
Workgroup: Network Working Group

Internet-Draft: draft-halen-fed-tls-auth-00

Published: 12 October 2020

Intended Status: Informational

Expires: 15 April 2021

Authors: J. Schlyter

Kirei AB

S. Halén

The Swedish Internet Foundation

Federated TLS Authentication

Abstract

This document describes how to establish a secure end-to-end channel

between two parties within a federation, where both client and

server are mutually authenticated. The trust relationship is based

upon a trust anchor held and published by the federation. A

federation is a trusted third party that inter-connect different

trust domains with a common set of policies and standards.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 April 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Reserved Words

2. Federation Chain of Trust

3. Authentication

4. Federation Metadata

4.1. Federation Metadata claims

4.1.1. Entities

4.2. Metadata Schema

4.3. Metadata Signing

4.4. Metadata Example

5. Usage Examples

5.1. Client

5.2. Server

5.3. SPKI Generation

5.4. Curl and Public Key Pinning

6. Security Considerations

6.1. TLS

6.2. Federation Metadata Updates

6.3. Federation Metadata Signing Key

7. IANA Considerations

8. Acknowledgements

9. Normative References

10. Informative References

Authors' Addresses

1. Introduction

This document describes how to establish a secure end-to-end channel

between two parties within a federation, where both client and

server are mutually authenticated (TLS [RFC8446]). The trust

relationship is based upon a trust anchor held and published by the

federation. A federation is a trusted third party that inter-connect

different trust domains with a common set of policies and standards.

The federation aggregates and publishes information ("federation

metadata") about all the federated entities including certificate

issuers and public key information. When the term "federation

metadata" is used in this document, it always refer to the

aggregated information published by a federation in the sense of

this document.

The federation provides a common framework for providing endpoint

information. When two parties establish a connection, the

information of the other endpoint is retrieved from the metadata.

The parties leverage this every time they commence a transaction

with a new entity in the federation.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Mutual TLS authentication involves provisioning of key material.

This key exchange is performed through the publication of the

federation metadata by the federation and the use of that federation

metadata by its members. Without a federation, the server side is

often required to create a public key infrastructure (PKI) in order

to distribute client certificates.The Swedish education sector uses

federated TLS authentication to secure endpoints used for user

lifecycle management . That Federation is a collaboration between

school authorities and service providers. If the certificate

distribution would be handled without a federated framework, it

would mean a higher administrative burden and a higher risk of

compromised security.

1.1. Reserved Words

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2. Federation Chain of Trust

The members of a federation submit their issuer certificates and

other requested data (in this document called "member metadata") to

the federation. Both the authenticity of the submitted member

metadata and the submitting member MUST be assured by the

federation. How this is achieved is out of scope for this document.

The federation operator aggregates, signs and publishes the

federation metadata, i.e., an aggregation of all members' member

metadata and some additional information added by the federation. By

trusting the federation and its certificate, federation members

trust the federation metadata content.

The root of the chain of trust is the federation metadata signature

and the trust anchor is the federation's signing certificate. That

certificate needs to be securely distributed, there MUST be an out-

of-band function to verify the certificate. The distribution of the

federation's certificate is out-of-scope of this document.

3. Authentication

All TLS sessions between clients and servers are authenticated via

mutual TLS authentication. Trust is limited to the set of public key

pins published for each endpoint in the federation metadata. Public

key pinning associates a public key with an endpoint to reduce the

risk of attacks with rogue certificates.

Upon connection, the endpoints (client and server) MUST validate the

other endpoint's certificate against the published matching public

key pin. Issuers in metadata are only used to help validate the

server and client certificate. It is up to each implementation to

¶

¶

¶

¶

¶

decide if these are needed. Failure to validate triggers termination

of the connection.

If a TLS session is terminated separately from the application

(e.g., when using a reverse proxy), the TLS session termination

point can validate the certificate issuer and defer public key pin

matching to the application given that the peer certificate is

transferred to the application (e.g., via a HTTP header).

4. Federation Metadata

Federation metadata is published as an JWS [RFC7519]. Entities have

an organization claim that is used for identification. Server

endpoints include a base URI to connect to the endpoint. Servers and

clients also have a list of public key pins used to limit valid

endpoint certificates.

