
Network Working Group P. Hallam-Baker
Internet-Draft July 4, 2019
Intended status: Informational
Expires: January 5, 2020

Mathematical Mesh 3.0 Part VIII: Cryptographic Algorithms
draft-hallambaker-mesh-cryptography-01

Abstract

 The Mathematical Mesh 'The Mesh' is an infrastructure that
 facilitates the exchange of configuration and credential data between
 multiple user devices and provides end-to-end security. This
 document describes the cryptographic algorithm suites used in the
 Mesh and the implementation of Multi-Party Encryption and Multi-Party
 Key Generation used in the Mesh.

 This document is also available online at
http://mathmesh.com/Documents/draft-hallambaker-mesh-
cryptography.html [1] .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Hallam-Baker Expires January 5, 2020 [Page 1]

http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Mesh Cryptographic Algorithms July 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Definitions . 3
2.1. Requirements Language 3
2.2. Defined Terms . 3
2.3. Related Specifications 4
2.4. Implementation Status 4

3. Recommended and Required Algorithms 4
3.1. Mesh Device . 4
3.2. Constrained Device 5

4. Multi-Party Cryptography 6
4.1. Application to Diffie Hellman (not normative) 6
4.2. Multi-Party Key Generation 6
4.3. Multi-Party Decryption 7

 4.4. Mutually Authenticated Key Exchange. 7
4.5. Implementation . 7
4.5.1. Implementation for Ed25519 and Ed448 8
4.5.2. Implementation for X25519 and X448 8

5. Multi-Party Key Generation 9
5.1. Example: Provisioning the Confirmation Service 10

6. Multi-Party Decryption 10
6.1. Mechanism . 12
6.2. Implementation . 13
6.2.1. Group Creation 14
6.2.2. Provisioning a Member 14
6.2.3. Message Encryption and Decryption 14

6.3. Example: Messaging group 15
7. Mutually Authenticated Key Agreement 17
8. Security Considerations 18
9. IANA Considerations . 18
10. Acknowledgements . 18
11. Examples . 18
11.1. Key Combination . 18
11.1.1. Ed25519 . 18
11.1.2. Ed448 . 18
11.1.3. X25519 . 18
11.1.4. X448 . 19

11.2. Group Encryption . 19
11.2.1. X25519 . 19
11.2.2. X448 . 19

12. References . 19

Hallam-Baker Expires January 5, 2020 [Page 2]

Internet-Draft Mesh Cryptographic Algorithms July 2019

12.1. Normative References 19
12.2. Informative References 20
12.3. URIs . 20

 Author's Address . 21

1. Introduction

 This document describes the cryptographic algorithm suites used in
 the Mesh and the implementation of Multi-Party Encryption and Multi-
 Party Key Generation used in the Mesh.

 To allow use of Mesh capabilities on the least capable computing
 devices currently in use, separate schedules of recommended and
 required algorithms are specified for Standard Devices and
 Constrained Devices.

 The Constrained device class may be considered to include most 8-bit
 CPUs equipped with sufficient memory to support the necessary
 operations. For example an Ardunino Mega 2560 which can perform ECDH
 key agreement and signature operations in times ranging from 3 to 8
 seconds. While such a device is clearly not suited to perform such
 operations routinely, a one-time connection process that takes
 several minutes to complete need not be of major concern.

 The Standard device class may be considered to include the vast
 majority of general purpose and personal computing devices
 manufactured since 2010. Even a Raspberry Pi Zero which currently
 retails at $5 is capable of performing the cryptographic functions
 required to implement the Mesh with negligible impact on the user.

2. Definitions

 This section presents the related specifications and standard, the
 terms that are used as terms of art within the documents and the
 terms used as requirements language.

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] .

2.2. Defined Terms

 The terms of art used in this document are described in the Mesh
 Architecture Guide [draft-hallambaker-mesh-architecture] .

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture

Hallam-Baker Expires January 5, 2020 [Page 3]

Internet-Draft Mesh Cryptographic Algorithms July 2019

2.3. Related Specifications

 The architecture of the Mathematical Mesh is described in the Mesh
 Architecture Guide [draft-hallambaker-mesh-architecture] . The Mesh
 documentation set and related specifications are described in this
 document.

2.4. Implementation Status

 The implementation status of the reference code base is described in
 the companion document [draft-hallambaker-mesh-developer] .

