
TLS Working Group I. Hajjeh
Internet Draft INEOVATION
 M. Badra
 LIMOS Laboratory
Intended status: Experimental November 14, 2009
Expires: May 2010

Credential Protection Ciphersuites for Transport Layer Security
(TLS)

draft-hajjeh-tls-identity-protection-09.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 14, 2010.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this

Hajjeh & Badra Expires May 14, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Abstract

 This document defines a set of cipher suites to add client credential
 protection to the Transport Layer Security (TLS) protocol. By
 negotiating one of those ciphersuites, the TLS clients will be able
 to determine for themselves when, how, to what extent and for what
 purpose information about them is communicated to others. The
 ciphersuites defined in this document can be used only when public
 key certificates are used in the client authentication process.

Table of Contents

1. Introduction...3
1.1. Conventions used in this document.........................5

2. TLS credential protection overview.............................5
2.1. Certificate and CertificateVerify protection..............6

2.1.1. Stream cipher encryption.............................6
2.1.2. Block cipher encryption..............................7

2.2. Key derivation..7
2.3. Structure of Certificate and CertificateVerify............8

2.3.1. Certificate structure................................9
2.3.1.1. Case TLS version 1.2............................9
2.3.1.2. Case TLS version 1.1...........................10
2.3.1.3. Case TLS version 1.0...........................11

2.3.2. CertificateVerify structure.........................11
2.3.2.1. Case TLS version 1.2...........................11
2.3.2.2. Case TLS version 1.1...........................12
2.3.2.3. Case TLS version 1.0...........................13

2.4. Message Flow...14
2.5. New ciphersuites...14

3. CP_RSA Key Exchange Algorithm.................................15
4. CP_DHE Key Exchange Algorithm.................................15
5. CP_ECDHE Key Exchange Algorithm...............................16
6. Security Considerations.......................................16
7. References..18

7.1. Normative References.....................................18
7.2. Informative References...................................19

 Author's Addresses...19

Hajjeh & Badra Expires May 14, 2010 [Page 2]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

1. Introduction

 The Transport Layer Security (TLS) protocol (TLS v1.0 [RFC2246], TLS
 v1.1 [RFC4346], and TLS v1.2 [RFC5246]), is the most deployed
 security protocol for securing exchanges. It provides end-to-end
 secure communications between two entities with authentication and
 data protection.

 TLS supports three authentication modes: authentication of both
 parties, only server-side authentication, and anonymous key exchange.
 For each mode, TLS specifies a set of cipher suites. However,
 anonymous cipher suites are strongly discouraged because they cannot
 prevent man-in-the-middle (MITM) attacks.

 The TLS authentication is usually based on either preshared keys or
 public key certificates. If a public key certificate is used to
 authenticate the TLS client, the TLS client credentials are sent in
 clear text over the wire. Thus, any observer can determine the
 credentials used by the client; learn who is reaching the network,
 when, and from where, and hence correlate the client credentials to
 the connection location.

 Credentials protection and privacy are the right to informational
 self-determination, i.e., individuals must be able to determine for
 themselves when, how, to what extent and for what purpose information
 about them is communicated to others.

 TLS client credential protection may be established by changing the
 order of the messages that the client sends after receiving
 ServerHelloDone [CORELLA]. It consists of sending the
 ChangeCipherSpec message before the Certificate and the
 CertificateVerify messages and after the ClientKeyExchange message.
 The ChangeCipherSpec message is sent to notify the receiving party
 that subsequent messages will be protected under the cipher suite and
 keys negotiated during the TLS Handshake. However, this solution
 requires a major change to the TLS state machine as well as a new TLS
 version.

 TLS client credential protection may also be done through a DHE
 exchange before establishing an ordinary handshake with identity
 information [SSLTLS]. This wouldn't however be secure enough against
 active attackers, which will be able to disclose the client's
 credentials. Moreover, it wouldn't be favorable for some environments
 (e.g., performance-constrained environments with limited CPU power),
 due to the additional cryptographic computations and round trips.

