
Network Working Group P. Hallam-Baker
Internet-Draft Comodo Group Inc.
Intended status: Informational March 21, 2016
Expires: September 22, 2016

Limited Use of Remote Keys, Protocol and Reference.
draft-hallambaker-lurk-01

Abstract

 The Limited Use of Remote Keys (LURK) BOF has been scheduled with the
 objective of discussing approaches to mitigating security risks to
 TLS private keys. In particular in situations where a Content
 Delivery Network (CDN) is used to deliver content and thus the party
 that is being authenticated is not the party that the user is
 attempting to authenticate.

 Three classes of solution are considered, short term credentials, a
 remote service offering to perform private key operations and a
 remote service that is further constrained through the use of some
 form of threshold approach. A JSON/HTTP protocol implementing the
 second and third protocol is demonstrated and documented.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Hallam-Baker Expires September 22, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft LURK Protocol and Reference March 2016

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Definitions . 3
1.1. Requirements Language 4
1.2. Related Specifications 4
1.3. Terminology . 5

2. Introduction . 5
2.1. Limited Life Credentials 7
2.2. Private Key Service 8
2.3. Partial Key Service 9

3. Protocol Overview . 9
3.1. Establishing Trust Relationships 10
3.1.1. Manual Administration 10
3.1.2. Using the Mathematical Mesh 10

3.2. Service Connection 11
3.3. Creation of necessary key pairs 12
3.4. Private key decryption 14
3.5. Private key Agreement 15
3.6. Private key signature 15
3.7. Key Disposal . 16

4. Lurk Key Service Reference 16
4.1. Request Messages . 17
4.1.1. Message: LurkRequest 17
4.1.2. Message: LurkKeyRequest 17
4.1.3. Message: LurkResponse 17
4.1.4. Successful Response Codes 18
4.1.5. Warning Response Codes 18
4.1.6. Error Response Codes 19
4.1.7. Structure: Version 19
4.1.8. Structure: Encoding 20
4.1.9. Structure: KeyParameters 20
4.1.10. Structure: ParametersRSA 21
4.1.11. Structure: ParametersDH 21
4.1.12. Structure: ParametersECDH 22

4.2. Transaction: Hello 22
4.2.1. Message: HelloRequest 23
4.2.2. Message: HelloResponse 23

4.3. Transaction: Create 23
4.3.1. Message: CreateRequest 23
4.3.2. Message: CreateResponse 24

http://trustee.ietf.org/license-info

Hallam-Baker Expires September 22, 2016 [Page 2]

Internet-Draft LURK Protocol and Reference March 2016

4.4. Transaction: Dispose 24
4.4.1. Message: DisposeRequest 24
4.4.2. Message: DisposeResponse 24

4.5. Transaction: Sign . 25
4.5.1. Message: SignRequest 25
4.5.2. Message: SignResponse 25

4.6. Transaction: Agree 26
4.6.1. Message: AgreeRequest 26
4.6.2. Message: AgreeResponse 26

4.7. Transaction: Decrypt 27
4.7.1. Message: DecryptRequest 27
4.7.2. Message: DecryptResponse 28

5. Advanced Functions . 28
5.1. Co-operative Key Generation 29
5.2. Threshold and Proxy Re-Encryption Schemes 29

6. Algorithms and Identifiers 29
6.1. Key Algorithms . 30
6.1.1. Parameters RSA 30
6.1.2. Parameters DH . 30
6.1.3. Parameters ECDH 30

6.2. Key Use Restrictions 30
6.2.1. RSALG Erb-Saltz 30

7. Acknowledgements . 30
8. Security Considerations 30
8.1. Confidentiality . 30
8.1.1. Disclosure of Private Key 31
8.1.2. Side Channel Disclosure 31
8.1.3. Targeted Side Channel Disclosure 31
8.1.4. Traffic Analysis 31
8.1.5. Metadata Leakage 31

8.2. Integrity . 31
8.2.1. Unauthorized Use of Private Key 32

8.3. Availability . 32
8.3.1. Cached data . 32

9. IANA Considerations . 32
10. Appendix: TLS Schema . 32
11. Appendix: JSON-C Tag Dictionary 32
12. Appendix: Mesh Application Profile 32
13. Normative References . 32

 Author's Address . 33

1. Definitions

 [Please note that due to work in progress to support the new RFC
 format etc, some of the formatting features are not currently working
 as they should. These will be fixed in the next version.]

Hallam-Baker Expires September 22, 2016 [Page 3]

Internet-Draft LURK Protocol and Reference March 2016

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Related Specifications

 This protocol is makes use of technology described in the following
 specifications

 JSON [RFC7159]

 For encoding of message data structures.

 JOSE [RFC7515] [RFC7516] [RFC7518]

 Formats for cryptographic messages and keys in JSON.

 JSON Web Service [draft-hallambaker-json-web-service-02]

 Describes the approach used for Web Service discovery and the
 encapsulation of JSON messages as HTTP payloads with the necessary
 authentication and encryption services.

 Uniform Data Fingerprint [draft-hallambaker-udf-03]

 Describes the mechanism used to create identifiers for cryptographic
 keypairs from the public key.

 In addition, the following specifications are closely related but not
 required for implementation:

 Transport Layer Security [RFC5246]

 The use of TLS to protect the confidentiality and integrity of all
 protocol communications is of course highly recommended. It is
 however highly undesirable for a cryptographic protocol such as LURK
 should rely on transport layer security enhancements alone.

 The Mathematical Mesh [draft-hallambaker-mesh-architecture-01]
 [draft-hallambaker-mesh-reference-02]

 MAY be used to establish trust relationships between the parties in
 the protocol.

