
Internet Engineering Task Force I. Hajjeh
INTERNET DRAFT ESRGroups
 M. Badra
 LIMOS Laboratory

Expires: November 2007 June 2007

TLS Sign
<draft-hajjeh-tls-sign-03.txt>

Status

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on November 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 TLS protocol provides authentication and data protection for
 communication between two entities. However, missing from the
 protocol is a way to perform non-repudiation service.

 This document defines extensions to the TLS protocol to allow it to
 perform non-repudiation service. It is based on [TLSSign] and it
 provides the client and the server the ability to sign by TLS,
 handshake and applications data using certificates such as X.509.

https://datatracker.ietf.org/doc/html/draft-hajjeh-tls-sign-03.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Hajjeh & Badra Expires November 2007 [Page 1]

INTERNET-DRAFT TLS Sign June 2007

1 Introduction

 Actually, TLS is the most deployed security protocol for securing
 exchanges. It provides end-to-end secure communications between two
 entities with authentication and data protection. However, what is
 missing from the protocol is a way to provide the non-repudiation
 service.

 This document describes how the non-repudiation service may be
 integrated as an optional module in TLS. This is in order to provide
 both parties with evidence that the transaction has taken place and
 to offer a clear separation with application design and development.

 TLS-Sign's design motivations included:

 o TLS is application protocol-independent. Higher-level protocol
 can operate on top of the TLS protocol transparently.

 o TLS is a modular nature protocol. Since TLS is developed in four
 independent protocols, the approach defined in this document can
 be added by extending the TLS protocol and with a total
 reuse of pre-existing TLS infrastructures and implementations.

 o Several applications like E-Business require non-repudiation
 proof of transactions. It is critical in these applications to
 have the non-repudiation service that generates, distributes,
 validates and maintains the evidence of an electronic
 transaction. Since TLS is widely used to secure these
 applications exchanges, the non-repudiation should be offered by
 TLS.

 o Generic non-repudiation with TLS. TLS Sign provides a generic
 non-repudiation service that can be easily used with protocols.
 TLS Sign minimizes both design and implementation of the
 signature service and that of the designers and implementators
 who wish to use this module.

1.2 Requirements language

 The key words "MUST", "SHALL", "SHOULD", and "MAY", in this document
 are to be interpreted as described in RFC-2119.

2 TLS Sign overview

 TLS Sign is integrated as a higher-level module of the TLS Record
 protocol. It is optionally used if the two entities agree. This is
 negotiated by extending Client and Server Hello messages in the same
 way defined in [TLSExt].

 In order to allow a TLS client to negotiate the TLS Sign, a new

https://datatracker.ietf.org/doc/html/rfc2119

 extension type should be added to the Extended Client and Server

Hajjeh & Badra Expires November 2007 [Page 2]

INTERNET-DRAFT TLS Sign June 2007

 Hellos messages. TLS clients and servers MAY include an extension of
 type 'signature' in the Extended Client and Server Hellos messages.
 The 'extension_data' field of this extension contains a
 'signature_request' where:

 enum {
 pkcs7(0), smime(1), xmldsig(2), (255);
 } ContentFormat;

 struct {
 ContentFormat content_format;
 SignMethod sign_meth;
 SignType sign_type<2..2^16-1>;
 } SignatureRequest;

 enum {
 ssl_client_auth_cert(0), ssl_client_auth_cert_url(1), (255);
 } SignMethod;

 uint8 SignType[2];

 The client initiates the TLS Sign module by sending the
 ExtendedClientHello including the 'signature' extension. This
 extension contains:

 - the SignType carrying the type of the non repudiation proof. It
 can have one of these two values:

 SignType non_repudiation_with_proof_of_origin = { 0x00, 0x01 };
 SignType non_repudiation_without_proof_of_origin = { 0x00, 0x02 };

 - the ContentFormat carrying the format of signed data. It can be
 PKCS7 [PKCS7], S/MIME [S/MIME] or XMLDSIG [XMLDSIG]

 ContentFormat PKCS7 = { 0x00, 0xA1 };
 ContentFormat SMIME = { 0x00, 0xA2 };
 ContentFormat XMLDSIG = { 0x00, 0xA3 };

 o if the value of the ContentFormat is PKCS7, then the PKCS7
 Content_type is of type signed-data.

 o if the value of the ContentFormat is S/MIME, then S/MIME
 Content_type is of type SignedData

 o if the value of the ContentFormat is XMLDSIG, then XMLDSIG
 signatureMethod algorithms.