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246

Hajjeh & Badra Expires May 14, 2010 [Page 3]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 TLS client credential protection may also be possible, assuming that
 the client permits renegotiation after the first server
 authentication [RFC5246]: The client and the server establish a TLS
 session with only server-side authentication and then perform a new
 full TLS Handshake with mutual authentication; the client credentials
 transferred in this stage thus are protected by the secure channel
 established in the first TLS Handshake. This solution doesn't
 require a change to TLS. However, this solution requires more
 asymmetric cryptographic computations, which in many environments (in
 particular for less powerful mobile nodes) are the rate limiting step
 in TLS, and therefore, the renegotiation has negative performance
 consequences. In fact, renegotiation requires another round of an
 asymmetric encryption/decryption, which means the double number of
 asymmetric en-/decryption operations (e.g., with an RSA key) for TLS
 Handshake message processing, for both server and client. Moreover,
 renegotiation requires twice the number of messages and roundtrips
 than a single TLS handshake, thus significantly increasing the
 overall delay in the session setup. Additionally, the server is
 forced to complete a full first TLS handshake before it becomes able
 to confirm whether the client has a valid certificate or not. This
 increased misbalance in processing load in the failure case might
 open an opportunity for misbehaving clients to perform resource
 exhaustion attacks against such servers.

 TLS client credential protection may as well be done by allowing the
 client and the server to add a TLS extension to their Hello messages
 in order to negotiate specific crypto algorithms, and use these to
 protect the client certificate [EAPIP]. This solution may suffer
 from interoperability issues related to TLS Extensions, TLS 1.0 and
 TLS 1.1 implementations, as described in [INTEROP]. Moreover, it
 provides imperfect privacy guarantees. In fact, the
 CertificateVerify message is sent in clear text over the wire. As a
 consequence, if an attacker ever obtains a client's certificate it
 can do trial verification to determine whether a new handshake uses
 that certificate.

 This document defines a set of cipher suites to add client credential
 protection to the TLS protocol. When one of the cipher suites
 defined through this document is negotiated, a symmetric encryption
 is used to encrypt the TLS client Certificate and the
 CertificateVerify messages as following:

 o The keys for the symmetric encryption and MAC are generated
 uniquely for each TLS Handshake and are based on a secret
 negotiated during the TLS Handshake. These keys don't replace
 the other keys and secrets (master_secret and key_block).

https://datatracker.ietf.org/doc/html/rfc5246

Hajjeh & Badra Expires May 14, 2010 [Page 4]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 o Each encrypted message includes a message integrity check using
 a keyed MAC. Secure hash functions (e.g., SHA, etc.) are used
 for MAC computations.

 o The encryption and MAC algorithms are determined by the
 cipher_suite selected by the server and revealed in the
 ServerHello message.

 o Any key generated by this document should be deleted from
 memory once the CertificateVerify message has been encrypted or
 decrypted.

 The reader is expected to become familiar with the TLS standards
 ([RFC5246] and, if needed, [RFC4346] and [RFC2246] for its
 predecessors) prior to studying this document.

1.1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. TLS credential protection overview

 This document specifies a set of cipher suites for TLS. These cipher
 suites reuse existing key exchange algorithms with certificate-based
 authentication, and reuse existing cipher and MAC algorithms from
 [RFC5246], [RFC4492], and [RFC4132].

 The name of cipher suites defined in this document includes the text
 "CP" to refer to the client credential protection. An example is
 shown below.

 CipherSuite Key Exchange Cipher Hash
 TLS_CP_RSA_WITH_AES_128_CBC_SHA RSA AES_128_CBC SHA1
 TLS_CP_DHE_DSS_WITH_AES_128_CBC_SHA DHE AES_128_CBC SHA1

 If no certificates are available, the client MUST NOT include any
 credential protection cipher suite in the ClientHello.cipher_suites.

 If the server selects a cipher suite with client credential
 protection, the server MUST send a certificate appropriate for the
 negotiated cipher suite's key exchange algorithm, and MUST request a
 certificate from the client. If the server, agreeing on using a
 credential protection cipher suite, does not receive a client
 certificate in response to the subsequent certificate request, then
 it MUST abort the session by sending a fatal handshake failure alert.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4132

Hajjeh & Badra Expires May 14, 2010 [Page 5]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 The client certificate MUST be appropriate for the negotiated cipher
 suite's key exchange algorithm, and any negotiated extensions.