 CFRG Elliptic Curves and Algorithms [RFC7748]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/draft-hallambaker-json-web-service-02
https://datatracker.ietf.org/doc/html/draft-hallambaker-udf-03
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-01
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-reference-02
https://datatracker.ietf.org/doc/html/rfc7748

Hallam-Baker Expires September 22, 2016 [Page 4]

Internet-Draft LURK Protocol and Reference March 2016

 The threshold and proxy re-encryption schemes described are likely to
 be of most interest in conjunction with the emerging elliptic curve
 based cryptography.

 JSON-BCD [draft-hallambaker-jsonbcd-05]

 JSON-B or JSON-C encoding may be used if an efficient binary or
 compressed encoding is required. Alternatively, message structures
 MAY be encoded according to TLS conventions.

 One piece of technology that is not currently implemented but would
 be usefully factored out as a separate document is a mechanism to
 support agreement of symmetric keys and related tickets for use in
 the payload authentication mechanism.

1.3. Terminology

 The following words and phrases are used as defined terms in this
 specification:

 Private Key

 Any secret information required to perform a Public Key operation.
 This includes complete keys and partial keys.

 Partial Key

 In cases where a threshold key scheme is in use, a private partial
 key is the private key information used to participate in the
 threshold scheme by one participant.

 Complete Key

 A private key that is sufficient to perform the private key operation
 without any additional information being provided.

2. Introduction

 The Limited Use of Remote Keys (LURK) BOF has been scheduled with the
 objective of discussing approaches to mitigating security risks to
 TLS private keys. This objective was initially motivated by the need
 to achieve site authentication in a scenario where the actual content
 is delivered by a third party (aka Content Delivery Networks). But
 as is demonstrated in the following, almost any solution to this
 problem will have much broader application.

 In evaluating proposals, it is important to consider the following
 constraints:

https://datatracker.ietf.org/doc/html/draft-hallambaker-jsonbcd-05

Hallam-Baker Expires September 22, 2016 [Page 5]

Internet-Draft LURK Protocol and Reference March 2016

 Security

 The security of a public key cryptosystem depends on the secrecy of
 the private keys. A service that accepts unauthorized requests to
 perform private key operations completely demolishes the security of
 the cryptosystem.

 While the introduction of a remote key service provides a new
 potential point of failure into a Web site deployment, a system that
 has two points of vulnerability that are well protected is usually
 more secure than one that has a single point of vulnerability that is
 unguarded. LURK may provide a solution to one of the principal
 causes of compromise of code signing infrastructures, the disclosure
 of insecurely held private keys.

 Infrastructure Impact (Deployability)

 The Web is supported by a large and complex eco-system. A single Web
 transaction secured by TLS typically depends on at least a dozen
 parties and may depend on twice that number. It is not just the user
 and the content provider that are participants. Both use software
 applications provided by third parties for access which may in turn
 be the product of collaboration between tens or hundreds of
 collaborators. Site maintenance is typically outsourced to a
 specialist in the field who will in turn typically outsource hosting
 of the site itself. This hosting may in turn be augmented by a
 content Delivery Network or DDoS mitigation service.

 A proposal that requires changes to be made by many parties in the
 eco-system will be harder to deploy than a change which can be
 applied bilaterally or unilaterally.

 Latency

 Delivery of Web Content is a competitive business where time is
 literally money. Protocol proposals that delay the perceived loading
 speed of Web sites are likely to be unacceptable.

 Transparency and Audit

 Besides limiting access to the use of a private key, the LURK
 protocol potentially provides a mechanism for auditing the use of the
 key.

 Algorithm Agility

Hallam-Baker Expires September 22, 2016 [Page 6]

Internet-Draft LURK Protocol and Reference March 2016

 Any scheme should be capable of supporting arbitrary public key
 algorithms and operations. At minimum, support for RSA, Diffie
 Hellman and the new CFRG Elliptic Curve algorithms is required.

 Besides Decryption and Digital Signature operations, it would be
 highly advantageous for any protocol to support Proxy Re-Encryption
 operations. In particular, support for 'vintage editions' of
 recryption technology that avoids subsequent IPR encumbrances is
 highly desirable.

 Leverage Bound Private Keys

 The term 'Trustworthy Computing' covers a wide range of hardware
 based security measures that are now ubiquitously available on mobile
 devices and increasingly supported on desktop and server hardware.
 For purposes of limiting exposure of keys, the

2.1. Limited Life Credentials

 While the LURK acronym specifies 'Limited Use', it is important to
 note that the core objective raised by the use scenario at issue is
 to limit the window of vulnerability for keys which may be achieved
 by other means than remote access.

 In particular, we can limit exposure to the risk of abuse of a
 credentialed private key by limiting the validity of the credential,
 either by severely limiting the validity period of the credential or
 by employing effective mechanisms for revocation. Since the latter
 has been attempted many times with little success, we concentrate on
 the first approach.

 One of the chief concerns when using a CDN is that a machine that
 might only host a site for a few days or even a few hours requires
 access to a private key whose credential is typically valid for a
 year or even more. Hosts that have serviced a site in the past may
 be rented to other customers for very different purposes before the
 credentials have expired. The new customer might well have
 privileged access to the machine and be able to examine disks and
 memory to recover confidential data including keys.

 Reducing the validity interval of the credential to match that of the
 host makes good sense. The chief obstacles to this approach being
 (1) the need to gracefully handle time synchronization errors in Web
 clients attempting to access the site. And (2) the administrative
 burden of frequently installing certificate updates.

