
Network Working Group P. Hallam-Baker
Internet-Draft July 3, 2019
Intended status: Informational
Expires: January 4, 2020

Mathematical Mesh 3.0 Part III : Data At Rest Encryption (DARE)
draft-hallambaker-mesh-dare-02

Abstract

 This document describes the Data At Rest Encryption (DARE) Envelope
 and Container syntax.

 The DARE Envelope syntax is used to digitally sign, digest,
 authenticate, or encrypt arbitrary content data.

 The DARE Container syntax describes an append-only sequence of
 entries, each containing a DARE Envelope. DARE Containers may
 support cryptographic integrity verification of the entire data
 container content by means of a Merkle tree.

 This document is also available online at
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html [1] .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Hallam-Baker Expires January 4, 2020 [Page 1]

http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Mesh: Data At Rest Encryption July 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Encryption and Integrity 5
1.1.1. Key Exchange . 5
1.1.2. Data Erasure . 6

1.2. Signature . 7
1.2.1. Signing Individual Plaintext Envelopes 7
1.2.2. Signing Individual Encrypted Envelopes 7
1.2.3. Signing sequences of envelopes 8

1.3. Container . 8
1.3.1. Container Format 8
1.3.2. Write . 9
1.3.3. Encryption and Authentication 10
1.3.4. Integrity and Signature 10
1.3.5. Redaction . 11
1.3.6. Alternative approaches 11
1.3.7. Efficiency . 12

2. Definitions . 12
2.1. Related Specifications 12
2.2. Requirements Language 13
2.3. Defined terms . 13

3. DARE Envelope Architecture 14
3.1. Processing Considerations 15
3.2. Content Metadata and Annotations 15
3.3. Encoded Data Sequence 16
3.4. Encryption and Integrity 17
3.4.1. Key Exchange . 18
3.4.2. Key Identifiers 18
3.4.3. Salt Derivation 19
3.4.4. Key Derivation 19

3.5. Signature . 20
3.6. Algorithms . 20
3.6.1. Field: kwd . 20

4. DARE Container Architecture 21
4.1. Container Navigation 21
4.1.1. Tree . 22
4.1.2. Position Index 22

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Hallam-Baker Expires January 4, 2020 [Page 2]

Internet-Draft Mesh: Data At Rest Encryption July 2019

4.1.3. Metadata Index 22
4.2. Integrity Mechanisms 23
4.2.1. Digest Chain calculation 23
4.2.2. Binary Merkle tree calculation 23
4.2.3. Signature . 23

5. DARE Message Schema . 24
5.1. Message Classes . 24
5.1.1. Structure: DareMessageSequence 24

5.2. Header and Trailer Classes 25
5.2.1. Structure: DareTrailer 25
5.2.2. Structure: DareHeader 25

5.3. Cryptographic Data 27
5.3.1. Structure: DareSigner 27
5.3.2. Structure: X509Certificate 27
5.3.3. Structure: DareSignature 27
5.3.4. Structure: DareRecipient 28

6. DARE Container Schema . 28
6.1. Container Headers . 28
6.1.1. Structure: ContainerEntry 28
6.1.2. Structure: ContainerHeaderFirst 28
6.1.3. Structure: ContainerHeader 29

6.2. Content Metadata Structure 30
6.2.1. Structure: ContentMeta 30

6.3. Index Structures . 30
6.3.1. Structure: ContainerIndex 30
6.3.2. Structure: IndexPosition 30
6.3.3. Structure: KeyValue 31
6.3.4. Structure: IndexMeta 31

7. Dare Container Applications 31
7.1. Catalog . 31
7.2. Spool . 32
7.3. Archive . 33

8. Future Work . 33
8.1. Terminal integrity check 33
8.2. Terminal index record 33
8.3. Deferred indexing . 33

9. Security Considerations 34
9.1. Encryption/Signature nesting 34
9.2. Side channel . 34
9.3. Salt reuse . 34

10. IANA Considerations . 34
11. Acknowledgements . 34
12. Appendix A: DARE Envelope Examples and Test Vectors 34
13. Test Examples . 34
13.1. Plaintext Message 35
13.2. Plaintext Message with EDS 35
13.3. Encrypted Message 35
13.4. Signed Message . 37

Hallam-Baker Expires January 4, 2020 [Page 3]

Internet-Draft Mesh: Data At Rest Encryption July 2019

13.5. Signed and Encrypted Message 38
14. Appendix B: DARE Container Examples and Test Vectors 39
14.1. Simple container . 39
14.2. Payload and chain digests 40
14.3. Merkle Tree . 41
14.4. Signed container . 43
14.5. Encrypted container 44

15. Appendix C: Previous Frame Function 46
16. Appendix D: Outstanding Issues 46
17. References . 47
17.1. Normative References 47
17.2. Informative References 48
17.3. URIs . 49

 Author's Address . 49

1. Introduction

 This document describes the Data At Rest Encryption (DARE) Envelope
 and Container Syntax. The DARE Envelope syntax is used to digitally
 sign, digest, authenticate, or encrypt arbitrary message content.
 The DARE Container syntax describes an append-only sequence of data
 frames, each containing a DARE Envelope that supports efficient
 incremental signature and encryption.

 The DARE Envelope Syntax is based on a subset of the JSON Web
 Signature [RFC7515] and JSON Web Encryption [RFC7516] standards and
 shares many fields and semantics. The processing model and data
 structures have been streamlined to remove alternative means of
 specifying the same content and to enable multiple data sequences to
 be signed and encrypted under a single master encryption key without
 compromise to security.

 A DARE Envelope consists of a Header, Payload and an optional
 Trailer. To enable single pass encoding and decoding, the Header
 contains all the information required to perform cryptographic
 processing of the Payload and authentication data (digest, MAC,
 signature values) MAY be deferred to the Trailer section.

 A DARE Container is an append-only log format consisting of a
 sequence of frames. Cryptographic enhancements (signature,
 encryption) may be applied to individual frames or to sets of frames.
 Thus, a single key exchange may be used to provide a master key to
 encrypt multiple frames and a single signature may be used to
 authenticate all the frames in the container up to and including the
 frame in which the signature is presented.

 The DARE Envelope syntax may be used either as a standalone
 cryptographic message syntax or as a means of presenting a single

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516

Hallam-Baker Expires January 4, 2020 [Page 4]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 DARE Container frame together with the complete cryptographic context
 required to verify the contents and decrypt them.

1.1. Encryption and Integrity

 A key innovation in the DARE Envelope Syntax is the separation of key
 exchange and data encryption operations so that a Master Key (MK)
 established in a single exchange to be applied to multiple data
 sequences. This means that a single public key operation MAY be used
 to encrypt and/or authenticate multiple parts of the same DARE
 Envelope or multiple frames in a DARE Container.

 To avoid reuse of the key and to avoid the need to communicate
 separate IVs, each octet sequence is encrypted under a different
 encryption key (and IV if required) derived from the Master Key by
 means of a salt that is unique for each octet sequence that is
 encrypted. The same approach is used to generate keys for
 calculating a MAC over the octet sequence if required. This approach
 allows encryption and integrity protections to be applied to the
 envelope payload, to header or trailer fields or to application
 defined Enhanced Data Sequences in the header or trailer.

1.1.1. Key Exchange

 Traditional cryptographic containers describe the application of a
 single key exchange to encryption of a single octet sequence.
 Examples include PCKS#7/CMS [RFC2315] , OpenPGP [RFC4880] and JSON
 Web Encryption [RFC7516] .

 To encrypt data using RSA, the encoder first generates a random
 encryption key and initialization vector (IV). The encryption key is
 encrypted under the public key of each recipient to create a per-
 recipient decryption entry. The encryption key, plaintext and IV are
 used to generate the ciphertext (figure 1).

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

dare.html [2].]]

 Monolithic Key Exchange and Encrypt

 This approach is adequate for the task of encrypting a single octet
 stream. It is less than satisfactory when encrypting multiple octet
 streams or very long streams for which a rekeying operation is
 desirable.

https://datatracker.ietf.org/doc/html/rfc2315
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc7516
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

Hallam-Baker Expires January 4, 2020 [Page 5]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 In the DARE approach, key exchange and key derivation are separate
 operations and keys MAY be derived for encryption or integrity
 purposes or both. A single key exchange MAY be used to derive keys
 to apply encryption and integrity enhancements to multiple data
 sequences.

 The DARE key exchange begins with the same key exchange used to
 produce the CEK in JWE but instead of using the CEK to encipher data
 directly, it is used as one of the inputs to a Key Derivation
 Function (KDF) that is used to derive parameters for each block of
 data to be encrypted. To avoid the need to introduce additional
 terminology, the term 'CEK' is still used to describe the output of
 the key agreement algorithm (including key unwrapping if required)
 but it is more appropriately described as a Master Key (figure 2).

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

dare.html [3].]]

 Exchange of Master Key

 A Master Key may be used to encrypt any number of data items. Each
 data item is encrypted under a different encryption key and IV (if
 required). This data is derived from the Master Key using the HKDF
 function [RFC5869] using a different salt for each data item and
 separate info tags for each cryptographic function (figure 3).

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

dare.html [4].]]

 Data item encryption under Master Key and per-item salt.

 This approach to encryption offers considerably greater flexibility
 allowing the same format for data item encryption to be applied at
 the transport, message or field level.

