
Workgroup: Network Working Group

Internet-Draft: draft-halen-fed-tls-auth-11

Published: 3 April 2024

Intended Status: Informational

Expires: 5 October 2024

Authors: J. Schlyter

Kirei AB

S. Halén

The Swedish Internet Foundation

Federated TLS Authentication

Abstract

This document describes the Federated TLS Authentication (FedTLS)

protocol, enabling secure end-to-end communication within a

federated environment. Both clients and servers perform mutual TLS

authentication, establishing trust based on a centrally managed

trust anchor published by the federation. Additionally, FedTLS

ensures unambiguous identification of entities, as only authorized

members within the federation can publish metadata, further

mitigating risks associated with unauthorized entities impersonating

legitimate participants. This framework promotes seamless and secure

interoperability across different trust domains adhering to common

policies and standards within the federation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 October 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

1.1. Reserved Words

1.2. Terminology

2. Federation Chain of Trust

3. Metadata Repository

4. Metadata Submission

5. Maintaining Up-to-Date Metadata

6. Authentication

6.1. Public Key Pinning

6.2. Pin Discovery and Preloading

6.3. Verification of Received Certificates

6.4. Failure to Validate

7. Federation Metadata

7.1. Federation Metadata claims

7.1.1. Entities

7.2. Metadata Schema

7.3. Example Metadata

7.4. Metadata Signing

7.5. Example Signature Protected Header

8. Example Usage Scenarios

8.1. Client

8.2. Server

8.3. SPKI Generation

8.4. Curl and Public Key Pinning

9. Security Considerations

9.1. TLS

9.2. Federation Metadata Updates

9.3. Verifying the Federation Metadata Signature

10. Acknowledgements

11. IANA Considerations

12. Normative References

13. Informative References

Appendix A. JSON Schema for FedTLS Metadata

Authors' Addresses

1. Introduction

This document outlines the Federated TLS Authentication (FedTLS)

framework, which facilitates secure end-to-end communication between

two parties within a federation. Both the client and server undergo

mutual TLS authentication (as defined in [RFC8446]), establishing a

robust foundation of trust. This trust relies on a central trust

anchor held and published by the federation, acting as a trusted

¶

third party connecting distinct trust domains under a common set of

policies and standards.

The FedTLS framework leverages a centralized repository of

federation metadata to ensure secure communication between servers

and clients within the federation. This repository includes

information about public keys, certificate issuers, and additional

entity details, such as organizational information and service

descriptions. This centralized approach simplifies certificate

management, promotes interoperability, and establishes trust within

the federation. By directly accessing the federation metadata,

efficient connections are established, eliminating manual

configuration even for new interactions.

Without a FedTLS federation, implementing mutual TLS authentication

often requires organizations to establish their own PKI

infrastructure (or rely on third-party CAs) to issue and validate

client certificates, leading to complexity and administrative

burden. FedTLS allows the use of self-signed certificates,

potentially reducing costs and administrative overhead. While self-

signed certificates inherently lack the trust level of certificates

issued by trusted CAs, the strong trust within the FedTLS framework

is established through several mechanisms, including public key

pinning [RFC7469] and member vetting procedures. This ensures the

validity and authenticity of self-signed certificates within the

federation, fostering secure communication without compromising

trust.

The Swedish education sector illustrates the value of FedTLS by

securing user lifecycle management endpoints through this framework.

This successful collaboration between school authorities and service

providers highlights FedTLS's ability to enable trust, simplify

operations, and strengthen security within federated environments.

1.1. Reserved Words

This document is an Informational RFC, which means it offers

information and guidance but does not specify mandatory standards.

Therefore, the keywords used throughout this document are for

informational purposes only and do not imply any specific

requirements.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

¶

¶

¶

¶

¶

¶

1.2. Terminology

Federation: A trusted network of entities that adhere to common

security policies and standards,using FedTLS for secure

communication.

Federation Metadata: A cryptographically signed document

containing critical information about all entities within the

federation.

Metadata Repository: A centralized repository storing information

about all entities within the federation.

Member Metadata: Information about entities associated with a

specific member within the federation.

Federation Member: An entity that has been approved to join the

federation and can leverage FedTLS for secure communication with

other members.