 Practical experience demonstrates that there is little difficulty
 incurred by setting certificate the validity interval to 25 hours and

Hallam-Baker Expires September 22, 2016 [Page 7]

Internet-Draft LURK Protocol and Reference March 2016

 that even validity intervals of a few hours incur little
 inconvenience.

 Automatic issue of certificates is already the subject of the ACME
 working group and is therefore not considered here except to the
 extent that it might reduce the significance of the proposed use
 scenario.

2.2. Private Key Service

 A private key service performs private key operations in response to
 properly authenticated and authorized requests. At minimum, such a
 service requires mechanisms to:

 Determine the private key whose use is requested.

 Authenticate and authorize the request.

 Protect the integrity of requests.

 Protect the integrity and confidentiality of responses.

 Such a service might prove insufficient for certain applications for
 reasons of performance and/or security.

 Batching of requests may be desirable.

 The ability to pre-request operations may be desirable.

 The minimal approach is also unsatisfactory on security grounds. A
 mechanism that relies on correct configuration of the system alone to
 prevent unauthorized use is likely to be fragile.

 One approach that could be used to mitigate such risk is to limit the
 application to specific cryptographic protocols rather than providing
 unrestricted key exchange or signature capabilities. For example,
 the service might perform a TLS 1.2 master secret derivation rather
 than the RSA private key operation on which the exchange is based.

 While this approach has the benefit of limiting the consequences of a
 breach in theory, the practical effect is likely to be limited as
 good cryptographic hygiene requires that a key used for one purpose
 not be used for any other.

 Another disadvantage of this approach is that it provides more
 information to the Key Service and thus provides more opportunity for
 a malicious side channel attack. A malicious HSM that knows the
 origin of the requests that it is dealing can choose to only defect

Hallam-Baker Expires September 22, 2016 [Page 8]

Internet-Draft LURK Protocol and Reference March 2016

 on requests that come from the correct counter-party. A well
 designed protocol that keeps the HSM ignorant of the source and
 context of the requests cannot restrict the instances in which it
 defects and is thus at greater risk of exposure.

2.3. Partial Key Service

 The best way to mitigate the risk of unauthorized service is to make
 use of some form of key splitting 'threshold' cryptography scheme
 such that the use of private key information held at the client side
 must be combined with use of private key information held at the LURK
 service to effect the desired result.

 This approach uses cryptography to enforce the authorization
 criteria.

 While there are many threshold schemes that could be used in theory,
 for purposes of LURK it is only necessary to split a key into some
 number of parts (typically two) such that all the parts are required
 to perform a private key operation. Thus

3. Protocol Overview

 [Note that in the foregoing examples, a technical limitation in the
 implementation prevents inclusion of the authentication wrapper used
 to authenticate protocol requests and responses. Removal of this
 limitation prior to IETF 95 is anticipated.]

 The LURK protocol has three parties:

 LURK Service [Key Holder]

 The holder of the key material. Responds to requests to create, use
 and destroy key pair. Optionally keeps audit logs of all operations.

 LURK Client [Key User]

 The party authorized to direct requests to use the key material.

 Administrator [Authenticated Party]

 The party that authorizes LURK Clients to use key material and is
 authorized to issue creation, and destruction requests for the keys
 they have created.

 Establishing the Service and Administrator as separate parties is
 important as it allows the LURK service to be specified in a form
 that can be readily implemented on a HSM.

Hallam-Baker Expires September 22, 2016 [Page 9]

Internet-Draft LURK Protocol and Reference March 2016

3.1. Establishing Trust Relationships

 The LURK protocol requires two trust relationships to be managed:

 Between the Administrator and the LURK Service

 Between the Client and the LURK Service

 The means of configuration of these relationships is outside the
 scope of this protocol but it is assumed that each of these parties
 can authenticate messages from the other using digital signatures and
 public key exchange.

3.1.1. Manual Administration

 The necessary trust relationships MAY be established manually. This
 presents something of a challenge in the Content Delivery Network
 scenario as LURK Clients are being constantly added and removed.

3.1.2. Using the Mathematical Mesh

 One mechanism that MAY be used to establish the necessary
 authentication information is the Mathematical Mesh [draft-

hallambaker-mesh-architecture-01]. This provides a means of
 automating the necessary administration processes without needing to
 add support for these processes in the core LURK specification.

 To begin configuration of a LURK deployment using the Mesh, the
 administrator:

 Creates a Mesh profile (if they haven't already done so).

 Connects the LURK Service to their profile as an application with
 configuration privilege.

 Connects the LURK Client to their profile as an application with use
 privilege.

 [The Mesh application profile for the service will be added to this
 document as an appendix in due course.]

 Once these steps are complete, all three parties have knowledge of
 the root of trust from which to accept control instructions (i.e. the
 Administrator's Mesh Profile fingerprint) and a means of
 authenticating messages from any of the three parties.

 The administrator MAY configure additional LURK Clients and/or
 Services in the same fashion.

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-01
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-01

Hallam-Baker Expires September 22, 2016 [Page 10]

Internet-Draft LURK Protocol and Reference March 2016

3.2. Service Connection

 A client MAY use the Hello transaction to determine the protocol
 version(s), encodings and other features that are supported.

 To facilitate interoperability, a LURK service MUST support use of
 the JSON encoding for the Hello transaction.

 The request message takes no parameters:

 POST /.well-known/lurk/HTTP/1.1
 Host: example.com
 Content-Length: 23

 {
 "HelloRequest": {}}

 The response describes the protocol version (0.1) and the encodings
 its supports.

