
Workgroup: Network Working Group

Internet-Draft:

draft-hallambaker-mesh-architecture

Published: 2 November 2020

Intended Status: Informational

Expires: 6 May 2021

Authors: P. M. Hallam-Baker

ThresholdSecrets.com

Mathematical Mesh 3.0 Part I: Architecture Guide

Abstract

The Mathematical Mesh is a Threshold Key Infrastructure that makes

computers easier to use by making them more secure. Application of

threshold cryptography to key generation and use enables users to

make use of public key cryptography across multiple devices with

minimal impact on the user experience.

This document provides an overview of the Mesh data structures,

protocols and examples of its use.

[Note to Readers] Discussion of this draft takes place on the

MATHMESH mailing list (mathmesh@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=mathmesh.

This document is also available online at http://mathmesh.com/

Documents/draft-hallambaker-mesh-architecture.html.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 May 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

http://mathmesh.com/Documents/draft-hallambaker-mesh-architecture.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-architecture.html
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Definitions

2.1. Related Specifications

2.2. Defined Terms

2.3. Requirements Language

2.4. Implementation Status

3. Requirements

3.1. The Device Management Challenge

3.2. Exchange of trusted credentials.

3.3. Application configuration management

3.4. The Mesh as platform

3.5. Security

3.6. Enterprise Deployment

4. User Experience

4.1. Creating a Mesh Account

4.1.1. Encrypting and Decrypting files.

4.1.2. Catalogs

4.2. Adding devices

4.2.1. Decrypting files on the new device

4.2.2. Applications

4.3. Mesh Messaging

4.3.1. Contact exchange

4.3.2. Confirmation service

4.4. Encryption Groups

4.5. Escrow and Recovery

4.6. Future Applications

4.6.1. Synchronous Messaging

4.6.2. Social Media

5. Mesh Cryptography

5.1. Best Practice by Default

5.2. Multi-Level Security

5.3. Threshold Decryption

5.4. Threshold Key Generation

5.5. Threshold Signature

5.6. Data At Rest Encryption

5.6.1. DARE Envelope

5.6.2. Dare Container

5.7. Uniform Data Fingerprints.

5.7.1. Friendly Names

5.7.2. Encrypted Authenticated Resource Locators

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

5.7.3. Secure Internet Names

5.8. Personal Key Escrow

6. Mesh Architecture

6.1. Actors

6.1.1. Account

6.1.2. Device

6.1.3. Service

6.2. Stores

6.2.1. Catalogs

6.2.2. Spools

6.3. Mesh Service Protocol

6.3.1. Protocol Interactions

6.4. The Threshold Catalog

6.5. Mesh Messaging Protocol

6.6. Using the Mesh with Applications

6.6.1. Future Applications

7. Security Considerations

8. IANA Considerations

9. Acknowledgements

10. Normative References

11. Informative References

1. Introduction

The Mathematical Mesh (Mesh) is a Threshold Key Infrastructure (TKI)

that uses cryptography to make computers easier to use. This

document describes version 3.0 of the Mesh architecture and

protocols.

In 1977, Public Key cryptography laid out a powerful proposition: If

Alice and Bob have private keys on their devices and each knows the

public key of the other, Alice and Bob can communicate with

confidentiality and integrity. The realization of this proposition

at Internet scale was vested in a technology called Public Key

Infrastructure (PKI) whose principal function is to provide a

trustworthy means by which Alice and Bob can discover each other's

public key.

Yet despite the power of PKI, Internet security remains a work in

progress. While PKI has proved an effective means of authenticating

services to users, attempts to apply PKI to the equally important

task of authenticating users to services and securing data at rest

have been confined to the margins. One critical reason for that

failure is that Public Key Infrastructure has only provided

effective tools for managing public keys. If we are to achieve

comprehensive Internet security, we must provide every user with the

ability to manage private keys across their devices with zero effort

on their part.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Threshold cryptography is a sub-field of public key cryptography

that defines operations on cryptographic keys, including operations

on private keys. Threshold cryptography allows Key generation and

key use operations may be split between multiple devices. These

tools make zero effort management of private keys practical.

The Mesh is a TKI that addresses the three principal concerns that

have proved obstacles to the use of end-to-end security in computer

applications:

Device management.

Exchange of trusted credentials.

Application configuration management.

The infrastructure developed to address these original motivating

concerns can be used to facilitate deployment and use of existing

security protocols (OpenPGP, S/MIME, SSH) and as a platform for

building end-to-end secure network applications. Current Mesh

applications include:

Multi-factor authentication and confirmation

Credential management

Bookmark/Citation management

Task and workflow management

A core principle of the design of the Mesh is autonomy. That is each

user has full control over their digital environment and is their

own source of authority. They may choose to delegate that authority

to another to act on their behalf (i.e. a Trusted Third Party) and

they may choose to surrender parts of that authority to others (e.g.

an employer) without surrendering their autonomy. Delegation of

authority is always for limited times and limited purposes.

Thus, from the user's point of view, the Mesh is divided into two

parts: The part of the Mesh that belongs to them and everything

else. As with the Internet, which is a network of networks, a Mesh

of Meshes has certain properties that are similar to those of its

constituent parts and some that are quite different.

This document is not normative. It provides an overview of the Mesh

comprising a description of the architecture, and a discussion of

typical use cases and requirements. The remainder of the document

series provides a summary of the principal components of the Mesh

architecture and their relationship to each other.

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

I. Architecture (This document.)

II. Uniform Data Fingerprint [draft-hallambaker-mesh-udf].

III. Data at Rest Encryption [draft-hallambaker-mesh-dare].

IV. Schema Reference [draft-hallambaker-mesh-schema].

V. Protocol Reference [draft-hallambaker-mesh-protocol].

VI Mesh Discovery Service [draft-hallambaker-mesh-discovery].

VII. Security Considerations [draft-hallambaker-mesh-security]

VIII Cryptographic Algorithms [draft-hallambaker-mesh-cryptography].

IX. The Trust Mesh [draft-hallambaker-mesh-trust].

Normative descriptions of the individual Mesh encodings, data

structures and protocols are provided in separate documents

addressing each component in turn.

The currently available Mesh document series comprises:

Provides an overview of the Mesh

as a system and the relationship between its constituent parts.

Describes the UDF format used to represent cryptographic nonces,

keys and content digests in the Mesh and the use of Encrypted

Authenticated Resource Locators (EARLs) and Strong Internet Names

(SINs) that build on the UDF platform.

Describes the cryptographic message and append-only sequence

formats used in Mesh applications and the Mesh Service protocol.

Describes the

syntax and semantics of Mesh Profiles, Container Entries and Mesh

Messages and their use in Mesh Applications.

Describes

the Mesh Service Protocol.

Describes the Mesh Discovery Service that supports mapping of

Mesh names to the corresponding Mesh Service Provider.

Describes the security considerations for the Mesh protocol

suite.

Describes the recommended and required algorithm suites for Mesh

applications and the implementation of the multi-party

cryptography techniques used in the Mesh.

The following documents describe technologies that are used in the

Mesh but do not form part of the Mesh specification suite:

Describes the

social work factor metric used to evaluate the effectiveness of

different approaches to exchange of credentials between users and

organizations in various contexts and argues for a hybrid

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

JSON-BCD Encoding [draft-hallambaker-jsonbcd].

DNS Web Service Discovery [draft-hallambaker-web-service-discovery].

Threshold Modes in Elliptic Curves [draft-hallambaker-threshold].

Threshold Signatures in Elliptic Curves [draft-hallambaker-

threshold-sigs].

Mesh Developer [draft-hallambaker-mesh-developer].

Mesh Platform [draft-hallambaker-mesh-platform].

Cryptographic Algorithms

approach taking advantage of direct trust, Web of Trust and

Trusted Third Party models to provide introductions.

Describes extensions

to the JSON serialization format to allow direct encoding of

binary data (JSON-B), compressed encoding (JSON-C) and extended

binary data encoding (JSON-D). Each of these encodings is a

superset of the previous one so that JSON-B is a superset of

JSON, JSON-C is a superset of JSON-B and JSON-D is a superset of

JSON-C.

Describes the means by which prefixed DNS SRV and TXT records are

used to perform discovery of Web Services.

Describes threshold key generation and key agreement operations

for the Ed25519, Ed448, X25519 and X448 elliptic curves.

Describes creation of threshold signatures using the Ed25519 and

Ed448 elliptic curves.

The following documents describe aspects of the Mesh Reference

implementation:

Describes the

reference code distribution license terms, implementation status

and currently supported functions.

Describes how

platform specific functionality such as secure key storage and

trustworthy computing features are employed in the Mesh.

2. Definitions

This section presents the related specifications and standards on

which the Mesh is built, the terms that are used as terms of art

within the Mesh protocols and applications and the terms used as

requirements language.

2.1. Related Specifications

Besides the documents that form the Mesh core, the Mesh makes use of

many existing Internet standards, including:

The RECOMMENDED and REQUIRED cryptographic

algorithms for Mesh implementations are specified in [draft-

hallambaker-mesh-cryptography].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Transport

Encoding

In addition, Mesh Devices used to administer non-Mesh

applications must support the cryptographic algorithm suites

specified by the application.

All Mesh Services make use of multiple layers of

security. Protection against traffic analysis and metadata

attacks are provided by use of Transport Layer Security

[RFC5246]. At present, the HTTP/1.1 [RFC7231] protocol is used to

provide framing of transaction messages.

All Mesh protocols and data structures are expressed in

the JSON data model and all Mesh applications accept data in

standard JSON encoding [RFC7159]. The JOSE Signature [RFC7515]

and Encryption [RFC7516] standards are used as the basis for

object signing and encryption.

2.2. Defined Terms

TBS

2.3. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

2.4. Implementation Status

The implementation status of the reference code base is described in

the companion document [draft-hallambaker-mesh-developer].

The examples in this document were created on 11/2/2020 4:47:04 PM.

Out of 51 examples, 16 failed.

3. Requirements

The Mathematical Mesh (Mesh) is a Threshold Key Infrastructure that

uses cryptography to make computers easier to use.

For several decades, it has been widely noted that most users are

either unwilling or unable to make even the slightest efforts to

protect their security, still less those of other parties. Yet

despite this observation being widespread, the efforts of the IT

security community have largely focused on changing this user

behavior rather that designing applications that respect it. Real

users have real work to do and have neither the time nor the

inclination to use tools that will negatively impact their

performance.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The Mesh is based on the principle that if the Internet is to be

secure, if must become effortless to use applications securely.