1.1.2. Data Erasure

 Each encrypted DARE Envelope specifies a unique Master Salt value of
 at least 128 bits which is used to derive the salt values used to
 derive cryptographic keys for the envelope payload and annotations.

 Erasure of the Master Salt value MAY be used to effectively render
 the envelope payload and annotations undecipherable without altering

http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
https://datatracker.ietf.org/doc/html/rfc5869
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

Hallam-Baker Expires January 4, 2020 [Page 6]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 the envelope payload data. The work factor for decryption will be
 O(2^128) even if the decryption key is compromised.

1.2. Signature

 As with encryption, DARE Envelope signatures MAY be applied to an
 individual envelope or a sequence of envelope.

1.2.1. Signing Individual Plaintext Envelopes

 When an individual plaintext envelope is signed, the digest value
 used to create the signature is calculated over the binary value of
 the payload data. That is, the value of the payload before the
 encoding (Base-64, JSON-B) is applied.

1.2.2. Signing Individual Encrypted Envelopes

 When an individual plaintext envelope is signed, the digest value
 used to create the signature is calculated over the binary value of
 the payload data. That is, the value of the payload after encryption
 but before the encoding (Base-64, JSON-B) is applied.

 Use of signing and encryption in combination presents the risk of
 subtle attacks depending on the order in which signing and encryption
 take place [Davis2001] .

 Na?ve approaches in which an envelope is encrypted and then signed
 present the possibility of a surreptitious forwarding attack. For
 example, Alice signs an envelope and sends it to Mallet who then
 strips off Alice's signature and sends the envelope to Bob.

 Na?ve approaches in which an envelope is signed and then encrypted
 present the possibility of an attacker claiming authorship of a
 ciphertext. For example, Alice encrypts a ciphertext for Bob and
 then signs it. Mallet then intercepts the envelope and sends it to
 Bob.

 While neither attack is a concern in all applications, both attacks
 pose potential hazards for the unwary and require close inspection of
 application protocol design to avoid exploitation.

 To prevent these attacks, each signature on an envelope that is
 signed and encrypted MUST include a witness value that is calculated
 by applying a MAC function to the signature value as described in
 section XXX.

Hallam-Baker Expires January 4, 2020 [Page 7]

Internet-Draft Mesh: Data At Rest Encryption July 2019

1.2.3. Signing sequences of envelopes

 To sign multiple envelopes with a single signature, we first
 construct a Merkle tree of the envelope payload digest values and
 then sign the root of the Merkle tree.

 [This is not yet implemented but will be soon.]

1.3. Container

 DARE Container is a message and file syntax that allows a sequence of
 data frames to be represented with cryptographic integrity,
 signature, and encryption enhancements to be constructed in an append
 only format.

 The format is designed to meet the requirements of a wide range of
 use cases including:

 o Recording transactions in persistent storage.

 o Synchronizing transaction logs between hosts.

 o File archive.

 o Message spool.

 o Signing and encrypting single data items.

 o Incremental encryption and authentication of server logs.

1.3.1. Container Format

 A Container consists of a sequence of variable length Frames. Each
 frame consists of a forward length indicator, the framed data and a
 reverse length indicator. The reverse length indicator is written
 out backwards allowing the length and thus the frame to be read in
 the reverse direction:

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

dare.html [5].]]

 JBCD Bidirectional Frame

 Each frame contains a single DARE Envelope consisting of a Header,
 Payload and Trailer (if required). The first frame in a container
 describes the container format options and defaults. These include

http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

Hallam-Baker Expires January 4, 2020 [Page 8]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 the range of encoding options for frame metadata supported and the
 container profiles to which the container conforms.

 All internal data formats support use of pointers of up to 64 bits
 allowing containers of up to 18 exabytes to be written.

 Five container types are currently specified:

 Simple The container does not provide any index or content integrity
 checks.

 Tree Frame headers contain entries that specify the start position
 of previous frames at the apex of the immediately enclosing binary
 tree. This enables efficient random access to any frame in the
 file.

 Digest Each frame trailer contains a PayloadDigest field.
 Modification of the payload will cause verification of the
 PayloadDigest value to fail on that frame.

 Chain Each frame trailer contains PayloadDigest and ChainDigest
 fields allowing modifications to the payload data to be detected.
 Modification of the payload will cause verification of the
 PayloadDigest value to fail on that frame and verification of the
 ChainDigest value to fail on all subsequent frames.

 Merkle Tree Frame headers contain entries that specify the start
 position of previous frames at the apex of the immediately
 enclosing binary tree. Frame Trailers contain
 TreeDigestPartial and TreeDigestFinal entries forming a Merkle
 digest tree.

1.3.2. Write

 In normal circumstances, Containers are written as an append only
 log. As with Envelopes, integrity information (payload digest,
 signatures) is written to the entry trailer. Thus, large payloads
 may be written without the need to buffer the payload data provided
 that the content length is known in advance.

 Should exceptional circumstances require, Container entries MAY be
 erased by overwriting the Payload and/or parts of the Header content
 without compromising the ability to verify other entries in the
 container. If the entry Payload is encrypted, it is sufficient to
 erase the container salt value to render the container entry
 effectively inaccessible (though recovery might still be possible if
 the original salt value can be recovered from the storage media.

Hallam-Baker Expires January 4, 2020 [Page 9]

Internet-Draft Mesh: Data At Rest Encryption July 2019

1.3.3. Encryption and Authentication

 Frame payloads and associated attributes MAY be encrypted and/or
 authenticated in the same manner as Envelopes.

 Incremental encryption is supported allowing encryption parameters
 from a single public key exchange operation to be applied to encrypt
 multiple frames. The public key exchange information is specified in
 the first encrypted frame and subsequent frames encrypted under those
 parameters specify the location at which the key exchange information
 is to be found by means of the ExchangePosition field which MUST
 specify a location that is earlier in the file.

 To avoid cryptographic vulnerabilities resulting from key re-use, the
 DARE key exchange requires that each encrypted sequence use an
 encryption key and initialization vector derived from the master key
 established in the public key exchange by means of a unique salt.

 Each Envelope and by extension, each Container frame MUST specify a
 unique salt value of at least 128 bits. Since the encryption key is
 derived from the salt value by means of a Key Derivation Function,
 erasure of the salt MAY be used as a means of rendering the payload
 plaintext value inaccessible without changing the payload value.

1.3.4. Integrity and Signature

 Signatures MAY be applied to a payload digest, the final digest in a
 chain or tree. The chain and tree digest modes allow a single
 signature to be used to authenticate all frame payloads in a
 container.

 The tree signature mode is particularly suited to applications such
 as file archives as it allows files to be verified individually
 without requiring the signer to sign each individually. Furthermore,
 in applications such as code signing, it allows a single signature to
 be used to verify both the integrity of the code and its membership
 of the distribution.

 As with DARE Envelope, the signature mechanism does not specify the
 interpretation of the signature semantics. The presence of a
 signature demonstrates that the holder of the private key applied it
 to the specified digest value but not their motive for doing so.
 Describing such semantics is beyond the scope of this document and is
 deferred to future work.

Hallam-Baker Expires January 4, 2020 [Page 10]

Internet-Draft Mesh: Data At Rest Encryption July 2019

1.3.5. Redaction

 The chief disadvantage of using an append-only format is that
 containers only increase in size. In many applications, much of the
 data in the container becomes redundant or obsolete and a process
 analogous to garbage collection is required. This process is called
 redaction.

 The simplest method of redaction is to create a new container and
 sequentially copy each entry from the old container to the new,
 discarding redundant frames and obsolete header information.

 For example, partial index records may be consolidated into a single
 index record placed in the last frame of the container. Unnecessary
 signature and integrity data may be discarded and so on.

 While redaction could in principle be effected by moving data in-
 place in the existing container, supporting this approach in a robust
 fashion is considerably more complex as it requires backward
 references in subsequent frames to be overridden as each frame is
 moved.

1.3.6. Alternative approaches

 Many file proprietary formats are in use that support some or all of
 these capabilities but only a handful have public, let alone open,
 standards. DARE Container is designed to provide a superset of the
 capabilities of existing message and file syntaxes, including:

 o Cryptographic Message Syntax [RFC5652] defines a syntax used to
 digitally sign, digest, authenticate, or encrypt arbitrary message
 content.

 o The.ZIP File Format specification [ZIPFILE] developed by Phil
 Katz.

 o The BitCoin Block chain [BLOCKCHAIN] .

 o JSON Web Encryption and JSON Web Signature

 Attempting to make use of these specifications in a layered fashion
 would require at least three separate encoders and introduce
 unnecessary complexity. Furthermore, there is considerable overlap
 between the specifications providing multiple means of achieving the
 same ends, all of which must be supported if decoders are to work
 reliably.

https://datatracker.ietf.org/doc/html/rfc5652

Hallam-Baker Expires January 4, 2020 [Page 11]

Internet-Draft Mesh: Data At Rest Encryption July 2019

1.3.7. Efficiency

 Every data format represents a compromise between different concerns,
 in particular:

 Compactness The space required to record data in the encoding.

 Memory Overhead The additional volatile storage (RAM) required to
 maintain indexes etc. to support efficient retrieval operations.

 Number of Operations The number of operations required to retrieve
 data from or append data to an existing encoded sequence.

 Number of Disk Seek Operations Optimizing the response time of
 magnetic storage media to random access read requests has
 traditionally been one of the central concerns of database design.
 The DARE Container format is designed to the assumption that this
 will cease to be a concern as solid state media replaces magnetic.

