
Network Working Group B. Haase
Internet-Draft Endress + Hauser Liquid Analysis
Intended status: Informational March 9, 2020
Expires: September 10, 2020

Key encoding for manual typing operations.
draft-haase-psk-encoding-00

Abstract

 This document specifies a string encoding of external pre-shared keys
 (PSK) for applications where the key has to be entered manually by
 use of an alphanumeric or numeric keyboard.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Haase Expires September 10, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Key encoding for manual typing operations. March 2020

Table of Contents

1. Introduction . 2
2. Requirements Notation . 3
3. Considered requirement set 3
4. Encoding structure . 3
4.1. Alphanumeric encoding 4
4.2. Numeric encoding . 5

5. Reference implementation for encoding 5
6. Security Considerations 9
7. Status of this draft . 9
8. IANA Considerations . 10
9. Normative References . 10
Appendix A. Test vectors for numeric and alphanumeric encodings 10

 Author's Address . 11

1. Introduction

 In some applications pre-shared keys (PSK) are used as primary means
 of authentication, specifically in settings where a public key
 infrastructure is not available. When PSK are used as root of trust,
 a sufficient entropy of the keying material is crucial because
 otherwise attacks such as offline dictionary attacks could be
 mounted. Unfortunately, not all users might be aware of the
 corresponding pitfalls and might be tempted to use low entropy
 password strings as PSK.

 The situation is particularly difficult, if no trusted binary machine
 communication interface is available for initially configuring the
 PSK in a device, as might be the case for several classes of wireless
 devices. In some environments, key material needs to be entered
 manually by use of keyboards or touch screens with limited
 functionality. On some devices, such as small touch screens, only a
 numerical keypad might be available.

 Manually tying keys should be considered error prone. Users might
 also not be able to distinguish between authentication failures due
 to unmatching keys and unmatching keys that just result from typing
 errors. Without guidance and a user-friendly encoding, users might
 be tempted to use short low entropy passwords. Note that use of low-
 entropy passwords is suitable only for protocols such as password-
 authenticated key exchange (PAKE) but not for the typical protocols
 using pre-shared keys, such as TLS-PSK. This crucial difference,
 might not be transparent for some end-users.

 This specification aims at addressing this issue by specifying a
 format for PSK key encoding specifically designed for convenient
 manual typing. Moreover it is assumed that the encoding specified

Haase Expires September 10, 2020 [Page 2]

Internet-Draft Key encoding for manual typing operations. March 2020

 here needs to be generated by a software tool having access to a
 cryptographic random number generator. Such a tool-based approach
 could guarantee a sufficient entropy of the PSK and, thus,
 accidential mis-use of a PSK-based protocol with a low-entropy
 secret. Moreover this encoding provides guidings to the end-user by
 detecting obvious typing errors by use of error-detection codes.

 Similar use cases were previously considered in

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Considered requirement set

 The encoding was designed to consider the following requirement set.

 o The string representation needs to group display characters and
 numbers in groups of up to 6 digits or characters for better
 segmentation in manual entry.

 o Typing errors should be identified by the terminal by using an
 error detection code.

 o The encoding should help identifying the position of typing errors
 by determining the error detection code to substrings.

 o The encoding should be as short as possible in order to avoid
 cumbersome typing.

 o The encoding should allow for use of purely numerical and alpha-
 numerical keyboards.

 o On many keyboards, such as modern touch-screen keyboards,
 switching between uppercase and lowercase letters needs an
 additional typing operation. For this reason, the encodings shall
 only use uppercase letters.

4. Encoding structure

 The encodings for numeric and alpha-numeric key entry SHALL be
 printed or displayed in the following form in groups of 2x6 digits
 (0...9) or groups of 2x5 characters respectively. These groups of

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Haase Expires September 10, 2020 [Page 3]

Internet-Draft Key encoding for manual typing operations. March 2020

 2x6 digits or 2x5 characters will be referred to as chunks throughout
 this specification.

 An example for an encoding of a 128 bit PSK is given below:

 Example representation for numeric keyboards:
 310096 751463
 862948 315830
 085914 540353
 606738 970243

 Example representation for alphanumeric keyboards:
 X4RTQ 4KPKM
 PTWXS 3BP4Z
 C66D5 RRJ26

 The character encoding use Crockford's variant for BASE32 which
 considers similar characters such as 0 and O as one and the same
 symbol.

 Each chunk shall be individually checked by use of the CRC7 checksum,
 such as used for memory checking algorithms (MMC).

4.1. Alphanumeric encoding

 The alphanumeric encoding splits the key into chunks of 2x5
 characters. Since with Crockford's BASE32 each character encodes 5
 bits, 10 characters can encode 50 bits in total. Within these 50
 bits, 43 bits are used for encoding data, and 7 bits are used for
 encoding the result of the CRC7 algorithm over the preceding 43 bits
 and an application specific domain-separation string DSI.