Public key pinning is defined in [RFC7469]. Clients and servers

preloads pins as defined in [RFC7469], section 2.7

4.1. Federation Metadata claims

This section defines the set of claims that can be included in

metadata.

version (REQUIRED)

Schema version follows semantic versioning (https://semver.org)

cache_ttl (OPTIONAL)

How long (in seconds) to cache metadata. Effective maximum TTL is

the minimum of HTTP Expire and TTL

Entities (REQUIRED)

List of entities (see Section 4.1.1)

4.1.1. Entities

Metadata contains a list of entities that may be used for

communication within the federation. Each entity describes one or

more endpoints owned by a member. An entity has the following

properties:

entity_id (REQUIRED)

URI that identifies the entity. It MUST be globally unique.

Example: "https://example.com"

¶

¶

¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

* ¶

¶

¶

https://semver.org
https://example.com%22

organization (OPTIONAL)

A name identifying the organization that the entity's metadata

represents.

Example: "Example Org".

issuers (REQUIRED)

A list of certificate issuers that are allowed to issue

certificates for the entity's endpoints. For each issuer, the

issuer's root CA certificate is included in the x509certificate

property (PEM-encoded).

servers (OPTIONAL)

List of the entity's servers (see Section 4.1.1.1).

clients (OPTIONAL)

List of the entity's clients (see Section 4.1.1.1).

4.1.1.1. Servers / Clients

A list of the entity's servers and clients.

description (OPTIONAL)

A human readable text describing the server.

Example: "SCIM Server 1"

base_uri (OPTIONAL)

The base URL of the server (hence required for endpoints

describing servers).

Example: "https://scim.example.com/"

pins (REQUIRED)

A list of Public Key Pins [RFC7469]. Each pin has the following

properties:

alg (REQUIRED)

The name of the cryptographic hash algorithm. The only allowed

value is "sha256".

Example: "sha256"

* ¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

- ¶

¶

¶

https://scim.example.com/%22

digest (REQUIRED)

End-entity certificate base64 encoded Subject Public Key

Information (SPKI) fingerprint [RFC7469], for client the

digest MUST be globally unique. MAY, locally in the same

entity_id object, be assigned to multiple clients.

Example: "+hcmCjJEtLq4BRPhrILyhgn98Lhy6DaWdpmsBAgOLCQ="

tags (OPTIONAL)

A list of strings that describe the endpoint's capabilities.

Pattern: ^[a-z0-9]{1,64}$

Example: ["scim", "xyzzy"]

4.2. Metadata Schema

The federation metadata JSON schema (in YAML format) can be found at

https://github.com/dotse/tls-fed-auth.

4.3. Metadata Signing

The federation metadata is signed with JWS and published using JWS

JSON Serialization. It is RECOMMENDED that federation metadata

signatures are created with algorithm ECDSA using P-256 and SHA-256

("ES256") as defined in [RFC7518].

The following federation metadata signature protected headers are

REQUIRED:

alg (Algorithm)

Identifies the algorithm used to generate the JWS signature

[RFC7515], section 4.1.1.

iat (Issued At)

Identifies the time on which the signature was issued. Its value

MUST be a number containing a NumericDate value.

exp (Expiration Time)

Identifies the expiration time on and after which the signature

and federation metadata are no longer valid. The expiration time

of the federation metadata MUST be set to the value of exp. Its

value MUST be a number containing a NumericDate value.

iss (Issuer)

- ¶

¶

¶

* ¶

¶

¶

¶

¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

https://github.com/dotse/tls-fed-auth/blob/master/tls-fed-metadata.yaml

URI that identifies the publisher of federation metadata. The

issuer claim MUST be used to prevent conflicts of entities of the

same name from different federations.

kid (Key Identifier)

The key ID is used to identify the signing key in the key set

used to sign the JWS.

4.4. Metadata Example

The following is a non-normative example of a federation metadata

statement. Line breaks within the issuers' claim is for readability

only.