 While the cost of storage of all types has declined rapidly over the
 past decades, so has the amount of data to be stored. DARE Container
 represents a pragmatic balance of these considerations for current
 technology. In particular, since payload volumes are likely to be
 very large, memory and operational efficiency are considered higher
 priorities than compactness.

2. Definitions

2.1. Related Specifications

 The DARE Envelope and Container formats are based on the following
 existing standards and specifications.

 Object serialization The JSON-B [draft-hallambaker-jsonbcd] encoding
 is used for object serialization. This encoding is an extension
 of the JavaScript Object Notation (JSON) [RFC7159] .

 Message syntax The cryptographic processing model is based on JSON
 Web Signature (JWS) [RFC7515] , JSON Web Encryption (JWE)
 [RFC7516] and JSON Web Key (JWK) [RFC7517] .

 Cryptographic primitives. The HMAC-based Extract-and-Expand Key
 Derivation Function [RFC5869] and Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm [RFC3394] are used.

 The Uniform Data Fingerprint method of presenting data digests is
 used for key identifiers and other purposes
 [draft-hallambaker-mesh-udf] .

https://datatracker.ietf.org/doc/html/draft-hallambaker-jsonbcd
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-udf

Hallam-Baker Expires January 4, 2020 [Page 12]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Cryptographic algorithms The cryptographic algorithms and
 identifiers described in JSON Web Algorithms (JWA) [RFC7518] are
 used together with additional algorithms as defined in the JSON
 Object Signing and Encryption IANA registry [IANAJOSE] .

2.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] .

2.3. Defined terms

 The terms "Authentication Tag", "Content Encryption Key", "Key
 Management Mode", "Key Encryption", "Direct Key Agreement", "Key
 Agreement with Key Wrapping" and "Direct Encryption" are defined in
 the JWE specification [RFC7516] .

 The terms "Authentication", "Ciphertext", "Digital Signature",
 "Encryption", "Initialization Vector (IV)", "Message Authentication
 Code (MAC)", "Plaintext" and "Salt" are defined by the Internet
 Security Glossary, Version 2 [RFC4949] .

 Annotated Envelope A DARE Envelope that contains an Annotations
 field with at least one entry.

 Authentication Data A Message Authentication Code or authentication
 tag.

 Complete Envelope A DARE envelope that contains the key exchange
 information necessary for the intended recipient(s) to decrypt it.

 Detached Envelope A DARE envelope that does not contain the key
 exchange information necessary for the intended recipient(s) to
 decrypt it.

 Encryption Context The master key, encryption algorithms and
 associated parameters used to generate a set of one or more
 enhanced data sequences.

 Encoded data sequence (EDS) A sequence consisting of a salt, content
 data and authentication data (if required by the encryption
 context).

 Enhancement Applying a cryptographic operation to a data sequence.
 This includes encryption, authentication and both at the same
 time.

https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc4949

Hallam-Baker Expires January 4, 2020 [Page 13]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Generator The party that generates a DARE envelope.

 Group Encryption Key A key used to encrypt data to be read by a
 group of users. This is typically achieved by means of some form
 of proxy re-encryption or distributed key generation.

 Group Encryption Key Identifier A key identifier for a group
 encryption key.

 Master Key (MK) The master secret from which keys are derived for
 authenticating enhanced data sequences.

 Recipient Any party that receives and processes at least some part
 of a DARE envelope.

 Related Envelope A set of DARE envelopes that share the same key
 exchange information and hence the same Master Key.

 Uniform Data Fingerprint (UDF) The means of presenting the result of
 a cryptographic digest function over a data sequence and content
 type identifier specified in the Uniform Data Fingerprint
 specification [draft-hallambaker-mesh-udf]

3. DARE Envelope Architecture

 A DARE Envelope is a sequence of three parts:

 Header A JSON object containing information a reader requires to
 begin processing the envelope.

 Payload An array of octets.

 Trailer A JSON object containing information calculated from the
 envelope payload.

 For example, the following sequence is a JSON encoded Envelope with
 an empty header, a payload of zero length and an empty trailer:

 [{}, "", {}]

 DARE Envelopes MAY be encoded using JSON serialization or a binary
 serialization for greater efficiency.

 JSON Offers compatibility with applications and libraries that
 support JSON. Payload data is encoded using Base64 incurring a
 33% overhead.

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-udf

Hallam-Baker Expires January 4, 2020 [Page 14]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 JSON-B A superset of JSON encoding that permits binary data to be
 encoded as a sequence of length-data segments. This avoids the
 Base64 overhead incurred by JSON encoding. Since JSON-B is a
 superset of JSON encoding, an application can use a single decoder
 for either format.

 JSON-C A superset of JSON-C which provides additional efficiency by
 allowing field tags and other repeated string data to be encoded
 by reference to a dictionary. Since JSON-C is a superset of JSON
 and JSON-B encodings, an application can use a single decoder for
 all three formats.

 DARE Envelope processors MUST support JSON serialization and SHOULD
 support JSON-B serialization.

3.1. Processing Considerations

 The DARE Envelope Syntax supports single pass encoding and decoding
 without buffering of data. All the information required to begin
 processing a DARE envelope (key agreement information, digest
 algorithms), is provided in the envelope header. All the information
 that is derived from envelope processing (authentication codes,
 digest values, signatures) is presented in the envelope trailer.

 The choice of envelope encoding does not affect the semantics of
 envelope processing. A DARE Envelope MAY be reserialized under the
 same serialization or converted from any of the specified
 serialization to any other serialization without changing the
 semantics or integrity properties of the envelope.

3.2. Content Metadata and Annotations

 A header MAY contain header fields describing the payload content.
 These include:

 ContentType Specifies the IANA Media Type [RFC6838] .

 Annotations A list of Encoded Data Sequences that provide
 application specific annotations to the envelope.

 For example, consider the following mail message:

 From: Alice@example.com
 To: bob@example.com
 Subject: TOP-SECRET Product Launch Today!

 The CEO told me the product launch is today. Tell no-one!

https://datatracker.ietf.org/doc/html/rfc6838

Hallam-Baker Expires January 4, 2020 [Page 15]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Existing encryption approaches require that header fields such as the
 subject line be encrypted with the body of the message or not
 encrypted at all. Neither approach is satisfactory. In this
 example, the subject line gives away important information that the
 sender probably assumed would be encrypted. But if the subject line
 is encrypted together with the message body, a mail client must
 retrieve at least part of the message body to provide a 'folder'
 view.

 The plaintext form of the equivalent DARE Message encoding is:

 [{
 "cty":"application/example-mail",
 "Annotations":["iAEBiBdGcm9tOiBBbGljZUBleGFtcGxlLmNvbYgA",
 "iAECiBNUbzogYm9iQGV4YW1wbGUuY29tiAA",
 "iAEDiClTdWJqZWN0OiBUT1AtU0VDUkVUIFByb2R1Y3QgTGF1bmNoIFRvZGF5
 IYgA"
]},
 "VGhlIENFTyB0b2xkIG1lIHRoZSBwcm9kdWN0IGxhdW5jaCBpcyB0b2RheS4gVGVs
 bCBuby1vbmUh"
]

 This contains the same information as before but the mail message
 headers are now presented as a list of Encoded Data Sequences.

3.3. Encoded Data Sequence

 An encoded data sequence (EDS) is a sequence of octets that encodes a
 data sequence according to cryptographic enhancements specified in
 the context in which it is presented. An EDS MAY be encrypted and
 MAY be authenticated by means of a MAC. The keys and other
 cryptographic parameters used to apply these enhancements are derived
 from the cryptographic context and a Salt prefix specified in the EDS
 itself.

 An EDS sequence contains exactly three binary fields encoded in
 JSON-B serialization as follows:

 Salt Prefix A sequence of octets used to derive the encryption key,
 Initialization Vector and MAC key as required.

 Body The plaintext or encrypted content.

 Authentication Tag The authentication code value in the case that
 the cryptographic context specifies use of authenticated
 encryption or a MAC, otherwise is a zero-length field.

Hallam-Baker Expires January 4, 2020 [Page 16]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Requiring all three fields to be present, even in cases where they
 are unnecessary simplifies processing at the cost of up to six
 additional data bytes.

 The encoding of the 'From' header of the previous example as a
 plaintext EDS is as follows:

 88 01
 01
 88 17
 46 72 6f 6d 3a 20 41 6c 69 63 65 40 65 78 61 6d
 70 6c 65 2e 63 6f 6d
 88 00

3.4. Encryption and Integrity

 Encryption and integrity protections MAY be applied to any DARE
 Envelope Payload and Annotations.

 The following is an encrypted version of the message shown earlier.
 The payload and annotations have both increased in size as a result
 of the block cipher padding. The header now includes Recipients and
 Salt fields to enable the content to be decoded.