 This way, an 128 bit key can be encoded by using 30 characters. The
 CRC only accounts for an overhead of roughly 4 characters.

 Applications using this encoding shall use a domain seperation
 string, such as "TLS-PSK128" or "TLS-PSK256". The domain separation
 string SHALL also specify the exact expected key length.

 For the encoding the key shall be split into chunks of 43 bits. The
 last chunk's payload shall be padded with zero bits.

 The CRC7 shall be calculated over the concatenation of the DSI string

Haase Expires September 10, 2020 [Page 4]

Internet-Draft Key encoding for manual typing operations. March 2020

4.2. Numeric encoding

 The numeric encoding shall split the key into chunks of 2x6 digits,
 encoding 32 bits of data and 7 bits of checksum.

 This way, a 128 bit key could be encoded by using 4 chunks of 2x6
 digits.

5. Reference implementation for encoding

 The following python 3 code could be used as reference implementation
 for the encoding and decoding functions.

 <CODE BEGINS>
 import libscrc

 def LEStringToInteger(k):
 bytes = [b for b in k]
 return sum((bytes[i]<<(8 * i)) for i in range(len(bytes)))

 def IntegerToLEString(k):
 kInt = k;
 result = [];
 n = 0
 while (kInt):
 result.append(kInt & 0xff);
 kInt = kInt >> 8
 n = n + 1
 return result

 def crockfordBase32Encode(val,blockSize = 5, numBlocks = 2):
 table = b'0123456789ABCDEFGHJKNMPQRSTVWXYZ'
 result = b""
 ctr = 0
 while (1):
 ctr += 1
 index = val & 0x1f
 val = val >> 5
 result+= table[index:(index + 1)]

 if (ctr == blockSize):
 numBlocks -= 1
 if (val == 0) and (numBlocks == 0):
 return result
 result += b" "
 ctr = 0

 return result

Haase Expires September 10, 2020 [Page 5]

Internet-Draft Key encoding for manual typing operations. March 2020

 def Base10Encode(val,blockSize = 7, numBlocks = 2):
 table = b'0123456789'
 result = b""
 ctr = 0
 while (1):
 ctr += 1
 index = val % 10
 val = round((val - index) / 10)
 result+= table[index:(index + 1)]

 if (ctr == blockSize):
 numBlocks -= 1
 if (val == 0) and (numBlocks == 0):
 return result
 result += b" "
 ctr = 0

 return result

 def encodeKeyAsString(key, domainSeparator = b"PSK128"):
 keyAsInt = LEStringToInteger(key)
 result = b""
 chunkNo = 0
 while (keyAsInt):
 # take chunks of 43 bits and calculate a CRC7
 # encode each chunk as 2 x 5 = 10 characters
 chunk = keyAsInt - ((keyAsInt >> 43) << 43)
 keyAsInt = keyAsInt >> 43
 crc = libscrc.mmc(domainSeparator + bytes([chunkNo])
 + bytes(IntegerToLEString(chunk)))
 chunkWithCrc = chunk + (crc << 43)
 chunkNo += 1

 result += crockfordBase32Encode(chunkWithCrc)
 if (keyAsInt):
 result += b" ";

 return result

 def encodeKeyAsDigits(key,domainSeparator = b"PSK128"):
 keyAsInt = LEStringToInteger(key)
 result = b""
 debugPrints = 0
 chunkNo = 0
 while (keyAsInt):
 # take chunks of 32 bits and calculate a CRC7
 # encode each chunk as 2 x 6 = 12 digits
 chunk = keyAsInt - ((keyAsInt >> 32) << 32)

Haase Expires September 10, 2020 [Page 6]

Internet-Draft Key encoding for manual typing operations. March 2020

 keyAsInt = keyAsInt >> 32

 crc = libscrc.mmc(domainSeparator + bytes([chunkNo])
 + bytes(IntegerToLEString(chunk)))
 chunkWithCrc = chunk + (crc << 32)

 result += Base10Encode(chunkWithCrc,6)
 chunkNo += 1

 if (keyAsInt):
 result += b" ";

 return result

 def crockfordBase32DecodeChar(x):
 toDecode = x.upper();
 table = b'0123456789ABCDEFGHJKNMPQRSTVWXYZ'

 if (toDecode == b'O'):
 toDecode = b'0'

 if ((toDecode == b'I') or (toDecode == b'L')):
 toDecode = b'1'

 return table.index(toDecode);

 def decodeString(x):
 result = 0

 characters = x;

 if (len(characters) > 0):
 result += crockfordBase32DecodeChar(characters[0:1]);
 result += 32 * decodeString(characters[1:])

 return result

 def decodeDigits(digits):
 result = 0

 if (len(digits) > 0):
 result += digits[0] - ord('0')
 result += 10 * decodeDigits(digits[1:])
 return result

 def decodeKeyFromDigits(digits,domainSeparator = b"PSK128"):
 remainingDigits = digits

Haase Expires September 10, 2020 [Page 7]