2.1. Certificate and CertificateVerify protection

 If the server selects one of the cipher suites defined in this
 document, the client MUST symmetrically encrypt and integrity-protect
 the Certificate and the CertificateVerify messages.

 The encryption and MAC algorithms are determined by the cipher_suite
 selected by the server and revealed in the ServerHello message.

 The keys for the symmetric encryption and MAC are derived from the
 pre_master_secret.

 This document reuses the hash algorithm and the two symmetric
 encryption modes defined by TLS: stream cipher encryption and block
 cipher encryption, in a manner dependent on the negotiated TLS
 version.

2.1.1. Stream cipher encryption

 In stream cipher encryption, the client symmetrically encrypts the
 Certificate and the CertificateVerify messages without any padding
 byte. The encryption key cp_client_write_key is computed as
 described in Section 2.2.

 The MAC notation slightly varies with the TLS version being employed.
 Symbolically, the MAC in this document is generated as follow:

 In TLS version 1.2:

 MAC(cp_client_write_MAC_key, plaintext)

 The cp_client_write_MAC_key is generated as described in Section
2.2.

 In TLS versions prior to 1.2:

 HMAC_hash(cp_client_write_MAC_secret, plaintext)

 The cp_client_write_MAC_secret is generated as described in
Section 2.2.

 Note that the MAC is computed before encryption. The stream cipher
 encrypts the entire block, including the MAC.

Hajjeh & Badra Expires May 14, 2010 [Page 6]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

2.1.2. Block cipher encryption

 In block cipher encryption, every block of plaintext encrypts to a
 block of ciphertext. All block cipher encryption is done in CBC
 (Cipher Block Chaining) mode, and all items that are block-ciphered
 will be an exact multiple of the cipher block length.

 In block cipher encryption, the client uses an explicit
 initialization vector, generated as described through this document.
 The client adds a padding value to force the structure's length of
 each the Certificate and the CertificateVerify messages to be an
 integral multiple of the block cipher's block length, as it is
 described later through this document.

2.2. Key derivation

 For all key exchange methods, the same algorithm is used to convert
 the pre_master_secret into the cp_key_block (credential protection
 key block). The cp_key_block MUST be deleted from memory as soon as
 possible during the TLS handshake, i.e.

 o on the client: after encoding the CertificateVerify message;
 o on the server: after decoding and verifying this message.

 All the keys and parameters generated in this section are used only
 to encrypt and compute the MAC of the client Certificate and the
 CertificateVerify messages. The name of these keys includes the text
 "cp" to refer to this use.

 The pending premaster secret is used as an entropy source. To
 generate the CP encryption and MAC keys, compute using the pending
 connection state (see Section 6.1 of [RFC5246])

 cp_key_block = PRF(pre_master_secret, "cp key block",
 SecurityParameters.server_random +
 SecurityParameters.client_random);

 until enough output has been generated. Then the cp_key_block is
 partitioned as follows:

 Case TLS version 1.2:

 cp_client_write_MAC_key[SecurityParameters.mac_key_length]
 cp_client_write_key[SecurityParameters.enc_key_length]

https://datatracker.ietf.org/doc/html/rfc5246#section-6.1

Hajjeh & Badra Expires May 14, 2010 [Page 7]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 Case TLS version 1.1:

 cp_client_write_MAC_secret[SecurityParameters.hash_size]
 cp_client_write_key[SecurityParameters.key_material_length]

 Case TLS version 1.0:

 cp_client_write_MAC_secret[SecurityParameters.hash_size]
 cp_client_write_key[SecurityParameters.key_material_length]
 cp_client_write_IV[SecurityParameters.IV_size]

 Note 1: There are always four TLS connection states outstanding
 [RFC5246]: the current read and write states, and the pending read
 and write states. All records (conveying the Handshake messages)
 are processed under the current read and write states per standard
 TLS rules (i.e., usually no encryption or MAC will be used unless
 renegotiation is in progress).

 When one of the ciphersuites described in this document is
 negotiated, the encryption and MAC keys generated above are used
 to encrypt the content of the Certificate and the
 CertificateVerify messages in the ciphersuite specific part of the
 TLS Handshake Layer, independent of the current processing in the
 TLS Record Layer.

