
Network Working Group P. Hallam-Baker
Internet-Draft Comodo Group Inc.
Intended status: Informational March 8, 2016
Expires: September 9, 2016

Title
draft-hallambaker-jsonbcd-05

Abstract

 Binary Encodings for JavaScript Object Notation: JSON-B, JSON-C,
 JSON-D

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hallam-Baker Expires September 9, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

1. Abstract

 Three binary encodings for JavaScript Object Notation (JSON) are
 presented. JSON-B (Binary) is a strict superset of the JSON encoding
 that permits efficient binary encoding of intrinsic JavaScript data
 types. JSON-C (Compact) is a strict superset of JSON-B that supports
 compact representation of repeated data strings with short numeric
 codes. JSON-D (Data) supports additional binary data types for
 integer and floating point representations for use in scientific
 applications where conversion between binary and decimal
 representations would cause a loss of precision.

2. Definitions

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Introduction

 JavaScript Object Notation (JSON) is a simple text encoding for the
 JavaScript Data model that has found wide application beyond its
 original field of use. In particular JSON has rapidly become a
 preferred encoding for Web Services.

 JSON encoding supports just four fundamental data types (integer,
 floating point, string and boolean), arrays and objects which consist
 of a list of tag-value pairs.

 Although the JSON encoding is sufficient for many purposes it is not
 always efficient. In particular there is no efficient representation
 for blocks of binary data. Use of base64 encoding increases data
 volume by 33%. This overhead increases exponentially in applications
 where nested binary encodings are required making use of JSON
 encoding unsatisfactory in cryptographic applications where nested
 binary structures are frequently required.

 Another source of inefficiency in JSON encoding is the repeated
 occurrence of object tags. A JSON encoding containing an array of a
 hundred objects such as {"first":1,"second":2} will contain a hundred
 occurrences of the string "first" (seven bytes) and a hundred
 occurrences of the string "second" (eight bytes). Using two byte
 code sequences in place of strings allows a saving of 11 bytes per
 object without loss of information, a saving of 50%.

https://datatracker.ietf.org/doc/html/rfc2119

Hallam-Baker Expires September 9, 2016 [Page 2]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

 A third objection to the use of JSON encoding is that floating point
 numbers can only be represented in decimal form and this necessarily
 involves a loss of precision when converting between binary and
 decimal representations. While such issues are rarely important in
 network applications they can be critical in scientific applications.
 It is not acceptable for saving and restoring a data set to change
 the result of a calculation.

3.1. Objectives

 The following were identified as core objectives for a binary JSON
 encoding:

 o

 * Low overhead encoding and decoding

 * Easy to convert existing encoders and decoders to add binary
 support

 * Efficient encoding of binary data

 * Ability to convert from JSON to binary encoding in a streaming
 mode (i.e. without reading the entire binary data block before
 beginning encoding.

 * Lossless encoding of JavaScript data types

 * The ability to support JSON tag compression and extended data
 types are considered desirable but not essential for typical
 network applications.

 Three binary encodings are defined:

 JSON-B (Binary)

 Simply encodes JSON data in binary. Only the JavaScript data model
 is supported (i.e. atomic types are integers, double or string).
 Integers may be 8, 16, 32 or 64 bits either signed or unsigned.
 Floating points are IEEE 754 binary64 format [IEEE-754]. Supports
 chunked encoding for binary and UTF-8 string types.

 JSON-C (Compact)

 As JSON-B but with support for representing JSON tags in numeric code
 form (16 bit code space). This is done for both compact encoding and
 to allow simplification of encoders/decoders in constrained

Hallam-Baker Expires September 9, 2016 [Page 3]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

 environments. Codes may be defined inline or by reference to a known
 dictionary of codes referenced via a digest value.

 JSON-D (Data)

 As JSON-C but with support for representing additional data types
 without loss of precision. In particular other IEEE 754 floating
 point formats, both binary and decimal and Intel's 80 bit floating
 point, plus 128 bit integers and bignum integers.

4. Extended JSON Grammar

 The JSON-B, JSON-C and JSON-D encodings are all based on the JSON
 grammar [RFC4627] using the same syntactic structure but different
 lexical encodings.

 JSON-B0 and JSON-C0 replace the JSON lexical encodings for strings
 and numbers with binary encodings. JSON-B1 and JSON-C1 allow either
 lexical encoding to be used. Thus any valid JSON encoding is a valid
 JSON-B1 or JSON-C1 encoding.