 [{
 "enc":"A256CBC",
 "Salt":"EshYX1Y0cYSUq8LfTh4Fvw",
 "cty":"application/example-mail",
 "Annotations":["iAEBiCAaX0DGhdZpeaC_HL5oQbZ7TotGPzRit2svzpfRfgYX
 UA",
 "iAECiCBQ-Q4zWmIMnNKe9GCufR_6E9iXryHc4hfIMqwBXovfYg",
 "iAEDiDCSyMOzrZ6XFn0BUVoHpsG6QQ5ShgUEwL6ru-Ss_UUXc2NFixDt3mCr
 w1sHb-r6WY0"
],
 "recipients":[{
 "kid":"MBNZ-GJFZ-OLGQ-Q6J6-OAGS-JYLE-OQNH",
 "epk":{
 "PublicKeyECDH":{
 "crv":"Ed25519",
 "Public":"9RDXSE936LEXqiRd7TDIKp8dqWSlyhe3uxwzZKmdK_U"}},
 "wmk":"sqmCWgeebzKrMa-MuUaj8ddgK3RWayVEt8_-e7PCtFST3g1shucO
 7g"}
]},
 "_pCLaNXBOTT4rut3TZ9g4fjHeUnuJmQtUJEIqm0BNrwGGcBkchNqeNaF8mu8zMRN
 AzPowgk0xUWMd-YDZmStig"
]

Hallam-Baker Expires January 4, 2020 [Page 17]

Internet-Draft Mesh: Data At Rest Encryption July 2019

3.4.1. Key Exchange

 The DARE key exchange is based on the JWE key exchange except that
 encryption modes are intentionally limited and the output of the key
 exchange is the DARE Master Key rather than the Content Encryption
 Key.

 A DARE Key Exchange MAY contain any number of Recipient entries, each
 providing a means of decrypting the Master Key using a different
 private key.

 If the Key Exchange mechanism supports message recovery, Direct Key
 Agreement is used, in all other cases, Key Wrapping is used.

 This approach allows envelopes with one intended recipient to be
 handled in the exact same fashion as envelopes with multiple
 recipients. While this does require an additional key wrapping
 operation, that could be avoided if an envelope has exactly one
 intended recipient, this is offset by the reduction in code
 complexity.

 If the key exchange algorithm does not support message recovery (e.g.
 Diffie Hellman and Elliptic Curve Diffie-Hellman), the HKDF Extract-
 and-Expand Key Derivation Function is used to derive a master key
 using the following info tag:

 "dare-master" [64 61 72 65 2d 6d 61 73 74 65 72] Key derivation info
 field used when deriving a master key from the output of a key
 exchange.

 The master key length is the maximum of the key size of the
 encryption algorithm specified by the key exchange header, the key
 size of the MAC algorithm specified by the key exchange header (if
 used) and 256.

3.4.2. Key Identifiers

 The JWE/JWS specifications define a kid field for use as a key
 identifier but not how the identifier itself is constructed. All
 DARE key identifiers are either UDF key fingerprints
 [draft-hallambaker-mesh-udf] or Mesh/Recrypt Group Key Identifiers.

 A UDF fingerprint is formed as the digest of an IANA content type and
 the digested data. A UDF key fingerprint is formed with the content
 type application/pkix-keyinfo and the digested data is the ASN.1 DER
 encoded PKIX certificate keyInfo sequence for the corresponding
 public key.

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-udf

Hallam-Baker Expires January 4, 2020 [Page 18]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 A Group Key Identifier has the form <fingerprint>@<domain>. Where
 <fingerprint> is a UDF key fingerprint and <domain> is the DNS
 address of a service that provides the encryption service to support
 decryption by group members.

3.4.3. Salt Derivation

 A Master Salt is a sequence of 16 or more octets that is specified in
 the Salt field of the header.

 The Master Salt is used to derive salt values for the envelope
 payload and associated encoded data sequences as follows.

 Payload Salt = Master Salt

 EDS Salt = Concatenate (Payload Salt Prefix, Master Salt)

 Encoders SHOULD NOT generate salt values that exceed 1024 octets.

 The salt value is opaque to the DARE encoding but MAY be used to
 encode application specific semantics including:

 o Frame number to allow reassembly of a data sequence split over a
 sequence of envelopes which may be delivered out of order.

 o Transmit the Master Key in the manner of a Kerberos ticket.

 o Identify the Master Key under which the Enhanced Data Sequence was
 generated.

 o Enable access to the plaintext to be eliminated by erasure of the
 encryption key.

 For data erasure to be effective, the salt MUST be constructed so
 that the difficulty of recovering the key is sufficiently high that
 it is infeasible. For most purposes, a salt with 128 bits of
 appropriately random data is sufficient.

3.4.4. Key Derivation

 Encryption and/or authentication keys are derived from the Master Key
 using a Extract-and-Expand Key Derivation Function as follows:

 1. The Master Key and salt value are used to extract the PRK
 (pseudorandom key)

 2. The PRK is used to derive the algorithm keys using the
 application specific information input for that key type.

Hallam-Baker Expires January 4, 2020 [Page 19]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 The application specific information inputs are:

 "dare-encrypt" [64 61 72 65 2d 65 6e 63 72 79 70 74] To generate an
 encryption or encryption with authentication key.

 "dare-iv" [64 61 72 65 2d 65 6e 63 72 79 70 74] To generate an
 initialization vector.

 "dare-mac" [dare-mac] To generate a Message Authentication Code key.

3.5. Signature

 While encryption and integrity enhancements can be applied to any
 part of a DARE Envelope, signatures are only applied to payload
 digest values calculated over one or more envelope payloads.

 The payload digest value for an envelope is calculated over the
 binary payload data. That is, after any encryption enhancement has
 been applied but before the envelope encoding is applied. This
 allows envelopes to be converted from one encoding to another without
 affecting signature verification.

 Single Payload The signed value is the payload digest of the
 envelope payload.

 Multiple Payload. The signed value is the root of a Merkle Tree in
 which the payload digest of the envelope is one of the leaves.

 Verification of a multiple payload signature naturally requires the
 additional digest values required to construct the Merkle Tree.
 These are provided in the Trailer in a format that permits multiple
 signers to reference the same tree data.

3.6. Algorithms

3.6.1. Field: kwd

 The key wrapping and derivation algorithms.

 Since the means of public key exchange is determined by the key
 identifier of the recipient key, it is only necessary to specify the
 algorithms used for key wrapping and derivation.

 The default (and so far only) algorithm is kwd-aes-sha2-256-256.

 Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm
 [RFC3394] is used to wrap the Master Exchange Key. AES 256 is used.

https://datatracker.ietf.org/doc/html/rfc3394

Hallam-Baker Expires January 4, 2020 [Page 20]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 HMAC-based Extract-and-Expand Key Derivation Function [RFC5869] is
 used for key derivation. SHA-2-256 is used for the hash function.

4. DARE Container Architecture

4.1. Container Navigation

 Three means of locating frames in a container are supported:

 Sequential Access frames sequentially starting from the start or the
 end of the container.

 Binary search Access any container frame by frame number in
 O(log_2(n)) time by means of a binary tree constructed while the
 container is written.

 Index Access and container frame by frame number or by key by means
 of an index record.

 All DARE Containers support sequential access. Only tree and Merkle
 tree containers support binary search access. An index frame MAY be
 written appended to any container and provides O(1) access to any
 frame listed in the index.

 Two modes of compilation are considered:

 Monolithic Frames are added to the container in a single operation,
 e.g. file archives,

 Incremental Additional frames are written to the container at
 various intervals after it was originally created, e.g. server
 logs, message spools.

 In the monolithic mode, navigation requirements are best met by
 writing an index frame to the end of the container when it is
 complete. It is not necessary to construct a binary search tree
 unless a Merkle tree integrity check is required.

 In the incremental mode, Binary search provides an efficient means of
 locating frames by frame number but not by key. Writing a complete
 index to the container every m write operations provides O(m) search
 access but requires O(n^2) storage.

 Use of partial indexes provides a better compromise between speed and
 efficiency. A partial index is written out every m frames where m is
 a power of two. A complete index is written every time a binary tree
 apex record is written. This approach provides for O(log_2(n))

https://datatracker.ietf.org/doc/html/rfc5869

Hallam-Baker Expires January 4, 2020 [Page 21]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 search with incremental compilation with approximately double the
 overhead of the monolithic case.

4.1.1. Tree

 Binary search is supported by means of the TreePosition parameter
 specified in the FrameHeader. This parameter specifies the value of
 the immediately preceding apex.

 Calculation of the immediately preceding apex is most easily
 described by representing the array index in binary with base of 1
 (rather than 0). An array index that is a power of 2 (2, 4, 8, 16,
 etc.) will be the apex of a complete tree. Every other array index
 has the value of the sum of a set of powers of 2 and the immediately
 preceding apex will be the value of the next smallest power of 2 in
 the sum.

 For example, to find the immediately preceding apex for frame 5, we
 add 1 to get 6. 6 = 4 + 2, so we ignore the 2 and the preceding frame
 is 4.

 The values of Tree Position are shown for the first 8 frames in
 figure xx below:

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

dare.html [6].]]

 Merkle Tree Integrity check

 An algorithm for efficiently calculating the immediately preceding
 apex is provided in Appendix C.

4.1.2. Position Index

 Contains a table of frame number, position pairs pointing to prior
 locations in the file.

4.1.3. Metadata Index

 Contains a list of IndexMeta entries. Each entry contains a metadata
 description and a list of frame indexes (not positions) of frames
 that match the description.

http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

Hallam-Baker Expires January 4, 2020 [Page 22]

Internet-Draft Mesh: Data At Rest Encryption July 2019

4.2. Integrity Mechanisms

 Frame sequences in a DARE container MAY be protected against a frame
 insertion attack by means of a digest chain, a binary Merkle tree or
 both.

4.2.1. Digest Chain calculation

 A digest chain is simple to implement but can only be verified if the
 full chain of values is known. Appending a frame to the chain has
 O(1) complexity but verification has O(n) complexity:

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

dare.html [7].]]