Federation Operator: The entity responsible for the overall

operation and management of the federation, including managing

the federation metadata, enforcing security policies, and

onboarding new members.

Member Vetting: The process of verifying and approving applicants

to join the federation, ensuring they meet security and

trustworthiness requirements.

Trust Anchor: The federation's root of trust is established by

the federation metadata signing key, which verifies the

federation metadata and allows participants to confidently rely

on the information it contains.

2. Federation Chain of Trust

Federation members submit member metadata to the federation. Both

the authenticity of the submitted member metadata and the submitting

member need to be ensured by the federation.

The federation operator aggregates, signs, and publishes the

federation metadata, which combines all members' member metadata

along with additional federation-specific information. By placing

trust in the federation and its associated signing key, federation

members trust the information contained within the federation

metadata.

The trust anchor for the federation is established through the

federation's signing key, a critical component requiring secure

distribution and verification. To achieve this, the federation's

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

signing key is distributed using a JSON Web Key Set (JWKS)

[RFC7517], providing a flexible framework for exposing multiple keys

including the signing key and keys for rollover. This structured

approach ensures members can readily access the necessary keys for

verification purposes.

An additional layer of security is introduced through thumbprint

verification [RFC7638], where federation members can independently

verify the key's authenticity. This involves comparing the

calculated cryptographic thumbprint of the key with a trusted value,

ensuring its integrity. Importantly, this verification process can

be conducted through channels separate from the JWKS itself,

enhancing security by eliminating reliance on a single distribution

mechanism.

3. Metadata Repository

The FedTLS metadata repository serves as the cornerstone of trust

within a federation. It acts as a central vault, securely storing

all information about all participating federation members and their

respective entities. This information, known as federation metadata,

is presented as a JWS [RFC7515]to ensure its authenticity and

integrity.

The metadata repository is subject to stringent security measures to

safeguard the integrity and confidentiality of the stored

information. This MAY involve:

Member Management: The federation operator can centrally enforce

security policies and vet new members before they are added to

the repository.

Access Controls: Only authorized members within the federation

should have access to the repository.

Regular Backups: Robust backup procedures ensure data recovery in

case of unforeseen circumstances.

Before member metadata is added to the federation's repository, it

is recommended that the submitted metadata undergo a validation

process. This process aims to verify the accuracy, completeness, and

validity of the information provided by a member. The validation

process MAY include the following steps:

Format Validation: The system checks if the submitted metadata

adheres to the defined schema and format specifications.

Unique Entity ID: Checks are performed to ensure that the

entity_id in the submitted metadata is not already registered by

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

another member. Each entity within the federation must have a

unique identifier.

Unique Public Key Pins: Public key pins are utilized to locate

the corresponding entity within the metadata upon establishing a

connection. Through the validation process, these pins are

ensured to be unique within the repository. This prevents

ambiguity during connection establishment.

Certificate Verification: The issuer certificates listed in the

metadata are validated to ensure that the algorithms used in the

certificates are well-known and secure, and that the certificates

are currently valid and have not expired

Organization: Verification is conducted to ensure the correctness

of the organization name in the submitted metadata. Additionally,

any other provided organizational information is verified to

adhere to the federation policy.

Tag Validation: Ensures that tags in the metadata adhere to the

defined tag structure, verifying both mandatory and optional

tags. This process is crucial for maintaining consistency and

preventing unauthorized tags within a federation.

The FedTLS metadata repository serves as the vital foundation for

establishing trust and enabling secure communication within a FedTLS

environment. By providing a central, secure, and controlled

repository for critical information, the metadata repository

empowers members to confidently discover other trusted entities, and

establish secure connections for seamless interaction.

4. Metadata Submission

It is up to the federation to determine which channels should be

provided to members for submitting their metadata to the metadata

repository. Members typically have the option to either upload the

metadata directly to the repository, provided such functionality

exists, or to send it to the federation operator through a

designated secure channel. If an insecure channel is used,

additional measures MUST be taken to verify the authenticity and

integrity of the metadata. Such measures may include verifying the

checksum of the metadata through another channel. The choice of

submission channel may depend on factors such as the federation's

guidelines and the preferences of the member.

5. Maintaining Up-to-Date Metadata

In a FedTLS federation, accurate and current metadata is essential

for ensuring secure and reliable communication between members. This

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

necessitates maintaining up-to-date metadata accessible by all

members.