 HTTP/1.1 200 OK
 Date: Mon 21 Mar 2016 08:07:47
 Content-Length: 403

 {
 "HelloResponse": {
 "Status": 200,
 "StatusDescription": "OK",
 "Version": {
 "Major": 0,
 "Minor": 1,
 "Encodings": [{
 "ID": "application/json"},
 {
 "ID": "application/json-b"},
 {
 "ID": "application/json-c",
 "Dictionary": ["MAK5Z-PEEEQ-PWT53-GRR55-MTBSF-UDVGM"]},
 {
 "ID": "application/tls-schema"}]}}}

 The reference service supports four encodings:

 o

 * JSON, The text based encoding used for these examples.

Hallam-Baker Expires September 22, 2016 [Page 11]

Internet-Draft LURK Protocol and Reference March 2016

 * JSON-B, A superset of the JSON encoding that includes binary
 encoding of data items.

 * JSON-C, A superset of JSON-B that includes support for
 compression of tags and data items.

 * TLS-Schema, An alternative binary encoding that is described by
 a schema in the notation introduced in the TLS specification.

 The JSON-C encoding provides an additional parameter 'Dictionary'
 that identifies the tag compression dictionaries that the service
 knows. This allows the dictionary to be quoted by reference rather
 than being sent in channel.

 Services MAY provide additional encodings at their option.

3.3. Creation of necessary key pairs

 Key pair creation is a function reserved for the administrator. To
 create a key pair, the administrator sends an authenticated request
 to the service. Note that while message layer encryption MAY be
 used, it is not actually required in this case.

 The request specifies the algorithm, key parameters and intended
 cryptographic uses. The following shows the complete HTTP request
 for creation of an RSA signature key with 2048 bit length:

 [Yes, I know there are no authentication wrappers on the following
 messages. Just pretend they are there, OK? I have had all of two
 days to work on this.]

 POST /.well-known/lurk/HTTP/1.1
 Host: example.com
 Content-Length: 122

 {
 "CreateRequest": {
 "Parameters": {
 "ParametersRSA": {
 "Signature": true,
 "KeySize": 2048}}}}

 The response is likewise authenticated and returns the private key:

Hallam-Baker Expires September 22, 2016 [Page 12]

Internet-Draft LURK Protocol and Reference March 2016

 HTTP/1.1 200 OK
 Date: Mon 21 Mar 2016 08:07:47
 Content-Length: 612

 {
 "CreateResponse": {
 "Status": 200,
 "StatusDescription": "OK",
 "KeyId": "MAKV7-WMGZG-5RTD7-74BCP-OU6O6-5FOMK",
 "PublicKey": {
 "PublicKeyRSA": {
 "kid": "MAKV7-WMGZG-5RTD7-74BCP-OU6O6-5FOMK",
 "n": "
 5luc9_gri61VWomUGQ2KaH_6xjTMTWHuCjgdt0ukRCy8lpKMV_iLIt1JsHaq5vuQ
 _6dtpJOKxwkIPIgaA9kguyiZo7Pf6UuxOHEy9Mtx90Re_FWdrWmaD7Jt5Cc7qEib
 ekE5nKkGt_MMvCQHVBXboN_UA1ad5EpUsqJJiCzGk1IQmFr77cmVOfZ7F6e3CW5e
 xYtIsn2U0Qv1Y-bFyAeACoouPO1Twhkr-1HVbxRXE9KBhUdGflqgNIfgwCixwSzC
 RHRpq8kvilDoIjyzCB2huj3El_uogvGES2N2HwyEzS4Z39yy9lEESoshqnf56sBq
 O_k9FbYG2yIjIY_bYV4-hw",
 "e": "
 AQAB"}}}}

 The process id repeated to create keypairs for encryption and key
 agreement.

 Note that even though it is possible to use a key agreement algorithm
 for encryption and vice versa, the use of these cryptographic
 primitives in protocols is very different. Hence it is best to treat
 these as entirely separate for the purposes of this protocol.

 Key agreement key request (payload only)

 {
 "CreateRequest": {
 "Parameters": {
 "ParametersECDH": {
 "Agreement": true,
 "Curve": "p256",
 "Algorithm": "cfrg"}}}}

 Key agreement key response (payload only)

 {
 "CreateResponse": {
 "Status": 406,
 "StatusDescription": "Unsupported key parameter"}}

 Encryption key request (payload only)

Hallam-Baker Expires September 22, 2016 [Page 13]

Internet-Draft LURK Protocol and Reference March 2016

 {
 "CreateRequest": {
 "Parameters": {
 "ParametersECDH": {
 "Agreement": true,
 "Curve": "p256",
 "Algorithm": "cfrg"}}}}

 Encryption key response (payload only)

 {
 "CreateResponse": {
 "Status": 406,
 "StatusDescription": "Unsupported key parameter"}}

3.4. Private key decryption

 The message "This information is very secret" has been encrypted
 using AES 128 in CBC mode and the session key encrypted under the
 encryption key creates earlier.

