
Light-Weight Implementation Guidance O. Hahm
(LWIG) E. Baccelli
Internet-Draft INRIA
Intended status: Informational K. Schleiser
Expires: September 10, 2013 SpreeBytes
 March 9, 2013

Painless Class 1 Devices Programming
draft-hahm-lwig-painless-constrained-programming-00

Abstract

 In order to fit the constraints of Class 0 devices (offering much
 less than 10KiB of RAM and 100KiB of ROM) there are no alternatives
 to implementing IP protocols in special software environments, which
 impose programming paradigms that make implementation of protocol
 specifications significantly more complex. However, our experience
 implementing RFC 4944 and RFC 6282, TCP and UDP on Class 1 devices
 (offering approximately 10KiB of RAM and 100KiB of ROM) shows that
 there are alternatives concerning software environments in which to
 implement IP protocols, which avoid such complexity by providing a
 more developer-friendly environment. This draft shares this
 experience.

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

Hahm, et al. Expires September 10, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Painless Class 1 devices Programming March 2013

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Why implementations on Class 0 devices can be painful 3
2.1. Learning curve . 3
2.2. Implementing from scratch 3
2.3. Increased complexity 4

3. Why implementations on Class 1 devices can be painless 4
3.1. Average programmer background is OK 4
3.2. Leveraging more well-known tools 5
3.3. Safer and quicker coding 5

4. Security Considerations . 5
5. IANA Considerations . 5
6. Informative References . 5

http://trustee.ietf.org/license-info

Hahm, et al. Expires September 10, 2013 [Page 2]

Internet-Draft Painless Class 1 devices Programming March 2013

1. Introduction

 In order to implement IP protocols with regard to the constraints of
 Class 0 devices [draft-ietf-lwig-terminology-01], tailored software
 environments must be used, such as [TinyOS] [Contiki-OS]. However,
 such software environments impose programming paradigms that can
 prove painful to use. For instance,
 [draft-kovatsch-lwig-class1-coap-00] mentions some such issues,
 encountered while implementing COAP [draft-ietf-core-coap-13].
 However, our experience with implementing RFC 4944, RFC 6282, TCP and
 UDP shows that such issues can be avoided on Class 1 devices,
 depending on the choice of software environment in which
 specifications are implemented, as detailed in Section 3.

2. Why implementations on Class 0 devices can be painful

 In order to deal with the very limited RAM and ROM available on Class
 0 devices, network protocol implementers generally code on specific
 operating systems based on an event loop with a shared stack for all
 processes (cooperative multi-threading). The main advantage of a
 cooperative multi-threading is that it can optimize memory usage on
 very constrained devices. However, the use of an event loop makes
 network protocol implementation a peculiar exercise, as it imposes an
 unusual programming paradigm.

2.1. Learning curve

 The event loop programming paradigm is not straight-forward to master
 for programmers who are used to code on more conventional platforms,
 such as Linux or Unix for instance. Hence, programmers do not only
 have to deal with the constrained resources (RAM, ROM) of the
 platform, but must also tussle with a fundamentally different way of
 designing the implementation of a protocol specification. This means
 extra costs for code development and maintenance.

2.2. Implementing from scratch

 The distinct programming paradigm stemming from an event loop
 typically imposes a non-standard programming language. Some event
 loop operating systems introduce a new language (e.g. [TinyOS]
 imposes nesC), while other operating systems "hijack" elements of a
 standard programming language to use it in a different way (e.g. the
 switch/case structure for Protothreads in [Contiki-OS], using a C
 dialect). This results in:

https://datatracker.ietf.org/doc/html/draft-ietf-lwig-terminology-01
https://datatracker.ietf.org/doc/html/draft-kovatsch-lwig-class1-coap-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-13
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282

Hahm, et al. Expires September 10, 2013 [Page 3]

Internet-Draft Painless Class 1 devices Programming March 2013

 - the necessity for an entirely new code base,

 - the inability to easily port pre-existing, mature code for well-
 known functions, routines, or protocols,

 - the inability to use standard software engineering tools for
 debugging and analysing code.

 Conversely, it is not easy to port code developed for Class 0 devices
 running on an event loop operating system, to less constrained
 devices running conventional operating systems.

2.3. Increased complexity

 A system based on an event loop in combination with a shared stack
 for all processes makes it necessary to use somewhat tricky
 programming techniques. For instance, in order to not fully block
 the whole system during long-lasting processes, functions must be
 designed with split phase execution. However, this technique breaks
 up logical contigous code into multiple pieces and thus increases
 code complexity. Another example concerns handling multiple stateful
 connections at the same time: an event loop in combination with a
 shared stack typically forces programmers to implement complex state
 machinery to manage simultaneous connections (e.g., TCP connections).