3. Recommended and Required Algorithms

 To allow implementation of Mesh capabilities on the widest possible
 range of devices, separate algorithm requirements and recommendations
 are specified for four classes of device:

 Administration Device A general-purpose computing device that is
 used for Mesh administration functions.

 Mesh Device A general-purpose computing device that is not used for
 Mesh administration functions with sufficient memory and
 processing power to perform public key cryptography operations
 without paying particular attention to the impact on performance.

 Constrained Device An embedded computing device with limited memory
 and computing power that offers sufficient processing capabilities
 to perform occasional public key operations (e.g. during device
 initialization) but is not suited to repeated operations.

 Bridge Device A trusted device that enables Mesh Devices to
 interoperate with Constrained devices.

 Since Administration Devices and Mesh Devices MUST support
 communication with Mesh Devices and Constrained devices, they MUST
 meet all the REQUIRED algorithms for both types of device.

3.1. Mesh Device

 Support for the following algorithms is REQUIRED:

 o SHA-2-512 [SHA-2]

 o HMAC-SHA-2-512 [RFC2104]

 o HMAC-based Extract-and-Expand Key Derivation Function [RFC5869]

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc5869

Hallam-Baker Expires January 5, 2020 [Page 4]

Internet-Draft Mesh Cryptographic Algorithms July 2019

 o AES-CBC-256 Encryption [FIPS197]

 o Advanced Encryption Standard (AES) Key Wrap Algorithm [RFC3394]

 o Montgomery Curve Diffie-Hellman Key Agreement X25519 and X448
 [RFC7748]

 o Edwards-Curve Digital Signature Algorithm Ed25519 and Ed448
 [RFC8032]

 Support for the following algorithms is RECOMMENDED:

 o AES-GCM-256 Encryption [AES-GCM]

 o SHA-3-512 [SHA-3]

 o KMAC SHA-3-512 [SHA-3-Derived]

 While the use of GCM is generally preferred over CBC mode in IETF
 security protocols, this mode is not currently supported by the
 reference implementation platform.

3.2. Constrained Device

 Support for the following algorithms is REQUIRED:

 o SHA-2-512 [SHA-2]

 o HMAC-SHA-2-512 [RFC2104]

 o HMAC-based Extract-and-Expand Key Derivation Function [RFC5869]

 o Poly1035 Authenticated Encryption [RFC8439]

 o ChaCha20 Encryption [RFC8439]

 o Advanced Encryption Standard (AES) Key Wrap Algorithm [RFC3394]

 o Edwards-Curve Digital Signature Algorithm Ed25519 [RFC8032]

 o Edwards-Curve Diffie-Hellman Key Agreement Ed25519 [RFC8032]

 Use of the Edwards Curves for Signature and Key Agreement allows both
 functions to be supported by a single library with no reduction in
 security.

https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8439
https://datatracker.ietf.org/doc/html/rfc8439
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032

Hallam-Baker Expires January 5, 2020 [Page 5]

Internet-Draft Mesh Cryptographic Algorithms July 2019

4. Multi-Party Cryptography

 The multi-party key generation and multi-party decryption mechanisms
 used in the Mesh protocols are made possible by the fact that Diffie
 Hellman key agreement and elliptic curve variants thereof support
 properties we call the Key Combination Law and the Result Combination
 Law.

 Let {X, x}, {Y, y}, {E, e} be {public, private} key pairs.

 The Key Combination law states that we can define an operator ? such
 that there is a keypair {Z, z} such that:

 Z = X ? Y and z = (x + y) mod o (where o is the order of the group)

 The Result Combination Law states that we can define an operator ?
 such that:

 (x ? E) ? (y ? E) = (z ? E) = (e ? Z).

4.1. Application to Diffie Hellman (not normative)

 For the Diffie Hellman system in a modular field p, o = p-1 and a ? b
 = a ? b = a.b mod p.

 Proof:

 By definition, X = e^x mod p, Y = e^y mod p, and Z = e^z mod p.

 Therefore,

 Z = e^z mod p = e^x+y mod p = (e^xe^y) mod p = e^x mod p.e^y mod p =
 X.Y

 A similar proof may be constructed for the operator ?.

4.2. Multi-Party Key Generation

 The Key Combination Law provides the basis for the Key Co-Generation
 technique used to ensure that the cryptographic keys used in devices
 connected to a Mesh profile are sufficiently random and have not been
 compromised by malware or other 'backdoor' compromise to the machine
 during or after manufacture.