 To decrypt the message, the LurkClient sends an authenticated request
 that specifies the key identifer, wrapped key and encrypted data as
 follows:

 POST /.well-known/lurk/HTTP/1.1
 Host: example.com
 Content-Length: 571

 {
 "DecryptRequest": {
 "KeyId": "MAIEF-MR3IJ-QMU2U-JRD3H-T2KCU-6D5XM",
 "BulkAlg": "aescbc256",
 "Data": "
 EiA8s4xajTHNt66EyI6-yeSojYpZ6IV7J4m5I9PxtzA",
 "IV": "
 lLcctJ0-5HYy0XgpkGe36A",
 "WrappedKey": "
 lY8VZFXV1wWXVQIUrXJygIEge-_UQF3jJiCgF9UdY9vKCD-6k37PkoExH_MfEsTa
 h8fqgfb2OTFGugy6HhX8L1u5dpY-ERqaQyVREFV0DQwn4cgWpd07iIG3hQ8wlHvk
 jE-R9m8K9eMkpMXBjcN5upLmuQQ5UFIpKsLbOJT7uVKZtykSL_0waNHj77N4IKZ7
 MXG1B8UWFTaY3kSNitW1YXnSs16I-AMa9AqSQ1x4uKWsjB0kQMSJqtzQl3z79aYL
 B1QaT7RfqhQp9XbCnoNDJhu7LADKplFUlHhkpeWfIVcxz89lb4pWQyYSsSw8n3Hp
 G7iQM8YACMV6uFhDZS14vw"}}

 The service returns the decrypted message as an encrypted payload:

Hallam-Baker Expires September 22, 2016 [Page 14]

Internet-Draft LURK Protocol and Reference March 2016

 HTTP/1.1 200 OK
 Date: Mon 21 Mar 2016 08:07:47
 Content-Length: 135

 {
 "DecryptResponse": {
 "Status": 200,
 "StatusDescription": "OK",
 "Value": "
 VGhpcyBpbmZvcm1hdGlvbiBpcyB2ZXJ5IHNlY3JldA"}}

 [Yes, it isn't encrypted yet, patience, patience. Was Rome built in
 a day?]

 The inner payload is:

 {
 "DecryptResponse": {
 "Status": 200,
 "StatusDescription": "OK",
 "Value": "
 VGhpcyBpbmZvcm1hdGlvbiBpcyB2ZXJ5IHNlY3JldA"}}

 Alternatively, the client could send just the wrapped key for
 decryption and then apply the bulk cipher locally.

3.5. Private key Agreement

 [This is not currently implemented due to lack of the necessary
 library to implement the new CFRG algorithms.]

 To request a key agreement operation, the LurkClient specifies the
 public key of the counter party and the identifier of the private key
 to use. A LurkClient MAY specify the digest algorithm and
 construction mechanism to be used to convert the result of the key
 agreement into a key.

 Request:

 Response:

3.6. Private key signature

 The LurkClient requires the message "Very important this is not
 changed" be signed under the signature key created earlier.

 Request:

Hallam-Baker Expires September 22, 2016 [Page 15]

Internet-Draft LURK Protocol and Reference March 2016

 {
 "SignRequest": {
 "KeyId": "MAKV7-WMGZG-5RTD7-74BCP-OU6O6-5FOMK",
 "DigestAlg": "sha256",
 "Data": "
 VmVyeSBpbXBvcnRhbnQgdGhpcyBpcyBub3QgY2hhbmdlZA"}}

 Response:

 {
 "SignResponse": {
 "Status": 200,
 "StatusDescription": "OK",
 "Value": "
 Iv_W58JBoOPAUaPFVmRPYXrYjLRpDEzHntu1lrickw8oSYZPUTrEt7cSwAgKw1jj
 QBHz9oZEfbgKS8tmcHL7a9cheYC_p9QsEOiFzDLuQYU4zZZZFXq69gxqiE3BaPFU
 IxpLDQr7ZkVg4CsPn__B_E1D_3s90w8aWafomEUA9h-afXOi9qDK7CPuDFedbLV5
 lKaZpPFD5F9ABj_ipR_YHJzDexpQoGimAf2q7YczjzJXSG6fLqnCpGUnIvpU2kw2
 7ABtqiC8aY3nwEQpbxhrdYWvB-cMadjNOwXpYKjt3bkUD-JXTUsg5n77PlLRJVIH
 _uQ3N0PhGphFh9PcttXvHw"}}

3.7. Key Disposal

 After a key pair is no longer required, it SHOULD be deleted. A HSM
 supporting the LURK protocol SHOULD ensure that some form of secure
 erase is used to assure destruction of the data.

 Request:

 {
 "DisposeRequest": {
 "KeyId": "MAKV7-WMGZG-5RTD7-74BCP-OU6O6-5FOMK"}}

 Response:

 {
 "DisposeResponse": {
 "Status": 200,
 "StatusDescription": "OK"}}

4. Lurk Key Service Reference

 SRV Prefix:

 _lurk._tcp

Hallam-Baker Expires September 22, 2016 [Page 16]

Internet-Draft LURK Protocol and Reference March 2016

 HTTP Well Known Service Prefix:

 /.well-known/lurk

 The LURK key service provides access to a remote key service. The
 remote service performs private key related operations in response to
 authenticated requests.

4.1. Request Messages

 A LURK request payload consists of a payload object that inherits
 from the LurkRequest class.

 Note that the request payload is the subject of the presentation
 layer authentication wrapper. Thus the authantication wrapper is not
 part of the request payload.

4.1.1. Message: LurkRequest

 Base class for all request messages.

 [None]

4.1.2. Message: LurkKeyRequest

 Base class for all key request messages.

 o

 * Inherits: LurkRequest

 [None]

4.1.3. Message: LurkResponse

 Base class for all responses. Contains only the status code and
 status description fields.

 A service MAY return either the response message specified for that
 transaction or any parent of that message. Thus the LurkResponse
 message MAY be returned in response to any request.

 Status: Integer (Optional)

Hallam-Baker Expires September 22, 2016 [Page 17]

Internet-Draft LURK Protocol and Reference March 2016

 Status return code. The SMTP/HTTP scheme of 2xx = Success, 3xx =
 incomplete, 4xx = failure is followed.

 StatusDescription: String (Optional)

 Text description of the status return code for debugging and log
 file use.