 Note 2: During the handshake, the client MUST send the Certificate
 message before the ClientKeyExchange message. Because the
 ClientKeyExchange message conveys the encrypted pre_master_secret,

 o the client has to use the pre_master_secret before sending
 the ClientKeyExchange message in order to perform the
 credential protection key derivation necessary to encrypt
 the Certificate and the CertificateVerify messages;

 o the server cannot decrypt and verify the content of the
 Certificate and the CertificateVerify messages until it has
 received the ClientKeyExchange message, which allows the
 server to assemble the pre_master_secret needed to perform
 the credential protection key derivation necessary to this
 end.

2.3. Structure of Certificate and CertificateVerify

 The stream-ciphered, block-ciphered and digitally-signed structures
 vary with the TLS version being employed.

https://datatracker.ietf.org/doc/html/rfc5246

Hajjeh & Badra Expires May 14, 2010 [Page 8]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

2.3.1. Certificate structure

2.3.1.1. Case TLS version 1.2

 opaque ASN.1Cert<1..2^24-1>;

 struct {
 select (SecurityParameters.cipher_type) {
 case stream:
 stream-ciphered struct {
 ASN.1Cert certificate_list<0..2^24-1>;
 opaque MAC[SecurityParameters.mac_length];
 };

 case block:
 opaque IV[SecurityParameters.record_iv_length];
 block-ciphered struct {
 ASN.1Cert certificate_list<0..2^24-1>;
 opaque MAC[SecurityParameters.mac_length];
 uint8 padding[Certificate.padding_length];
 uint8 padding_length;
 };

 };
 } Certificate;

 The MAC is generated as described in Section 2.1.1 (the plaintext is
 the certificate_list).

 IV
 As part of the TLS Handshake, the standard TLS IV (Initialization
 Vector) is generated and therefore used by the TLS Record protocol.
 This document uses a second IV, generated in the same way as
 described in Section 6.2.3.2 of [RFC5246]. This IV is only used
 during the encryption/decryption of the content of the Certificate
 message (concatenation of certificate_list and MAC).

 The IV SHOULD be chosen at random, and MUST be unpredictable. For
 block ciphers, the IV length is SecurityParameters.record_iv_length
 which is equal to the SecurityParameters.block_size.

 padding
 Padding that is added to force the length of the Certificate
 structure to be an integral multiple of the block cipher's block
 length. The padding MAY be any length up to 255 bytes, as long as
 it results in the length of the encrypted Certificate being an
 integral multiple of the block length. Lengths longer than

https://datatracker.ietf.org/doc/html/rfc5246#section-6.2.3.2

Hajjeh & Badra Expires May 14, 2010 [Page 9]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 necessary might be desirable to frustrate attacks on a protocol
 that are based on analysis of the lengths of exchanged messages.
 Each uint8 in the padding data vector MUST be filled with the
 padding length value. The receiver MUST check this padding and
 SHOULD use the bad_record_mac alert to indicate padding errors.

 padding_length
 The padding length MUST be such that the total size of the
 Certificate structure is a multiple of the cipher's block length.
 Legal values range from zero to 255, inclusive. This length
 specifies the length of the padding field exclusive of the
 padding_length field itself.

2.3.1.2. Case TLS version 1.1

 opaque ASN.1Cert<1..2^24-1>;

 struct {
 select (SecurityParameters.cipher_type) {
 case stream:
 stream-ciphered struct {
 ASN.1Cert certificate_list<0..2^24-1>;
 opaque MAC[SecurityParameters.hash_size];
 };

 case block:
 block-ciphered struct {
 opaque IV[SecurityParameters.block_length];
 ASN.1Cert certificate_list<0..2^24-1>;
 opaque MAC[SecurityParameters.hash_size];
 uint8 padding[Certificate.padding_length];
 uint8 padding_length;
 };

 };
 } Certificate;

 The MAC is generated as described in Section 2.1.1 (the plaintext is
 the certificate_list). For the generation and handling of the IV see

[RFC4346], Section 6.2.3.2; this document supports both sample
 algorithms described there. The padding and padding_length are
 generated and handled as described in Section 2.3.1.1.

