
Network Working Group P. Hallam-Baker
Internet-Draft April 4, 2019
Intended status: Informational
Expires: October 6, 2019

Mathematical Mesh: Reference Implementation
draft-hallambaker-mesh-developer-08

Abstract

 The Mathematical Mesh 'The Mesh' is an end-to-end secure
 infrastructure that facilitates the exchange of configuration and
 credential data between multiple user devices.

 This document describes the Mesh reference code and how to install,
 run and make use of it in applications. It does not form a part of
 the Mesh specifications and is not normative.

 This document is also available online at
http://mathmesh.com/Documents/draft-hallambaker-mesh-developer.html

 [1] .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 6, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Hallam-Baker Expires October 6, 2019 [Page 1]

http://mathmesh.com/Documents/draft-hallambaker-mesh-developer.html
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Mathematical Mesh Developer April 2019

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Definitions . 3
1.1. Requirements Language 3
1.2. Defined Terms . 3
1.3. Related Specifications 3
1.4. Implementation Status 3

2. Getting the Reference Code and Build Tools 3
2.1. Obtaining the Development Environment 4
2.2. Obtaining the Build Tools 4
2.3. Obtaining the Mesh Source Libraries 5

3. Compiling the Reference Code 5
3.1. Creating a software signing key 5
3.2. Create (dummy) build action files 6

4. Running the Reference Code Examples 7
4.1. Starting the Server 7
4.2. The Profile Manager Wizard 7
4.3. The Profile Connection Wizard 8

5. Platform specific configuration data 8
5.1. Windows . 8
5.1.1. Private Key Data 8
5.1.2. Registry settings 8
5.1.3. Profile data files 9

5.2. OSX and Linux . 9
6. Using the Mesh C#/.Net Libraries in an Application 9
6.1. Portals, Sessions and Clients 9
6.1.1. MeshSession vs PersonalSession 10

6.2. Creating a Mesh Session 10
6.3. Creating a Mesh Session for Testing 11
6.4. Checking that a Portal Account name is acceptable 12
6.5. Creating a Personal Profile 13
6.6. Creating an Offline Escrow Entry 13
6.7. Deleting Profile Data 13
6.8. Recovering Profile Data 13
6.9. Connecting a New Device 14
6.10. Managing Applications 15

7. Using other languages . 15
7.1. Lightweight API . 15

8. Implementation Status . 16
8.1. Reference Implementation 16
8.1.1. Coverage: . 17

Hallam-Baker Expires October 6, 2019 [Page 2]

Internet-Draft Mathematical Mesh Developer April 2019

8.1.2. Licensing . 17
8.1.3. Implementation Experience 17
8.1.4. Contact Info . 17

9. Security Considerations 18
10. IANA Considerations . 18
11. Acknowledgements . 18
12. References . 18
12.1. Normative References 18
12.2. Informative References 18
12.3. URIs . 18

 Author's Address . 19

1. Definitions

 This section presents the related specifications and standard, the
 terms that are used as terms of art within the documents and the
 terms used as requirements language.

1.1. Requirements Language

 This document is not normative and does not contain requirements
 language

1.2. Defined Terms

 The terms of art used in this document are described in the Mesh
 Architecture Guide [draft-hallambaker-mesh-architecture] .

1.3. Related Specifications

 The architecture of the Mathematical Mesh is described in the Mesh
 Architecture Guide [draft-hallambaker-mesh-architecture] . The Mesh
 documentation set and related specifications are described in this
 document.

1.4. Implementation Status

 The implementation status of the reference code base is described in
 the companion document [draft-hallambaker-mesh-developer] .

2. Getting the Reference Code and Build Tools

 The Mesh Reference library was developed using Visual Studio 2017
 Community Edition [VS2017] using PHB's Build Tools [PHB2017]
 extensions. The reference code itself is currently limited to C#
 libraries.

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer

Hallam-Baker Expires October 6, 2019 [Page 3]

Internet-Draft Mathematical Mesh Developer April 2019

 The code should in theory run under other operating systems but this
 has not been tested recently.

 Development under different development environments is also possible
 but would require re-engineering to make use of the line mode
 versions of the build tools.