Federation Metadata: The federation operator publishes a JWS

containing an aggregate of all entity metadata. This JWS serves

as the source of truth for information about all members within

the federation. Outdated information in the JWS can lead to

issues like failed connections, discovery challenges, and

potential security risks.

Local Metadata: Each member maintains a local metadata store

containing information about other members within the federation.

This information is retrieved from the federation's publicly

accessible JWS. Outdated data in the local store can hinder a

member's ability to discover and connect with other relevant

entities.

Here's how metadata is kept up-to-date:

Member Responsibility: The primary responsibility for maintaining

accurate metadata lies with each member. Members are obligated

to:

Promptly update their member metadata whenever any relevant

information changes and submit it to the metadata repository.

Periodically refresh their local metadata store, regardless of

whether a caching mechanism is used. This ensures they

retrieve the latest information from the federation's JWS,

even if they have cached data.

Federation Operator Role: The Federation Operator plays a crucial

role in maintaining data integrity within the federation. Their

responsibilities include:

Defining clear guidelines for metadata updates, member

responsibilities, and expiration time management.

Implementing automated mechanisms to update the published JWS

containing the aggregate member metadata, ensuring it adheres

to the expiration time (exp, see Section 7.4) and cache TTL

(cache_ttl, see Section 7.1) specifications.

By adhering to these responsibilities, the Federation ensures that

information remains valid for the defined timeframe and that caching

mechanisms utilize up-to-date data effectively.

¶

*

¶

*

¶

¶

*

¶

-

¶

-

¶

*

¶

-

¶

-

¶

¶

6. Authentication

All communication established within the federation leverages mutual

TLS authentication, as defined in [RFC8446]. This mechanism ensures

the authenticity of both communicating parties, establishing a

robust foundation for secure data exchange.

6.1. Public Key Pinning

To further fortify this trust and mitigate risks associated with

fraudulent certificates issued by unauthorized entities, the

federation implements public key pinning as specified in [RFC7469].

Public key pinning associates a unique public key with each endpoint

within the federation, stored in the federation metadata. During

connection establishment, clients and servers validate the received

certificate against the pre-configured public key pins retrieved

from the federation metadata. This effectively thwarts attempts to

utilize fraudulent certificates impersonating legitimate endpoints.

6.2. Pin Discovery and Preloading

Peers in the federation retrieve these unique public key pins,

serving as pre-configured trust parameters, from the federation

metadata. The federation MUST facilitate the discovery process,

enabling peers to identify the relevant pins for each endpoint.

Information such as organization, tags, and descriptions within the

federation metadata aids in this discovery.

Before initiating any connection, both clients and servers preload

the chosen pins in strict adherence to the guidelines outlined in

section 2.7 of [RFC7469]. This preloading ensures connections only

occur with endpoints possessing matching public keys, effectively

blocking attempts to use fraudulent certificates.

6.3. Verification of Received Certificates

Upon connection establishment, both endpoints (client and server)

must either leverage public key pinning or validate the received

certificate against the published pins. Additionally, the federation

metadata contains issuer information, which implementations MAY

optionally use to verify certificate issuers. This step remains at

the discretion of each individual implementation.

In scenarios where a TLS session terminates independent of the

application (e.g., via a reverse proxy), the termination point can

utilize optional untrusted TLS client certificate authentication or

validate the certificate issuer itself. Depending on the specific

implementation, pin validation can then be deferred to the

application itself, assuming the peer certificate is appropriately

transferred (e.g., via an HTTP header).

¶

¶

¶

¶

¶

¶

6.4. Failure to Validate

It is crucial to note that failure to validate a received

certificate against the established parameters, whether through

pinning or issuer verification, results in immediate termination of

the connection. This strict approach ensures only authorized and

secure communication channels are established within the federation.

7. Federation Metadata

Federation metadata is published as a JWS [RFC7515]. The payload

contains statements about federation members entities.

Metadata is used for authentication and service discovery. A client

select a server based on metadata claims (e.g., organization, tags).

The client then use the selected server claims base_uri, pins and if

needed issuers to establish a connection.

Upon receiving a connection, a server validates the received client

certificate using the client's published pins. Server MAY also check

other claims such as organization and tags to determine if the

connections is accepted or terminated.