 Hash chain integrity check

 The value of the chain digest for the first frame (frame 0) is
 H(H(null)+H(Payload_0)), where null is a zero length octet sequence
 and payloadn is the sequence of payload data bytes for frame n

 The value of the chain digest for frame n is H(H(Payload_n-1
 +H(Payloadn)), where A+B stands for concatenation of the byte
 sequences A and B.

4.2.2. Binary Merkle tree calculation

 The tree index mechanism describe earlier may be used to implement a
 binary Merkle tree. The value TreeDigest specifies the apex value of
 the tree for that node.

 Appending a frame to the chain has O(log_2 (n)) complexity provided
 that the container format supports at least the binary tree index.
 Verifying a chain has O(log_2 (n)) complexity, provided that the set
 of necessary digest inputs is known.

 To calculate the value of the tree digest for a node, we first
 calculate the values of all the sub trees that have their apex at
 that node and then calculate the digest of that value and the
 immediately preceding local apex.

4.2.3. Signature

 Payload data MAY be signed using a JWS [RFC7515] as applied in the
 Envelope.

http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
https://datatracker.ietf.org/doc/html/rfc7515

Hallam-Baker Expires January 4, 2020 [Page 23]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Signatures are specified by the Signatures parameter in the content
 header. The data that the signature is calculated over is defined by
 the typ parameter of the Signature as follows.

 Payload The value of the PayloadDigest parameter

 Chain The value of the ChainDigest parameter

 Tree The value of the TreeDigestFinal parameter

 If the typ parameter is absent, the value Payload is implied.

 A frame MAY contain multiple signatures created with the same signing
 key and different typ values.

 The use of signatures over chain and tree digest values permit
 multiple frames to be validated using a single signature verification
 operation.

5. DARE Message Schema

 A DARE Message consists of a Header, an Enhanced Data Sequence (EDS)
 and an optional trailer. This section describes the JSON data fields
 used to construct headers, trailers and complete messages.

 Wherever possible, fields from JWE, JWS and JWK have been used. In
 these cases, the fields have the exact same semantics. Note however
 that the classes in which these fields are presented have different
 structure and nesting.

5.1. Message Classes

 A DARE Message contains a single DAREMessageSequence in either the
 JSON or Compact serialization as directed by the protocol in which it
 is applied.

5.1.1. Structure: DareMessageSequence

 A DARE Message containing Header, EDS and Trailer in JSON object
 encoding. Since a DAREMessage is almost invariably presented in JSON
 sequence or compact encoding, use of the DAREMessage subclass is
 preferred.

 Although a DARE Message is functionally an object, it is serialized
 as an ordered sequence. This ensures that the message header field
 will always precede the body in a serialization, this allowing
 processing of the header information to be performed before the
 entire body has been received.

Hallam-Baker Expires January 4, 2020 [Page 24]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Header: DareHeader (Optional) The message header. May specify the
 key exchange data, pre-signature or signature data, cloaked
 headers and/or encrypted data sequences.

 Body: Binary (Optional) The message body

 Trailer: DareTrailer (Optional) The message trailer. If present,
 this contains the signature.

5.2. Header and Trailer Classes

 A DARE Message sequence MUST contain a (possibly empty) DAREHeader
 and MAY contain a DARETrailer.

5.2.1. Structure: DareTrailer

 A DARE Message Trailer

 Signatures: DareSignature [0..Many] A list of signatures. A message
 trailer MUST NOT contain a signatures field if the header contains
 a signatures field.

 SignedData: Binary (Optional) Contains a DAREHeader object

 PayloadDigest: Binary (Optional) If present, contains the digest of
 the Payload.

 ChainDigest: Binary (Optional) If present, contains the digest of
 the PayloadDigest values of this frame and the frame immediately
 preceding.

 TreeDigest: Binary (Optional) If present, contains the Binary Merkle
 Tree digest value.

5.2.2. Structure: DareHeader

 Inherits: DareTrailer

 A DARE Message Header. Since any field that is present in a trailer
 MAY be placed in a header instead, the message header inherits from
 the trailer.

 EncryptionAlgorithm: String (Optional) The encryption algorithm as
 specified in JWE

 DigestAlgorithm: String (Optional) Digest Algorithm. If specified,
 tells decoder that the digest algorithm is used to construct a
 signature over the message payload.

Hallam-Baker Expires January 4, 2020 [Page 25]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Salt: Binary (Optional) Salt value used to derrive cryptographic
 parameters for the content data.

 Malt: Binary (Optional) Hash of the Salt value used to derrive
 cryptographic parameters for the content data. This field SHOULD
 NOT be present if the Salt field is present. It is used to allow
 the salt value to be erased (thus rendering the payload content
 irrecoverable) without affecting the ability to calculate the
 payload digest value.

 Signed: Binary (Optional) Contains signed headers.

 Cloaked: Binary (Optional) If present in a header or trailer,
 specifies an encrypted data block containing additional header
 fields whose values override those specified in the message and
 context headers.

 When specified in a header, a cloaked field MAY be used to conceal
 metadata (content type, compression) and/or to specify an
 additional layer of key exchange. That applies to both the
 Message body and to headers specified within the cloaked header.

 Processing of cloaked data is described in...

 ContentType: String (Optional) The content type field as specified
 in JWE

 EDSS: Binary [0..Many] If present, the Annotations field contains a
 sequence of Encrypted Data Segments encrypted under the message
 Master Key. The interpretation of these fields is application
 specific.

 Signers: DareSigner [0..Many] A list of 'presignature'

 Recipients: DareRecipient [0..Many] A list of recipient key exchange
 information blocks.

 UniqueID: String (Optional) Unique object identifier

 Filename: String (Optional) The original filename under which the
 data was stored.

 Event: String (Optional) Operation on the header

 Labels: String [0..Many] List of labels that are applied to the
 payload of the frame.

Hallam-Baker Expires January 4, 2020 [Page 26]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 KeyValues: KeyValue [0..Many] List of key/value pairs describing the
 payload of the frame.

5.3. Cryptographic Data

 DARE Message uses the same fields as JWE and JWS but with different
 structure. In particular, DARE messages MAY have multiple recipients
 and multiple signers.

5.3.1. Structure: DareSigner

 The signature value

 Dig: String (Optional) Digest algorithm hint. Specifying the digest
 algorithm to be applied to the message body allows the body to be
 processed in streaming mode.

 Alg: String (Optional) Key exchange algorithm

 KeyIdentifier: String (Optional) Key identifier of the signature
 key.

 Certificate: X509Certificate (Optional) PKIX certificate of signer.

 Path: X509Certificate (Optional) PKIX certificates that establish a
 trust path for the signer.

5.3.2. Structure: X509Certificate

 X5u: String (Optional) URL identifying an X.509 public key
 certificate

 X5: Binary (Optional) An X.509 public key certificate

5.3.3. Structure: DareSignature

 Inherits: DareSigner

 The signature value

 Manifest: Binary (Optional) The data description that was signed.

 SignatureValue: Binary (Optional) The signature value as an Enhanced
 Data Sequence under the message Master Key.

 WitnessValue: Binary (Optional) The signature witness value used on
 an encrypted message to demonstrate that the signature was

Hallam-Baker Expires January 4, 2020 [Page 27]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 authorized by a party with actual knowledge of the encryption key
 used to encrypt the message.

5.3.4. Structure: DareRecipient

 Recipient information

 KeyIdentifier: String (Optional) Key identifier for the encryption
 key.

 The Key identifier MUST be either a UDF fingerprint of a key or a
 Group Key Identifier

 KeyWrapDerivation: String (Optional) The key wrapping and derivation
 algorithms.

 WrappedMasterKey: Binary (Optional) The wrapped master key. The
 master key is encrypted under the result of the key exchange.

 RecipientKeyData: String (Optional) The per-recipient key exchange
 data.

6. DARE Container Schema

 TBS stuff

6.1. Container Headers

 TBS stuff

6.1.1. Structure: ContainerEntry

 Inherits: ContainerHeader

 Inherits: ContainerHeader

 Body: Binary (Optional) The container data.

6.1.2. Structure: ContainerHeaderFirst

 Inherits: ContainerHeader

 Inherits: ContainerHeader

 DataEncoding: String (Optional) Specifies the data encoding for the
 header section of for the following frames. This value is ONLY
 valid in Frame 0 which MUST have a header encoded in JSON.

Hallam-Baker Expires January 4, 2020 [Page 28]

Internet-Draft Mesh: Data At Rest Encryption July 2019

6.1.3. Structure: ContainerHeader

 Inherits: DareHeader

 Describes a container header. A container header MAY contain any
 DARE Message header.

 Index: Integer (Optional) The record index within the file. This
 MUST be unique and satisfy any additional requirements determined
 by the ContainerType.

 ContainerType: String (Optional) Specifies the container type for
 the following records.

 IsMeta: Boolean (Optional) If true, the current frame is a meta
 frame and does not contain a payload.

 Note: Meta frames MAY be present in any container. Applications
 MUST accept containers that contain meta frames at any position in
 the file. Applications MUST NOT interpret a meta frame as a data
 frame with an enpty payload.

 Default: Boolean (Optional) If set true in a persistent container,
 specifies that this record contains the default object for the
 container.

 ContentMeta: ContentMeta (Optional) Content meta data.

 TreePosition: Integer (Optional) Position of the frame containing
 the apex of the preceding sub-tree.