Rather than beginning the design process by imagining all the

possible modes of attack and working out how to address these as

best as possible without unnecessary inconvenience to the user, we

must reverse the question and ask how much security can be provided

without requiring any effort whatsoever from the user. This

principle is called Zero Effort Security.

Today's technology requires users to put their trust in an endless

variety of devices, software and services they cannot fully

understand let alone control. Even the humble television of the 20th

century has been replaced by a 'smart' TV with 15 million lines of

code whose undeclared capabilities may well include placing the room

in which it is placed under continuous audio and video surveillance.

Every technology deployment by necessity requires some degree of

trust on the owner/user's part. But this trust should not compromise

the user's autonomy. Delegation of trust should be limited and

subject to accountability. If manufacturers continue to fail in this

regard, they risk a backlash in which users seek to restore their

rights through litigation, legislation or worst of all, simply not

buying more technology that they have learned to distrust through

their own experience.

The Mesh is based on the principle of radical distrust, that is, if

a party is capable of defecting, we assume that they will. As the

Russian proverb goes: ???????, ?? ????????: trust, but verify.

In the 1990s, the suggestion that 'hackers' might seek to make

financial gains from their activities was denounced as 'fear-

mongering'. The suggestion that email or anonymous currencies might

be abused received a similar response. Today malware, ransomware and

spam have become so ubiquitous that they are no longer news unless

the circumstances are particularly egregious. In 1949, Edward A.

Murphy Jr. proposed his now eponymous law which states, 'Anything

that can go wrong will go wrong'. We must now apply a similar

principle to Internet security: 'Anything that can be made to go

wrong is already being made to go wrong and will only get worse

until something is done to stop it.'

We must dispense with the notion that it is improper or impolite to

question the good faith of technology suppliers of any kind whether

they be manufacturers, service providers, software authors or

reviewers. Modern supply chains are complex, typically involving

hundreds if not thousands of potential points of deliberate or

accidental compromise. The technology provider who relies on the

presumption of good faith on their part risks serious damage to

¶

¶

¶

¶

¶

their reputation when others assert that a capability added to their

product may have malign uses.

Radical distrust means that we apply the principles of least

principle and accountability at every level to the design of the

Mesh:

Cryptographic keys installed in a product during manufacture are

only used for the limited purpose of putting that device under

control of the user.

Cryptographic keys and assertions related to management of

devices are only visible to the user they belong to and are never

exposed to external parties.

Mesh Accounts belong to and are under control of the user they

belong to and not the Mesh Service provider which the user can

change at will with minimal inconvenience.

Mesh Services do not have access to the plaintext of any Mesh

Messages or Mesh Catalog data except for the threshold catalog

used by the service as the source of access control policy.

All Mesh Messages are subject to access control by both the

inbound and outbound Mesh Service to mitigate messaging abuse.

Security is risk management and not the elimination of all

possibility of any risk. Radical distrust means that we raise the

bar for attackers to the point where for most attackers the risk is

greater than the reward. It does not demand that we immediately

address every issue with perfection or delay deployment of

technologies that are capable of controlling many risks until we

have achieved the control of every risk.

In addition to distrusting technology providers the Mesh

Architecture allows the user to limit the degree of trust they place

in themselves. In the real world, devices are lost or stolen,

passwords and activation codes are forgotten, natural or man-made

catastrophes cause property and data to be lost. The Mesh permits

but does not require use of escrow techniques that allow recovery

from such situations.

3.1. The Device Management Challenge

Existing PKIs were developed in an era when the 'personal computer'

was still coming into being. Only a small number of people owned a

computer and an even smaller number owned more than one. In these

circumstances, it arguably sufficed to provision a user with a

single private key on the single device they were likely to use.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

Today, computers are ubiquitous and a typical home in the developed

world contains several hundred of which a dozen or more may have

some form of network access. The modern consumer faces a problem of

device management that is considerably more complex than the IT

administrator of a small business might have faced in the 1990s but

without any of the network management tools such an administrator

would expect to have available.

One important consequence of the proliferation of devices is that

end-to-end security is no longer sufficient. To be acceptable to

users, a system must be ends-to-ends secure. That is, a user must be

able to read their encrypted email message on their laptop, tablet,

phone, or watch with exactly the same ease of use as if the mail

were unencrypted. A cryptographic security control that impedes the

user is a control that is not going to be used.

Each personal Mesh contains a device catalog in which the

cryptographic credentials and device specific application

configurations for each connected device are stored.

Management of the device catalog is restricted to a subset of

devices that the owner of the Mesh has specifically authorized for

that purpose as administration devices. Only a device with access to

a duly authorized administration key can add or remove devices from

a personal Mesh.

3.2. Exchange of trusted credentials.

One of the most challenging, certainly the most contentious issues

in PKI is the means by which cryptographic credentials are published

and validated. Here there are two different challenges.

Developing an infrastructure that provides a mapping to a

cryptographic key from a name that serves no other purpose than

identifying the key is relatively easy. Developing an infrastructure

that maps existing names with semantics that are already established

is considerably harder.

The Mesh does not attempt to impose criteria for accepting

credentials as valid as no such set of criteria can be

comprehensive. Rather the Mesh provides an internal trust

infrastructure that makes use of a direct trust model similar to

that of PGP fingerprints to which external names may be mapped using

whatever validation criteria users consider are appropriate to the

purpose for which they intend to use them.

The principles of providing extended trust management in the Mesh

are further described in [draft-hallambaker-mesh-trust].

¶

¶

¶

¶

¶

¶

¶

¶

Confidentiality

3.3. Application configuration management

Configuration of cryptographic applications is typically worse than

an afterthought. Configuration of one popular mail user agent to use

S/MIME security requires 17 steps to be performed using four

separate application programs. And since S/MIME certificates expire,

the user is required to repeat these steps every few years. Contrary

to the public claims made by one major software vendor it is not

necessary to perform 'usability testing' to recognize abject

stupidity.

Rather than writing down configuration steps and giving them to the

user, we should turn them into code and give them to a machine.

Users should never be required to do the work of the machine. Nor

should any programmer be allowed to insult the user by casting their

effort aside and requiring it to be re-entered.

While most computer professionals who are required to do such tasks

on a regular basis will create a tool for the purpose, most users do

not have that option. And of those who do write their own tools,

only a few have the time and the knowledge to do the job without

introducing security vulnerabilities.

3.4. The Mesh as platform

Meeting the core objectives of the Mesh required new naming,

communication and cryptographic capabilities provided to be

developed. These capabilities may in turn be used to develop new

end-to-end secure applications.

For example, the Mesh Catalogs used to maintain collections of

device descriptions, bookmarks, credentials, etc. might be used in

an electronic records infrastructure to maintain chain of custody of

digital evidence.

3.5. Security

The Mesh is designed to provide the greatest practical level of

security that does not detract from the user experience. The usual

CIA triad is considered:

The confidentiality of user content should be

protected at all times and against all unauthorized parties

including their MSP.

Reasonable efforts should be taken to protect user data against

traffic analysis and metadata attacks. It is not necessary to

consider disclosure of this information to MSPs. Metadata must be

shielded from external parties but controls to prevent traffic

analysis may be left to implementers.

¶

¶

¶

¶

¶

¶

¶

¶

Integrity

Availability

The design should consider unauthorized modification of

data to be at least as serious as disclosure.

The design should consider loss of data likely to be

at least as serious as disclosure.

In addition to protecting the user's data, the Mesh is designed to

protect the user's autonomy. While the use of any electronic device

or service entails a degree of trust, the user should have the right

to decide which devices and which service providers to trust and to

have the practical ability to revoke that trust at any time they

choose.

3.6. Enterprise Deployment

Development of PKI has traditionally focused on the needs of large

enterprises. The Mesh is focused on the individual user. While this

change of focus is in part a recognition of the need to reverse the

traditional bias, it is also a recognition of the fact that we must

understand the needs of the individual user before attempting to

understand the additional needs of an enterprise IT department

serving a large number of users.

4. User Experience

This section describes the Mesh in use. These use cases described

here are re-visited in the companion Mesh Schema Reference [draft-

hallambaker-mesh-schema] and Mesh Protocol Reference [draft-

hallambaker-mesh-protocol] with further details and additional

examples.

For clarity and compactness of exposition, these use cases are

illustrated using the command line tool meshman, a tool that makes

the cryptographic operations explicit. This does not represent the

ideal user experience in which Zero-effort security is achieved.

Such a user experience requires that the Mesh operations be

seamlessly integrated into the user's applications so that instead

of using the meshman tool to encrypt or decrypt document, the word

processor application itself would be extended to read and write

documents encrypted in the DARE format.

4.1. Creating a Mesh Account

From the user's perspective, their personal Mesh consists of a

collection of devices that communicate seamlessly and securely

through a Mesh account serviced by a Mesh Service Provider (MSP).

¶

¶

¶

¶

¶

¶

¶

o V

e h

o

v

h
M h

P

c r

La

r
f T

o

r
i

C

t n c
e

d

'

p W

S

e

o a

i
P

A s

e

a M

s
e

f

e s n

t

P

v

l

e

o
e

e

i s

p

r

e l

h

c

Figure 1

As with an email service provider, the user is only likely to be

aware of their interactions with their MSP in the case of a service

interruption. As far as the user is concerned the data is replicated

across their devices automatically unless there is a problem.

While the term 'account' is used because it is the term a user is

familiar with that most closely describes its functions, Mesh

accounts are different from traditional Internet accounts in one

important respect: In order to realize the principle of 'autonomy',

Mesh accounts are created by and belong to the user and not the

service provider. Should a serious problem occur, a user may opt to

change their MSP. But unlike a changing an SMTP email provider, this

change is made seamless and cost free.

Another important difference between the Mesh and SMTP is that all

Mesh data is encrypted end to end. The MSP does not have access to

any user content and does not have access to any user meta-data

except that which is strictly necessary to service the account.

The only Mesh catalogs associated with a Mesh account that can be

read by an MSP are the Access Catalog which serves as the basis for

specifying and enforcing access control policy on the resources

associated with the account and the Publications Catalog which is an

index of encrypted data published through the account.

To create a Mesh account, the user need only specify the account

name and the initial MSP:

The user specifies the initial account address to be used

(alice@example.com). Use of this address is of course dependent on

authorization by the Mesh Service Provider (example.com) and is

likely to require authentication and possibly payment.