2.1. Obtaining the Development Environment

 Visual Studio 2017 Community Edition is currently available at no
 cost for a wide range of non-commercial development including
 personal use and development of Open Source software. For full
 details, please consult the license published by Microsoft.

https://www.visualstudio.com/

2.2. Obtaining the Build Tools

 Over half the code in the reference code library is generated using
 code generators. These are used to ensure that the specification,
 examples and reference code are always kept in synchronization.

 The build tools are published under an MIT License and are available
 in two forms:

 As stand-alone tools to be run from the command line.

 As a VSIX package that integrates into the Visual Studio environment.

 The source distribution is configured to use the tools integrated
 into the Visual Studio environment. If development on other
 platforms is desired, the simplest approach is likely to be to write
 a tool that reads the Visual Studio configuration files and generates
 the corresponding files for use with make.

 The VSIX package is available from the Visual Studio extensions
 gallery:

 PHB Code Generation Tools

 The source code for the build tools is available from:

https://sourceforge.net/projects/phb-build-tools/

https://www.visualstudio.com/
https://sourceforge.net/projects/phb-build-tools/

Hallam-Baker Expires October 6, 2019 [Page 4]

Internet-Draft Mathematical Mesh Developer April 2019

2.3. Obtaining the Mesh Source Libraries

 The Mesh reference library source code is published under an MIT
 license and is available from:

https://sourceforge.net/projects/mathematicalmesh/

3. Compiling the Reference Code

 To compile the code it is necessary to

 Create a signing key

 Create batch files for pre and post build tasks

3.1. Creating a software signing key

 The purpose of signing assemblies is so that they can be
 authenticated during the load process. For this to be secure, it is
 of course essential that each developer has their own key.

 To create a software developer signing key, the Visual Studio 'sn'
 tool is used. To run the tool, start the Visual Studio Developer
 Console in administrator mode. This requires the following steps:

 Move to a directory you want to write to.

 Set the machine to create user based keys

 Create a new key and write it to a file.

 Copy the file from the key to a container.

 Delete the container.

 Locate the private key file

 Give permission to use the key.

 This is of course one of the tasks we would like to automate with the
 Mesh tools in due course but that presents a bootstrap problem.

https://sourceforge.net/projects/mathematicalmesh/

Hallam-Baker Expires October 6, 2019 [Page 5]

Internet-Draft Mathematical Mesh Developer April 2019

 C:\Windows\System32>cd hallam

 c:\Users\hallam>sn -m N

 Microsoft (R) .NET Framework Strong Name Utility Version 4.0.30319.0
 Copyright (c) Microsoft Corporation. All rights reserved.

 Key containers are user based

 c:\Users\hallam>sn -k fred.snk

 Microsoft (R) .NET Framework Strong Name Utility Version 4.0.30319.0
 Copyright (c) Microsoft Corporation. All rights reserved.

 Key pair written to fred.snk

 c:\Users\hallam>sn -i fred.snk SigningKeyDeveloper

 Microsoft (R) .NET Framework Strong Name Utility Version 4.0.30319.0
 Copyright (c) Microsoft Corporation. All rights reserved.

 Key pair installed into 'SigningKeyDeveloper'

 c:\Users\hallam>del fred.snk

 c:\Users\hallam>

3.2. Create (dummy) build action files

 Visual Studio allows projects to specify batch files to be run before
 and after a project build. Since the actions to be taken are likely
 to change from developer to developer, these are specified in
 separate batch files. All that is necessary to build the code
 without warnings is to specify a set of dummy batch files with the
 following names and place them somewhere in the command line $PATH
 environment variable.

 The files required are:

 VSPreBuild.bat

 VSPostBuild.bat

 VSPostBuildWindows.bat

 VSPostBuildOSX.bat

 VSPostBuildLinux.bat

Hallam-Baker Expires October 6, 2019 [Page 6]

Internet-Draft Mathematical Mesh Developer April 2019

 The following code will prevent error messages being thrown:

 @echo off
 SETLOCAL
 exit /b 0

4. Running the Reference Code Examples

 The reference code examples are designed to illustrate how the Mesh
 might be used in an application rather than be standalone tools in
 their own right. The Mesh is designed to make it each for developers
 to add security to their own applications rather than providing the
 applications themselves.

