encoded as little endian byte string:
 26ed6808a8b8d9a135a37395c71f94c6d9b762ce0f9f140854fffa0018eb6621

 Elligator2 output G as base field element coordinate:
 0x307760941be97d7c68b037cb9d22d69838b60e194c50ded8b85873f9e1395126
 Elligator2 output G encoded as little endian byte string:
 265139e1f97358b8d8de504c190eb63898d6229dcb37b0687c7de91b94607730

 ###################### Secret generator G/ #########################

A.4. Test vectors for CPace DH

Haase Expires July 9, 2020 [Page 20]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 ##################### /CPace Diffie-Hellman ########################
 Inputs:

 Elligator2 output G as base field element coordinate:
 0x307760941be97d7c68b037cb9d22d69838b60e194c50ded8b85873f9e1395126
 Elligator2 output G encoded as little endian byte string:
 265139e1f97358b8d8de504c190eb63898d6229dcb37b0687c7de91b94607730

 Secret scalar ya=SHA512('ya'), bytes 0...31, as integer:
 0xbfec93334144994275a3eba9eb0adf3fe40d54e400d105d59724bee398b722d1
 ya encoded as little endian byte string:
 d122b798e3be2497d505d100e4540de43fdf0aeba9eba375429944413393ecbf

 Secret scalar yb=SHA512('yb'), bytes 0...31, as integer:
 0xb16a6ff3fcaf874cb59058493cb1f28b3e20084ad6d46fcd3c053284d60cecc0
 yb encoded as little endian byte string:
 c0ec0cd68432053ccd6fd4d64a08203e8bf2b13c495890b54c87affcf36f6ab1

 ##
 Outputs:

 Public point Ya as integer:
 0x79f9f2c1245fd8c4ab38bc75082f2daf6f47ca53fd5f0de7af72fee9c7ddd993
 Ya encoded as little endian byte string:
 93d9ddc7e9fe72afe70d5ffd53ca476faf2d2f0875bc38abc4d85f24c1f2f979

 Public point Yb as integer:
 0x18ac9063b4419695db48028d2eda7b2b2e649d22f56a5987eba9f05941de1c74
 Yb encoded as little endian byte string:
 741cde4159f0a9eb87596af5229d642e2b7bda2e8d0248db959641b46390ac18

 DH point K as integer:
 0x276896a227a09f389a04b9656099aa05ef8ec2b394cf32cc50cca9ae56334215
 K encoded as little endian byte string:
 15423356aea9cc50cc32cf94b3c28eef05aa996065b9049a389fa027a2966827

 ##################### CPace Diffie-Hellman/ ########################

A.5. Test vectors for intermediate session key generation

Haase Expires July 9, 2020 [Page 21]

Internet-DraftCPace, a balanced unversally composable PAKE January 2020

 #################### /Session Key derivation #######################
 Inputs:

 DSI2 = 435061636532353531392d32 string ('CPace25519-2') of len(12)
 sid = 7e4b4791d6a8ef019b936c79fb7f2c57 string of len(16)

 strings of length 32:
 K = 15423356aea9cc50cc32cf94b3c28eef05aa996065b9049a389fa027a2966827
 Ya= 93d9ddc7e9fe72afe70d5ffd53ca476faf2d2f0875bc38abc4d85f24c1f2f979
 Yb= 741cde4159f0a9eb87596af5229d642e2b7bda2e8d0248db959641b46390ac18

 ##

 string of length 64:
 ISK = SHA512(DSI2 || sid || K || Ya || Yb)
 = de0be1eeb7e6453d8c961353cd333694866f5432f24b0d4ed393cb6473e835df
 265ce72613effa3368a907031d897c733d300dfdb364ff66d270b404cdfbcb0a

 #################### Session Key derivation/ #######################

Author's Address

 Bjoern Haase
 Endress + Hauser Liquid Analysis

 Email: bjoern.m.haase@web.de

Haase Expires July 9, 2020 [Page 22]