 - the SignMethod carrying the signature method that is used to sign
 the application data (e.g. X509 authentication certificate).

 SignMethod X509 = { 0x00, 0xB1 };

Hajjeh & Badra Expires November 2007 [Page 3]

INTERNET-DRAFT TLS Sign June 2007

 Actually, this document uses the same certificate used in client
 authentication. Any new signature method MAY be added in future
 versions (e.g. delegated attributes certificates).

 The server MAY reject the connection by sending the error alert
 "unsupported_extension" [TLSExt] and closing the connection.

 The client and the server MAY or MAY NOT use the same certificates
 used by the Handshake protocol. Several cases are possible:

 - If the server has an interest in getting non-repudiation data from
 the client and that the cipher_suites list sent by the client does
 not include any cipher_suite with signature ability, the server MUST
 (upon reception of tls_sign_on_off protocol message not followed by
 a certificate with a type equals to ExtendedServerHello.sign_method)
 close the connection by sending a fatal error.

 - If the server has an interest in getting non-repudiation data from
 the client and that the cipher_suites list sent by the client
 includes at least a cipher_suite with signature ability, the server
 SHOULD select a cipher_suite with signature ability and MUST provide
 a certificate (e.g., RSA) that MAY be used for key exchange.
 Further, the server MUST request a certificate from the client using
 the TLS certificate request message (e.g., an RSA or a DSS
 signature-capable certificate). If the client does not send a
 certificate during the TLS Handshake, the server MUST close the TLS
 session by sending a fatal error in the case where the client sends
 a tls_sign_on_off protocol message not followed by a certificate
 with a type equals to ExtendedServerHello.sign_method.

 - The client or the server MAY use a certificate different to these
 being used by TLS Handshake. This MAY happen when the server agrees
 in getting non-repudiation data from the client and that the type of
 the client certificate used by TLS Handshake and the type selected
 by the server from the list in ExtendedClientHello.sign_method are
 different, or when the ExtendedServerHello.cipher_suite does not
 require client and/or server certificates. In these cases, the
 client or the server sends a new message called certificate_sign,
 right after sending the tls_sign_on_off protocol messages. The new
 message contains the sender's certificate in which the type is the
 same type selected by the server from the list in
 ExtendedClientHello.sign_method. The certificate_sign is therefore
 used to generate signed data. It is defined as follows:

 opaque ASN.1Cert<2^24-1>;

 struct {
 ASN.1Cert certificate_list<1..2^24-1>;

 } CertificateSign;

Hajjeh & Badra Expires November 2007 [Page 4]

INTERNET-DRAFT TLS Sign June 2007

 The certificate_list, as defined in [TLS], is a sequence (chain) of
 certificates. The sender's certificate MUST come first in the list.

 If the server has no interest in getting non-repudiation data from
 the client, it replays with an ordinary TLS ServerHello or return a
 handshake failure alert and close the connection [TLS].

 Client Server
 ------ ------

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished

 TLSSignOnOff <--------------------------> TLSSignOnOff

 CertificateSign* <-----------------------> CertificateSign*

 (Signed) Application Data <----> (Signed) Application Data

 * Indicates optional or situation-dependent messages that are not
 always sent.