https://datatracker.ietf.org/doc/html/rfc4346#section-6.2.3.2

Hajjeh & Badra Expires May 14, 2010 [Page 10]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

2.3.1.3. Case TLS version 1.0

 opaque ASN.1Cert<1..2^24-1>;

 struct {
 select (SecurityParameters.cipher_type) {
 case stream:
 stream-ciphered struct {
 ASN.1Cert certificate_list<0..2^24-1>;
 opaque MAC[SecurityParameters.hash_size];
 };

 case block:
 block-ciphered struct {
 ASN.1Cert certificate_list<0..2^24-1>;
 opaque MAC[SecurityParameters.hash_size];
 uint8 padding[Certificate.padding_length];
 uint8 padding_length;
 };

 };
 } Certificate;

 The MAC is generated as described in Section 2.1.1 (the plaintext is
 the certificate_list).

 The padding is generated as described in Section 2.3.1.1.

 Note: With block ciphers in CBC mode (Cipher Block Chaining), the IV
 for the Certificate content is generated with the other keys and
 secrets, as described in Section 2.2. The IV for CertificateVerify
 content (Section 2.3.2.3) is the last ciphertext block from the
 Certificate content. For more details of TLS 1.0 IV handling, see
 Sections 6.1, 6.2.3.2, and 6.3, of [RFC2246].

2.3.2. CertificateVerify structure

2.3.2.1. Case TLS version 1.2

 digitally-signed struct {
 opaque handshake_messages[handshake_messages_length];
 } Signature;

 The digitally-signed type is described in Sections 4.7 of [RFC5246].
 We use the above shorthand type notation 'Signature' for the standard
 content of the CertificateVerify struct (Section 7.4.8 of [RFC4346])

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4346#section-7.4.8

Hajjeh & Badra Expires May 14, 2010 [Page 11]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 in a similar manner as a variant of it was defined for TLS versions
 1.1 and 1.0 (Section 7.4.3 in [RFC4346] and [RFC2246] -- see below).

 struct {
 select (SecurityParameters.cipher_type) {
 case stream:
 stream-ciphered struct {
 Signature signature;
 opaque MAC[SecurityParameters.mac_length];
 };

 case block:
 opaque IV[SecurityParameters.record_iv_length];
 block-ciphered struct {
 Signature signature;
 opaque MAC[SecurityParameters.mac_length];
 uint8 padding[CertificateVerify.padding_length];
 uint8 padding_length;
 };

 };
 } CertificateVerify;

 The padding, IV and the MAC are described in Section 2.3.1.1,
 replacing Certificate with CertificateVerify and the certificate_list
 with the signature. Semantically, the CertificateVerify content is
 the signature and the MAC of the certificate_list. The basic
 Certificate Verify handshake message is described in Section 7.4.8 of
 [RFC5246].

2.3.2.2. Case TLS version 1.1

 struct {
 select (SecurityParameters.cipher_type) {
 case stream:
 stream-ciphered struct {
 Signature signature;
 opaque MAC[SecurityParameters.hash_size];
 };

 case block:
 block-ciphered struct {
 opaque IV[SecurityParameters.block_length];
 Signature signature;
 opaque MAC[SecurityParameters.hash_size];
 uint8 padding[CertificateVerify.padding_length];
 uint8 padding_length;

https://datatracker.ietf.org/doc/html/rfc4346#section-7.4.3
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.8
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.8

Hajjeh & Badra Expires May 14, 2010 [Page 12]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 };

 };
 } CertificateVerify;

 The padding, IV and the MAC are described in Section 2.3.1.2,
 replacing Certificate with CertificateVerify and the certificate_list
 with the signature. Semantically, the CertificateVerify content is
 the signature and the MAC of the certificate_list. The Signature
 type and the basic Certificate Verify message structure for TLS
 version 1.1 are described in Sections 7.4.3 and 7.4.8 of [RFC4346].