4.1.4. Successful Response Codes

 The following response codes are returned when a transaction has
 completed successfully.

 [201] SuccessOK

 Operation completed successfully

4.1.5. Warning Response Codes

 The following response codes are returned when a transaction did not
 complete because the target service has been redirected.

 In the case that a redirect code is returned, the StatusDescription
 field contains the URI of the new service. Note however that the
 redirect location indicated in a status response might be incorrect
 or even malicious and cannot be considered trustworthy without
 appropriate authentication.

 [303] RedirectPermanent

 Service has been permanently moved

 [307] RedirectTemporary

 Service has been temporarily moved

Hallam-Baker Expires September 22, 2016 [Page 18]

Internet-Draft LURK Protocol and Reference March 2016

4.1.6. Error Response Codes

 A response code in the range 400-499 is returned when the service was
 able to process the transaction but the transaction resulted in an
 error.

 [401] ClientUnauthorized

 Client is not authorized to perform specified request

 [404] NotFound

 The requested object could not be found.

 [406] NotAcceptable

 The request asked for an operation that cannot be supported
 because the server does not support certain parameters in the
 request. For example, specific key sizes, algorithms, etc.

4.1.7. Structure: Version

 Describes a protocol version.

 Major: Integer (Optional)

 Major version number of the service protocol. A higher

 Minor: Integer (Optional)

 Minor version number of the service protocol.

 Encodings: Encoding [0..Many]

Hallam-Baker Expires September 22, 2016 [Page 19]

Internet-Draft LURK Protocol and Reference March 2016

 Enumerates alternative encodings (e.g. ASN.1, XML, JSON-B)
 supported by the service. If no encodings are specified, the JSON
 encoding is assumed.

 URI: String [0..Many]

 The preferred URI for this service. This MAY be used to effect a
 redirect in the case that a service moves.

4.1.8. Structure: Encoding

 Describes a message content encoding.

 ID: String (Optional)

 The IANA encoding name

 Dictionary: String [0..Many]

 For encodings that employ a named dictionary for tag or data
 compression, the name of the dictionary as defined by that
 encoding scheme.

4.1.9. Structure: KeyParameters

 Specifies a cryptographic algorithm and related parameters. Note
 that while the parameters structures allows a key to be specified
 that supports multiple operations each key SHOULD only specify
 exactly one operation.

 Encrypt: Boolean (Optional)

 Key supports encryption and decryption operations.

 Agreement: Boolean (Optional)

 Key supports key agreement operations.

Hallam-Baker Expires September 22, 2016 [Page 20]

Internet-Draft LURK Protocol and Reference March 2016

 Signature: Boolean (Optional)

 Key Supports signature operations.

 Uses: String (Optional)

 Specifies the permitted uses for the key. All the listed uses are
 permitted. If present non-empty, the LURK Service MUST NOT
 permit any use not specified.

4.1.10. Structure: ParametersRSA

 o

 * Inherits: KeyParameters

 Describes parameters for the RSA algorithm

 KeySize: Integer (Optional)

 The Key Size. Services MUST support key sizes of 2048 and 4096
 bits. Services MAY support other key sizes greater than 2048
 bits. Services MUST NOT support key sizes less than 2048 bits.

 Padding: String [0..Many]

 If present, specifies the padding modes that are to be supported
 by the key.

4.1.11. Structure: ParametersDH

 o

 * Inherits: KeyParameters

 Specifies parameters for the Diffie Hellman algorithm. These are the
 prime and the generator which may be specified by name (for known
 IETF defined curves) or by the parameters.

 Curve: String (Optional)

Hallam-Baker Expires September 22, 2016 [Page 21]

Internet-Draft LURK Protocol and Reference March 2016

 Specify the curve to generate a key on by name

 Prime: Binary (Optional)

 Prime to use

 Generator: Binary (Optional)

 Generator to use

4.1.12. Structure: ParametersECDH

 o

 * Inherits: KeyParameters

 Specifies parameters for Elliptic Curve Diffie Hellman algorithm

 Curve: String (Optional)

 The curve name. Valid values are "Curve255" and "Curve448"

 Algorithm: String (Optional)

 Specify the precise algorithm and version.

4.2. Transaction: Hello

 Request: HelloRequest

 Response:HelloResponse

 Report service and version information.

 The Hello transaction provides a means of determining which protocol
 versions, message encodings and transport protocols are supported by
 the service.

Hallam-Baker Expires September 22, 2016 [Page 22]

Internet-Draft LURK Protocol and Reference March 2016

4.2.1. Message: HelloRequest

 o

 * Inherits: LurkRequest

 [None]

4.2.2. Message: HelloResponse

 Always reports success. Describes the configuration of the Mesh
 portal service.

 o

 * Inherits: LurkResponse

 Version: Version (Optional)

 Enumerates the protocol versions supported

 Alternates: Version [0..Many]

 Enumerates alternate protocol version(s) supported

4.3. Transaction: Create

 Request: CreateRequest

 Response:CreateResponse

 Create a new public key pair for the specified algorithm and
 cryptographic parameters.

4.3.1. Message: CreateRequest

 o

 * Inherits: LurkKeyRequest

 Request creation of a new key pair

 [None]

Hallam-Baker Expires September 22, 2016 [Page 23]

Internet-Draft LURK Protocol and Reference March 2016

4.3.2. Message: CreateResponse

 o

 * Inherits: LurkResponse

 Returns the identifier of a key pair

 KeyId: String (Optional)

 Unique identifier for the public key pair created if the operation
 succeeded.

4.4. Transaction: Dispose

 Request: DisposeRequest

 Response:DisposeResponse

 Dispose of the specified key pair.