4.1. Starting the Server

 On the Windows platform, the server runs in the context of the
 platform Web server and must be granted permission to bind to the
 range of server addresses used using the netsh command.

 From a command prompt with administrator privileges, run the
 following command:

 netsh http add urlacl http://<domain>/.well-known/mmm/
 \user=<machine>\<user>

 Where is the DNS domain name under which the service is run, is the
 Windows domain name of the machine and the account name.

 To start the service from the command line type:

 servermesh <domain>

 The server does not require administration privileges.

4.2. The Profile Manager Wizard

 The profile manager wizard demonstrates functions that are performed
 on an administration device. These include creating a completely new
 profile and initial configuration of applications, connecting a
 device to the profile and recovery of the profile from escrow data.

 To run the client from the command line, place the executable image
 in a location that it will be found in the PATH variable and type:

 meshclient

Hallam-Baker Expires October 6, 2019 [Page 7]

Internet-Draft Mathematical Mesh Developer April 2019

4.3. The Profile Connection Wizard

 The Profile connection wizard demonstrates the much more restricted
 functionality that would be required in a Mesh connected application
 and/or a profile manager for a non-administration device.

 To run the client from the command line, place the executable image
 in a location that it will be found in the PATH variable and type:

 meshconnect

5. Platform specific configuration data

5.1. Windows

5.1.1. Private Key Data

 All private key data is stored using the Windows public key store.
 At minimum, this ensures that private keys are obfuscated and
 encrypted under the account password to protect the data against
 casual extraction attacks. On a machine with cryptographic hardware
 support such as a TPM or HSM, extraction of the private key may be
 infeasible without physical access to the machine and possibly
 require sophisticated diagnostic equipment.

5.1.2. Registry settings

 Separate settings are used for production and test code. Test Code
 should use the Registry Hive:

 HKEY_CURRENT_USER\SOFTWARE\CryptoMesh

 Production code should use the hive

 HKEY_CURRENT_USER\SOFTWARE\MathematicalMesh

 In either case the sub structure is:

 Accounts Contains the set of Mesh Portal Accounts for the user. The
 default value is the account name of the default account. The
 Name of the each key is a portal account name and the value a
 REG_SZ entry containing the UDF of the profile master key.

 PersonalProfiles Contains the set of Mesh Profiles for the user.
 The default value is the UDF of the default profile master key.
 The Name of each key is the UDF of the master key and the value a
 REG_SZ entry containing the file location of the cached copy of
 the personal profile.

Hallam-Baker Expires October 6, 2019 [Page 8]

Internet-Draft Mathematical Mesh Developer April 2019

 ThisDevice Contains the set of Device profiles in the same format as
 the PersonalProfiles.

5.1.3. Profile data files

 The profile data itself is stored in data files at the location
 specified in the registry. The files are standard XML files in UTF8
 encoding.

5.2. OSX and Linux

 [[Not yet implemented, subject to change.]

 All configuration information is stored in the user directory ~/.mmm

 Keys are stored in SSH key file format [RFC4716] using the customary
 name and extension conventions for that application.

6. Using the Mesh C#/.Net Libraries in an Application

 The application ExampleGenerator shows the use of the Mesh in an
 application using the convenience API. It is the application program
 used to generate the examples in the reference document.

 ExampleGenerator implements a client that connects to a remote Web
 Service, creates new personal profile with an escrow entry with
 offline recovery codes, attaches applications and other devices,
 updates an application profile, deletes all the profile data from the
 local machine and then restores them using the recovery codes and
 escrow entry.

6.1. Portals, Sessions and Clients

 The libraries are designed to support testing and development use.
 For this reason, the client side of the libraries is divided into the
 following main classes:

 MeshClient Provides a logical connection to a remote or simulated
 Mesh service.

 MeshPortal Provides the interface to a Mesh service which may be an
 actual remote service accessed via a network connection, or local
 code running in the same process as the client to simulate a Mesh
 service for testing purposes.