 The grammar of JSON-B, JSON-C and JSON-D is a superset of the JSON
 grammar. The following productions are added to the grammar:

 x-value

 Binary encodings for data values. As the binary value encodings are
 all self delimiting

 x-member

 An object member where the value is specified as an X-value and thus
 does not require a value-separator.

 b-value

 Binary data encodings defined in JSON-B.

 b-string

 Defined length string encoding defined in JSON-B.

 c-def

 Tag code definition defined in JSON-C. These may only appear before
 the beginning of an Object or Array and before any preceeding white
 space.

https://datatracker.ietf.org/doc/html/rfc4627

Hallam-Baker Expires September 9, 2016 [Page 4]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

 c-tag

 Tag code value defined in JSON-C.

 d-value

 Additional binary data encodings defined in JSON-D for use in
 scientific data applications.

 The JSON grammar is modified to permit the use of x-value productions
 in place of (value value-separator) :

 JSON-text = (object / array)

 object = *cdef begin-object [
 *(member value-separator | x-member)
 (member | x-member)] end-object

 member = tag value
 x-member = tag x-value

 tag = string name-separator | b-string | c-tag

 array = *cdef begin-array [*(value value-separator | x-value)
 (value | x-value)] end-array

 x-value = b-value / d-value

 value = false / null / true / object / array / number / string

 name-separator = ws %x3A ws ; : colon
 value-separator = ws %x2C ws ; , comma

 The following lexical values are unchanged:
 begin-array = ws %x5B ws ; [left square bracket
 begin-object = ws %x7B ws ; { left curly bracket
 end-array = ws %x5D ws ;] right square bracket
 end-object = ws %x7D ws ; } right curly bracket

 ws = *(%x20 %x09 %x0A %x0D)

 false = %x66.61.6c.73.65 ; false
 null = %x6e.75.6c.6c ; null
 true = %x74.72.75.65 ; true

 The productions number and string are defined as before:

Hallam-Baker Expires September 9, 2016 [Page 5]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

 number = [minus] int [frac] [exp]
 decimal-point = %x2E ; .
 digit1-9 = %x31-39 ; 1-9
 e = %x65 / %x45 ; e E
 exp = e [minus / plus] 1*DIGIT
 frac = decimal-point 1*DIGIT
 int = zero / (digit1-9 *DIGIT)
 minus = %x2D ; -
 plus = %x2B ; +
 zero = %x30 ; 0

 string = quotation-mark *char quotation-mark
 char = unescaped /
 escape (%x22 / %x5C / %x2F / %x62 / %x66 /
 %x6E / %x72 / %x74 / %x75 4HEXDIG)

 escape = %x5C ; \
 quotation-mark = %x22 ; "
 unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

5. JSON-B

 The JSON-B encoding defines the b-value and b-string productions:

 b-value = b-atom | b-string | b-data | b-integer |
 b-float

 b-string = *(string-chunk) string-term
 b-data = *(data-chunk) data-last

 b-integer = p-int8 | p-int16 | p-int32 | p-int64 | p-bignum16 |
 n-int8 | n-int16 | n-int32 | n-int64 | n-bignum16

 b-float = binary64

 The lexical encodings of the productions are defined in the following
 table where the column 'tag' specifies the byte code that begins the
 production, 'Fixed' specifies the number of data bytes that follow
 and 'Length' specifies the number of bytes used to define the length
 of a variable length field following the data bytes:

 +--------------+-----+-------+--------+-----------------------------+
 | Production | Tag | Fixed | Length | Data Description |
 +--------------+-----+-------+--------+-----------------------------+
string-term	x80	-	1	Terminal String 8 bit
				length
string-term	x81	-	2	Terminal String 16 bit