7.1. Federation Metadata claims

This section defines the set of claims that can be included in

metadata.

version (REQUIRED)

Schema version follows semantic versioning (https://semver.org)

cache_ttl (OPTIONAL)

Specifies the duration (in seconds) for caching the downloaded

federation metadata. This enables caching independent of specific

HTTP implementations or configurations, beneficial for scenarios

where the underlying communication mechanism is not solely HTTP-

based.

Entities (REQUIRED)

List of entities (see Section 7.1.1)

7.1.1. Entities

Metadata contains a list of entities that may be used for

communication within the federation. Each entity describes one or

¶

¶

¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

https://semver.org

more endpoints owned by a member. An entity has the following

properties:

entity_id (REQUIRED)

A URI that uniquely identifies the entity. This identifier MUST

NOT collide with any other entity_id within the federation or

with any other federation that the entity interacts with.

Example: "https://example.com"

organization (OPTIONAL)

A name identifying the organization that the entity's metadata

represents. The federation operator MUST ensure a mechanism is in

place to verify that the organization claim corresponds to the

rightful owner of the information exchanged between nodes. This

is crucial for the trust model, ensuring certainty about the

identities of the involved parties. The federation operator

SHOULD choose an approach that best suits the specific needs and

trust model of the federation.

Example: "Example Org".

issuers (REQUIRED)

A list of certificate issuers that are allowed to issue

certificates for the entity's endpoints. For each issuer, the

issuer's root CA certificate is included in the x509certificate

property (PEM-encoded).

servers (OPTIONAL)

List of the entity's servers (see Section 7.1.1.1).

clients (OPTIONAL)

List of the entity's clients (see Section 7.1.1.1).

7.1.1.1. Servers / Clients

A list of the entity's servers and clients.

description (OPTIONAL)

A human readable text describing the server or client.

Example: "SCIM Server 1"

base_uri (OPTIONAL)

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

https://example.com%22

The base URL of the server (hence required for endpoints

describing servers).

Example: "https://scim.example.com/"

pins (REQUIRED)

A list of Public Key Pins [RFC7469]. Each pin has the following

properties:

alg (REQUIRED)

The name of the cryptographic hash algorithm. The only allowed

value is "sha256".

Example: "sha256"

digest (REQUIRED)

The public key of the end-entity certificate converted to a

Subject Public Key Information (SPKI) fingerprint, as

specified in section 2.4 of [RFC7469]. For clients, the digest

MUST be globally unique for unambiguous identification.

However, within the same entity_id object, the same digest MAY

be assigned to multiple clients.

Example: "+hcmCjJEtLq4BRPhrILyhgn98Lhy6DaWdpmsBAgOLCQ="

tags (OPTIONAL)

A list of strings that describe the endpoint's capabilities.

Tags are fundamental for discovery within a federation, aiding

both servers and clients in identifying appropriate connections.

Servers: Tags enable servers to identify clients with specific

characteristics or capabilities. For instance, a server might

want to serve only clients with particular security clearances

or those supporting specific protocol versions. By filtering

incoming requests based on relevant tags, servers can

efficiently identify suitable clients for serving.

Clients: Tags also assist clients in discovering servers

offering the services they require. Clients can search for

servers based on tags indicating supported protocols or the

type of data they handle. This enables clients to efficiently

locate servers meeting their specific needs.

Federation-Specific Considerations

¶

¶

* ¶

¶

- ¶

¶

¶

- ¶

¶

¶

* ¶

¶

¶

-

¶

-

¶

¶

https://scim.example.com/%22

While tags are tied to individual federations and serve distinct

purposes within each, several key considerations are crucial to

ensure clarity and promote consistent tag usage:

Well-Defined Scope: Each federation MUST establish a clear

scope for its tags, detailing their intended use, allowed tag

values, associated meanings, and any relevant restrictions.

Maintaining a well-defined and readily accessible registry of

approved tags is essential for the federation.

Validation Mechanisms: Implementing validation mechanisms for

tags is highly recommended. This may involve a dedicated

operation or service verifying tag validity and compliance

with the federation's regulations. Such validation ensures

consistency within the federation by preventing the use of

unauthorized or irrelevant tags.