 For the Diffie Hellman system, the Key Combination law provides all
 the mechanism needed to implement a Key Co-Generation mechanism. If
 the Device key is {X, x}, the administration device can generate a
 Co-Generation Key Pair {Y, y} and generate a Device Connection

Hallam-Baker Expires January 5, 2020 [Page 6]

Internet-Draft Mesh Cryptographic Algorithms July 2019

 Assertion for the final public key E calculated from knowledge of X
 and Y alone. Passing the value y to the device (using a secure
 channel) allows it to calculate the corresponding private key e
 required to make use of the Device Connection Assertion.

 This approach ensures that a party with knowledge of either x or y
 but not both obtains no knowledge of e.

 Section REF _Ref5309729 \w \h 5 describes the implementation of these
 schemes in the Mesh

4.3. Multi-Party Decryption

 The Key Combination Law and Result Combination Law provide the basis
 for the Multi-Party Decryption technique used to support Mesh
 Encryption Groups.

 Section REF _Ref5309538 \w \h 6 describes the application of this
 technique in the Mesh

4.4. Mutually Authenticated Key Exchange.

 The Result Combination Law is used to provide a Key Exchange
 mechanism that provides mutual authentication of the parties while
 preserving forward secrecy.

4.5. Implementation

 For elliptic curve cryptosystems, the operators ? and ? are point
 addition.

 Implementing a robust Key Co-Generation for the Elliptic Curve
 Cryptography schemes described in [RFC7748] and [RFC8032] requires
 some additional considerations to be addressed.

 o The secret scalar used in the EdDSA algorithm is calculated from
 the private key using a digest function. It is therefore
 necessary to specify the Key Co-Generation mechanism by reference
 to operations on the secret scalar values rather than operations
 on the private keys.

 o The Montgomery Ladder traditionally used to perform X25519 and
 X448 point multiplication does not require implementation of a
 function to add two arbitrary points. While the steps required to
 create such a function are fully constrained by the specification,
 the means of satisfying the constraints is not.

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc8032

Hallam-Baker Expires January 5, 2020 [Page 7]

Internet-Draft Mesh Cryptographic Algorithms July 2019

4.5.1. Implementation for Ed25519 and Ed448

 The data structures used to implement co-generation of public keys
 are defined in the main Mesh Reference Guide. This document
 describes only the additional implementation details.

 Note that the 'private key' described in [RFC8032] is in fact a seed
 used to generate a 'secret scalar' value that is the value that has
 the function of being the private key in the ECDH algorithm.

 To provision a new public key to a device, the provisioning device:

 1. Obtains the device profile of the device(s) to be provisioned to
 determine the type of key to perform co-generation for. Let the
 device {public, private} key be {D, d}.

 2. Generates a private key m with the specified number of bytes (32
 or 57].

 3. Calculates the corresponding public key M.

 4. Calculates the Application public key A = D+M where + is point
 addition.

 5. Constructs the application device entry containing the private
 key value m and encrypts under the device encryption key d.

 On receipt, the device may at its option use its knowledge of the
 secret scalar corresponding to d and m to calculate the application
 secret scalar a or alternatively maintain the two secrets separately
 and make use of the result combination law to perform private key
 operations.

4.5.2. Implementation for X25519 and X448

 While the point addition function can be defined for any elliptic
 curve system, it is not necessary to implement point addition to
 support ECDH key agreement.

 In particular, point multiplication using the Montgomery ladder
 technique over Montgomery curves only operate on the x co-ordinate
 and only require point doubling operations.

 For expediency, the current implementation of the Mesh reference code
 uses the Edwards curves for both signature and encryption pending
 announcement of platform support for both algorithms.

https://datatracker.ietf.org/doc/html/rfc8032

Hallam-Baker Expires January 5, 2020 [Page 8]

Internet-Draft Mesh Cryptographic Algorithms July 2019

5. Multi-Party Key Generation

 Multi-Party Key Generation is a capability that is used in the Mesh
 to enable provisioning of application specific private key pairs to
 connected devices without revealing any information concerning the
 application private key of the device.

 For example, Alice provisions the confirmation service to her watch.
 The provisioning device could generate a signature key for the device
 and encrypt it under the encryption key of the device. But this
 means that we cannot attribute signatures to the watch with absolute
 certainty as the provisioning device has had knowledge of the watch
 signature key. Nor do we wish to use the device signature key for
 the confirmation

 service.