4.4.1. Message: DisposeRequest

 o

 * Inherits: LurkKeyRequest

 Request creation of a new key pair

 KeyId: String (Optional)

 The Key to dispose.

4.4.2. Message: DisposeResponse

 o

 * Inherits: LurkResponse

 Reports result of an attempt to dispose of a key pair.

 [None]

Hallam-Baker Expires September 22, 2016 [Page 24]

Internet-Draft LURK Protocol and Reference March 2016

4.5. Transaction: Sign

 Request: SignRequest

 Response:SignResponse

 Request signature of a data value or digest

4.5.1. Message: SignRequest

 o

 * Inherits: LurkKeyRequest

 Describe the data to be signed

 KeyId: String (Optional)

 The key to be used for the operation.

 DigestAlg: String (Optional)

 The digest algorithm to be used.

 Data: Binary (Optional)

 Data to be digested and signed.

 Digest: Binary (Optional)

 Digest calculated on the data to be signed.

 This field is ignored if the Data field is present.

4.5.2. Message: SignResponse

 o

 * Inherits: LurkResponse

Hallam-Baker Expires September 22, 2016 [Page 25]

Internet-Draft LURK Protocol and Reference March 2016

 Returns the signature response.

 Value: Binary (Optional)

 The signature response value.

4.6. Transaction: Agree

 Request: AgreeRequest

 Response:AgreeResponse

 Perform a key agreement operation.

4.6.1. Message: AgreeRequest

 o

 * Inherits: LurkKeyRequest

 Specify the key agreement parameters.

 KeyId: String (Optional)

 The key to be used for the operation.

4.6.2. Message: AgreeResponse

 o

 * Inherits: LurkResponse

 Returns the result of the key agreement

 Value: Binary (Optional)

 The key agreement result

Hallam-Baker Expires September 22, 2016 [Page 26]

Internet-Draft LURK Protocol and Reference March 2016

4.7. Transaction: Decrypt

 Request: DecryptRequest

 Response:DecryptResponse

 Perform a decryption operation.

4.7.1. Message: DecryptRequest

 o

 * Inherits: LurkKeyRequest

 Request a decryption operation.

 KeyId: String (Optional)

 The key to be used for the operation.

 BulkAlg: String (Optional)

 The bulk decryption algorithm to be used

 Data: Binary (Optional)

 Data to be decrypted

 IV: Binary (Optional)

 Initialization Vector. This field is ignored unless the Data
 field is also specified. If an algorithm that requires an
 initialization vector is specified and this field is empty, the
 leading bytes of the Data field are used.

 WrappedKey: Binary (Optional)

 Wrapped key data to decrypt

Hallam-Baker Expires September 22, 2016 [Page 27]

Internet-Draft LURK Protocol and Reference March 2016

4.7.2. Message: DecryptResponse

 o

 * Inherits: LurkResponse

 Returns the result of the decryption request

 Value: Binary (Optional)

 The decrypted data

5. Advanced Functions

 The functions described in this document are not intended to be an
 exhaustive list of all the possible features that a HSM providing
 LURK services might be expected to provide. Possible additional
 features commonly supported by HSM devices that are not necessarily
 within the scope of the LURK objectives include:

 Ability to securely transfer key pairs to other LURK devices for
 backup purposes.

 Maintaining logs of all device operations. Such logs MAY be append
 only so as to prevent tampering or destruction.

 Constraining the use of a private key to specific protocol uses such
 as a specific TLS key exchange.

 More interestingly however, we can take advantage of the transition
 to new cipher suites based on Diffie Hellman to take advantage of
 some of the interesting properties of this crypto system.

 For example, in any Diffie Hallman type crypto scheme, the shared
 parameters are a cyclic group G, the private key is an integer n that
 is less than the order of the group and the public key is |e^n|G
 where e is a non zero point in G.

 It follows therefore that given two Diffie Hellman key pairs (x, e^x)
 and (y, e^y), and we can generate a new key pair (x+y, e^x . e^y).
 This feature permits the co-operative key generation and threshold
 key agreement schemes described below.

Hallam-Baker Expires September 22, 2016 [Page 28]

Internet-Draft LURK Protocol and Reference March 2016

5.1. Co-operative Key Generation

 An extension to the current protocol supports the use of co-operative
 key generation techniques. In this approach, a generated Key Pair
 can be shown to have been derived from specific inputs that guarantee
 certain properties of the final Key Pair.

 Before requesting key pair generation by the LURK Service, the
 administrator generates a Key Pair and sends both parts of the key
 pair to the service. The service then generates a new key pair
 internally and then combines it in the manner described above to
 generate the final key pair. The service then returns the public
 component of both the initial and the derived key pair to allow the
 administrator to verify that the construction did in fact use the
 material provided.

 This approach guarantees that the final key pair has at least as much
 randomness as either of the input key pairs. This provides certain
 protections against both the use of a faulty number generator by one
 party or the other and the use of a HSM using a maliciously
 constructed key pair.

5.2. Threshold and Proxy Re-Encryption Schemes

 Another interesting possibility is that the use of the private key be
 split between the LURK Client and LURK Service using a threshold
 cryptography scheme.

 While there are many threshold schemes in the literature, only some
 of these are generally considered to be practical. Fortunately, the
 Diffie Hellman key combination effect described above provides a very
 simple and practical scheme for the case where there are n shares and
 all n shares are required to perform a key agreement operation.

 Surprisingly perhaps, the use of such a scheme does not require any
 changes to the protocol at all as far as the actual use of the key is
 concerned. Generation of a keys may require changes however since it
 is now necessary to generate multiple key pairs and communicate them
 to the appropriate parties.