2.1 tls sign on off protocol

 To manage the generation of evidence, new sub-protocol is added by
 this document, called tls_sign_on_off. This protocol consists of a
 single message that is encrypted and compressed under the
 established connection state. This message can be sent at any time
 after the TLS session has been established. Thus, no man in the
 middle can replay or inject this message. It consists of a single
 byte of value 1 (tls_sign_on) or 0 (tls_sign_off).

 enum {
 change_cipher_spec(20), alert(21), handshake(22),
 application_data(23), tls_sign(TBC), (255)
 } ContentType;

 struct {
 enum { tls_sign_off(0), tls_sign_on(1), (255) } type;

 } TLSSignOnOff;

Hajjeh & Badra Expires November 2007 [Page 5]

INTERNET-DRAFT TLS Sign June 2007

 The tls_sign_on_off message is sent by the client and/or server to
 notify the receiving party that subsequent records will carry data
 signed under the negotiated parameters.

 Note: TLSSignOnOff is an independent TLS Protocol content type, and
 is not actually a TLS handshake message.

 2.1.1 TLS sign packet format

 This document defines a new packet format that encapsulates signed
 data, the TLSSigntext. The packet format is shown below. The fields
 are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Content-Type | Flag | Version |
 +-+
 | Length | Signed Data ...
 +-+

 Content-Type

 Same as TLSPlaintext.type.

 Flag

 0 1 2 3 4 5 6 7 8
 +-+-+-+-+-+-+-+-+
 |A R R R R R R R|
 +-+-+-+-+-+-+-+-+

 A = acknowledgement of receipt
 R = Reserved

 When the whole signed data is delivered to the receiver, the TLS
 Sign will check the signature. If the signature is valid and that
 the sender requires a proof of receipt, the receiver MUST generate a
 TLSSigntext packet with the bit A set to 1 (acknowledgement of
 receipt). This helps the receiver of the acknowledgment of receipt
 in storing the data-field for later use (see section 2.2). The data-
 field of that message contains the digest of the whole data receiver
 by the generator of the acknowledgement of receipt. The digest is
 signed before sending the result to the other side.

 2.1.3 bad_sign alert

 This alert is returned if a record is received with an incorrect
 signature. This message is always fatal.

Hajjeh & Badra Expires November 2007 [Page 6]

INTERNET-DRAFT TLS Sign June 2007

2.2 Storing signed data

 The objective of TLS Sign is to provide both parties with evidence
 that can be stored and later presented to a third party to resolve
 disputes that arise if and when a communication is repudiated by one
 of the entities involved. This document provides the two basic types
 of non-repudiation service:

 o Non-repudiation with proof of origin: provides the TLS server
 with evidence proving that the TLS client has sent it the signed
 data at a certain time.

 o Non-repudiation with proof of delivery: provides the TLS client
 with evidence that the server has received the client's signed
 data at a specific time.

 TLS Handshake exchanges the current time and date according to the
 entities internal clock. Thus, the time and date can be stored with
 the signed data as a proof of communication. For B2C or B2B
 transactions, non-repudiation with proof of origin and non-
 repudiation with proof of receipt are both important. If the TLS
 client requests a non-repudiation service with proof of receipt, the
 server SHOULD verify and send back to client a signature on the hash
 of signed data.

 The following figure explains the different events for proving and
 storing signed data [RFC2828]. RFC 2828 uses the term "critical
 action" to refer to the act of communication between the two
 entities. For a complete non-repudiation deployment, 6 phases should
 be respected:

 -------- -------- -------- -------- -------- --------
 Phase 1: Phase 2: Phase 3: Phase 4: Phase 5: Phase 6:
 Request Generate Transfer Verify Retain Resolve
 Service Evidence Evidence Evidence Evidence Dispute
 -------- -------- -------- -------- -------- --------
 Service Critical Evidence Evidence Archive Evidence
 Request => Action => Stored => Is => Evidence Is
 Is Made Occurs For Later Tested In Case Verified
 and Use | ^ Critical ^
 Evidence v | Action Is |
 Is +-------------------+ Repudiated |
 Generated |Verifiable Evidence|------> ----+
 +-------------------+

 1- Requesting explicit transaction evidence before sending data.
 Normally, this action is taken by the SSL/TLS client

 2- If the server accepts, the client will generate evidence by

https://datatracker.ietf.org/doc/html/rfc2828
https://datatracker.ietf.org/doc/html/rfc2828

 signing data using his X.509 authentication certificate. Server will
 go through the same process if the evidence of receipt is requested.