2.3.2.3. Case TLS version 1.0

 struct {
 select (SecurityParameters.cipher_type) {
 case stream:
 stream-ciphered struct {
 Signature signature;
 opaque MAC[SecurityParameters.hash_size];
 };

 case block:
 block-ciphered struct {
 Signature signature;
 opaque MAC[SecurityParameters.hash_size];
 uint8 padding[CertificateVerify.padding_length];
 uint8 padding_length;
 };

 };
 } CertificateVerify;

 The Signature type and the basic CertificateVerify message structure
 for TLS version 1.0 are described in Sections 7.4.3 and 7.4.8 of
 [RFC2246].

 With block ciphers in CBC mode, the IV is the last ciphertext block
 from the Certificate content. The padding and the MAC are generated
 as described in Section 2.3.1.3, replacing Certificate with
 CertificateVerify and the certificate_list with the signature.

https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc2246

Hajjeh & Badra Expires May 14, 2010 [Page 13]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

2.4. Message Flow

 Client Server

 ClientHello -------->
 ServerHello
 Certificate
 ServerKeyExchange*
 <-------- CertificateRequest
 {Certificate}
 ClientKeyExchange
 {CertificateVerify}
 ChangeCipherSpec
 Finished -------->
 ChangeCipherSpec
 <-------- Finished
 Application Data <-------> Application Data

 * Indicates optional or situation-dependent messages that are not
 always sent.

 {} Indicates messages with symmetrically encrypted and integrity-
 protected body.

 For the DHE key exchange algorithm, the client always sends the
 ClientKeyExchange message conveying its ephemeral DH public key Yc.

 For the ECDHE key exchange algorithm, the client always sends the
 ClientKeyExchange message conveying its ephemeral ECDH public key Yc.

 Current TLS specifications note that if the client certificate
 already contains a suitable DH or ECDH public key, then Yc is
 implicit and does not need to be sent again and consequently, the
 client key exchange message will be sent, but it MUST be empty. Even
 if the client key exchange message is used to carry the Yc, using the
 same Yc will allow traceability. Consequently, static Diffie-Hellman
 SHOULD NOT be used with this document.

2.5. New ciphersuites

 The cipher suites in Section 3 (CP_RSA Key Exchange Algorithm) use
 RSA based certificates to mutually authenticate an RSA exchange with
 client credential protection.

 The cipher suites in Section 4 (CP_DHE Key Exchange Algorithm) use
 DHE_RSA or DHE_DSS to mutually authenticate an Ephemeral Diffie-
 Hellman (DHE) exchange.

Hajjeh & Badra Expires May 14, 2010 [Page 14]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 The cipher suites in Section 5 (CP_ECDHE Key Exchange Algorithm) use
 ECDHE_RSA or ECDHE_ECDSA to mutually authenticate an Ephemeral
 Elliptic Curve Diffie-Hellman (ECDHE) exchange.

3. CP_RSA Key Exchange Algorithm

 This section defines additional cipher suites that use RSA based
 certificates to authenticate an RSA exchange. These cipher suites
 give client credential protection.

CipherSuite Key Cipher Hash
 Exchange

TLS_CP_RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5
TLS_CP_RSA_WITH_RC4_128_SHA RSA RC4_128 SHA1
TLS_CP_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE SHA1
TLS_CP_RSA_WITH_AES_128_CBC_SHA RSA AES_128_CBC SHA1
TLS_CP_RSA_WITH_AES_256_CBC_SHA RSA AES_256_CBC SHA1
TLS_CP_RSA_WITH_CAMELLIA_128_CBC_SHA RSA CAMELLIA_128_CBC SHA1
TLS_CP_RSA_WITH_CAMELLIA_256_CBC_SHA RSA CAMELLIA_256_CBC SHA1
TLS_CP_RSA_WITH_AES_128_CBC_SHA256 RSA AES_128_CBC SHA256
TLS_CP_RSA_WITH_AES_256_CBC_SHA384 RSA AES_256_CBC SHA384

4. CP_DHE Key Exchange Algorithm

 This section defines additional cipher suites that use DHE as key
 exchange algorithm, with RSA or DSS based certificates to
 authenticate an Ephemeral Diffie-Hellman exchange. These cipher
 suites provide client credential protection and Perfect Forward
 Secrecy (PFS).