Hallam-Baker Expires September 9, 2016 [Page 6]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

				length
string-term	x82	-	4	Terminal String 32 bit
				length
string-term	x83	-	8	Terminal String 64 bit
				length
string-chunk	x84	-	1	Non-Terminal String 8 bit
				length
string-chunk	x85	-	2	Non-Terminal String 16 bit
				length
string-chunk	x86	-	4	Non-Terminal String 32 bit
				length
string-chunk	x87	-	8	Non-Terminal String 64 bit
				length
data-term	x88	-	1	Terminal Data 8 bit length
data-term	x89	-	2	Terminal Data 16 bit length
data-term	x8A	-	4	Terminal Data 32 bit length
data-term	x8B	-	8	Terminal Data 64 bit length
data-chunk	x8C	-	1	Non-Terminal Data 8 bit
				length
data-chunk	x8D	-	2	Non-Terminal Data 16 bit
				length
data-chunk	x8E	-	4	Non-Terminal Data 32 bit
				length
data-chunk	x8F	-	8	Non-Terminal String 64 bit
				length
p-int8	xA0	1	-	Positive 8 bit Integer
p-int16	xA1	2	-	Positive 16 bit Integer
p-int32	xA2	4	-	Positive 32 bit Integer
p-int64	xA3	8	-	Positive 64 bit Integer

Hallam-Baker Expires September 9, 2016 [Page 7]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

p-bignum16	xA5	-	2	Positive Bignum 16 bit
				length
n-int8	xA8	1	-	Negative 8 bit Integer
n-int16	xA9	2	-	Negative 16 bit Integer
n-int32	xAA	4	-	Negative 32 bit Integer
n-int64	xAB	8	-	Negative 64 bit Integer
n-bignum16	xAD	-	2	Negative Bignum 16 bit
				length
binary64	x92	8	-	IEEE 754 Floating Point
				binary64
b-value	xB0	-	-	True
b-value	xB1	-	-	False
b-value	xB2	-	-	Null
 +--------------+-----+-------+--------+-----------------------------+

 A data type commonly used in networking that is not defined in this
 scheme is a datetime representation. To define such a data type, a
 string containing a date-time value in Internet type format is
 typically used.

5.1. JSON-B Examples

 The following examples show examples of using JSON-B encoding:

Hallam-Baker Expires September 9, 2016 [Page 8]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

 A0 2A 42 (as 8 bit integer)
 A1 00 2A 42 (as 16 bit integer)
 A2 00 00 00 2A 42 (as 32 bit integer)
 A3 00 00 00 00 00 00 00 2A 42 (as 64 bit integer)
 A5 00 01 42 42 (as Bignum)

 80 05 48 65 6c 6c 6f "Hello" (single chunk)
 81 00 05 48 65 6c 6c 6f "Hello" (single chunk)
 84 05 48 65 6c 6c 6f 80 00 "Hello" (as two chunks)

 92 3f f0 00 00 00 00 00 00 1.0
 92 40 24 00 00 00 00 00 00 10.0
 92 40 09 21 fb 54 44 2e ea 3.14159265359
 92 bf f0 00 00 00 00 00 00 -1.0

 B0 true
 B1 false
 B2 null

6. JSON-C

 JSON-C (Compressed) permits numeric code values to be substituted for
 strings and binary data. Tag codes MAY be 8, 16 or 32 bits long
 encoded in network byte order.

 Tag codes MUST be defined before they are referenced. A Tag code MAY
 be defined before the corresponding data or string value is used or
 at the same time that it is used.

 A dictionary is a list of tag code definitions. An encoding MAY
 incorporate definitions from a dictionary using the dict-hash
 production. The dict hash production specifies a (positive) offset
 value to be added to the entries in the dictionary followed by the
 UDF fingerprint [draft-hallambaker-udf] of the dictionary to be used.

https://datatracker.ietf.org/doc/html/draft-hallambaker-udf

Hallam-Baker Expires September 9, 2016 [Page 9]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

 +------------+-----+-------+--------+-------------------------------+
 | Production | Tag | Fixed | Length | Data Description |
 +------------+-----+-------+--------+-------------------------------+
c-tag	xC0	1	-	8 bit tag code
c-tag	xC1	2	-	16 bit tag code
c-tag	xC2	4	-	32 bit tag code
c-def	xC4	1	-	8 bit tag definition
c-def	xC5	2	-	16 bit tag definition
c-def	xC6	4	-	32 bit tag definition
c-tag	xC8	1	-	8 bit tag code & definition
c-tag	xC9	2	-	16 bit tag code & definition
c-tag	xCA	4	-	32 bit tag code & definition
c-def	xCC	1	-	8 bit tag dictionary
				definition
c-def	xCD	2	-	16 bit tag dictionary
				definition
c-def	xCE	4	-	32 bit tag dictionary
				definition
dict-hash	xD0	4	1	UDF fingerprint of dictionary
 +------------+-----+-------+--------+-------------------------------+

 All integer values are encoded in Network Byte Order (most
 significant byte first).