3. Why implementations on Class 1 devices can be painless

 When we were tasked with implementing RFC 4944, RFC 6282, TCP and UDP
 on Class 1 devices, we wanted to avoid the issues described in

Section 2. We have thus decided to look for alternatives to using an
 operating system based on an event loop. Our implementation of the
 aforementioned protocol specifications was thus carried out in a
 different operating system, [RIOT-OS], which supports multi-threading
 similarly to operating systems running on "traditional" Internet
 hosts and routers (e.g., Linux or Unix). Our experience with this
 choice is that network protocol implementations for Class 1 devices
 can be comparatively painless, as described in the following.

3.1. Average programmer background is OK

 As the operating system we chose supports fully separated threads and
 the ability to react in real-time, there was no need to fundamentally
 change the programming paradigm, compared to programming on less
 constrained platforms. Hence, we benefited from a drastically
 reduced learning curve for programmers with a usual background, i.e.
 that had never before programmed for constrained devices. Practiced
 network programmers could simply adapt the implementation concepts
 and techniques known to be efficient on non-embedded systems.

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282

Hahm, et al. Expires September 10, 2013 [Page 4]

Internet-Draft Painless Class 1 devices Programming March 2013

3.2. Leveraging more well-known tools

 As the operating system we chose allows to implement in ANSI C,
 existing code could be reused, taken from the IP protocol suite
 currently deployed on mature operating systems such as Linux or Unix.
 For instance, our 6LoWPAN and TCP implementations reuse constants and
 data structures for packet headers and protocol options. The well-
 known BSD socket API was ported without significant modifications to
 functions like bind(), send() or recvfrom(). Useful helper modules
 like inet_pton and inet_ntop were integrated without any changes. In
 a nutshell: the usage of standard programming languages in
 combination with a common programming paradigm reduces the amount of
 code that has to be developed and maintained.

3.3. Safer and quicker coding

 Coding can be significantly safer and quicker on Class 1 devices,
 depending on the choice of operating system upon which to build.
 Network protocols from the IP suite were designed with traditional,
 multi-threading based operating systems in mind. Thus, where
 possible, it makes sense to avoid unnecessary issues that stem from
 using fundamentally different software environments. Our experience
 shows that for implementations on Class 1 devices, it is possible to
 benefit from a software environment that leverages substantially more
 well-known tools than what an operating system based on an event loop
 can achieve, thus facilitating both code development on Class 1
 devices, and porting of code to/from less constrained hardware.

4. Security Considerations

 This document does not have any security considerations.

5. IANA Considerations

 This document does not have any IANA actions.

6. Informative References

 [RFC4944] Montenegro, G., Kushalnagar,
 N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets
 over IEEE 802.15.4 Networks",

RFC 4944, September 2007.

 [RFC6282] Hui, J. and P. Thubert,
 "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-
 Based Networks", RFC 6282,

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282

Hahm, et al. Expires September 10, 2013 [Page 5]

Internet-Draft Painless Class 1 devices Programming March 2013

 September 2011.

 [draft-ietf-lwig-terminology-01] Bormann, C. and M. Ersue,
 "Terminology for Constrained
 Node Networks",

draft-ietf-lwig-terminology ,
 Feb 2013.

 [draft-kovatsch-lwig-class1-coap-00] Kovatsch, M., "Implementing
 CoAP for Class 1 devices", draf
 t-kovatsch-lwig-class1-coap ,
 Oct 2012.

 [draft-ietf-core-coap-13] Shelby, Z., Hartke, K.,
 Bormann, C., and B. Frank,
 "Constrained Application
 Protocol (CoAP)",

draft-ietf-core-coap ,
 Dec 2012.

 [TinyOS] "TinyOS
http://www.tinyos.net", 2012.

 [Contiki-OS] "Contiki Operating System
http://www.contiki-os.org",

 2012.

 [RIOT-OS] "RIOT Operating System
http://www.riot-os.org", 2012.

Authors' Addresses

 Oliver Hahm
 INRIA

 EMail: Oliver.Hahm@inria.fr

 Emmanuel Baccelli
 INRIA

 EMail: Emmanuel.Baccelli@inria.fr
 URI: http://www.emmanuelbaccelli.org/

https://datatracker.ietf.org/doc/html/draft-ietf-lwig-terminology-01
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-terminology
https://datatracker.ietf.org/doc/html/draft-kovatsch-lwig-class1-coap-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-13
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap
http://www.tinyos
http://www.contiki-os
http://www.riot-os
http://www.emmanuelbaccelli.org/

Hahm, et al. Expires September 10, 2013 [Page 6]

Internet-Draft Painless Class 1 devices Programming March 2013

 Kaspar Schleiser
 SpreeBytes

 EMail: kaspar@schleiser.de

Hahm, et al. Expires September 10, 2013 [Page 7]