CipherSuite Key Cipher Hash
 Exchange

TLS_CP_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE_DSS 3DES_EDE_CBC SHA1
TLS_CP_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE_RSA 3DES_EDE_CBC SHA1
TLS_CP_DHE_DSS_WITH_AES_128_CBC_SHA DHE_DSS AES_128_CBC SHA1
TLS_CP_DHE_RSA_WITH_AES_128_CBC_SHA DHE_RSA AES_128_CBC SHA1
TLS_CP_DHE_DSS_WITH_AES_256_CBC_SHA DHE_DSS AES_256_CBC SHA1
TLS_CP_DHE_RSA_WITH_AES_256_CBC_SHA DHE_RSA AES_256_CBC SHA1
TLS_CP_DHE_DSS_WITH_AES_128_CBC_SHA256 DHE_DSS AES_128_CBC SHA256
TLS_CP_DHE_RSA_WITH_AES_128_CBC_SHA256 DHE_RSA AES_128_CBC SHA256
TLS_CP_DHE_DSS_WITH_AES_256_CBC_SHA384 DHE_DSS AES_256_CBC SHA384
TLS_CP_DHE_RSA_WITH_AES_256_CBC_SHA384 DHE_RSA AES_256_CBC SHA384
TLS_CP_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA DHE_DSS CAMELLIA_128_CBC SHA1
TLS_CP_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA DHE_RSA CAMELLIA_128_CBC SHA1

Hajjeh & Badra Expires May 14, 2010 [Page 15]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

TLS_CP_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA DHE_DSS CAMELLIA_256_CBC SHA1
TLS_CP_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA DHE_RSA CAMELLIA_256_CBC SHA1

5. CP_ECDHE Key Exchange Algorithm

 This section defines additional cipher suites that use ECDHE as key
 exchange algorithm, with RSA or ECDSA based certificates to
 authenticate an Ephemeral ECDH exchange. These cipher suites provide
 client credential protection and PFS.

CipherSuite Key Exchange Cipher Hash

TLS_CP_ECDHE_ECDSA_WITH_RC4_128_SHA ECDHE_ECDSA RC4_128 SHA1
TLS_CP_ECDHE_RSA_WITH_RC4_128_SHA ECDHE_RSA RC4_128 SHA1
TLS_CP_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA ECDHE_ECDSA 3DES_EDE_CBC SHA1
TLS_CP_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA ECDHE_RSA 3DES_EDE_CBC SHA1
TLS_CP_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ECDHE_ECDSA AES_128_CBC SHA1
TLS_CP_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ECDHE_RSA AES_256_CBC SHA1
TLS_CP_ECDHE_RSA_WITH_AES_128_CBC_SHA ECDHE_RSA AES_256_CBC SHA1
TLS_CP_ECDHE_RSA_WITH_AES_256_CBC_SHA ECDHE_RSA AES_256_CBC SHA1

6. Security Considerations

 The security considerations described throughout [RFC2246],
 [RFC4346], [RFC5246], [RFC4347], and [RFC4492] apply here as well.

 In order for the client to be protected against man-in-the-middle
 attacks, the client SHOULD verify that the server provided a valid
 certificate and that the received public key belongs to the server.

 Because the question of whether this is the correct certificate is
 outside of TLS, applications that do implement credential protection
 cipher suites SHOULD enable the client to carefully examine the
 certificate presented by the server to determine if it meets its
 expectations. Particularly, the client MUST check its understanding
 of the server hostname against the server's identity as presented in
 the server Certificate message.

 In the absence of an application profile specifying otherwise, the
 matching is performed according to the following rules, as described
 in [RFC4642]:

 - The client MUST use the server hostname it used to open the
 connection (or the hostname specified in the TLS "server_name"
 extension [RFC4366]) as the value to compare against the server
 name as expressed in the server certificate. The client MUST
 NOT use any form of the server hostname derived from an

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4642
https://datatracker.ietf.org/doc/html/rfc4366

Hajjeh & Badra Expires May 14, 2010 [Page 16]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 insecure remote source (e.g., insecure DNS lookup). CNAME
 canonicalization is not done.

 - If a subjectAltName extension of type dNSName is present in the
 certificate, it MUST be used as the source of the server's
 identity.

 - Matching is case-insensitive.