6.1. JSON-C Examples

 The following examples show examples of using JSON-C encoding:

Hallam-Baker Expires September 9, 2016 [Page 10]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

 C8 20 80 05 48 65 6c 6c 6f "Hello" 20 = "Hello"
 C4 21 80 05 48 65 6c 6c 6f 21 = "Hello"
 C0 20 "Hello"
 C1 00 20 "Hello"

 D0 00 00 01 00 20 Insert dictionary at code 256
 e3 b0 c4 42 98 fc 1c 14
 9a fb f4 c8 99 6f b9 24
 27 ae 41 e4 64 9b 93 4c
 a4 95 99 1b 78 52 b8 55 UDF (C4 21 80 05 48 65 6c 6c 6f)

7. JSON-D (Data)

 JSON-B and JSON-C only support the two numeric types defined in the
 JavaScript data model: Integers and 64 bit floating point values.
 JSON-D (Data) defines binary encodings for additional data types that
 are commonly used in scientific applications. These comprise
 positive and negative 128 bit integers, six additional floating point
 representations defined by IEEE 754 [RFC2119] and the Intel extended
 precision 80 bit floating point representation.

 Should the need arise, even bigger bignums could be defined with the
 length specified as a 32 bit value permitting bignums of up to 2^35
 bits to be represented.

 d-value = d-integer | d-float

 d-float = binary16 | binary32 | binary128 | binary80 |
 decimal32 | decimal64 | decimal 128

8.

https://datatracker.ietf.org/doc/html/rfc2119

Hallam-Baker Expires September 9, 2016 [Page 11]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

 +------------+-----+-------+--------+-------------------------------+
 | Production | Tag | Fixed | Length | Data Description |
 +------------+-----+-------+--------+-------------------------------+
p-int128	xA4	16	-	Positive 128 bit Integer
n-in7128	xAC	16	-	Negative 128 bit Integer
binary16	x90	2	-	IEEE 754 Floating Point
				binary16
binary32	x91	4	-	IEEE 754 Floating Point
				binary32
binary128	x94	16	-	IEEE 754 Floating Point
				binary128
intel80	x95	10	-	Intel 80 bit extended binary
				Floating Point
decimal32	x96	4	-	IEEE 754 Floating Point
				decimal32
decimal64	x97	8	-	IEEE 754 Floating Point
				decimal64
decimal128	x98	18	-	IEEE 754 Floating Point
				decimal128
 +------------+-----+-------+--------+-------------------------------+

9.

10. Acknowledgements

 This work was assisted by conversations with Nico Williams and other
 participants on the applications area mailing list.

11. Security Considerations

 A correctly implemented data encoding mechanism should not introduce
 new security vulnerabilities. However, experience demonstrates that
 some data encoding approaches are more prone to introduce
 vulnerabilities when incorrectly implemented than others.

 In particular, whenever variable length data formats are used, the
 possibility of a buffer overrun vulnerability is introduced. While
 best practice suggests that a coding language with native mechanisms
 for bounds checking is the best protection against such errors, such
 approaches are not always followed. While such vulnerabilities are

Hallam-Baker Expires September 9, 2016 [Page 12]

Internet-Draft JSON-B, JSON-C, JSON-D March 2016

 most commonly seen in the design of decoders, it is possible for the
 same vulnerabilities to be exploited in encoders.

 A common source of such errors is the case where nested length
 encodings are used. For example, a decoder relies on an outermost
 length encoding that specifies a length on 50 bytes to allocate
 memory for the entire result and then attempts to copy a string with
 a declared length of 1000 bytes within the sequence.

 The extensions to the JSON encoding described in this document are
 designed to avoid such errors. Length encodings are only used to
 define the length of x-value constructions which are always terminal
 and cannot have nested data entries.

12. IANA Considerations

 [TBS list out all the code points that require an IANA registration]

13. Normative References

 [IEEE-754]
 "[Reference Not Found!]".

 [draft-hallambaker-udf]
 "[Reference Not Found!]".

Author's Address

 Phillip Hallam-Baker
 Comodo Group Inc.

 Email: philliph@comodo.com

https://datatracker.ietf.org/doc/html/draft-hallambaker-udf

Hallam-Baker Expires September 9, 2016 [Page 13]