Pattern: ^[a-z0-9]{1,64}$

Example: ["scim", "xyzzy"]

7.2. Metadata Schema

The FedTLS metadata schema is defined in Appendix A. This schema

specifies the format for describing entities involved in FedTLS and

their associated information.

Note: The schema in Appendix A is folded due to line length

limitations as specified in [RFC8792].

7.3. Example Metadata

The following is a non-normative example of a metadata statement.

Line breaks within the issuers' claim is for readability only.

¶

-

¶

-

¶

¶

¶

¶

¶

¶

{

 "version": "1.0.0",

 "cache_ttl": 3600,

 "entities": [{

 "entity_id": "https://example.com",

 "organization": "Example Org",

 "issuers": [{

 "x509certificate": "-----BEGIN CERTIFICATE-----\nMIIDDDCCAf

 SgAwIBAgIJAIOsfJBStJQhMA0GCSqGSIb3DQEBCwUAMBsxGTAXBgNV\nBAM

 MEHNjaW0uZXhhbXBsZS5jb20wHhcNMTcwNDA2MDc1MzE3WhcNMTcwNTA2MD

 c1\nMzE3WjAbMRkwFwYDVQQDDBBzY2ltLmV4YW1wbGUuY29tMIIBIjANBgk

 qhkiG9w0B\nAQEFAAOCAQ8AMIIBCgKCAQEAyr+3dXTC8YXoi0LDJTH0lTfv

 8omQivWFOr3+/PBE\n6hmpLSNXK/EZJBD6ZT4Q+tY8dPhyhzT5RFZCVlrDs

 e/kY00F4yoflKiqx9WSuCrq\nZFr1AUtIfGR/LvRUvDFtuHo1MzFttiK8Wr

 wskMYZrw1zLHTIVwBkfMw1qr2XzxFK\njt0CcDmFxNdY5Q8kuBojH9+xt5s

 ZbrJ9AVH/OI8JamSqDjk9ODyGg+GrEZFClP/B\nxa4Fsl04En/9GfaJnCU1

 NpU0cqvWbVUlLOy8DaQMN14HIdkTdmegEsg2LR/XrJkt\nho16diAXrgS25

 3xbkdD3T5d6lHiZCL6UxkBh4ZHRcoftSwIDAQABo1MwUTAdBgNV\nHQ4EFg

 QUs1dXuhGhGc2UNb7ikn3t6cBuU34wHwYDVR0jBBgwFoAUs1dXuhGhGc2U\

 nNb7ikn3t6cBuU34wDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsFAA

 OCAQEA\nrR9wxPhUa2XfQ0agAC0oC8TFf8wbTYb0ElP5Ej834xMMW/wWTSA

 N8/3WqOWNQJ23\nf0vEeYQwfvbD2fjLvYTyM2tSPOWrtQpKuvulIrxV7Zz8

 A61NIjblE3rfea1eC8my\nTkDOlMKV+wlXXgUxirride+6ubOWRGf92fgze

 DGJWkmm/a9tj0L/3e0xIXeujxC7\nMIt3p99teHjvnZQ7FiIBlvGc1o8FD1

 FKmFYd74s7RxrAusBEAAmBo3xyB89cFU0d\nKB2fkH2lkqiqkyOtjrlHPoy

 6ws6g1S6U/Jx9n0NEeEqCfzXnh9jEpxisSO+fBZER\npCwj2LMNPQxZBqBF

 oxbFPw==\n-----END CERTIFICATE-----"

 }],

 "servers": [{

 "description": "SCIM Server 1",

 "base_uri": "https://scim.example.com/",

 "pins": [{

 "alg": "sha256",

 "digest": "+hcmCjJEtLq4BRPhrILyhgn98Lhy6DaWdpmsBAgOLCQ="

 }],

 "tags": [

 "scim"

]

 }],

 "clients": [{

 "description": "SCIM Client 1",

 "pins": [{

 "alg": "sha256",

 "digest": "+hcmCjJEtLq4BRPhrILyhgn98Lhy6DaWdpmsBAgOLCQ="

 }]

 }]

 }]

}

¶

7.4. Metadata Signing

The federation metadata is signed with JWS and published using JWS

JSON Serialization according to the General JWS JSON Serialization

Syntax defined in [RFC7515]. It is RECOMMENDED that federation

metadata signatures are created with algorithm ECDSA using P-256 and

SHA-256 ("ES256") as defined in [RFC7518].