 - A "*" wildcard character MAY be used as the left-most name
 component in the certificate. For example, *.example.com would
 match a.example.com, foo.example.com, etc., but would not match
 example.com.

 - If the certificate contains multiple names (e.g., more than one
 dNSName field), then a match with any one of the fields is
 considered acceptable.

 If the match fails, the client MUST either ask for explicit user
 confirmation or terminate the connection and indicate the server's
 identity is suspect.

 Additionally, the client MUST verify the binding between the identity
 of the server to which it connects and the public key presented by
 this server. The client SHOULD implement the algorithm in Section 6
 of [RFC5280] for general certificate validation, but MAY supplement
 that algorithm with other validation methods that achieve equivalent
 levels of verification (such as comparing the server certificate
 against a local store of already-verified certificates and identity
 bindings).

 If the client has external information as to the expected identity of
 the server, the hostname check MAY be omitted.

 It will depend on the application whether or not the server will have
 external knowledge of what the client's identity ought to be and what
 degree of assurance it needs to obtain of it. In any case, the
 server typically will have to check that the client has a valid
 certificate chained to an application-specific trust anchor it is
 configured with, following the rules of [RFC5280], before it
 successfully finishes the TLS handshake.

 One widely accepted layering principle is to decouple service
 authorization from client authentication on access. We therefore
 recommend that authorization decisions be performed and communicated
 at the application layer after the TLS handshake has been completed.
 Acknowledgment

https://datatracker.ietf.org/doc/html/rfc5280#section-6
https://datatracker.ietf.org/doc/html/rfc5280#section-6
https://datatracker.ietf.org/doc/html/rfc5280

Hajjeh & Badra Expires May 14, 2010 [Page 17]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

 People who should be acknowledged include Alfred Hoenes, Pasi Eronen
 and Eric Rescorla. Listing their names here does not mean that they
 endorse this document, but that they have reviewed it and have
 contributed to its improvement.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC4132] Moriai, S., Kato, A., Kanda M., "Addition of Camellia
 Cipher Suites to Transport Layer Security (TLS)", RFC 4132,
 July 2005.

 [RFC4346] Dierks, T. and E. Rescorla, "The TLS Protocol Version 1.1",
RFC 4346, April 2005.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS) Extensions",

RFC 4366, April 2006.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C.,
 Moeller, B., "Elliptic Curve Cryptography (ECC) Cipher
 Suites for Transport Layer Security (TLS)", RFC 4492, May
 2006.

 [RFC4642] Murchison, K., Vinocur, J., Newman, C., "Using Transport
 Layer Security (TLS) with Network News Transfer Protocol
 (NNTP)", RFC 4642, October 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The TLS Protocol Version 1.2",
RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4132
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4642
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280

Hajjeh & Badra Expires May 14, 2010 [Page 18]

Internet-Draft Credential Protection Ciphersuites for TLS November 2009

7.2. Informative References

 [SSLTLS] Rescorla, E., "SSL and TLS: Designing and Building Secure
 Systems", Addison-Wesley, March 2001.

 [CORELLA] Corella, F., "adding client identity protection to TLS",
 message on ietf-tls@lists.certicom.com mailing list,

http://www.imc.org/ietf-tls/mail-archive/msg02004.html,
 August 2000.

 [INTEROP] Pettersen, Y., "Clientside interoperability experiences for
 the SSL and TLS protocols",

draft-ietf-tls-interoperability-00 (expired work in
 progress), October 2006.

 [EAPIP] Urien, P. and M. Badra, "Identity Protection within EAP-
 TLS", draft-urien-badra-eap-tls-identity-protection-01.txt
 (expired work in progress), October 2006.

Author's Addresses

 Ibrahim Hajjeh
 INEOVATION
 France

 Email: hajjeh@ineovation.fr

 Mohamad Badra
 LIMOS Laboratory - UMR6158, CNRS
 France

 Email: mbadra@gmail.com

Hajjeh & Badra Expires May 14, 2010 [Page 19]

http://www.imc.org/ietf-tls/mail-archive/msg02004.html
https://datatracker.ietf.org/doc/html/draft-ietf-tls-interoperability-00
https://datatracker.ietf.org/doc/html/draft-urien-badra-eap-tls-identity-protection-01.txt