 IndexPosition: Integer (Optional) Specifies the position in the file
 at which the last index entry is to be found

 ExchangePosition: Integer (Optional) Specifies the position in the
 file at which the key exchange data is to be found

 ContainerIndex: ContainerIndex (Optional) An index of records in the
 current container up to but not including this one.

 First: Integer (Optional) Frame number of the first object instance
 value.

 Previous: Integer (Optional) Frame number of the immediately prior
 object instance value

Hallam-Baker Expires January 4, 2020 [Page 29]

Internet-Draft Mesh: Data At Rest Encryption July 2019

6.2. Content Metadata Structure

 TBS stuff

6.2.1. Structure: ContentMeta

 Information describing the object instance

 ContentType: String (Optional) The content type field as specified
 in JWE

 Paths: String [0..Many] List of filename paths for the payload of
 the frame.

 UniqueID: String (Optional) Unique object identifier

 Created: DateTime (Optional) Initial creation date.

 Modified: DateTime (Optional) Date of last modification.

6.3. Index Structures

 TBS stuff

6.3.1. Structure: ContainerIndex

 A container index

 Full: Boolean (Optional) If true, the index is complete and contains
 position entries for all the frames in the file. If absent or
 false, the index is incremental and only contains position entries
 for records added since the last frame containing a
 ContainerIndex.

 Positions: IndexPosition [0..Many] List of container position
 entries

 Metas: IndexMeta [0..Many] List of container position entries

6.3.2. Structure: IndexPosition

 Specifies the position in a file at which a specified record index is
 found

 Index: Integer (Optional) The record index within the file.

 Position: Integer (Optional) The record position within the file
 relative to the index base.

Hallam-Baker Expires January 4, 2020 [Page 30]

Internet-Draft Mesh: Data At Rest Encryption July 2019

6.3.3. Structure: KeyValue

 Specifies a key/value entry

 Key: String (Optional) The key

 Value: String (Optional) The value corresponding to the key

6.3.4. Structure: IndexMeta

 Specifies the list of index entries at which a record with the
 specified metadata occurrs.

 Index: Integer [0..Many] List of record indicies within the file
 where frames matching the specified criteria are found.

 ContentType: String (Optional) Content type parameter

 Paths: String [0..Many] List of filename paths for the current
 frame.

 Labels: String [0..Many] List of labels that are applied to the
 current frame.

7. Dare Container Applications

 DARE Containers are used to implement two forms of persistence store
 to support Mesh operations:

 Catalogs A set of related items which MAY be added, modified or
 deleted at any time.

 Spools A list of related items whose status MAY be changed at any
 time but which are immutable once added.

 Since DARE Containers are an append only log format, entries can only
 be modified or deleted by adding items to the log to change the
 status of previous entries. It is always possible to undo any
 operation on a catalog or spool unless the underlying container is
 purged or the individual entries modified.

7.1. Catalog

 Catalogs contain a set of entries, each of which is distinguished by
 a unique identifier.

 Three operations are supported:

Hallam-Baker Expires January 4, 2020 [Page 31]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Add Addition of the entry to the catalog

 Update Modification of the data associated with the entry excluding
 the identifier

 Delete Removal of the entry from the catalog

 The set of valid state transitions is defined by the Finite State
 machine:

 (Add-Update*-Delete)*

 Catalogs are used to represent sets of persistent objects associated
 with a Mesh Service Account. The user's set of contacts for example.
 Each contact entry may be modified many times over time but refers to
 the same subject for its entire lifetime.

 SchemaCatalog

7.2. Spool

 Spools contain lists of entries, each of which is distinguished by a
 unique identifier.

 Four operations are supported:

 Post Addition of the entry to the spool

 Processed Marks the entry as having been processed.

 Unprocessed Returns the entry to the unread state.

 Delete Mark the entry as deleted allowing recovery of associated
 storage in a subsequent purge operation.

 The set of valid state transitions is defined by the Finite State
 machine:

 Post-(Processed| Unprocessed| Delete *)

 Spools are used to represent time sequence ordered entries such as
 lists of messages being sent or received, task queues and transaction
 logs.

 SchemaCatalog

Hallam-Baker Expires January 4, 2020 [Page 32]

Internet-Draft Mesh: Data At Rest Encryption July 2019

7.3. Archive

 A DARE Archive is a DARE Container whose entries contain files. This
 affords the same functionality as a traditional ZIP or tar archive
 but with the added cryptographic capabilities provided by the DARE
 format.

8. Future Work

 The current specification describes an approach in which containers
 are written according to a strict append-only policy. Greater
 flexibility may be achieved by loosening this requirement allowing
 record(s) at the end of the container to be overwritten.

8.1. Terminal integrity check

 A major concern when operating a critical service is the possibility
 of a hardware or power failure occurring during a write operation
 causing the file update to be incomplete. While most modern
 operating systems have effective mechanisms in place to prevent
 corruption of the file system itself in such circumstances, this does
 not provide sufficient protection at the application level.

 Appending a null record containing a container-specific magic number
 provides an effective means of detecting this circumstance that can
 be quickly verified.

 If a container specifies a terminal integrity check value in the
 header of frame zero, the container is considered to be in an
 incomplete write state if the final frame is not a null record
 specifying the magic number.

 When appending new records to such containers, the old terminal
 integrity check record is overwritten by the data being added and a
 new integrity check record appended to the end.

8.2. Terminal index record

 A writer can maintain a complete (or partial) index of the container
 in its final record without additional space overhead by overwriting
 the prior index on each update.

8.3. Deferred indexing

 The task of updating terminal indexes may be deferred to a time when
 the machine is not busy. This improves responsiveness and may avoid
 the need to re-index containers receiving a sequence of updates.

Hallam-Baker Expires January 4, 2020 [Page 33]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 This approach may be supported by appending new entries to the end of
 the container in the usual fashion and maintaining a record of
 containers to be updated as a separate task.

 When updating the index on a container that has been updated in this
 fashion, the writer must ensure that no data is lost even if the
 process is interrupted. The use of guard records and other
 precautions against loss of state is advised.

9. Security Considerations

 This section describes security considerations arising from the use
 of DARE in general applications.

 Additional security considerations for use of DARE in Mesh services
 and applications are described in the Mesh Security Considerations
 guide [draft-hallambaker-mesh-security] .

9.1. Encryption/Signature nesting

9.2. Side channel

9.3. Salt reuse

10. IANA Considerations

11. Acknowledgements

 A list of people who have contributed to the design of the Mesh is
 presented in [draft-hallambaker-mesh-architecture] .

 The name Data At Rest Encryption was proposed by Melhi Abdulhayo?lu.

12. Appendix A: DARE Envelope Examples and Test Vectors

13. Test Examples

 In the following examples, Alice's encryption private key parameters
 are:

 {
 "PrivateKeyECDH":{
 "crv":"Ed25519",
 "Private":"pL1Td_SjZbgKQwMkr11GICpVujinWV0VSjHcSpIEdpI"}}

 Alice's signature private key parameters are:

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture

Hallam-Baker Expires January 4, 2020 [Page 34]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 {
 "PrivateKeyECDH":{
 "crv":"Ed25519",
 "Private":"utQgSqlZkGD_hd-Qm_Kznx-NVZGyLZu3yIjaGGRYg2g"}}

 The body of the test message is the UTF8 representation of the
 following string:

 "This is a test long enough to require multiple blocks"

 The EDS sequences, are the UTF8 representation of the following
 strings:

 "Subject: Message metadata should be encrypted"
 "2018-02-01"

13.1. Plaintext Message

 A plaintext message without associated EDS sequences is an empty
 header followed by the message body:

 {
 "DareEnvelope":[{},
 "VGhpcyBpcyBhIHRlc3QgbG9uZyBlbm91Z2ggdG8gcmVxdWlyZSBtdWx0aXBsZS
 BibG9ja3M"
]}

13.2. Plaintext Message with EDS

 If a plaintext message contains EDS sequences, these are also in
 plaintext:

 {
 "DareEnvelope":[{
 "Annotations":["iAEBiC1TdWJqZWN0OiBNZXNzYWdlIG1ldGFkYXRhIHNob3
 VsZCBiZSBlbmNyeXB0ZWSIAA",
 "iAECiAoyMDE4LTAyLTAxiAA"
]},
 "VGhpcyBpcyBhIHRlc3QgbG9uZyBlbm91Z2ggdG8gcmVxdWlyZSBtdWx0aXBsZS
 BibG9ja3M"
]}

13.3. Encrypted Message

 The creator generates a master session key:

Hallam-Baker Expires January 4, 2020 [Page 35]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 7C 84 59 B5 09 DE 9A 84 AE 15 DC E9 9D 08 1A BB
 2A 67 65 F6 FC D5 B4 0F 61 84 75 2C E1 85 C3 06

 For each recipient of the message:

 The creator generates an ephemeral key:

 {
 "PrivateKeyECDH":{
 "crv":"Ed25519",
 "Private":"LWZrmAXsjR2VVJB4u009kFfI8nTx4awTXqL1HMkgkHk"}}

 The key agreement value is calculated:

 39 16 01 2A 0F 20 0F 6C 53 93 A4 4D 02 89 4F E0
 7B 65 F6 C9 CA 25 5D B4 0A 09 3C CD 63 4D E0 73

 The key agreement value is used as the input to a HKDF key derivation
 function with the info parameter master to create the key used to
 wrap the master key:

 9F C1 77 32 4F C6 A2 0E B4 B1 FF F8 70 15 E7 1E
 46 4F 5E 5B 16 F0 7E 93 48 CA F5 13 06 8A 06 FE

 The wrapped master key is:

 E4 5D A9 11 B2 B3 F2 F6 68 9A AC F7 C6 A5 22 CD
 F8 A8 5C 8D 6C C6 40 FB 77 90 8F 3E 18 31 F2 14
 CD 5F 99 75 76 87 88 4C

 This information is used to calculate the Recipient information shown
 in the example below.