The following federation metadata signature protected headers are

REQUIRED:

alg (Algorithm)

Identifies the algorithm used to generate the JWS signature

[RFC7515], section 4.1.1.

iat (Issued At)

Identifies the time on which the signature was issued. Its value

MUST be a number containing a NumericDate value [RFC7519],

section 4.1.6.

exp (Expiration Time)

Identifies the expiration time on and after which the signature

and federation metadata are no longer valid. The expiration time

of the federation metadata MUST be set to the value of exp. Its

value MUST be a number containing a NumericDate value [RFC7519],

section 4.1.4.

iss (Issuer)

A URI uniquely identifying the issuing federation, playing a

critical role in establishing trust and securing interactions

within the FedTLS framework. The iss claim differentiates

federations, preventing ambiguity and ensuring entities are

recognized within their intended context. Verification of the iss

claim, along with the corresponding issuer's certificate, enables

relying parties to confidently determine information origin and

establish trust with entities within the identified federation.

This ensures secure communication and mitigates potential

security risks [RFC7519], section 4.1.1.

kid (Key Identifier)

The key ID is used to identify the signing key in the key set

used to sign the JWS [RFC7515], section 4.1.4.

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

7.5. Example Signature Protected Header

The following is a non-normative example of a signature protected

header.

8. Example Usage Scenarios

The examples in this section are non-normative.

The following example describes a scenario within the federation

"Skolfederation" where FedTLS is already established. Both clients

and servers are registered members of the federation. In this

scenario, clients aim to manage cross-domain user accounts within

the service. The standard used for account management is SS

12000:2018 (i.e., a SCIM extension).

Entities collect member metadata from the federation metadata.

¶

{

 "alg": "ES256",

 "exp": 1707739718,

 "iat": 1706875718,

 "iss": "https://fedtls.example.com",

 "kid": "c2fb760e-f4b6-4f7e-b17a-7115d2826d51"

}

¶

¶

¶

+---+

| |

| Federation Metadata |

| |

+---+--------------------------+--------------+

 | |

 (A) (A)

 | |

 v v

+---+----+ +------------+--------------+

|Local MD| | Local MD |

+---+----+ +----+------------- ---+----+

 | | |

 (B) (C) (F)

 | | |

 v v v

+---+----+ +----+---+ +----+---+

| | | | | |

| Client | | Reverse| | App |

| +--(D)-->+ Proxy +--(E)-->+ |

| | | | | |

| | | | | |

+--------+ +--------+ +--------+

¶

A. ¶

The client pins the server's public key pins.

The reverse proxy trust anchor is setup with the clients'

certificate issuers.

The client establishes a connection with the server using the

base_uri from the federation metadata.

The reverse proxy forwards the client certificate to the

application.

The application converts the certificate to a public key pin

and checks the federation metadata for a matching pin. The

entity's entity_id should be used as an identifier.

8.1. Client

A certificate is issued for the client and the issuer is published

in the federation metadata together with the client's certificate

public key pins

When the client wants to connect to a remote server (identified by

an entity identifier) the following steps need to be taken:

Find possible server candidates by filtering the remote

entity's list of servers based on tags.

Connect to the server URI. Include the entity's list of

certificate issuers in the TLS clients list of trusted CAs, or

trust the listed pins explicitly.

If pinning was not used, validate the received server

certificate using the entity's published pins.

Commence transactions.

8.2. Server

A certificate is issued for the server and the issuer is published

in the federation metadata together with the server's name and

certificate public key pin.

When the server receives a connection from a remote client, the

following steps need to be taken:

Populate list of trusted CAs using all known entities'

published issuers and required TLS client certificate

authentication, or configure optional untrusted TLS client

certificate authentication (e.g., optional_no_ca).

B. ¶

C.

¶

D.

¶

E.

¶

F.

¶

¶

¶

1.

¶

2.

¶

3.

¶

4. ¶

¶

¶

1.

¶

Once a connection has been accepted, validate the received

client certificate using the client's published pins.

Commence transactions.

8.3. SPKI Generation

Example of how to use OpenSSL to generate a SPKI fingerprint from a

PEM-encoded certificate.