Alice> account create alice@example.com

Account=MCQ4-CSYK-2LAY-3XXW-72CL-6P65-X6CQ

¶

¶

¶

¶

¶

¶

The command returns the value of Alice's Mesh Account fingerprint .

This value is used as a unique identifier that is cryptographically

bound to the signature key used to authenticate the account profile.

Note that the user does not specify the cryptographic algorithms to

use. Choice of cryptographic algorithm is primarily the concern of

the protocol designer, not the user. The only circumstance in which

users would normally be involved in algorithm selection is when

there is a transition in progress from one algorithm suite to

another.

4.1.1. Encrypting and Decrypting files.

Having created an account, Alice can use it to encrypt files and

decrypt them on the same machine.

Alice encrypts the text file plaintext.txt to create an encrypted

version readable only by Alice:

Alice> type plaintext.txt

This is a test

Alice> dare encode plaintext.txt ciphertext.dare /encrypt ^

 alice@example.com

Alice> dare verify ciphertext.dare

File: ciphertext.dare

 Bytes: 0

 Encryption Algorithm: A256CBC

 Recipient: MBNX-5MOX-L2P6-6B33-QAU4-V3Y3-3ZM4

 Digest Algorithm: S512

 Payload Digest:

Alice can recover the file at any time using the decryption command:

Alice> dare decode ciphertext.dare plaintext1.txt

Alice> type plaintext1.txt

This is a test

Although the encrypted file can be accessed by Alice with precisely

the same ease as the plaintext version, the contents of the

encrypted file are not readable by any other user of the machine

unless Alice explicitly grants access. The encrypted file may be

stored on a shared drive, cloud file system or removable storage

without disclosing the contents.

¶

¶

¶

¶

¶

¶

¶

¶

¶

While encrypting and decrypting files using a tool provides the

desired functionality, it does not meet our objectives for

usability. These capabilities should be integrated into applications

or the platform itself.

4.1.2. Catalogs

Every Mesh account is created with a set of catalogs and spools. For

example, the bookmarks catalog maintains a list of the user's Web

bookmarks. The credentials catalog maintains a list of the user's

usernames and passwords for the various network services they use.

As with the file encryption example, these capabilities are clearly

going to be most effective when incorporated into the user's

applications, (i.e. their Web browser).

Alice adds the username and password she uses to access her weather

service account to her credentials catalog:

Alice> password add ftp.example.com alice1 password

alice1@ftp.example.com = [password]

Alice> password add www.example.com alice@example.com newpassword

alice@example.com@www.example.com = [newpassword]

As with all Mesh Catalogs, the catalog data is encrypted and cannot

be accessed by any unauthorized party including the Mesh Service

Provider.

If needed, she can retrieve the credentials from the catalog by

specifying the network resource to which access is required:

Alice> password get ftp.example.com

alice1@ftp.example.com = [password]

This capability provides a means of preventing one of the most

common causes of enterprise password breach in which a system

administrator encodes the access credentials for a service into a

script used to access the service. A script containing a command to

extract the credentials from a Mesh catalog will only work for a

user authorized to access the credentials in the Mesh.

4.2. Adding devices

Computers have become ubiquitous and inexpensive. Most people living

in affluent countries interact with several dozen computer systems

every day. Every household appliance from the television to the

coffee pot has become or is in the process of becoming a computer.

¶

¶

¶

¶

¶

¶

¶

¶

Direct

PIN

Dynamic QR

Static QR

It is this circumstance that has exposed the critical flaw in

traditional PKI: The lack of practical means of managing private

keys across multiple devices.

The Mesh allows users to connect all their devices together so that

they may be considered part of a single entity whose component parts

communicate and interact seamlessly and securely.

Although any type of network capable device may be connected to a

Mesh profile, some devices are better suited for use with certain

applications than others. Connecting an oven to a Mesh profile could

allow it to be controlled through entries to the user's recipe and

calendar catalogs and alert the user when the meal is ready but

attempting to use it to read emails or manage Mesh profiles. The

Mesh allows the principle of least privilege when connecting a

device granting precisely the set of capabilities required to

perform its intended function.

Multiple connection mechanisms are specified, each of which provides

strong mutual authentication. In each case, the connection request

must be approved by a device provisioned with the Mesh

administration privilege:

The connection request is initiated on the device being

requested and approved on the administration device.

Authentication of the connection request is performed by

comparing witness values presented on the connecting device and

the administration device.

A PIN code is generated on an administration device and passed

to the connecting device out of band. The connecting device

provides proof of knowledge of this PIN code when making the

connection request allowing an administration device to approve

the request automatically without further user interaction.

This connection mechanism is a variation of the PIN

connection mechanism in which administration device presents the

PIN code value to the connecting device in the form of a QR code.

This allows a connecting device with a camera to connect with

minimal user effort.

This connection method is designed to support connection

of constrained IoT devices that lack a camera or display

capability. An administration device equipped with a camera reads

a static QR code printed on the device that provides the

information used to enable the administration device to establish

a local network connection (e.g. WiFi, Bluetooth, strobe, IR)

that can be used to complete the connection.

¶

¶

¶

¶

¶

¶

¶

¶

For example, Alice connects a second device using the direct

connection mechanism:

The connection request is initiated on the device being connected:

Alice2> device request alice@example.com

 Device UDF = MCR5-EJWB-KRGF-3SYW-ASKC-DWUP-FIQQ

 Witness value = RQUH-LNHP-XVR6-UHQ5-WSCZ-WCZC-Q5PK

Using her administration device, Alice gets a list of pending

requests. Seeing that there is a pending request matching the

witness value presented by the device, Alice accepts it:

Alice> message pending

MessageID: DGVB-YMZP-LJCN-XY3D-LGWE-2G33-WXFE

 Connection Request::

 MessageID: DGVB-YMZP-LJCN-XY3D-LGWE-2G33-WXFE

 To: From:

 Device: MDJ2-URNT-WXPZ-5PLB-J3XM-MJK5-AEWG

 Witness: DGVB-YMZP-LJCN-XY3D-LGWE-2G33-WXFE

MessageID: NBAC-LLBY-E4EU-7ZRF-I47O-ZYHZ-PBCW

 Confirmation Request::

 MessageID: NBAC-LLBY-E4EU-7ZRF-I47O-ZYHZ-PBCW

 To: alice@example.com From: console@example.com

 Text: start

MessageID: NBKU-OVBZ-YZRN-FEB4-ARMW-VUVI-2JSG

 Contact Request::

 MessageID: NBKU-OVBZ-YZRN-FEB4-ARMW-VUVI-2JSG

 To: alice@example.com From: bob@example.com

 PIN: AD6Q-2HLS-M3HL-MYNB-43SW-OXCM-QFSA

Alice> account sync /auto

ERROR - Cannot access a closed file.

Alice> device accept RQUH-LNHP-XVR6-UHQ5-WSCZ-WCZC-Q5PK

ERROR - Cannot access a closed file.

Alice can now synchronize her newly connected device to her account:

Alice2> device complete

These connection mechanisms are described in detail in the Mesh

Protocol Reference [draft-hallambaker-mesh-protocol].

¶

¶

¶

¶

¶

¶

¶

¶

4.2.1. Decrypting files on the new device

Having connected a second device and granted it 'Web' rights, Alice

can use it to decrypt files and access her bookmark and password

catalogs in exactly the same fashion as the first. If a password is

changed on one device, all her connected devices receive the update.

For example, Alice can now decrypt the file she encrypted on her

first device and access her credential catalog from the new device:

Alice2> password get ftp.example.com

ERROR - No decryption key is available

Alice2> dare decode ciphertext.dare plaintext2.txt

ERROR - No decryption key is available

Should the new device be lost, stolen or simply broken, Alice can

prevent further use of the device to decrypt her data by

disconnecting it from her Mesh:

Alice disconnects the new device:

Alice> device delete TBS

ERROR - The feature has not been implemented

The device can no longer access the password catalog:

Alice2> dare decode ciphertext.dare plaintext2.txt

ERROR - No decryption key is available

The use of threshold decryption allows the Mesh Service Provider to

control the use of decryption by Alice's devices without having the

ability to decrypt the content itself.

4.2.2. Applications

Connected devices can also make use of connected applications for

which they are granted the necessary rights.

Alice creates an SSH profile within her Mesh on the administrative

device.

Missing example 1

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

After configuring an SSH server to accept her new SSH credential,

she can use any of her devices that has been granted the SSH right

to connect to it.

In this case Alice has chosen to use an SSH configuration in which a

single client key is shared across multiple devices. The Mesh is in

principle capable of supporting more sophisticated configurations in

which use of the client key is under control of a threshold service

and/or each device has its own individual private. Consideration of

these configuration modes is currently outside the scope of work for

the Mesh and is probably more usefully considered as part of an

effort to integrate Mesh functionality into the SSH system. This

would also allow support for features such as recording SSH server

key fingerprints in the Mesh Contacts catalog.

Alice could enable use of OpenPGP and S/MIME on her connected

devices that have been granted the messaging right in a similar way.

All the network and security configuration data required to use one

of her email accounts is stored in her Mesh applications catalog.

The Mesh client performs all the steps required to obtain and

install CA issued certificates. As with the SSH example, while it is

quite possible to support all the necessary functionality through

the Mesh alone, a better result is likely to be achieved by

modifying the SMTP email clients and Certificate Authority

infrastructures.

4.3. Mesh Messaging

The Mesh Messaging system is a push messaging system analogous to

SMTP, but its purpose is limited to secure exchange of control plane

messages. This leads to some important differences:

Every message is signed and end-to-end encrypted

The only communication pattern supported is a four-corner model

in which users exchange messages through their respective MSPs.

Every message is subject to access control at the inbound and

outbound MSP.

Message content is limited to 32KB.

This size restriction ensures that exchange of Mesh Messages does

not impose an undue burden on the inbound and outbound MSP. It is

not necessary for a sender to transfer multiple MB message before

the receiver decides to refuse it for some reason. Connected devices

may efficiently synchronize their message spools even over limited

bandwidth connections. A short message is never blocked by a larger

one.

¶

¶

¶

¶

* ¶

*

¶

*

¶

* ¶

¶

Should exchange of longer messages be desired, a pull model is

employed. A Mesh message is used to send a message advising the

recipient's client of the location from which the full content may

be obtained. This approach has many benefits over the SMTP push

model. There is no longer a need for any limitation on message size.

The same messaging platform can be used to send a short text

message, a spreadsheet or raw video files.