 To encrypt a message, we first generate a unique salt value:

 21 69 5A 7A 3B 55 B3 64 74 FA 48 FD 9C E2 29 A6

 The salt value and master key are used to generate the payload
 encryption key:

 80 AA F5 E4 F0 35 74 EB 1A 97 14 43 07 81 14 BE
 2B 7F 5E CC A8 0F 09 ED 2F 00 0F 60 6A 50 13 E0

Hallam-Baker Expires January 4, 2020 [Page 36]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Since AES is a block cipher, we also require an initializarion
 vector:

 C4 90 BB A0 89 63 A4 E2 C7 75 88 42 60 B6 0B 15

 The output sequence is the encrypted bytes:

 8B 45 26 DD D2 29 48 4B 3B FF 70 81 4F FB 15 27
 A6 CE 37 26 8E 4A D5 93 90 25 91 43 DF CF EF 3B
 44 CA F2 EB 74 F6 DA 69 BB A9 41 2A 01 8D 3C 1B
 3E F7 27 EC F9 9A 1E 1E 83 43 60 C6 79 7D 43 54

 Since the message is not signed, there is no need for a trailer. The
 completed message is:

 {
 "DareEnvelope":[{
 "enc":"A256CBC",
 "Salt":"IWlaejtVs2R0-kj9nOIppg",
 "recipients":[{
 "kid":"MBNZ-GJFZ-OLGQ-Q6J6-OAGS-JYLE-OQNH",
 "epk":{
 "PublicKeyECDH":{
 "crv":"Ed25519",
 "Public":"caH_trHCVnZAPg0d1fkMruORm-L8vCQVzSiZHrzQ6ao"}},
 "wmk":"5F2pEbKz8vZomqz3xqUizfioXI1sxkD7d5CPPhgx8hTNX5l1do
 eITA"}
]},
 "i0Um3dIpSEs7_3CBT_sVJ6bONyaOStWTkCWRQ9_P7ztEyvLrdPbaabupQSoBjT
 wbPvcn7PmaHh6DQ2DGeX1DVA"
]}

13.4. Signed Message

 Signed messages specify the digest algorithm to be used in the header
 and the signature value in the trailer. Note that the digest
 algorithm is not optional since it serves as notice that a decoder
 should digest the payload value to enable signature verification.

Hallam-Baker Expires January 4, 2020 [Page 37]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 {
 "DareEnvelope":[{
 "dig":"S512"},
 "VGhpcyBpcyBhIHRlc3QgbG9uZyBlbm91Z2ggdG8gcmVxdWlyZSBtdWx0aXBsZS
 BibG9ja3M",
 {
 "signatures":[{
 "signature":"-O-Wb7Pi2APad40loUjY9Nt752eEUap6h3QlbRc91Env
 pLa0yIBVKdjhA6NZy4h3j7HyavbmpGsfrOYfntEOAg"}
],
 "PayloadDigest":"raim8SV5adPbWWn8FMM4mrRAQCO9A2jZ0NZAnFXWlG0x
 F6sWGJbnKSdtIJMmMU_hjarlIPEoY3vy9UdVlH5KAg"}
]}

13.5. Signed and Encrypted Message

 A signed and encrypted message is encrypted and then signed. The
 signer proves knowledge of the payload plaintext by providing the
 plaintext witness value.

 {
 "DareEnvelope":[{
 "enc":"A256CBC",
 "dig":"S512",
 "Salt":"XaMZ2mkbCFsiS4CAH_gbfA",
 "recipients":[{
 "kid":"MBNZ-GJFZ-OLGQ-Q6J6-OAGS-JYLE-OQNH",
 "epk":{
 "PublicKeyECDH":{
 "crv":"Ed25519",
 "Public":"PSPSJGaCeiMsolP05AHVYhHU5Mb_ss-6V2fxWPM76Fw"}},
 "wmk":"F4lY4Yi3d0Og3NoUh_VzFeumhFGaBn0mNana3GjbUlSkqCjacx
 u3_Q"}
]},
 "5VCyJCXq1a7wRcoLgfqQgagkjLV9k-ljRBZ217R2iLH4WaDTUZI8i2_iBBz-Sf
 BDiikJ_JTaQuOyHDVAw8nLgQ",
 {
 "signatures":[{
 "signature":"DTLadbjNopoWfY0vf8lTwqkH_fNuw_4h7TqJaj74n0S4
 3dYktssoBSix917VX2xDBdRyEn8Khmd3-ba627tBBw",
 "witness":"lXO0qec5JKM4M5tAUT1nkEgKyZEZkL0ccn4pL8Cm4hc"}
],
 "PayloadDigest":"20QMWpBwQmKnIEPaGGw_M9w6WKnowSzPZLXWz5MSClRr
 vYOqYDQJkozNfM3uUwZq2PFnLNEnbWNGbbbiH8YQ-w"}
]}

Hallam-Baker Expires January 4, 2020 [Page 38]

Internet-Draft Mesh: Data At Rest Encryption July 2019

14. Appendix B: DARE Container Examples and Test Vectors

 The data payloads in all the following examples are identical, only
 the authentication and/or encryption is different.

 o Frame 1..n consists of 300 bytes being the byte sequence 00, 01,
 02, etc. repeating after 256 bytes.

 For conciseness, the raw data format is omitted for examples after
 the first, except where the data payload has been transformed, (i.e.
 encrypted).

14.1. Simple container

 the following example shows a simple container with first frame and a
 single data frame:

 f4 5d
 f0 59
 f0 00
 5d f4
 f5 01 40
 f0 0f
 f1 01 2c
 40 01 f5

 Since there is no integrity check, there is no need for trailer
 entries. The header values are:

 Frame 0

 {
 "Index": 0,
 "ContainerType": "List",
 "ContentMeta": {},
 "DataEncoding": "JSON"}

 [Empty trailer]

 Frame 1

 {
 "Index": 1}

 [Empty trailer]

Hallam-Baker Expires January 4, 2020 [Page 39]

Internet-Draft Mesh: Data At Rest Encryption July 2019

14.2. Payload and chain digests

 The following example shows a chain container with a first frame and
 three data frames. The headers of these frames is the same as before
 but the frames now have trailers specifying the PayloadDigest and
 ChainDigest values:

 Frame 0

 {
 "Index": 0,
 "ContainerType": "Chain",
 "ContentMeta": {},
 "DataEncoding": "JSON"}

 [Empty trailer]

 Frame 1

 {
 "Index": 1}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "ChainDigest": "T7S1FcrgY3AaWD4L-t5W1K-3XYkPTcOdGEGyjglTD6yMYVR
 Vz9tn_KQc6GdA-P4VSRigBygV65OEd2Vv3YDhww"}

 Frame 2

 {
 "Index": 2}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "ChainDigest": "T7S1FcrgY3AaWD4L-t5W1K-3XYkPTcOdGEGyjglTD6yMYVR
 Vz9tn_KQc6GdA-P4VSRigBygV65OEd2Vv3YDhww"}

 Frame 3

Hallam-Baker Expires January 4, 2020 [Page 40]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 {
 "Index": 3}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "ChainDigest": "T7S1FcrgY3AaWD4L-t5W1K-3XYkPTcOdGEGyjglTD6yMYVR
 Vz9tn_KQc6GdA-P4VSRigBygV65OEd2Vv3YDhww"}

14.3. Merkle Tree

 The following example shows a chain container with a first frame and
 six data frames. The trailers now contain the TreePosition and
 TreeDigest values:

 Frame 0

 {
 "Index": 0,
 "ContainerType": "Merkle",
 "ContentMeta": {},
 "DataEncoding": "JSON"}

 [Empty trailer]

 Frame 1

 {
 "Index": 1,
 "TreePosition": 0}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "TreeDigest": "T7S1FcrgY3AaWD4L-t5W1K-3XYkPTcOdGEGyjglTD6yMYVRV
 z9tn_KQc6GdA-P4VSRigBygV65OEd2Vv3YDhww"}

 Frame 2

 {
 "Index": 2,
 "TreePosition": 325}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "TreeDigest": "7fHmkEIsPkN6sDYAOLvpIJn5Dg3PxDDAaq-ll2kh8722kokk
 FnZQcYtjuVC71aHNXI18q-lPnfRkmwryG-bhqQ"}

Hallam-Baker Expires January 4, 2020 [Page 41]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 Frame 3

 {
 "Index": 3,
 "TreePosition": 325}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "TreeDigest": "T7S1FcrgY3AaWD4L-t5W1K-3XYkPTcOdGEGyjglTD6yMYVRV
 z9tn_KQc6GdA-P4VSRigBygV65OEd2Vv3YDhww"}

 Frame 4

 {
 "Index": 4,
 "TreePosition": 1469}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "TreeDigest": "vJ6ngNATvZcXSMALi5IUqzl1GBxBnTNVcC87VL_BhMRCbAvK
 Sj8gs0VFgxxLkZ2myrtaDIwhHoswiTiBMLNWug"}