 Multi-Party Key Generation allows an administration device to
 provision a connected device with an application specific private key
 that is specific to that application and no other such that the
 application can determine the public key of the device but has no
 knowledge of the private key.

 Provisioning an application private key to a device requires the
 administration device to:

 o Generate a new application public key for the device.

 o Construct and publish whatever application specific credentials
 the device requires to use the application.

 o Providing the information required to make use of the private key
 to the device.

 Note that while the administration device needs to know the device
 application public key, it does not require knowledge of the device
 application private key.

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

cryptography.html [2].]]

 Two party key pair generation.

http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html

Hallam-Baker Expires January 5, 2020 [Page 9]

Internet-Draft Mesh Cryptographic Algorithms July 2019

5.1. Example: Provisioning the Confirmation Service

 For example, Alice provisions the confirmation service to her watch.
 The device profile of the watch specifies an Ed25519 signature key.
 Note that for production use, Ed448 is almost certainly prefered but
 Ed25519 has the advantage of more compact presentation.

 TBS:

 The provisioning device could generate a signature key for the device
 and encrypt it under the encryption key of the device. But this
 means that we cannot attribute signatures to the watch with absolute
 certainty as the provisioning device has had knowledge of the watch
 signature key. Nor do we wish to use the device signature key for
 the confirmation service.

 Instead, the provisioning device generates a companion keypair. A
 random seed is generated.

 TBS:

 A key derrivation function (HKDF) is used to derrive a 255 bit secret
 scalar.

 TBS:

 The provisioning device can calculate the public key of the composite
 keypair by adding the public keys of the device profile and the
 companion public key:

 TBS:

 The provisioning device encrypts the private key of the comanion
 keypair under the encryption key of the device.

 TBS:

 The provisioning device calculates the private key of the composite
 keypair by adding the two private key values and verifies that scalar
 multiplication of the base point returns the composite public key
 value.

6. Multi-Party Decryption

 A key limitation of most deployed messaging systems is that true end-
 to-end confidentiality is only achieved for a limited set of
 communication patterns. Specifically, bilateral communications
 (Alice sends a message to Bob) or broadcast communications to a known

Hallam-Baker Expires January 5, 2020 [Page 10]

Internet-Draft Mesh Cryptographic Algorithms July 2019

 set of recipients (Alice sends a message to Bob, Carol and Doug).
 These capabilities do not support communication patterns where the
 set of recipients changes over time or is confidential. Yet such
 requirements commonly occur in situations such as sending a message
 to a mailing list whose membership isn't known to the sender, or
 creating a spreadsheet whose readership is to be limited to
 authorized members of the 'accounting' team.

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

cryptography.html [3].]]

 Traditional End-to-End Encryption is static.

 The mathematical approach that makes key co-generation possible may
 be applied to support a public key encryption mode in which
 encryption is performed as usual but decryption requires the use of
 multiple keys. This approach is variously described in the
 literature as distributed key generation and proxy re-
 encryption [Blaze98] .

 The approach specified in this document borrows aspects of both these
 techniques. This combined approach is called 'recryption'. Using
 recryption allows a sender to send a message to a group of users
 whose membership is not known to the sender at the time the message
 is sent and can change at any time.

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

cryptography.html [4].]]

 Recryption supports End-to-End Encryption in dynamic groups.

 Proxy re-encryption provides a technical capability that meets the
 needs of such communication patterns. Conventional symmetric key
 cryptography uses a single key to encrypt and decrypt data. Public
 key cryptography uses two keys, the key used to encrypt data is
 separate from the key used to decrypt. Proxy re-encryption
 introduces a third key (the recryption key) that allows a party to
 permit an encrypted data packet to be decrypted using a different key
 without permitting the data to be decrypted.

 The introduction of a recryption key permits end-to-end
 confidentiality to be preserved when a communication pattern requires
 that some part of the communication be supported by a service.

http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html

Hallam-Baker Expires January 5, 2020 [Page 11]

Internet-Draft Mesh Cryptographic Algorithms July 2019

 The introduction of a third type of key, the recryption key permits
 two new roles to be established, that of an administrator and
 recryption service. There are thus four parties:

 Administrator Holder of Decryption Key, Creator of Recryption Keys

 Sender Holder of Encryption Key

 Recryption Service Holder of Recryption keys

 Receiver Holder of personal decryption key

 The communication between these parties is shown in Figure X below:

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

cryptography.html [5].]]