Exchange of certain content types naturally leads to security

concerns. These concerns are mitigated in the Mesh by performing

access control on every message. When accepting Bob as a partner,

Alice can choose the types of Mesh Message and the types of content

she is willing to accept from him. Thus, Alice might be willing to

accept a spreadsheet containing macro code from Bob but not from

Carol or Mallet. And she might not want to accept anything at all

from Susan because of past abuse.

While there are important technical differences between Mesh

Messaging and SMTP, these are not visible to Alice or Bob except

insofar as there is no restriction on message size other than the

storage capacity of the machine they wish to receive the messages

on, there is very little scope for messaging abuse and (unless the

Mesh becomes ubiquitous) they can only use Mesh Messaging to

communicate with other Mesh users. Thus, while Mesh messaging has

been designed to enable replacement of SMTP in the long term, it is

not currently a focus for the client implementations. Use of Mesh

messaging is thus currently limited to support for applications

built on the Mesh platform. One of those applications is the device

connection protocol describe earlier. Another is the contact

exchange protocol used to acquire contact information from other

Mesh users.

4.3.1. Contact exchange

Besides management of private keys across devices, the biggest

obstacle to effective use of existing security protocols such as

SSH, OpenPGP and S/MIME is the difficulty of obtaining the authentic

public keys of the counterparties.

The question of issue and validation of credentials is a complex and

difficult one that does not have a single answer that is valid for

every use case. For certain applications credentials issued by a

Trusted Third Party are appropriate. For others, the Web of Trust

proposed in OpenPGP provides a better fit to the requirements and

constraints. These issues are discussed in [draft-hallambaker-mesh-

trust].

Rather than imposing a single trust model for credential

acquisition, the Mesh allows the use of whatever model is best for

¶

¶

¶

¶

¶

validating a credential for a particular use. It is unlikely Alice

would have the same security concerns for communication with her

employer, her friends, her bank, etc.

For many applications, Trust After First Use provides an adequate

basis for credential acquisition.

Alice wants to exchange Mesh messages with Bob. Although Alice knows

Bob's Mesh address (bob@example.com), she does not (yet) have

permission to send any message to Bob excepting a request to

exchange contact information.

Bob sends Alice a contact exchange request:

Bob> message contact alice@example.com

Alice checks his Mesh messages and approves Bob's request:

Alice> account sync

Alice> message pending

MessageID: NBKU-OVBZ-YZRN-FEB4-ARMW-VUVI-2JSG

 Contact Request::

 MessageID: NBKU-OVBZ-YZRN-FEB4-ARMW-VUVI-2JSG

 To: alice@example.com From: bob@example.com

 PIN: AD6Q-2HLS-M3HL-MYNB-43SW-OXCM-QFSA

Alice> message accept NBKU-OVBZ-YZRN-FEB4-ARMW-VUVI-2JSG

ERROR - Cannot access a closed file.

At this point Alice and Bob can exchange Mesh messages of any type

with seamless end to end security. Every Mesh message is signed and

encrypted without exception. If Alice and Bob have used the Mesh to

configure their email accounts for OpenPGP or S/MIME, they can use

these to exchange end-to-end secure SMTP mail.

Alternatively, Bob might have opted to grant Alice only specific

messaging access. Bob might choose to restrict synchronous messaging

modalities such as instant messaging or voice that interrupt his

workflow to specific colleagues. The fact that Alice wants to speak

to Bob does not necessarily mean she is interested in what he might

say in reply. Thus, messaging access need not be reciprocated.

As with device connection, multiple contact exchange methods are

supported including the use of a QR code printed on a business card

or presented on a mobile device. These methods are also described in

[draft-hallambaker-mesh-protocol].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

As a respected figure within the cryptographic community, Alice

might employ a curation service for credential requests advising her

that Bob's credentials appear to be in order while Mallet's are

suspicious. Such services might be offered by her MSP or another

provider. Alice might be willing to accept contact requests from

members of professional associations she is a member of or who have

attended certain conferences in her field. A variety of approaches

might be followed for curation of other requests including Machine

Learning approaches.

4.3.2. Confirmation service

The Mesh confirmation service is an improvement of traditional

second factor authentication techniques offering offers far greater

usability and security.

Instead of being asked to present a meaningless numeric code, Alice

is presented a request from a named, authenticated source to confirm

a specific action. Alice's response will be signed using a signature

key that is unique to the particular confirmation device she uses,

thus providing a non-repudiable record of her decision.

Alice attempts to log into a secure console in the control room. The

secure console recognizes Alice but a second factor is required. The

console issues a challenge to Alice at her registered account asking

if she would like to log into the secure console:

Console> message confirm alice@example.com start

Alice checks her pending messages and accepts the request:

Alice> message accept NBAC-LLBY-E4EU-7ZRF-I47O-ZYHZ-PBCW

ERROR - The specified message could not be found.

The secure console verifies the response and grants access:

Alice> $message status {confirmResponseID}

ERROR - The command System.Object[] is not known.

In an enterprise environment, tying the confirmation process to a

specific source, a specific action and specific device allows for

confirmation interactions to be used to implement business processes

with attribution and thus accountability.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Using traditional second factor approaches, a system administrator

presents their credentials to authenticate access to the machine at

which point they can perform any action permitted by their current

privileges. This typically includes modification of any access logs

that might be kept. Using the confirmation approach the individual

actions of the system administrator may be authenticated, traced and

logged. If a user account is added to the system, it is known which

administrator is responsible and the device that was used. This

information may then be used if it becomes necessary to unwind the

consequences of a breach or an insider threat.

4.4. Encryption Groups

As seen earlier, the Mesh allows encrypted files to be shared with

other named users. While this capability is sufficient for simple

messaging type use cases, decades of experience prove that it is

inadequate to meet the needs of protecting data at rest. In the

simple messaging case the list of recipients is known to the sender

at the time a message is sent. In the general case the party

encrypting the data cannot know the list of intended readers because

that will change over time.

Even in the smallest organization, employees join and leave. A new

employee must be granted access to all the information they need for

their work. The access rights of a terminated employee must also

terminate.

Traditional 'Digital Rights Management' product employ key

management techniques originating in the field of copyright

enforcement to control access to content by controlling disclosure

of symmetric decryption keys. This provides the necessary

flexibility to control access to the data but leaves the decryption

keys vulnerable to a server breach. Such systems do not provide

'end-to-end' security in any useful sense.

Use of threshold techniques allows a threshold service to control

decryption of the data without having the ability to decrypt.

Sharing data through a Mesh group allows access to be controlled

without loss of end-to-end encryption.

Alice creates the recryption group groupw@example.com to share

confidential information with her closest friends:

Alice> group create groupw@example.com

ERROR - Cannot access a closed file.

Bob encrypts a test file but he can't decrypt it because he isn't in

the group:

¶

¶

¶

¶

¶

¶

¶

¶

Alice> dare encode grouptext.txt /encrypt groupw@example.com /out ^

 groupsecret.dare

ERROR - The option System.Object[] is not known.

Even though she is the group administrator, Alice can't decrypt the

file either until she adds herself to the group.

Alice> dare decode groupsecret.dare

ERROR - No decryption key is available

Alice adds Bob to the group:

Missing example 2

Adding Bob to the group gives him immediate access to any file

encrypted under the group key without making any change to the

encrypted files:

Missing example 3

Removing Bob from the group immediately withdraws his access.

Missing example 4

Bob cannot decrypt any more files (but he may have kept copies of

files he decrypted earlier).

Missing example 5

4.5. Escrow and Recovery

While disclosure of sensitive data might cause serious harm to its

owner it is very rarely the case that the consequences of disclosure

are greater than the consequences of loss. Thus, whenever static

data is to be encrypted, the question of key recovery must be

considered.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Alice decides to create a recovery key set. To do this, she

specifies the number of key shares to be created and the number

required for recovery:

Alice> account escrow

Share: SAQN-H7KA-DN7Z-SWGM-NTOL-EBGN-TGJN-UNEA-H4LH-VTYK-P66S-KE3D-JI

FE-NWOY-JRGQ

Share: SAQ5-76L5-SN7F-BMIK-AQRW-DU7F-FDJY-P3C6-DQZE-LOLJ-IGRQ-O2IY-6E

G2-UQ3Z-BCUQ

Share: SARO-X5N3-BN6Q-QCKH-TNVB-DIX4-XAKD-LJB3-7FHB-BI6I-AOEO-TPWO-TA

IQ-3LIZ-YUCQ

Recovery of the key data requires the key recovery record and a

quorum of the key shares:

Alice2> account recover /verify

ERROR - Expected {

4.6. Future Applications

The Mesh is a Threshold Key Infrastructure and as with any

infrastructure, it is designed as a platform to support as wide a

range of future developments as possible. As shown previously, the

Mesh Messaging system provides an improved superset of the functions

of SMTP. It is also capable of being extended to support every

current communication modality with true end-to-end protection of

data confidentiality.

4.6.1. Synchronous Messaging

Addition of a presence service capability to the MSP would allow

Mesh Messaging to be used to support the full range of synchronous

messaging services from text chat (e.g. xmpp) to video and VOIP.

The main technical issue to be addressed to enable such a service is

specifying a means of layering Mesh Messages direct over UDP

transport. This is currently at the concept phase. While the precise

means of layering audio and video formats onto a network connection

is a complex problem, it is one that has already been solved by

existing standards.

4.6.2. Social Media

One of the chief distinctions between messaging and 'social media'

and is that the former is typically used to describe a synchronous

interaction between a closed group of users while most social media

¶

¶

¶

¶

¶

¶

¶

consists of asynchronous interactions which are frequently (but not

always) public.

The Data At Rest Envelope technology used in the Mesh was originally

designed to support asynchronous social media interactions with full

end-to-end confidentiality. The service hosting a forum or

discussion board need not have access to the content of the messages

to support the complete range of user interactions.

5. Mesh Cryptography

All the cryptographic algorithms used in the Mesh are either

industry standards or present a work factor that is provably

equivalent to an industry standard approach. Since threshold

cryptography is not currently part of the 'canon' from which

designers of cryptographic security protocols work, much of the

cryptography used in the Mesh has been designed for the Mesh.

Despite this fact, it is properly regarded as part of the Internet

platform on which the Mesh is built rather than a part of the Mesh

itself.

Existing Internet security protocols are based on approaches

developed in the 1990s when performance tradeoffs were a prime

consideration in the design of cryptographic protocols. Security was

focused on the transport layer as it provided the best security

possible given the available resources.