6. Algorithms and Identifiers

 This section is currently mostly a placeholder. It is expected that
 LURK will support:

 The traditional IETF repertoire of cryptographic algorithms (RSA, DH,
 etc)

Hallam-Baker Expires September 22, 2016 [Page 29]

Internet-Draft LURK Protocol and Reference March 2016

 The new algorithms developed by CFRG and CURDLE.

6.1. Key Algorithms

6.1.1. Parameters RSA

 The RSA algorithm supports the following padding modes: PKCS#1, OEAP.

 A LURK Service MUST NOT support key sizes of less than 2048 bits.

6.1.2. Parameters DH

 The Diffie Hellman key agreement mechanism described in [RFC2631]
 with the named groups defined in [RFC4419] and [RFC5114].

6.1.3. Parameters ECDH

 Elliptic Curve Diffie Hellman on the following groups:

 NIST P256, P384, P521

 Curve 25519 and Curve 448 as specified in [RFC7748]

6.2. Key Use Restrictions

 Key use restrictions specify the purposes for which a key may be
 used. These MAY limit the use of the key to specific key agreement
 mechanisms (e.g. for TLS, SSH, etc.)

6.2.1. RSALG Erb-Saltz

 TLS key agreement according to the mechanism described in [draft-erb-
lurk-rsalg].

7. Acknowledgements

 TBS

8. Security Considerations

 [This is just a sketch for the present.]

8.1. Confidentiality

https://datatracker.ietf.org/doc/html/rfc2631
https://datatracker.ietf.org/doc/html/rfc4419
https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg
https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg

Hallam-Baker Expires September 22, 2016 [Page 30]

Internet-Draft LURK Protocol and Reference March 2016

8.1.1. Disclosure of Private Key

 The service provider has access to the private key or a partial key
 which may therefore be at risk of disclosure if the service is
 breached.

 Best practice dictates that a LURK service employ mechanisms to bind
 private keys and partial keys to the Host such that extraction is not
 possible.

8.1.2. Side Channel Disclosure

 A malicious LURK service might intentionally leak a private key or
 partial key through a side channel. For example the RSA modulus side
 channel described by Moti Yung.

 Another potential vector for side channel attacks is through any
 mechanism that involves randomness. For example, a service might
 leak parts of the private key in nonce values it supplied.

8.1.3. Targeted Side Channel Disclosure

 A malicious LURK service that has context information that allows it
 to determine the source of a request might only defect on specific
 requests. For example, leaking private key material on a request
 from a co-conspirator or leaking session key material when
 communication is being made to a specific site to facilitate
 surveillance.

8.1.4. Traffic Analysis

 The patterns of access to a LURK service might reveal information
 that discloses behaviors of the client using the service.

8.1.5. Metadata Leakage

 A LURK service might log metadata relating to requests that would not
 otherwise be kept and thus expose the data to the possibility of
 disclosure.

 Contrawise, metadata capture might be highly desirable to support
 logging and audit.

8.2. Integrity

Hallam-Baker Expires September 22, 2016 [Page 31]

Internet-Draft LURK Protocol and Reference March 2016

8.2.1. Unauthorized Use of Private Key

 A LURK service might provide private key services to unauthorized
 parties.

 The ability to log and audit use of the service is thus highly
 desirable.

8.3. Availability

8.3.1. Cached data

 The long term master secrets established in a TLS key exchange may
 have a lifetime of hours or even days. A host that no longer has
 access to the LURK service may nevertheless have the ability to
 establish TLS channels by using cached connection tickets.

9. IANA Considerations

 [TBS list out all the code points that require an IANA registration]

10. Appendix: TLS Schema

 [TLS notation schema for use with the TLS encoding redacted for
 brevity.]

11. Appendix: JSON-C Tag Dictionary

 [JSON-C tag dictionary for use with JSON-C encoding redacted for
 brevity.]

12. Appendix: Mesh Application Profile

 [Not yet implemented.]

13. Normative References

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516

Hallam-Baker Expires September 22, 2016 [Page 32]

Internet-Draft LURK Protocol and Reference March 2016

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016.

 [RFC2631] Rescorla, E., "Diffie-Hellman Key Agreement Method",
RFC 2631, DOI 10.17487/RFC2631, June 1999.

 [RFC4419] Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman
 Group Exchange for the Secure Shell (SSH) Transport Layer
 Protocol", RFC 4419, DOI 10.17487/RFC4419, March 2006.

 [RFC5114] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
 Groups for Use with IETF Standards", RFC 5114,
 DOI 10.17487/RFC5114, January 2008.

 [draft-hallambaker-json-web-service-02]
 "[Reference Not Found!]".

 [draft-hallambaker-udf-03]
 "[Reference Not Found!]".

 [draft-hallambaker-mesh-architecture-01]
 "[Reference Not Found!]".

 [draft-hallambaker-mesh-reference-02]
 "[Reference Not Found!]".

 [draft-hallambaker-jsonbcd-05]
 "[Reference Not Found!]".

 [draft-erb-lurk-rsalg]
 "[Reference Not Found!]".

Author's Address

 Phillip Hallam-Baker
 Comodo Group Inc.

 Email: philliph@comodo.com

https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc2631
https://datatracker.ietf.org/doc/html/rfc4419
https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/draft-hallambaker-json-web-service-02
https://datatracker.ietf.org/doc/html/draft-hallambaker-udf-03
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-01
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-reference-02
https://datatracker.ietf.org/doc/html/draft-hallambaker-jsonbcd-05
https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg

Hallam-Baker Expires September 22, 2016 [Page 33]