 Mesh/Recrypt Parties

 The information stored at the recryption service is necessary but not
 sufficient to decrypt the message. Thus, no disclosure of the
 message plaintext occurs even in the event that an attacker gains
 full knowledge of all the information stored by the recryption
 service.

6.1. Mechanism

 The mechanism used to support recryption is the same as the mechanism
 used to support key co-generation except that this time, instead of
 combining two keys to create one, the private component of a
 decryption key (i.e. the private key) is split into two parts, a
 recryption key and a decryption key.

 Recall that the key combination law for Diffie Hellman crypto-systems
 states that we can add two private keys to get a third. It follows
 that we can split the private key portion of a keypair {G, g} into
 two parts by choosing a random number that is less than the order of
 the Diffie-Hellman group to be our first key x. Our second key is y
 = g - r mod o, where o is the order of the group.

 Having generated x, y, we can use these to perform private key
 agreement operations on a public key E and then use the result
 combination law to obtain the same result that we would have obtained
 using g.

http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html

Hallam-Baker Expires January 5, 2020 [Page 12]

Internet-Draft Mesh Cryptographic Algorithms July 2019

 One means of applying this mechanism to recryption would be to
 generate a different random value x for each member of the group and
 store it at the recryption service and communicate the value y to the
 member via a secure channel. Applying this approach, we can clearly
 see that the recryption service gains no information about the value
 of the private key since the only information it holds is a random
 number which could have been generated without any knowledge of the
 group private key.

 [RFC8032] requires that implementations derive the scalar secret by
 taking a cryptographic digest of the private key. This means that
 either the client or the service must use a non-compliant
 implementation. Given this choice, it is preferable to require that
 the non-standard implementation be required at the service rather
 than the client. This limits the scope of the non-conformant key
 derivation approach to the specialist recryption service and ensures
 that the client enforce the requirement to generate the private key
 component by means of a digest.

6.2. Implementation

 Implementation of recryption in the Mesh has four parts:

 o Creation and management of the recryption group.

 o Provisioning of members to a recryption group.

 o Message encryption.

 o Message decryption.

 These operations are all performed using the same catalog and
 messaging infrastructure provided by the Mesh for other purposes.

 Each recryption group has its own independent Mesh account. This has
 many advantages:

 o Administration of the recryption group may be spread across
 multiple Mesh users or transferred from one user to another
 without requiring specification of a separate management protocol
 to support these operations.

 o The recryption account address can be used by Mesh applications
 such as group messaging, conferencing, etc. as a contact address.

 o The contact request service can be used to notify members that
 they have been granted membership in the group.

Hallam-Baker Expires January 5, 2020 [Page 13]

Internet-Draft Mesh Cryptographic Algorithms July 2019

6.2.1. Group Creation

 Creation of a Recryption group requires the steps of:

 o Generating the recryption group key pair

 o Creating the recryption group account

 o Generating administrator record for each administrator.

 o Publishing the administrator records to the recryption catalog.

 Note that in principle, we could make use of the key combination law
 to enable separation of duties controls on administrators so that
 provisioning of members required multiple administrators to
 participate in the process. This is left to future versions.

6.2.2. Provisioning a Member

 To provision a user as a member of the recryption group, the
 administrator requires their current recryption profile. The
 administrator MAY obtain this by means of a contact service request.
 As with any contact service request, this request is subject to
 access control and MAY require authorization by the intended user
 before the provisioning can proceed.

 Having obtained the user's recryption profile, the administration
 tool generates a decryption private key for the user and encrypts it
 under the member's key to create the encrypted decryption key entry.

 The administration tool then computes the secret scalar from the
 private key and uses this together with the secret scalar of the
 recryption group to compute the recryption key for the member. This
 value and the encrypted decryption key entry are combined to form the
 recryption group membership record which is published to the catalog.

6.2.3. Message Encryption and Decryption

 Encryption of a messages makes use of DARE Message in exactly the
 same manner as any other encryption. The sole difference being that
 the recipient entry for the recryption operation MUST specify the
 recryption group address an not just the key fingerprint. This
 allows the recipient to determine which recryption service to contact
 to perform the recryption operation.