Internet-Draft Key encoding for manual typing operations. March 2020

 result = 0

 factor = 1
 chunkNo = 0
 while (1):
 remainingDigits = remainingDigits.lstrip()

 if (len(remainingDigits) == 0):
 return IntegerToLEString(result)

 subChunk1 = remainingDigits[0:6]
 remainingDigits = (remainingDigits[6:]).lstrip()

 subChunk2 = remainingDigits[0:6]
 remainingDigits = (remainingDigits[6:]).lstrip()

 ChunkWithCrc = (decodeDigits(subChunk1)
 + (10**6) * decodeDigits(subChunk2))

 # take chunks of 32 bits and calculate a CRC7
 chunk = ChunkWithCrc & 0xffffffff
 decodedCrc = ChunkWithCrc >> 32

 calculatedCrc = libscrc.mmc(domainSeparator + bytes([chunkNo])
 + bytes(IntegerToLEString(chunk)))
 if (calculatedCrc != decodedCrc):
 raise ValueError(b"detected typing error in chunk "
 + subChunk1 + b" " + subChunk2 + b".")

 result += chunk * factor
 factor = factor << 32
 chunkNo += 1

 return result

 def decodeKeyFromString(digits,domainSeparator = b"PSK128"):
 remainingDigits = digits
 result = 0

 factor = 1
 chunkNo = 0
 while (1):
 remainingDigits = remainingDigits.lstrip()

 if (len(remainingDigits) == 0):
 return IntegerToLEString(result)

Haase Expires September 10, 2020 [Page 8]

Internet-Draft Key encoding for manual typing operations. March 2020

 subChunk1 = remainingDigits[0:5]
 remainingDigits = (remainingDigits[5:]).lstrip()

 subChunk2 = remainingDigits[0:5]
 remainingDigits = (remainingDigits[5:]).lstrip()

 ChunkWithCrc = (decodeString(subChunk1)
 + (decodeString(subChunk2) << (5*5)))

 # take chunks of 43 bits and calculate a CRC7
 decodedCrc = ChunkWithCrc >> 43
 chunk = ChunkWithCrc - (decodedCrc << 43)

 calculatedCrc = libscrc.mmc(domainSeparator + bytes([chunkNo])
 + bytes(IntegerToLEString(chunk)))
 if (calculatedCrc != decodedCrc):
 raise ValueError(b"detected typing error in chunk "
 + subChunk1 + b" " + subChunk2 + b".")

 result += chunk * factor
 factor = factor << 43
 chunkNo += 1

 <CODE ENDS>

6. Security Considerations

 The encoding defined here does not provide any security guarantees
 except for detection of accidential typing errors.

 Accidential typing errors will be detected with a probability in the
 range of 1% only (CRC7).

 Distinct applications SHALL use unique DSI strings, such that
 accidential re-use of the same key for different applications is
 typically observed already on the typing error detection level.

7. Status of this draft

 Presently this draft is meant just to be used as a sketch of the
 general idea that came up in the process of the discussions for the
 preparation of the external PSK guidance documents. Comments are
 welcome, specifically regarding the question, whether a stronger
 checksum such as a CRC32 should be included over the entire key.
 Presently only a large fraction of typing errors will be detected,
 but with the present formulation using CRC7, this is far from a safe

Haase Expires September 10, 2020 [Page 9]

Internet-Draft Key encoding for manual typing operations. March 2020

 detection level. This draft was based on the assessment, that for
 manual typing this overhead might not be acceptable.

8. IANA Considerations

 No IANA action is required.

9. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Test vectors for numeric and alphanumeric encodings

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Haase Expires September 10, 2020 [Page 10]

Internet-Draft Key encoding for manual typing operations. March 2020

 ######################## /128 bit key ############################
 Encoding for digits with DSI = b'PSK128'
 Key: 0xa58c15a63325963cf79ab3b4c97d609d

 Encoded as digits:
 966215 677815
 822225 364180
 636215 761870
 490755 095742
 Encoded as string:
 X4RTQ 4KPKP
 PTWXS 3BPW6
 C66D5 RRJTJ
 ######################## /128 bit key ############################

 ######################## 256 bit key ############################
 Encoding for digits with DSI = b'PSK256'
 Key:
 0xd35a29ef387e015227ea161f4d4af51cdd9d5cf099c8d414b1558faa8a9396cb

 Encoded as digits:
 158768 709272
 685258 719703
 697517 428940
 658360 268631
 009721 830874
 742921 983960
 229175 168951
 301905 580550
 Encoded as string:
 BP579 5AM75
 HMAC9 1A3HG
 7KG7Q TSEBS
 ENYAA KY1V6
 1MZ4J A0WQP
 GKQ75 TTNS0
 ######################## /256 bit key #############################

Author's Address

 Bjoern Haase
 Endress + Hauser Liquid Analysis

 Email: bjoern.m.haase@web.de

Haase Expires September 10, 2020 [Page 11]