 Frame 5

 {
 "Index": 5,
 "TreePosition": 1469}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "TreeDigest": "T7S1FcrgY3AaWD4L-t5W1K-3XYkPTcOdGEGyjglTD6yMYVRV
 z9tn_KQc6GdA-P4VSRigBygV65OEd2Vv3YDhww"}

 Frame 6

 {
 "Index": 6,
 "TreePosition": 2616}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "TreeDigest": "WgHlz3EHczVPqgtpc39Arv7CFIsCbFVsk8wg0j2qLlEfur9S
 Z0mdr65Ka-HF0Qx8gg_DAoiJwUrwADDXyxVJOg"}

Hallam-Baker Expires January 4, 2020 [Page 42]

Internet-Draft Mesh: Data At Rest Encryption July 2019

14.4. Signed container

 The following example shows a tree container with a signature in the
 final record. The signing key parameters are:

 {
 "PrivateKeyECDH":{
 "crv":"Ed25519",
 "Private":"utQgSqlZkGD_hd-Qm_Kznx-NVZGyLZu3yIjaGGRYg2g"}}

 The container headers and trailers are:

 Frame 0

 {
 "Index": 0,
 "ContainerType": "Merkle",
 "ContentMeta": {},
 "DataEncoding": "JSON"}

 [Empty trailer]

 Frame 1

 {
 "Index": 1,
 "TreePosition": 0}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "TreeDigest": "T7S1FcrgY3AaWD4L-t5W1K-3XYkPTcOdGEGyjglTD6yMYVRV
 z9tn_KQc6GdA-P4VSRigBygV65OEd2Vv3YDhww"}

 Frame 2

 {
 "Index": 2,
 "TreePosition": 325}

 {
 "PayloadDigest": "8dyi62d7MDJlsLm6_w4GEgKBjzXBRwppu6qbtmAl6UjZD
 lZeaWQlBsYhOu88-ekpNXpZ2iY96zTRI229zaJ5sw",
 "TreeDigest": "7fHmkEIsPkN6sDYAOLvpIJn5Dg3PxDDAaq-ll2kh8722kokk
 FnZQcYtjuVC71aHNXI18q-lPnfRkmwryG-bhqQ"}

Hallam-Baker Expires January 4, 2020 [Page 43]

Internet-Draft Mesh: Data At Rest Encryption July 2019

14.5. Encrypted container

 The following example shows a container in which all the frame
 payloads are encrypted under the same master secret established in a
 key agreement specified in the first frame.

 Frame 0

{
 "enc": "A256CBC",
 "Salt": "VDnGR20aCOw81vKkoZ1B3g",
 "recipients": [{
 "kid": "MBNZ-GJFZ-OLGQ-Q6J6-OAGS-JYLE-OQNH",
 "epk": {
 "PublicKeyECDH": {
 "crv": "Ed25519",
 "Public": "1LsW7q7UM_dlcglNPDTl7FQCQJ_ygPB-eRRLJ9U_KJE"}},
 "wmk": "yOMdZnE4OoZrkBmjvhow6O7NxH3L_RGg3RMwS1pAiIg4nIYelqEl3Q"}],
 "Index": 0,
 "ContainerType": "List",
 "ContentMeta": {},
 "DataEncoding": "JSON"}

[Empty trailer]

 Frame 1

 {
 "enc": "A256CBC",
 "Salt": "qlf6ppXoDFgb_sYaXehrRQ",
 "Index": 1}

 [Empty trailer]

 Frame 2

 {
 "enc": "A256CBC",
 "Salt": "d7UNbWSW49p6jd-xt9aQHw",
 "Index": 2}

 [Empty trailer]

 Here are the container bytes. Note that the content is now encrypted
 and has expanded by 25 bytes. These are the salt (16 bytes), the AES
 padding (4 bytes) and the JSON-B framing (5 bytes).

Hallam-Baker Expires January 4, 2020 [Page 44]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 f5 01 c0
 f1 01 ab
 f0 10
 c0 01 f5
 f5 01 7c
 f0 47
 f1 01 30
 7c 01 f5
 f5 01 7c
 f0 47
 f1 01 30
 7c 01 f5

 The following example shows a container in which all the frame
 payloads are encrypted under separate key agreements specified in the
 payload frames.

 Frame 0

 {
 "Index": 0,
 "ContainerType": "List",
 "ContentMeta": {},
 "DataEncoding": "JSON"}

 [Empty trailer]

 Frame 1

{
 "enc": "A256CBC",
 "Salt": "APYGT9HjAI6C5ju7Q1ls4A",
 "recipients": [{
 "kid": "MBNZ-GJFZ-OLGQ-Q6J6-OAGS-JYLE-OQNH",
 "epk": {
 "PublicKeyECDH": {
 "crv": "Ed25519",
 "Public": "Ral0xlpE8Oj_2pZQjGSDXanH1oML4ERA84Xep8hR98k"}},
 "wmk": "IzFcpxJRo2q2N_SaEdVj17pJAF4cDThgLy4X9xv99IKcorXvKYbuwQ"}],
 "Index": 1}

[Empty trailer]

 Frame 2

Hallam-Baker Expires January 4, 2020 [Page 45]

Internet-Draft Mesh: Data At Rest Encryption July 2019

{
 "enc": "A256CBC",
 "Salt": "Evqro4DJy6USJcuI0lLp3w",
 "recipients": [{
 "kid": "MBNZ-GJFZ-OLGQ-Q6J6-OAGS-JYLE-OQNH",
 "epk": {
 "PublicKeyECDH": {
 "crv": "Ed25519",
 "Public": "QrWpxH4l_RCs7LMVbd8G6iv4yeq-Wr5NlKinvhEvUKE"}},
 "wmk": "D9fWgLeROP5erSODAjXhm1RAtmFIGH3-neXcMEIjPOxHsjyFF-iR9w"}],
 "Index": 2}

[Empty trailer]

15. Appendix C: Previous Frame Function

 public long PreviousFrame (long Frame) {
 long x2 = Frame + 1;
 long d = 1;

 while (x2 > 0) {
 if ((x2 & 1) == 1) {
 return x2 == 1 ? (d / 2) - 1 : Frame - d;
 }
 d = d * 2;
 x2 = x2 / 2;
 }
 return 0;
 }

16. Appendix D: Outstanding Issues

 The following issues need to be addressed.

Hallam-Baker Expires January 4, 2020 [Page 46]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 +----------------+--+
 | Issue | Description |
 +----------------+--+
X25519	The examples currently use Edwards Curve25519
	for encryption. This should be Curve X25519
Indexing	No examples are given of indexing a container
Archive	Should include a file archive example
File Path	Mention the file path security issue in the
	security considerations
Security	Write Security considerations
Considerations	
AES-GCM	Switch to using AES GCM in the examples
Witness	Complete handling of witness values.
Schema	Complete the schema documentation
Container Redo	Rework the container/header objects so that
	these are separate classes and Header is an
	entry in the Container header.
 +----------------+--+

 Table 1

17. References

17.1. Normative References

 [draft-hallambaker-jsonbcd]
 Hallam-Baker, P., "Binary Encodings for JavaScript Object
 Notation: JSON-B, JSON-C, JSON-D", draft-hallambaker-

jsonbcd-14 (work in progress), April 2019.

 [draft-hallambaker-mesh-architecture]
 Hallam-Baker, P., "Mathematical Mesh Part I: Architecture
 Guide", draft-hallambaker-mesh-architecture-07 (work in
 progress), April 2019.

 [draft-hallambaker-mesh-security]
 Hallam-Baker, P., "Mathematical Mesh Part VII: Security
 Considerations", draft-hallambaker-mesh-security-00 (work
 in progress), April 2019.

 [draft-hallambaker-mesh-udf]
 Hallam-Baker, P., "Mathematical Mesh Part II: Uniform Data
 Fingerprint.", draft-hallambaker-mesh-udf-02 (work in
 progress), April 2019.

 [IANAJOSE]
 "[Reference Not Found!]".

https://datatracker.ietf.org/doc/html/draft-hallambaker-jsonbcd
https://datatracker.ietf.org/doc/html/draft-hallambaker-jsonbcd-14
https://datatracker.ietf.org/doc/html/draft-hallambaker-jsonbcd-14
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-07
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security-00
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-udf
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-udf-02

Hallam-Baker Expires January 4, 2020 [Page 47]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997.

 [RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
 Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
 September 2002.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880,
 DOI 10.17487/RFC4880, November 2007.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015.

17.2. Informative References

 [BLOCKCHAIN]
 Chain.com, "Blockchain Specification".

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2315
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518

Hallam-Baker Expires January 4, 2020 [Page 48]

Internet-Draft Mesh: Data At Rest Encryption July 2019

 [Davis2001]
 Davis, D., "Defective Sign & Encrypt in S/MIME, PKCS#7,
 MOSS, PEM, PGP, and XML", May 2001.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009.

 [ZIPFILE] PKWARE Inc, "APPNOTE.TXT - .ZIP File Format
 Specification", October 2014.

17.3. URIs

 [1] http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

 [2] http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

 [3] http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

 [4] http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

 [5] http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

 [6] http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

 [7] http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

Author's Address

 Phillip Hallam-Baker

 Email: phill@hallambaker.com

https://datatracker.ietf.org/doc/html/rfc5652
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-dare.html

Hallam-Baker Expires January 4, 2020 [Page 49]