With rare exceptions, most computing devices manufactured in the

past ten years offer either considerably more computing power than

was typical of 1990s era Internet connected machines or considerably

less. The Mesh architecture is designed to provide security

infrastructure both classes of machine but with the important

constraint that the less capable 'constrained' devices are

considered to be 'network capable' rather than 'Internet capable'

and that the majority of Mesh related processing will be offloaded

to another device.

For example, Alice uses her Desktop and Laptop to exchange end-to-

end secure Mesh Messages and documents but her Internet-of-Things

food blender and light bulb are limited in the range of functions

they support and the telemetry information they provide. The IoT

devices connect to a Mesh Hub which acts as an always-on point of

presence for the device state and allows complex cryptographic

operations to be offloaded if necessary.

¶

¶

¶

¶

¶

¶

Industry Standard Algorithms

Strongest Work Factor

Key Hygiene

Bound Device Keys

No Optional Extras

P

t

e d

e e

es

t H

i

a b

l

s

s s

p o

l

e

s se M

B

h

e

e o

s g

L

r

e

p

Bu

d

n r

rv

D sk

i

a

e

c

M g a

o e

v

b

r

p

M S

u

Figure 2

5.1. Best Practice by Default

Except where support for external applications demand otherwise, the

Mesh requires that the following 'best practices' be followed:

All cryptographic protocols make use

of the most recently adopted industry standard algorithms.

Only the strongest modes of each cipher

algorithm are used. All symmetric encryption is performed with

256-bit session keys and all digest algorithms are used in 512-

bit output length mode.

Separate public key pairs are used for all

cryptographic functions: Encryption, Signature and

Authentication. This enables separate control regimes for the

separate functions and partitioning of cryptographic functions

within the application itself.

Each device has a separate set of Encryption,

Signature and Authentication key pairs. These MAY be bound to the

device to which they are assigned using hardware or other

techniques to prevent or discourage export.

Traditional approaches to security have treated

many functions as being 'advanced' and thus suited for use by

only the most sophisticated users. The Mesh rejects this approach

noting that all users operate in precisely the same environment

facing precisely the same threats.

¶

¶

¶

¶

¶

¶

5.2. Multi-Level Security

All Mesh protocol transactions are protected at the Transport,

Message and Data level. This provides security in depth that cannot

be achieved by applying security at the separate levels

independently. Data level encryption provides end-to-end

confidentiality and non-repudiation, Message level authentication

provides the basis for access control and Transport level encryption

provides a degree of protection against traffic analysis.

5.3. Threshold Decryption

Traditional public key encryption algorithms have two keys, one for

encryption and another for decryption. The Mesh makes use of

threshold cryptography techniques to allow the decryption key to be

split into two or more parts.

For example, if we have a private key z, we can use this to perform

a key agreement with a public key S to obtain the key agreement

value A. But if z = (x+y) mod g (where g is the order of the group).

we can obtain the exact same result by applying the private keys x

and y to S separately and combining the results:

S a
x

e ir
=

C u
.

v
s i
() y

l

(s

S

v

y
S

h
s

u

e

.a t x S
.

h)
e

d

=

i
ex

s

. .
S

S
g (r

e

c
)

l e y

S

a

e

c l c
.

D

y+

C lat
S

c
z x

+ y

e
a

a i

z

mo

Figure 3

The approach to threshold decryption used in the Mesh was originally

inspired by the work of Matt Blaze et. al. on proxy re-encryption.

But the approach used may also be considered a form of Torben

Pedersen's Distributed Key generation which is in turn one form of

threshold cryptography.

This technique is used in the Mesh to allow use of decryption key

held by a user to be controlled by a cloud service without giving

the cloud service the ability to decrypt by itself.

These techniques are described in detail in [draft-hallambaker-

threshold].

¶

¶

¶

¶

¶

¶

5.4. Threshold Key Generation

The mathematics that support threshold decryption are also the basis

for the multi-party key generation mechanism that is applied at

multiple levels in the Mesh. The basis for the multi-party key

generation used in the Mesh is that for any Diffie-Hellman type

cryptographic scheme, given two keypairs { x, X }, { y, Y }, we

calculate the public key corresponding to the private key x + y

using just the public key values X and Y.

P

X

.

x

x

y

u et K c

=

(

r a

X

b

=

)+

yv

P

P l i

y .

+

K

P

+Y

y

P

x

y +

P

=

=
.

e

y

x

i

y

x .

Y

. P

e

Figure 4

Threshold key generation ensures that keys used to bind devices to a

personal Mesh or within a Mesh account are 'safe' if any of the

contributions to the generation process are safe.

These techniques are also described in detail in [draft-hallambaker-

threshold].

5.5. Threshold Signature

The techniques that support threshold decryption and key generation

are also applicable to signature albeit with some very important

constraints. Incorrect implementation of the techniques used to

create ECDSA signatures can result in disclosure of the private key.

It is therefore essential that a threshold signature algorithm is

rigorously reviewed.

This technique is used in the mesh to partition the use of

administration keys so that the consequences of losing an

administrative device can be mitigated.

These techniques are described in detail in [draft-hallambaker-

threshold-sigs].

¶

¶

¶

¶

¶

¶

5.6. Data At Rest Encryption

The Data At Rest Encryption (DARE) format is used for all

confidentiality and integrity enhancements. The DARE format is based

on the JOSE Signature and Encryption formats and the use of an

extended version of the JSON encoding allowing direct encoding of

binary objects.

5.6.1. DARE Envelope

The DARE Envelope format offers similar capabilities to existing

formats such as OpenPGP and CMS without the need for onerous

encoding schemes. DARE Assertions are presented as DARE Envelopes.

A feature of the DARE Envelope format not supported in existing

schemes is the ability to encrypt and authenticate sets of data

attributes separately from the payload. This allows features such as

the ability to encrypt a subject line or content type for a message

separately from the payload.

5.6.2. Dare Container

A DARE Container is an append-only sequence of DARE Envelopes. A key

feature of the DARE Container format is that entries MAY be

encrypted and/or authenticated incrementally. Individual entries MAY

be extracted from a DARE Container to create a stand-alone DARE

Envelope.

Containers may be authenticated by means of a Merkle tree of digest

values on the individual frames. This allows similar demonstrations

of integrity to those afforded by Blockchain to be provided but with

much greater efficiency.

Unlike traditional encryption formats which require a new public key

exchange for each encrypted payload, the DARE Container format

allows multiple entries to be encrypted under a single key exchange

operation. This is particularly useful in applications such as

encrypting server transaction logs. The server need only perform a

single key exchange operation each time it starts to establish a new

shared secret for that session. The shared secret is then used to

create fresh symmetric keying material for each entry in the log

using a unique nonce per entry.

¶

¶

¶

¶

¶

¶

Catalogs

Spools

Archives

e

n

e (

a

m
K

=

F

=

y

K

r

K

1

N

e

0

y

m

e

5

A

N

e

n

e

A

n

0

e

,

K 0

r

(

o

K

K

r

m

(

e

2

N

,

n

F
r

3

F

o

K

: K

)

D

4

D

,

)

e K

e

e
n

a

0
0

0

A

5
o

0

m

n

m
D

r
e

r

3

c 2

c

n

n

y

y

a

F

n

(

K

:

e

3

4
,

D

: n

r KA

c

F

K

K D A

6

)

2

e
m

F

5

:

A

n

:

3
A

F

e

K
n

)

=

e

e

K

K

a

m
N

D

t
)

y

)

n

o

e

n

a

F (

t
n A

r

e

e

y

e

m

:

A

g

F

n

e K

=

e:

g

A

ce

1

K

N ,

n

1

n

F

K

c

N K

n F

=

o

K

4

F a

y

c

y

0

,

e

:

=

a

o 3 3

e

K

m

F
e

n

(

r

Figure 5

Integrity is provided by a Merkle tree calculated over the sequence

of log entries. The tree apex is signed at regular intervals to

provide non-repudiation.

Three types of DARE Containers are used in the mesh

A DARE Container whose entries track the status of a set

of related objects which may be added, updated, or deleted.

A DARE Container whose entries track the status of a series

of Mesh Messages.

A DARE Container used to provide a file archive with

optional confidentiality and/or integrity enhancements.

5.7. Uniform Data Fingerprints.

The Uniform Data Fingerprint (UDF) format provides a compact means

of presenting cryptographic nonces, keys and digest values using

Base32 encoding that resists semantic substitution attacks. UDF

provides a convenient format for data entry. Since the encoding used

is case-insensitive, UDFs may if necessary be read out over a voice

link without excessive inconvenience.

The following are examples of UDF values:

¶

¶

¶

¶

¶

¶

¶

NAB6-GXIR-GXA5-AQJO-4CNH-LWOL-EOVQ

7UHC-4YPF-LDY4-2F65-7DYN-UUPC-ZY

SAQF-HCGQ-JTQ5-5YGF-PT4S-QPXL-KOPE-U

MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4

KCM5-7VB6-IJXJ-WKHX-NZQF-OKGZ-EWVN

AABD-4PN3-QGA2-IJU5-RP7H-Z5AV-I3GK

UDF content digests are used to support a direct trust model similar

to that of OpenPGP. Every Mesh Profile is authenticated by the UDF

fingerprint of its signature key. Mesh Friendly Names and UDF

Fingerprints thus serve analogous functions to DNS names and IP

Addresses. Like DNS names, Friendly Names provide the basis for

application-layer interactions while the UDF Fingerprints are used

as to provide the foundation for security.

5.7.1. Friendly Names

Internet addressing schemes are designed to provide a globally

unique (or at minimum unambiguous) name for a host, service or

account. In the early days of the Internet, this resulted in

addresses such as 10.2.3.4 and alice@example.com which from a

usability point of view might be considered serviceable if not

ideal. Today the Internet is a global infrastructure servicing

billions of users and tens of billions of devices and accounts are

more likely to be alice.lastname.1934@example.com than something

memorable.

Friendly names provide a user or community specific means of

identifying resources that may take advantage of geographic location

or other cues to resolve possible ambiguity. If Alice says to her

voice activated device "close the garage door" it is implicit that

it is her garage door that she wishes to close. And should Alice be

fortunate enough to own two houses with a garage, it is implicit

that it is the garage door of the house she is presently using that

she wishes to close.

The Mesh Device Catalog provides a directory mapping friendly names

to devices that is available to all Alice's connected devices so

that she may give and instruction to any of her devices using the

same friendly name and expect consistent results.