8.4. Curl and Public Key Pinning

Example of public key pinning with curl. Line breaks are for

readability only.

9. Security Considerations

9.1. TLS

The security considerations for TLS 1.3 [RFC8446] are detailed in

Section 10, along with Appendices C, D, and E of RFC 8446.

9.2. Federation Metadata Updates

Regularly updating the local copy of federation metadata is

essential for accessing the latest information about active

entities, current public key pins, and valid certificates. The use

of outdated metadata may expose systems to security risks, such as

interaction with revoked entities or acceptance of manipulated data.

If specified in the federation metadata, cache_ttl values SHOULD be

respected.

9.3. Verifying the Federation Metadata Signature

Ensuring data integrity and security within the FedTLS framework

relies on verifying the signature of downloaded federation metadata.

This process confirms the data's origin, validating that it comes

from the intended source and has not been altered by unauthorized

parties. Through the process of verifying the metadata's

authenticity, trust is established in the information it contains,

including valid member certificates and public key pins.

2.

¶

3. ¶

¶

 openssl x509 -in <certificate.pem> -pubkey -noout | \

 openssl pkey -pubin -outform der | \

 openssl dgst -sha256 -binary | \

 openssl enc -base64

¶

¶

 curl --cert client.pem --key client.key --pinnedpubkey 'sha256//0Ok

 2aNfcrCNDMhC2uXIdxBFOvMfEVtzlNVUT5pur0Dk=' https://host.example.com

¶

¶

¶

¶

[RFC2119]

[RFC7469]

[RFC7515]

[RFC7519]

[RFC8446]

10. Acknowledgements

This project was funded through the NGI0 PET Fund, a fund

established by NLnet with financial support from the European

Commission's Next Generation Internet programme, under the aegis of

DG Communications Networks, Content and Technology under grant

agreement No 825310.

The authors would like to thank the following people for the

detailed review and suggestions:

Rasmus Larsson

Mats Dufberg

Joe Siltberg

Stefan Norberg

Petter Blomberg

The authors would also like to thank participants in the EGIL

working group for their comments on this specification.

11. IANA Considerations

This document has no IANA actions.

12. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning

Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469,

April 2015, <https://www.rfc-editor.org/info/rfc7469>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7469
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8446

[RFC7517]

[RFC7518]

[RFC7638]

[RFC8792]

13. Informative References

Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/

RFC7517, May 2015, <https://www.rfc-editor.org/info/

rfc7517>.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI

10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/

info/rfc7518>.

Jones, M. and N. Sakimura, "JSON Web Key (JWK)

Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September

2015, <https://www.rfc-editor.org/info/rfc7638>.

Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,

"Handling Long Lines in Content of Internet-Drafts and

RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,

<https://www.rfc-editor.org/info/rfc8792>.

Appendix A. JSON Schema for FedTLS Metadata

This JSON schema defines the format of FedTLS metadata.

Version: 1.0.0

¶

¶

https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7638
https://www.rfc-editor.org/info/rfc8792

=============== NOTE: '\\' line wrapping per RFC 8792 ===============

{

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "$id": "https://www.fedtls.se/schema/fedtls-metadata-schema.json\

\",

 "title": "JSON Schema for Federated TLS Authentication",

 "description": "Version: 1.0.0",

 "type": "object",

 "additionalProperties": true,

 "required": [

 "version",

 "entities"

],

 "properties": {

 "version": {

 "title": "Metadata schema version",

 "description": "Schema version follows semantic versioni\

\ng (https://semver.org)",

 "type": "string",

 "pattern": "^\\d+\\.\\d+\\.\\d+$",

 "examples": [

 "1.0.0"

]

 },

 "cache_ttl": {

 "title": "Metadata cache TTL",

 "description": "How long (in seconds) to cache metadata.\

\ Effective maximum TTL is the minimum of HTTP Expire and TTL",

 "type": "integer",

 "minimum": 0,

 "examples": [

 3600

]

 },

 "entities": {

 "type": "array",

 "items": {

 "$ref": "#/components/entity"

 }

 }

 },

 "components": {

 "entity": {

 "type": "object",

 "additionalProperties": true,

 "required": [

 "entity_id",

 "issuers"