 To decrypt a message, the recipient makes an authenticated recryption
 request to the specified recryption service specifying:

Hallam-Baker Expires January 5, 2020 [Page 14]

Internet-Draft Mesh Cryptographic Algorithms July 2019

 o The recipient entry to be used for decryption

 o The fingerprint of the decryption key(s) the device would like to
 make use of.

 o Whether or not the encrypted decryption key entry should be
 returned.

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

cryptography.html [6].]]

 Two key decryption.

 The recryption service searches the catalog for the corresponding
 recryption group to find a matching entry. If found and if the
 recipient and proposed decryption key are dully authorized for the
 purpose, the service performs the key agreement operation using the
 recryption key specified in the entry and returns the result to the
 recipient.

 The recipient then decrypts the recryption data entry using its
 device decryption key and uses the group decryption key to calculate
 the other half of the result. The two halves of the result are then
 added to obtain the key agreement value that is then used to decrypt
 the message.

6.3. Example: Messaging group

 Alice creates a recryption group. The group encryption and signature
 key parameters are:

 TBS:

 To verify the proper function of the group, Alice creates a test
 message and encrypts it under the group key.

 TBS:
 TBS:

 Alice decides to add Bob to the group. Bob's recryption profile is:

 TBS:

 The decryption key is specified in the same way as any other Ed25519
 private key using the hash of a private key seed value:

http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html

Hallam-Baker Expires January 5, 2020 [Page 15]

Internet-Draft Mesh Cryptographic Algorithms July 2019

 TBS:

 The the recryption key is the group secret scalar minus (mod p) the
 secret scalar of Bob's private key:

 TBS:

 The Recryption entry consists of Bob's address, the recryption key
 and the decryption key encrypted under Bob's encryption key:

 TBS:

 The group administration tool creates a notification request to tell
 Bob that he has been made a member of the new group and signs it
 using the group signature key. The recryption entry and the
 notification are then sent to the recryption service:

 TBS:

 The notification message contains a link to the test message. When
 he accepts membership of the group, Bob clicks on the link to test
 that his membership has been fully provisioned. Providing an
 explicit test mechanism avoids the problem that might otherwise occur
 in which the message spool fills up with test messages being posted.

 Bob's Web browser requests the recryption data for the test message.
 The request is authenticated and encrypted under Bob's device keys.
 The plaintext of the message is:

 TBS:

 The plaintext of the response contains the additional information
 Bob's Web browser needs to complete the decryption process:

 TBS:

 The Web browser decrypts the private key and uses it to calculate the
 decryption value:

 TBS:

 The key agreement value is obtained by point addition of the
 recryption and decryption values:

 TBS:

 This value allows the test message to be decrypted.

Hallam-Baker Expires January 5, 2020 [Page 16]

Internet-Draft Mesh Cryptographic Algorithms July 2019

7. Mutually Authenticated Key Agreement

 Diffie Hellman key agreement using the authenticated public keys of
 the principals provides mutual authentication of those principals.

 For example, if Alice's key pair is {a, A} and Bob's key pair is {b,
 B}, the Diffie Hellman key agreement value DH (a, B) = DH (b, A) can
 only be generated from the public information if a or b is known.

 The chief disadvantage of this approach is that it only allows Alice
 and Bob to establish a single shared secret that will never vary and
 does not provide forward secrecy. To avoid this, cryptographic
 protocols usually perform the key agreement against an ephemeral key
 and either accept that the client key is not authenticated or perform
 multiple key agreements and combine the results.

 Using the Result Combination Law allows a key agreement mechanism to
 combine the benefits of mutual authentication with the use of
 ephemeral keys without the need for multiple private key operations
 or additional round trips.

 In its simplest form, the key exchange has two parties which we refer
 to as the client and the server. The client being the party that
 initiates the protocol exchange and the server being the party that
 responds. Let the public key pair of the client be {a, A} and that
 of the server {b, B}.

 Two versions of the key agreement mechanism are specified:

 Client ephemeral The client contributes an ephemeral key pair {n_A,
 N_A}. The effective public key of the client is A ? N_A.

 The server uses its public key B.

 The key agreement value is DH (a + n_A, B) = DH (b, A ? N_A)

 Dual ephemeral The client contributes an ephemeral key pair {n_A,
 N_A}. The effective public key of the client is A ? N_A.

 The server contributes an ephemeral key pair {n_B, N_B}. The
 effective public key of the client is B ? N_B.