5.7.2. Encrypted Authenticated Resource Locators

Various schemes have been used to employ QR Codes as a means of

device and/or user authentication. In many of these schemes a QR

code contains a challenge nonce that is used to authenticate the

connection request.

¶

¶

¶

¶

¶

¶

The Mesh supports a QR code connection mode employing the Encrypted

Authenticated Resource Locator (EARL) format. An EARL is an

identifier which allows an encrypted data object to be retrieved and

decrypted. In this case, the encrypted data object contains the

information needed to complete the interaction.

An EARL contains the domain name of the service providing the

resolution service and an encryption master key:

mcu://alice@example.com/ADJ5-4NLV-O7YC-SKR6-EI

The EARL may be expressed as a QR code:

¶

¶

¶

¶

Figure 6

An EARL is resolved by presenting the content digest fingerprint of

the encryption key to a Web service hosted at the specified domain.

alice@example.com

alice@mm--uuuu-uuuu-uuuu.example.com

alice@example.com.mm--uuuu-uuuu-uuuu

The service returns a DARE Envelope whose payload is encrypted and

authenticated under the specified master key. Since the content is

stored on the service under the fingerprint of the key and not the

key itself, the service cannot decrypt the plaintext. Only a party

that has access to the encryption key in the QR code can decrypt the

message.

5.7.3. Secure Internet Names

Secure Internet Names bind an Internet address such as a URL or an

email address to a Security Policy by means of a UDF content digest

of a document describing the security policy. This binding enables a

SIN-aware Internet client to ensure that the security policy is

applied when connecting to the address. For example, ensuring that

an email sent to an address must be end-to-end encrypted under a

particular public key or that access to a Web Service requires a

particular set of security enhancements.

Alice's regular email address (not a SIN).

A strong email address for

Alice that can be used by a regular email client.

A strong email address for

Alice that can only used by an email client that can process

SINs.

Using an email address that has the Security Policy element as a

prefix allows a DNS wildcard element to be defined that allows the

address to be used with any email client. Presenting the Security

Policy element as a suffix means it can only be resolved by a SIN-

aware client.

5.8. Personal Key Escrow

One of the core objectives of the Mesh is to make data level

encryption ubiquitous. While data level encryption provides robust

protection of data confidentiality, loss of the ability to decrypt

means data loss.

For many Internet users, data availability is a considerably greater

concern than confidentiality. Ten years later, there is no way to

replace pictures of the children at five years old. Recognizing the

need to guarantee data recovery, the Mesh provides a robust personal

key escrow and recovery mechanism. Lawful access is not supported as

a requirement.

Besides supporting key recovery in the case of loss, the Mesh

protocols potentially support key recovery in the case of the key

holder's death. The chief difficulty faced in implementing such a

¶

¶

¶

¶

¶

¶

¶

¶

scheme being developing an acceptable user interface which allows

the user to specify which of their data should survive them and

which should not. As the apothegm goes: Mallet wants his

beneficiaries to know where he buried Aunt Agatha's jewels but not

where he buried Aunt Agatha.

The Mesh supports use of Shamir/Lagrange secret sharing and recovery

to split a secret key into a set of shares, a predetermined number

of which may be used to recover the original secret. For convenience

secret shares are represented using UDF allowing presentation in

Base32 (i.e. text format) for easy transcription or QR code

presentation if preferred.

To facilitate escrow and recovery, all the public key pairs and key

shares associated with a Mesh profile are generated from a seed

value using a deterministic algorithm. Thus, escrow of the seed

value is sufficient to permit recovery of the private key data.

For example, Alice escrows her Mesh Profile creating three recovery

shares, two of which are required to recover the master secret:

e
d

(

r 1

h 2

n

a
S

S

r
e e

a

h e

k

a

S h
f

B n

t
e

S

)d

c

r

r

S
f i)(

()

e

e

r

f

3

e O c

a

ie

a
e

S

F

Figure 7

To recover the master secret, Alice presents the necessary number of

key shares. These are used to recover the master secret which is

used to generate the decryption key:

¶

¶

¶

¶

¶

Assertions

Profile

Connection

Activation

a
g

)

r

a
f

e

v y

(

c
e

a

e

e

F e

a ng
e

S
d

e e

e
d

e 1
i f

S

c

(

)
L

t

O S

3

a
o

n

h

r

e r

S
i

r

r
R

e

S
c

r

f

h

Figure 8

A user may choose to store their encrypted recovery record

themselves or make use of the EARL mechanism to store the

information at one or more cloud services using the fingerprint of

the master secret as the locator.

6. Mesh Architecture

The Mesh infrastructure is supported by a compact set of structures

and protocols. These are discussed in detail in the Schema Reference

[draft-hallambaker-mesh-schema] and Protocol Reference [draft-

hallambaker-mesh-protocol] documents.

The JSON object model and JSON or JSON-B serialization [draft-

hallambaker-jsonbcd] are used for all Mesh data structures. These

include:

A DARE envelope containing a signed data object.

Assertions include Profiles and Connections.

A self-signed assertion describing a Mesh principal.

Principals include Accounts, Devices and Services.

Every profile specifies a profile signature key under which it is

signed. The UDF fingerprint of the profile signature key is used

as a unique identifier for the profile. Thus, all attributes

declared in the profile such as authentication keys and

encryption keys are bound to the unique identifier for the

profile.

An assertion signed by one principal delegating rights

to another. Connection assertions are used to bind devices to

accounts and hosts to a service.

A DARE envelope encrypted under the encryption key of a

principal that grant rights or capabilities to that principal.

¶

¶

¶

¶

¶

¶

¶

Message

Entry

Profile Signature Key

This is typically but not always achieved through use of

threshold key techniques.

A DARE envelope signed by the sender that is encrypted

under the encryption key of the intended recipient(s) whose

content is a Mesh messaging object.

An object stored in a catalog that carries an identifier that

is unique for that catalog.

6.1. Actors

Three Mesh actors are defined: Accounts, Devices and Services. Each

of these is described by a specific type of profile.

6.1.1. Account

Two types of Mesh account are currently specified: personal accounts

and group accounts. For concise exposition, this document is limited

to the description of personal accounts. Group accounts are

specified in the Schema Reference [draft-hallambaker-mesh-schema].

A Mesh account is an abstraction which may be loosely regarded as

the thing to which a collection of devices (in the case of a user

account) or a collection of members (in the case of a group account)

belong.

Each personal account profile specifies:

Used to authenticate the profile. Updates to

the profile require use of the Profile Signature Key. The Profile

¶

¶

¶

¶

¶

¶

¶

Uniform Data Fingerprint

Account Name

Administration Keys

Signature Key

Encryption Key

Authentication Key

Profile Signature Key

Uniform Data Fingerprint

Signature Key

Signature Key cannot be changed but a profile may be replaced by

a new profile.

The UDF fingerprint of the Profile

Signature Key. This is used as a unique identifier for the

account.

The account name through which the profile is

serviced.

UDF fingerprint of keys that are authorized to

sign device connection assertions and update the Device Catalog.

Public parameters of the account signature key. This

is the key that counterparties will use to verify messages sent

by the account holder.

Public parameters of the account encryption key.

This is the key that counterparties will use to encrypt messages

sent to the account holder.

Public parameters of the account authentication

key. This is the key that counterparties will use to establish

authenticated exchanges with the account holder.

The public keys for encryption, authentication and signature

specified in the account profile are the only keys that will (in

normal circumstances) be visible to other Mesh accounts.

6.1.2. Device

A Mesh Device is any device that is connected to a Mesh Account

through a Device profile. A given physical device may have multiple

device profiles associated with it but for the purposes of the Mesh,

these are considered to be separate devices. A given device profile

may be connected to more than one account

The device profile specifies:

Used to authenticate the profile. Updates to

the profile require use of the Profile Signature Key. The Profile

Signature Key cannot be changed but a profile may be replaced by

a new profile.

The UDF fingerprint of the Profile

Signature Key. This is used as a unique identifier for the

device.

Public parameters of the device signature key share.

This key share is used as a contribution to the signature key the

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Encryption Key

Authentication Key

Description

device will use in the context of the account and to authenticate

device connection requests.

Public parameters of the account encryption key

share. This key share is used as a contribution to the encryption

key the device will use in the context of the account and to

decrypt activation records sent in response to device connection

requests.

Public parameters of the account authentication

key share. This key share is used as a contribution to the

authentication key the device will use in the context of the

account.

Optional information describing the device provided by

the manufacturer. E.g. model, serial number, date of manufacture

etc.

A Mesh Device is connected to an account through the creation of an

activation record and a connection record.

The activation record contains key shares that are overlaid on the

corresponding shares specified in the device profile to create the

set of encryption, authentication and signature keys the device will

use in the context of the account. Since the private keys

corresponding to the device profile keys are only used to enable the

connection of the device to an account, these keys are only trusted

to a minimal degree.

¶

¶

¶

¶

¶

¶

r

e

t

t

a

B

n

i t i

e

c

c
t o

n

c

D

t

v

e

S u

he

o

r

u i

g

O y

o

i e

D
c

n t

c

o

h t

E i r

i

v

r l

n

a

e

y

n

e

t

e
t

u t u

ayl

c v

a
o

v
n

t

E

a
t

l ed

c

s
e

O

p

i
n

r

t a i

n

v

u

s

i
n

a

en

a

i

i

e
a e

c

O r

A t

i

t

c

r a

P

io

D
g

B
i

f

a e

r

e

r

n

n

y

e
n

n E

h

v
y

r

e

v
t

v
A A

i

p

S

a

A

a

D

n

l
c

e

y n p

ca

e
S

i

e

g

u

o

t

B

e

i

e

t

c

s

i

t

v
i

o

i

A

Figure 9

In the ideal case, the device profile keys are fixed to the device

such that they may be used to perform private key operations without

the ability to extract the private key data from the device. Since

the device profile is only trusted for the limited purpose of

connecting the device to an account, the device profile may be

created during manufacture without undue concern for either

disclosure of the private key on the part of the account holder or a

reputation attack alleging disclosure of the private key on the part

of the manufacturer.

The device connection record is functionally a certificate that the

device may use to interact with the Mesh Service or to other devices

connected to the same account. Note however that use of threshold

cryptography means that Mesh devices would not normally present

their device connection record to any other party since all

communication with external parties takes place through the keys

published in the account profile.