¶

* ¶

¶

¶

{

 "version": "1.0.0",

 "cache_ttl": 3600,

 "entities": [{

 "entity_id": "https://example.com",

 "organization": "Example Org",

 "issuers": [{

 "x509certificate": "-----BEGIN CERTIFICATE-----\nMIIDDDCCAf

 SgAwIBAgIJAIOsfJBStJQhMA0GCSqGSIb3DQEBCwUAMBsxGTAXBgNV\nBAM

 MEHNjaW0uZXhhbXBsZS5jb20wHhcNMTcwNDA2MDc1MzE3WhcNMTcwNTA2MD

 c1\nMzE3WjAbMRkwFwYDVQQDDBBzY2ltLmV4YW1wbGUuY29tMIIBIjANBgk

 qhkiG9w0B\nAQEFAAOCAQ8AMIIBCgKCAQEAyr+3dXTC8YXoi0LDJTH0lTfv

 8omQivWFOr3+/PBE\n6hmpLSNXK/EZJBD6ZT4Q+tY8dPhyhzT5RFZCVlrDs

 e/kY00F4yoflKiqx9WSuCrq\nZFr1AUtIfGR/LvRUvDFtuHo1MzFttiK8Wr

 wskMYZrw1zLHTIVwBkfMw1qr2XzxFK\njt0CcDmFxNdY5Q8kuBojH9+xt5s

 ZbrJ9AVH/OI8JamSqDjk9ODyGg+GrEZFClP/B\nxa4Fsl04En/9GfaJnCU1

 NpU0cqvWbVUlLOy8DaQMN14HIdkTdmegEsg2LR/XrJkt\nho16diAXrgS25

 3xbkdD3T5d6lHiZCL6UxkBh4ZHRcoftSwIDAQABo1MwUTAdBgNV\nHQ4EFg

 QUs1dXuhGhGc2UNb7ikn3t6cBuU34wHwYDVR0jBBgwFoAUs1dXuhGhGc2U\

 nNb7ikn3t6cBuU34wDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsFAA

 OCAQEA\nrR9wxPhUa2XfQ0agAC0oC8TFf8wbTYb0ElP5Ej834xMMW/wWTSA

 N8/3WqOWNQJ23\nf0vEeYQwfvbD2fjLvYTyM2tSPOWrtQpKuvulIrxV7Zz8

 A61NIjblE3rfea1eC8my\nTkDOlMKV+wlXXgUxirride+6ubOWRGf92fgze

 DGJWkmm/a9tj0L/3e0xIXeujxC7\nMIt3p99teHjvnZQ7FiIBlvGc1o8FD1

 FKmFYd74s7RxrAusBEAAmBo3xyB89cFU0d\nKB2fkH2lkqiqkyOtjrlHPoy

 6ws6g1S6U/Jx9n0NEeEqCfzXnh9jEpxisSO+fBZER\npCwj2LMNPQxZBqBF

 oxbFPw==\n-----END CERTIFICATE-----"

 }],

 "servers": [{

 "description": "SCIM Server 1",

 "base_uri": "https://scim.example.com/",

 "pins": [{

 "alg": "sha256",

 "digest": "+hcmCjJEtLq4BRPhrILyhgn98Lhy6DaWdpmsBAgOLCQ="

 }],

 "tags": [

 "scim"

]

 }],

 "clients": [{

 "description": "SCIM Client 1",

 "pins": [{

 "alg": "sha256",

 "digest": "+hcmCjJEtLq4BRPhrILyhgn98Lhy6DaWdpmsBAgOLCQ="

 }]

 }]

 }]

}

5. Usage Examples

The examples in this section are non-normative.

The example below is from the federation called "Skolfederation"

where federated TLS authentication is already in use. Clients and

servers are registered in the federation. The clients intend to

manage cross-domain user accounts within the service. The standard

used for account management is SS 12000:2018 (i.e., a SCIM

extension).

+---+

| |

| Federation Metadata |

| |

+---+--------------------------+--------------+

 | |

 (A) (A)

 | |

 v v

+---+----+ +------------+--------------+

|Local MD| | Local MD |

+---+----+ +----+------------- ---+----+

 | | |

 (B) (C) (F)

 | | |

 v v v

+---+----+ +----+---+ +----+---+

| | | | | |

| Client | | Reverse| | App |

| +--(D)-->+ Proxy +--(E)-->+ |

| | | | | |

| | | | | |

+--------+ +--------+ +--------+

Entities collect member metadata from the federation metadata.

The client pins the server's public key pins.

The reverse proxy trust anchor is setup with the clients'

certificate issuers.

The client establishes a connection with the server using the

base_uri from the federation metadata.