],

 "properties": {

 "entity_id": {

 "title": "Entity identifier",

 "description": "Globally unique identifier for t\

\he entity.",

 "type": "string",

 "format": "uri",

 "examples": [

 "https://example.com"

]

 },

 "organization": {

 "title": "Name of entity organization",

 "description": "Name identifying the organizatio\

\n that the entity's metadata represents.",

 "type": "string",

 "examples": [

 "Example Org"

]

 },

 "issuers": {

 "title": "Entity certificate issuers",

 "description": "A list of certificate issuers th\

\at are allowed to issue certificates for the entity's endpoints. Fo\

\r each issuer, the issuer's root CA certificate is included in the \

\x509certificate property (PEM-encoded).",

 "type": "array",

 "items": {

 "$ref": "#/components/cert_issuers"

 }

 },

 "servers": {

 "type": "array",

 "items": {

 "$ref": "#/components/endpoint"

 }

 },

 "clients": {

 "type": "array",

 "items": {

 "$ref": "#/components/endpoint"

 }

 }

 }

 },

 "endpoint": {

 "type": "object",

 "additionalProperties": true,

 "required": [

 "pins"

],

 "properties": {

 "description": {

 "title": "Endpoint description",

 "type": "string",

 "examples": [

 "SCIM Server 1"

]

 },

 "tags": {

 "title": "Endpoint tags",

 "description": "A list of strings that describe \

\the endpoint's capabilities.",

 "type": "array",

 "items": {

 "type": "string",

 "pattern": "^[a-z0-9]{1,64}$",

 "examples": [

 "xyzzy"

]

 }

 },

 "base_uri": {

 "title": "Endpoint base URI",

 "type": "string",

 "format": "uri",

 "examples": [

 "https://scim.example.com"

]

 },

 "pins": {

 "title": "Certificate pin set",

 "type": "array",

 "items": {

 "$ref": "#/components/pin_directive"

 }

 }

 }

 },

 "cert_issuers": {

 "title": "Certificate issuers",

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "x509certificate": {

 "title": "X.509 Certificate (PEM)",

 "type": "string"

 }

 }

 },

 "pin_directive": {

 "title": "RFC 7469 pin directive",

 "type": "object",

 "additionalProperties": false,

 "required": [

 "alg",

 "digest"

],

 "properties": {

 "alg": {

 "title": "Directive name",

 "type": "string",

 "enum": [

 "sha256"

],

 "examples": [

 "sha256"

]

 },

 "digest": {

 "title": "Directive value (Base64)",

 "type": "string",

 "pattern": "^(?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+\

\/]{2}==|[A-Za-z0-9+/]{3}=)?$",

 "examples": [

 "HiMkrb4phPSP+OvGqmZd6sGvy7AUn4k3XEe8OMBrzt8\

\="

]

 }

 }

 }

 }

}

¶

Authors' Addresses

Jakob Schlyter

Kirei AB

Email: jakob@kirei.se

Stefan Halén

The Swedish Internet Foundation

Email: stefan.halen@internetstiftelsen.se

mailto:jakob@kirei.se
mailto:stefan.halen@internetstiftelsen.se

	Federated TLS Authentication
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Reserved Words
	1.2. Terminology

	2. Federation Chain of Trust
	3. Metadata Repository
	4. Metadata Submission
	5. Maintaining Up-to-Date Metadata
	6. Authentication
	6.1. Public Key Pinning
	6.2. Pin Discovery and Preloading
	6.3. Verification of Received Certificates
	6.4. Failure to Validate

	7. Federation Metadata
	7.1. Federation Metadata claims
	7.1.1. Entities
	7.1.1.1. Servers / Clients

	7.2. Metadata Schema
	7.3. Example Metadata
	7.4. Metadata Signing
	7.5. Example Signature Protected Header

	8. Example Usage Scenarios
	8.1. Client
	8.2. Server
	8.3. SPKI Generation
	8.4. Curl and Public Key Pinning

	9. Security Considerations
	9.1. TLS
	9.2. Federation Metadata Updates
	9.3. Verifying the Federation Metadata Signature

	10. Acknowledgements
	11. IANA Considerations
	12. Normative References
	13. Informative References
	Appendix A. JSON Schema for FedTLS Metadata
	Authors' Addresses