Hajjeh & Badra Expires November 2007 [Page 7]

INTERNET-DRAFT TLS Sign June 2007

 3 - The signed data is then sent by the initiator (client or server)
 and stored it locally, or by a third party, for a later use if
 needed.

 4 - The entity that receive the evidence process to verify the
 signed data.

 5- The evidence is then stored by the receiver entity for a later
 use if needed.

 6- In this phase, which occurs only if the critical action is
 repudiated, the evidence is retrieved from storage, presented, and
 verified to resolve the dispute.

 With this method, the stored signed data (or evidence) can be
 retrieved by both parties, presented and verified if the critical
 action is repudiated.

Security Considerations

 Security issues are discussed throughout this memo.

IANA Considerations

 This document defines a new TLS extension "signature", assigned the
 value TBD from the TLS ExtensionType registry defined in [TLSEXT].

 This document defines one TLS ContentType: tls_sign(TBD). This
 ContentType value is assigned from the TLS ContentType registry
 defined in [TLS].

 This document defines a new handshake message, certificate_sign,
 whose value is to be allocated from the TLS HandshakeType registry
 defined in [TLS].

 The bad_sign alert that is defined in this document is assigned to
 the TLS Alert registry defined in [TLS].

References

 [TLS] Dierks, T., et. al., "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [TLSExt] Blake-Wilson, S., et. al., "Transport Layer Security TLS)
 Extensions", RFC 3546, June 2003.

 [PKCS7] RSA Laboratories, "PKCS #7: RSA Cryptographic Message
 Syntax Standard," version 1.5, November 1993.

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc3546

 [S/MIME] Ramsdell, B., "S/MIME Version 3 Message Specification",

Hajjeh & Badra Expires November 2007 [Page 8]

INTERNET-DRAFT TLS Sign June 2007

RFC 2633, June 1999.

 [XMLDSIG] Eastlake, D., et. al, "(Extensible Markup Language) XML
 Signature Syntax and Processing", RFC 3275, March 2002.

 [TLSSign] Hajjeh, I., Serhrouchni, A., "Integrating a signature
 module in SSL/TLS, ICETE2004., ACM/IEEE, First
 International Conference on E-Business and
 Telecommunication Networks, Portugal, August 2004.

 [RFC2828] Shirey, R., "Internet Security Glossary", RFC 2828, May
 2000.

Author's Addresses

 Ibrahim Hajjeh
 Engineering and Scientific Research Groups (ESRGroups)
 82 rue Baudricourt
 75013 Paris Phone: NA
 France Email: Ibrahim.Hajjeh@esrgroups.org

 Mohamad Badra
 LIMOS Laboratory - UMR 6158, CNRS
 France Email: badra@isima.fr

 Acknowledgements

 The authors would like to thank Eric Rescorla for discussions and
 comments on the design of TLS Sign.

Appendix Changelog

 Changes from -01 to -02:

 o Add an IANA section.

 o Small clarifications to section 2.

 o Add the bad_sign alert and the certificate_sign message.

 Changes from -00 to -01:

 o Clarifications to the format of the signed data in Section 2.

 o Small clarifications to TLS SIGN negotiation in Section 2.

 o Added Jacques Demerjian and Mohammed Achemlal as
 contributors/authors.

 Full Copyright Statement

https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc2828

Hajjeh & Badra Expires November 2007 [Page 9]

INTERNET-DRAFT TLS Sign June 2007

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

 Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

 Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Hajjeh & Badra Expires November 2007 [Page 10]