 The key agreement value is DH (a + n_A, B ? N_B) = DH (b + n_B, A
 ? N_A)

 The function of the ephemeral key is effectively that of a nonce but
 it is shared with the counter-party as a public key value.

Hallam-Baker Expires January 5, 2020 [Page 17]

Internet-Draft Mesh Cryptographic Algorithms July 2019

 The dual ephemeral approach has the advantage that it limits the
 scope for side channel attacks as both sides have contributed unknown
 information to the key agreement value. The disadvantage of this
 approach is that the key agreement value can only be calculated after
 the server has provided its ephemeral.

 Implementations MAY take advantage of the result combination law to
 enable private key operations involving the authenticated key (or a
 contribution to it) to be performed in trustworthy hardware.

 An advantage of this key exchange mechanism over the traditional TLS
 key exchange approach is that no signature operation is involved,
 thus ensuring that either party can repudiate the exchange and thus
 the claim that they were in communication.

 The master secret is calculated from the key agreement value in the
 usual fashion. For ECDH algorithms, this comprises the steps of
 converting the key agreement value to an octet string which forms the
 input to a Key Derivation Function.

8. Security Considerations

 The security considerations for use and implementation of Mesh
 services and applications are described in the Mesh Security
 Considerations guide [draft-hallambaker-mesh-security] .

9. IANA Considerations

 This document requires no IANA actions.

10. Acknowledgements

 A list of people who have contributed to the design of the Mesh is
 presented in [draft-hallambaker-mesh-architecture] .

11. Examples

11.1. Key Combination

11.1.1. Ed25519

11.1.2. Ed448

11.1.3. X25519

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture

Hallam-Baker Expires January 5, 2020 [Page 18]

Internet-Draft Mesh Cryptographic Algorithms July 2019

11.1.4. X448

11.2. Group Encryption

11.2.1. X25519

11.2.2. X448

12. References

12.1. Normative References

 [AES-GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC", November
 2007.

 [draft-hallambaker-mesh-architecture]
 Hallam-Baker, P., "Mathematical Mesh 3.0 Part I:
 Architecture Guide", draft-hallambaker-mesh-

architecture-08 (work in progress), July 2019.

 [draft-hallambaker-mesh-security]
 Hallam-Baker, P., "Mathematical Mesh Part VII: Security
 Considerations", draft-hallambaker-mesh-security-00 (work
 in progress), April 2019.

 [FIPS197] NIST, "Advanced Encryption Standard (AES)", November 2001.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
 September 2002.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016.

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-08
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-08
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security-00
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc7748

Hallam-Baker Expires January 5, 2020 [Page 19]

Internet-Draft Mesh Cryptographic Algorithms July 2019

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017.

 [RFC8439] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018.

 [SHA-2] NIST, "Secure Hash Standard", August 2015.

 [SHA-3] Dworkin, M., "SHA-3 Standard: Permutation-Based Hash and
 Extendable-Output Functions", August 2015.

 [SHA-3-Derived]
 Kelsey, J., Chang, S., and R. Perlner, "SHA-3 Derived
 Functions: cSHAKE, KMAC, TupleHash and ParallelHash
 SHARE", December 2016.

12.2. Informative References

 [Blaze98] "[Reference Not Found!]".

 [draft-hallambaker-mesh-developer]
 Hallam-Baker, P., "Mathematical Mesh: Reference
 Implementation", draft-hallambaker-mesh-developer-08 (work
 in progress), April 2019.

12.3. URIs

 [1] http://mathmesh.com/Documents/draft-hallambaker-mesh-
cryptography.html

 [2] http://mathmesh.com/Documents/draft-hallambaker-mesh-
cryptography.html

 [3] http://mathmesh.com/Documents/draft-hallambaker-mesh-
cryptography.html

 [4] http://mathmesh.com/Documents/draft-hallambaker-mesh-
cryptography.html

 [5] http://mathmesh.com/Documents/draft-hallambaker-mesh-
cryptography.html

 [6] http://mathmesh.com/Documents/draft-hallambaker-mesh-
cryptography.html

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8439
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-08
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-cryptography.html

Hallam-Baker Expires January 5, 2020 [Page 20]

Internet-Draft Mesh Cryptographic Algorithms July 2019

Author's Address

 Phillip Hallam-Baker

 Email: phill@hallambaker.com

Hallam-Baker Expires January 5, 2020 [Page 21]