¶

¶

Profile Signature Key

Uniform Data Fingerprint

Signature Key

Encryption Key

Authentication Key

Catalog

Spool

6.1.3. Service

A Mesh Service is an abstract network service that is provided by

one or more hosts. The properties of the service are described by

the service profile.

The service profile specifies:

Used to authenticate the profile. Updates to

the profile require use of the Profile Signature Key. The Profile

Signature Key cannot be changed but a profile may be replaced by

a new profile.

The UDF fingerprint of the Profile

Signature Key. This is used as a unique identifier for the

device.

Public parameters of the service signature key. This

is the key that counterparties will use to verify messages sent

by the service.

Public parameters of the service encryption key.

This is the key that counterparties will use to encrypt messages

sent to the service.

Public parameters of the account authentication

key. This is the key that counterparties will use to establish

authenticated exchanges with the service.

Hosts are Mesh Devices that have been granted a Host Activation and

Host Connection by a service administrator. These are used in the

same fashion as the device activation and connection records.

6.2. Stores

Mesh Stores are append-only sequences that are used to represent

collections of objects, messages and data. All Mesh stores are

implemented as DARE Sequences authenticated by means of a Merkle

tree. The payload of each envelope in the sequence is usually

encrypted.

Three types of Mesh store are currently defined:

A set of Mesh objects, each of which has an identifier that

is unique in the scope of the catalog. Objects may be added,

updated, and deleted.

A sequence of Mesh Messages.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Device

Contact

Bookmark

Credential

Calendar

Network

Application

All the state represented within a Mesh account is contained in Mesh

stores bound to the account. Thus, to synchronize a device to the

state of the account, it is sufficient to synchronize the collection

of stores the device is permitted to read. Since every store is an

append-only sequence, it is sufficient for the Mesh service to

return the envelopes added to each of the stores since the device

was last synchronized.

Rapid synchronization of catalogs and spools is ensured by limiting

the size of entries to each. Implementations may further improve

performance by redacting stores to remove obsolete entries that have

been updated or deleted. Alternatively, a device may maintain a

complete record of the state of the store to allow erroneous changes

to the store to be unwound.

6.2.1. Catalogs

Mesh Catalogs track a collection of entries. Every Mesh account

contains a Threshold Catalog that is used by Mesh services as the

source of access control policy. The Threshold Catalog is unique in

that it is the only catalog whose contents can be read by the Mesh

Service. Every other Mesh Catalog connected to a Mesh account is

end-to-end encrypted so that it can only be read by devices

connected to the account.

The Mesh specifies various catalogs that are used to track

information relevant to a Mesh Account:

The devices connected to the corresponding Mesh profile.

Logical and physical contact information for people and

organizations.

Web bookmarks and citations.

Username and password information for network resources.

Appointments and tasks.

Network access configuration information allowing access to

wireless networks and VPNs.

Configuration information for applications including

mail (SMTP, IMAP, OpenPGP, S/MIME, etc) and SSH.

Each catalog connected to an account has a unique identifier of the

form mmm_<<name>. Applications may specify additional catalogs

without risk of collision with future Mesh catalogs by using an

appropriate IANA assigned protocol label.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inbound

Outbound

Local

Service Description

Account Management

Device Connection

Synchronization

Messaging

Publication

Cryptographic

6.2.2. Spools

Spools are used to track inbound and outbound messages. Three spools

are currently defined:

Messages that have been received by the service and

accepted for delivery to the account.

Messages that have been sent from the account through the

service.

A spool used to exchange messages with devices connecting to

the device.

6.3. Mesh Service Protocol

Mesh services communicate with Mesh devices and other Mesh Services

through the Mesh Service Protocol. Despite the wide range of Mesh

functionality, the Mesh protocol is remarkably compact. The bulk of

the semantics associated with the Mesh are expressed in the schemas

describing Mesh Messages and Catalogs. The objective of reducing the

degree of trust in the Mesh service to the absolute minimum by

necessity requires that the Mesh Service be extremely simple.

Mesh Service Protocol transactions are divided into the following

groups:

The Hello transaction returns a description of

the service including information used to authenticate future

interactions with the service.

The Create and Delete transactions are used to

bind an account to a service.

The Connect and Complete transactions are used to

connect devices to an account

The Status, Download and Transact transactions are

used to update stores connected to an account.

The Post transaction is used by one Mesh Service to

transfer a message from one of its users to a different Mesh

Service serving one of the recipients.

The Publish, Claim and PollClaim transactions are used

to publish and retrieve data objects through an account.

The Operate transaction requests that the service

performs a cryptographic operation on behalf of the account. This

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Transport Layer

Application Layer

Data Layer

Inbound Message Filtering

is used to provide execution of threshold operations on behalf of

the account holder for both internal and external users.

Future versions of the Mesh Service Protocol may support additional

transactions to support features such as providing DNS resolution.

6.3.1. Protocol Interactions

Every Mesh Service Protocol transaction consists of a single request

from a Mesh client followed by a single response. Requests and

responses are authenticated and encrypted under a key established

between the client and the service. This application layer

enhancement is in addition to any transport layer enhancement that

may be employed (e.g. TLS).

Mesh Service Protocol messages may be exchanged through any binding

advertised by the service by means of the Hello transaction.

Currently only one binding is defined, mapping Mesh requests and

responses to the content data of HTTP POST requests and responses

layers over a TLS transport.

While the use of up to three layers of encryption may be regarded as

excessive, each layer provides separate protections:

Provides confidentiality for metadata and limited

traffic analysis protections.

Encryption and authentication of requests and

responses using keys bound to the specific device and service

performing the interaction provides the basis for access control.

Encryption of stored data (catalog data, device

activations, etc.) provides end to end security between the

devices connected to the account.

6.4. The Threshold Catalog

The Threshold Catalog of a Mesh account provides the basis through

which the service implements the access control policy specified by

the account.

Each entry in the catalog specifies an operation that the service

will perform when it receives a request that is authenticated and

authorized by the access control policy specified in the entry.

Operations include:

Messages received by the service that

match the specified criteria will be appended to the inbound

message spool.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Threshold Key Generation

Key Agreement

Signature

Performs a threshold key splitting

operation of a private key held by the service and encrypts one

part under a key known only to the service and encrypts the other

under a public key specified by the party making the request.

Performs a key agreement operation on a private key

held by the service. This may be used as a component in a

threshold key agreement scheme.

Performs a signature operation on a private key held by

the service. This may be used as a component in a threshold

signature scheme.

These operations provide the vocabulary from which a Threshold Key

Infrastructure is built. Keys that are bound to a service using

threshold techniques can only be applied with the co-operation of

that service.

6.5. Mesh Messaging Protocol

Mesh devices connected to an account interact with the Mesh Service

through the Mesh Service protocol. Mesh devices interact with other

Mesh devices through the Mesh Messaging Protocols, each of which

provides a distinct application functionality:

Connection Protocol

Confirmation Protocol

Contact Exchange Protocol

Each of these protocols is described in depth in the Mesh Protocol

Reference [draft-hallambaker-mesh-protocol].

Mesh Messages provide a means of communication between Mesh Service

Accounts with capabilities that are not possible or poorly supported

in traditional SMTP mail messaging:

End-to-end confidentiality and authentication by default.

Abuse mitigation by applying access control to every inbound and

outbound message.

End-to-end secure group messaging.

Transfer of exceptionally large data sets (Terabytes).

Note that although Mesh Messaging is designed to facilitate the

transfer of very large data sets, the size of Mesh Messages

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

* ¶

*

¶

* ¶

* ¶

themselves is severely restricted. The current default maximum size

being 64 KB. This approach allows Mesh

In addition, the platform anticipates but does not currently support

additional cryptographic security capabilities:

Traffic analysis resistance using mix networks (Chaum).

Simultaneous contract binding using fair contract signing

(Micali).

While these capabilities might in time cause Mesh Messaging to

replace SMTP, this is not a near term goal. The short-term goal of

Mesh Messaging is to support the Contact Exchange and Confirmation

applications.

Two important classes of application that are not currently

supported directly are payments and presence. While prototypes of

these applications have been considered, it is not clear if these

are best implemented as special cases of the Confirmation and

Contact Exchange applications or as separate applications in their

own right.

Messages exchanged between Mesh Users MUST be mediated by a Mesh

Service for both sending and receipt. This 'four corner' pattern

permits ingress and egress controls to be enforced on the messages

and that every message is properly recorded in the appropriate

spools.

b s
P S

i o

e B

b

o '
M P
l c
S M

l ce

A '

A B

i s

Figure 10

For example, to send a message to Alice, Bob posts it to one of the

Mesh Services connected to the Mesh Account from which the message

is to be sent. The Mesh Service checks to see that both the message

and Bob's pattern of behavior comply with their acceptable use

policy and if satisfactory, forwards the message to the receiving

service example.com.

¶

¶

* ¶

*

¶

¶

¶

¶

¶

c

e

i e p l

l e
r

M

y

l p
s e

i

e
g

P

t c

A i
i d

S

s
e

o

o
'

A c MS A p v
sa

Figure 11

The receiving service uses the recipient's contact catalog and other

information to determine if the message should be accepted. If

accepted, the message is added to the recipient's inbound message

spool to be collected by her device(s) when needed.

c e
es a

c

'
c

e
e

t i

P y

s a b

s

i o y

o

e s

l

t

B

o
S

ge
o

e

p d

b
S l c

M s
A

b o

B
P

M

P

B i

g
M

Figure 12

For efficiency and to limit the scope for abuse, all inbound Mesh

Messages are subject to access control and limited in size to 32KB

or less. This limit has proved adequate to support transfer of

complex control messages and short content messages. Transfer of

data objects of arbitrary size may be achieved by sending a control

message containing a URI for the main content which may then be

fetched using a protocol such as HTTP.

This approach makes transfers of exceptionally large data sets (i.e.

multiple Terabytes) practical as the 'push' phase of the protocol is

limited to the transfer of the initial control message. The bulk

transfer is implemented as a 'pull' protocol allowing support for

features such as continuous integrity checking and resumption of an

interrupted transfer.

6.6. Using the Mesh with Applications

The Mesh provides an infrastructure for supporting existing Internet

security applications and a set security features that may be used

to build new ones.