¶

¶

¶

¶

A. ¶

B. ¶

C.

¶

D.

¶

The reverse proxy forwards the client certificate to the

application.

The application converts the certificate to a public key pin

and checks the federation metadata for a matching pin. The

entity's entity_id should be used as an identifier.

5.1. Client

A certificate is issued for the client and the issuer is published

in the federation metadata together with the client's certificate

public key pins

When the client wants to connect to a remote server (identified by

an entity identifier) the following steps need to be taken:

Find possible server candidates by filtering the remote

entity's list of servers based on tags.

Connect to the server URI. Include the entity's list of

certificate issuers in the TLS clients list of trusted CAs, or

trust the listed pins explicitly.

If pinning was not used, validate the received server

certificate using the entity's published pins.

Commence transactions

5.2. Server

A certificate is issued for the server and the issuer is published

in the federation metadata together with the server's name and

certificate public key pin.

When the server receives a connection from a remote client, the

following steps need to be taken:

Populate list of trusted CAs using all known entities'

published issuers and required TLS client certificate

authentication, or configure optional untrusted TLS client

certificate authentication (e.g., optional_no_ca).

Once a connection has been accepted, validate the received

client certificate using the client's published pins.

Commence transactions.

E.

¶

F.

¶

¶

¶

1.

¶

2.

¶

3.

¶

4. ¶

¶

¶

1.

¶

2.

¶

3. ¶

5.3. SPKI Generation

Example of how to use OpenSSL to generate a SPKI fingerprint from a

PEM-encoded certificate.

 openssl x509 -in <certificate.pem> -pubkey -noout | \

 openssl pkey -pubin -outform der | \

 openssl dgst -sha256 -binary | \

 openssl enc -base64

5.4. Curl and Public Key Pinning

Example of public key pinning with curl. Line breaks are for

readability only.

 curl --cert client.pem --client.key --pinnedpubkey 'sha256//0Ok2aNf

 crCNDMhC2uXIdxBFOvMfEVtzlNVUT5pur0Dk=' https://host.example.com

6. Security Considerations

6.1. TLS

Security considerations for TLS 1.3 [RFC8446] are described in

Section 10 and Appendices C, D and E of RFC 8446.

6.2. Federation Metadata Updates

Frequent check of the federation metadata aggregate to use the most

recent version is required. It is required to check the federation

metadata periodically to find out if entities, pins and issuers are

still active.

6.3. Federation Metadata Signing Key

To ensure the validity of the federation metadata the refresh

process must verify the signature on each and every federation

metadata fetch. The federation's public key authenticity must be

assured and verified in a secure way.

7. IANA Considerations

This document has no IANA actions.

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC7469]

[RFC7515]

[RFC7519]

[RFC8446]

[RFC7518]

8. Acknowledgements

The authors would like to thank the following people for the

detailed review and suggestions:

Rasmus Larsson

Mats Dufberg

Joe Siltberg

Stefan Norberg

Petter Blomberg

The authors would also like to thank participants in the EGIL

working group for their comments on this specification.

9. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning

Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469,

April 2015, <https://www.rfc-editor.org/info/rfc7469>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

10. Informative References

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI

10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/

info/rfc7518>.

Authors' Addresses

Jakob Schlyter

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7469
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518

Kirei AB

Email: jakob@kirei.se

Stefan Halén

The Swedish Internet Foundation

Email: stefan.halen@internetstiftelsen.se

mailto:jakob@kirei.se
mailto:stefan.halen@internetstiftelsen.se

	Federated TLS Authentication
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Reserved Words

	2. Federation Chain of Trust
	3. Authentication
	4. Federation Metadata
	4.1. Federation Metadata claims
	4.1.1. Entities
	4.1.1.1. Servers / Clients

	4.2. Metadata Schema
	4.3. Metadata Signing
	4.4. Metadata Example

	5. Usage Examples
	5.1. Client
	5.2. Server
	5.3. SPKI Generation
	5.4. Curl and Public Key Pinning

	6. Security Considerations
	6.1. TLS
	6.2. Federation Metadata Updates
	6.3. Federation Metadata Signing Key

	7. IANA Considerations
	8. Acknowledgements
	9. Normative References
	10. Informative References
	Authors' Addresses