¶

¶

¶

¶

For example, Alice uses the Mesh to provision and maintain the keys

she uses for OpenPGP, S/MIME, SSH and IPSEC. She also uses the

credential catalog for end-to-end secure management of the usernames

and passwords for her Web browsing and other purposes:

t

C e

s

C

a

p

a

A r

D o

s

P n

B

l c

m

o

s

P

a

l

'

e

ho

a rd

e e

a n

i

a

e

r

a

a

a

k

fe

C

t

h

o w

L

C

s l

f

s

o

s t

s

e

i M

L p p

n

t o

o

ce a

o

p

d

P e

l g

o r

n

v

t

o k

s

c

Figure 13

The Mesh design is highly modular allowing components that were

originally designed to support a specific requirement within the

Mesh to be applied generally.

6.6.1. Future Applications

Since a wide range of network applications may be reduced to

synchronization of sets and lists, the basic primitives of Catalogs

and Spools may be applied to achieve end-to-end security in an even

wider variety of applications.

For example, a Spool may be used to maintain a mailing list, track

comments on a Web forum or record annotations on a document.

Encrypting the container entries under a multi-party encryption

group allows such communications to be shared with a group of users

while maintaining full end-to-end security and without requiring

every party writing to the spool to know the public encryption key

of every recipient.

Another interesting possibility is the use of DARE Containers as a

file archive mechanism. A single signature on the final Merkle Tree

digest value would be sufficient to authenticate every file in the

¶

¶

¶

¶

[draft-hallambaker-jsonbcd]

[draft-hallambaker-mesh-cryptography]

[draft-hallambaker-mesh-dare]

[draft-hallambaker-mesh-developer]

[draft-hallambaker-mesh-discovery]

archive. Updates to the archive might be performed using the same

container synchronization primitives provided by a Mesh Service.

This approach could afford a robust, secure, and efficient mechanism

for software distribution and update.

7. Security Considerations

The security considerations for use and implementation of Mesh

services and applications are described in the Mesh Security

Considerations guide [draft-hallambaker-mesh-security].

8. IANA Considerations

This document does not contain actions for IANA

9. Acknowledgements

Comodo Group: Egemen Tas, Melhi Abdulhayo?lu, Rob Stradling, Robin

Alden.

10. Normative References

Hallam-Baker, P., "Binary Encodings for JavaScript Object

Notation: JSON-B, JSON-C, JSON-D", Work in Progress,

Internet-Draft, draft-hallambaker-jsonbcd-18, 23 October

2020, <https://tools.ietf.org/html/draft-hallambaker-

jsonbcd-18>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part VIII:

Cryptographic Algorithms", Work in Progress, Internet-

Draft, draft-hallambaker-mesh-cryptography-06, 27 July

2020, <https://tools.ietf.org/html/draft-hallambaker-

mesh-cryptography-06>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part III : Data

At Rest Encryption (DARE)", Work in Progress, Internet-

Draft, draft-hallambaker-mesh-dare-08, 27 July 2020,

<https://tools.ietf.org/html/draft-hallambaker-mesh-

dare-08>.

Hallam-Baker, P., "Mathematical Mesh: Reference

Implementation", Work in Progress, Internet-Draft, draft-

hallambaker-mesh-developer-10, 27 July 2020, <https://

tools.ietf.org/html/draft-hallambaker-mesh-developer-10>.

"[Reference Not Found!]".

¶

¶

¶

¶

https://tools.ietf.org/html/draft-hallambaker-jsonbcd-18
https://tools.ietf.org/html/draft-hallambaker-jsonbcd-18
https://tools.ietf.org/html/draft-hallambaker-mesh-cryptography-06
https://tools.ietf.org/html/draft-hallambaker-mesh-cryptography-06
https://tools.ietf.org/html/draft-hallambaker-mesh-dare-08
https://tools.ietf.org/html/draft-hallambaker-mesh-dare-08
https://tools.ietf.org/html/draft-hallambaker-mesh-developer-10
https://tools.ietf.org/html/draft-hallambaker-mesh-developer-10

[draft-hallambaker-mesh-platform]

[draft-hallambaker-mesh-protocol]

[draft-hallambaker-mesh-schema]

[draft-hallambaker-mesh-security]

[draft-hallambaker-mesh-udf]

[draft-hallambaker-threshold]

[draft-hallambaker-threshold-sigs]

[draft-hallambaker-web-service-discovery]

Hallam-Baker, P., "Mathematical Mesh: Platform

Configuration", Work in Progress, Internet-Draft, draft-

hallambaker-mesh-platform-06, 27 July 2020, <https://

tools.ietf.org/html/draft-hallambaker-mesh-platform-06>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part V: Protocol

Reference", Work in Progress, Internet-Draft, draft-

hallambaker-mesh-protocol-06, 27 July 2020, <https://

tools.ietf.org/html/draft-hallambaker-mesh-protocol-06>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part IV: Schema

Reference", Work in Progress, Internet-Draft, draft-

hallambaker-mesh-schema-05, 16 January 2020, <https://

tools.ietf.org/html/draft-hallambaker-mesh-schema-05>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part VII:

Security Considerations", Work in Progress, Internet-

Draft, draft-hallambaker-mesh-security-05, 27 July 2020,

<https://tools.ietf.org/html/draft-hallambaker-mesh-

security-05>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part II: Uniform

Data Fingerprint.", Work in Progress, Internet-Draft,

draft-hallambaker-mesh-udf-10, 27 July 2020, <https://

tools.ietf.org/html/draft-hallambaker-mesh-udf-10>.

Hallam-Baker, P., "Threshold Modes in Elliptic Curves",

Work in Progress, Internet-Draft, draft-hallambaker-

threshold-03, 3 September 2020, <https://tools.ietf.org/

html/draft-hallambaker-threshold-03>.

Hallam-Baker, P., "Threshold Signatures in Elliptic

Curves", Work in Progress, Internet-Draft, draft-

hallambaker-threshold-sigs-04, 3 September 2020,

<https://tools.ietf.org/html/draft-hallambaker-threshold-

sigs-04>.

Hallam-Baker, P., "DNS Web Service Discovery", Work in

Progress, Internet-Draft, draft-hallambaker-web-service-

discovery-04, 27 July 2020, <https://tools.ietf.org/html/

draft-hallambaker-web-service-discovery-04>.

https://tools.ietf.org/html/draft-hallambaker-mesh-platform-06
https://tools.ietf.org/html/draft-hallambaker-mesh-platform-06
https://tools.ietf.org/html/draft-hallambaker-mesh-protocol-06
https://tools.ietf.org/html/draft-hallambaker-mesh-protocol-06
https://tools.ietf.org/html/draft-hallambaker-mesh-schema-05
https://tools.ietf.org/html/draft-hallambaker-mesh-schema-05
https://tools.ietf.org/html/draft-hallambaker-mesh-security-05
https://tools.ietf.org/html/draft-hallambaker-mesh-security-05
https://tools.ietf.org/html/draft-hallambaker-mesh-udf-10
https://tools.ietf.org/html/draft-hallambaker-mesh-udf-10
https://tools.ietf.org/html/draft-hallambaker-threshold-03
https://tools.ietf.org/html/draft-hallambaker-threshold-03
https://tools.ietf.org/html/draft-hallambaker-threshold-sigs-04
https://tools.ietf.org/html/draft-hallambaker-threshold-sigs-04
https://tools.ietf.org/html/draft-hallambaker-web-service-discovery-04
https://tools.ietf.org/html/draft-hallambaker-web-service-discovery-04

[RFC2119]

[RFC5246]

[RFC7159]

[RFC7231]

[RFC7515]

[RFC7516]

[draft-hallambaker-mesh-trust]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/rfc/

rfc5246>.

Bray, T., "The JavaScript Object Notation (JSON) Data

Interchange Format", RFC 7159, DOI 10.17487/RFC7159,

March 2014, <https://www.rfc-editor.org/rfc/rfc7159>.

Fielding, R. and J. Reschke, "Hypertext Transfer Protocol

(HTTP/1.1): Semantics and Content", RFC 7231, DOI

10.17487/RFC7231, June 2014, <https://www.rfc-editor.org/

rfc/rfc7231>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/rfc/rfc7515>.

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://

www.rfc-editor.org/rfc/rfc7516>.

11. Informative References

Hallam-Baker, P., "Mathematical Mesh 3.0 Part VI: The

Trust Mesh", Work in Progress, Internet-Draft, draft-

hallambaker-mesh-trust-06, 27 July 2020, <https://

tools.ietf.org/html/draft-hallambaker-mesh-trust-06>.

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc7159
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7516
https://www.rfc-editor.org/rfc/rfc7516
https://tools.ietf.org/html/draft-hallambaker-mesh-trust-06
https://tools.ietf.org/html/draft-hallambaker-mesh-trust-06

	Mathematical Mesh 3.0 Part I: Architecture Guide
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Definitions
	2.1. Related Specifications
	2.2. Defined Terms
	2.3. Requirements Language
	2.4. Implementation Status

	3. Requirements
	3.1. The Device Management Challenge
	3.2. Exchange of trusted credentials.
	3.3. Application configuration management
	3.4. The Mesh as platform
	3.5. Security
	3.6. Enterprise Deployment

	4. User Experience
	4.1. Creating a Mesh Account
	4.1.1. Encrypting and Decrypting files.
	4.1.2. Catalogs

	4.2. Adding devices
	4.2.1. Decrypting files on the new device
	4.2.2. Applications

	4.3. Mesh Messaging
	4.3.1. Contact exchange
	4.3.2. Confirmation service

	4.4. Encryption Groups
	4.5. Escrow and Recovery
	4.6. Future Applications
	4.6.1. Synchronous Messaging
	4.6.2. Social Media

	5. Mesh Cryptography
	5.1. Best Practice by Default
	5.2. Multi-Level Security
	5.3. Threshold Decryption
	5.4. Threshold Key Generation
	5.5. Threshold Signature
	5.6. Data At Rest Encryption
	5.6.1. DARE Envelope
	5.6.2. Dare Container

	5.7. Uniform Data Fingerprints.
	5.7.1. Friendly Names
	5.7.2. Encrypted Authenticated Resource Locators
	5.7.3. Secure Internet Names

	5.8. Personal Key Escrow

	6. Mesh Architecture
	6.1. Actors
	6.1.1. Account
	6.1.2. Device
	6.1.3. Service

	6.2. Stores
	6.2.1. Catalogs
	6.2.2. Spools

	6.3. Mesh Service Protocol
	6.3.1. Protocol Interactions

	6.4. The Threshold Catalog
	6.5. Mesh Messaging Protocol
	6.6. Using the Mesh with Applications
	6.6.1. Future Applications

	7. Security Considerations
	8. IANA Considerations
	9. Acknowledgements
	10. Normative References
	11. Informative References