 MeshMachine Provides an interface to Mesh data stored on the local
 machine.

https://datatracker.ietf.org/doc/html/rfc4716

Hallam-Baker Expires October 6, 2019 [Page 9]

Internet-Draft Mathematical Mesh Developer April 2019

 MeshSession / PersonalSession Provide the high level application
 interface to the Mesh combining access through the MeshClient and
 MeshMachine.

 The relationship between these parts is shown in . The application
 programmer will typically need only the MeshSession class.

 The principal classes in the Mesh Client side API.

 This division makes it possible to test Mesh clients and server
 implementations in a single process with a single debugger which is
 usually more convenient than spinning up a separate development
 session for the client and service.

6.1.1. MeshSession vs PersonalSession

 Most Mesh operations are performed within the context of a specific
 PersonalProfile registered on the current machine. This context is
 provided by an instance of the PersonalSession class.

 An instance of the MeshSession class is used for operations that are
 not bound to a specific PersonalProfile registered on the machine.
 These operations are:

 o Binding a new PersonalProfile to the machine.

 o Offline key recovery.

 o Requesting and completing a device connection request from the new
 device.

 o Acquiring a PersonalSession instance.

6.2. Creating a Mesh Session

 The primary interface for the application programmer is the
 MeshSession class. To create a mesh session class, the following
 steps are required:

 1. Initialize the Mesh code for the intended platform

 2. Request a new MeshSession instance.

 Although C# code is nominally 'write once, run anywhere', this
 approach does not ensure use of platform specific features such as
 the Windows registry or protected storage for cryptographic keys.
 Calling MeshWindows.Initialize() causes the platform specific code
 for the Windows to be initialized in production mode. Alternatively,

Hallam-Baker Expires October 6, 2019 [Page 10]

Internet-Draft Mathematical Mesh Developer April 2019

 calls to MeshLinux.Initialize() or MeshOSX.Initialize() causes the
 platform specific code for those platforms to be initialized.

 The code to initialize a production instance of the code is shown in
 :

 static MeshSession MeshSession = null;

 static void ApplicationInit () {
 MeshWindows.Initialize();
 MeshSession = new MeshSession();
 }

 If the user has already created a PersonalProfile and connected it to
 the machine, it will automatically be read from local storage. The
 instance will automatically create MeshClient instances as required
 to establish a web service using the default transport (HTTP) to the
 service as necessary (see).

 Connecting to a remote service from a Windows platform.

 The server implementation is managed in the same fashion.
 Internally, the MeshService and MeshClient classes are both descended
 from the same parent.

6.3. Creating a Mesh Session for Testing

 Since the purpose of the ExampleGenerator is to create examples for
 the documentation, it is not necessary for the JSON Remote Procedure
 Calls to actually be 'Remote'. Instead the 'Local' Procedure Call
 mode is used in which the client and server both run in the same
 process with the client API invoking the server dispatch methods
 through an interface that performs JSON serialization and
 deserialization but does not invoke the network transport.

 Connecting to a direct service for testing.

 A direct connection to the service provider may be established by
 either specifying the portal to use in the initialization of
 MeshSession or by setting the default portal property of the
 MeshPortal class as is done here .

Hallam-Baker Expires October 6, 2019 [Page 11]

Internet-Draft Mathematical Mesh Developer April 2019

 static void DebugApplicationInit () {

 MeshPortal.Default = new MeshPortalDirect("example.com",
 "MeshLog.jlog", "PortalLog.jlog");

 MeshWindows.Initialize(true);
 MeshSession = new MeshSession();
 MeshSession.EraseTest();
 }

 This time, we initialize a specific version of the platform dependent
 code and specify that it is to be initialized as test code rather
 than production. This will cause all persistent data stored on the
 machine (keys, profiles) to be stored in locations marked as test
 locations. The EraseTest() method causes all data stored in test
 locations to be erased from the machine, thus ensuring that the test
 begins from a known state with no results from previous runs.

 When writing test code, it is frequently useful to create multiple
 independent MeshSessions to simulate multiple machines. To prevent
 data written to one machine interfering with another, a new simulated
 machine is created for each session using the MeshMachineCached class

 MeshSession = new MeshSession(new MeshMachineCached());

6.4. Checking that a Portal Account name is acceptable

 The user experience is improved if the application indicates whether
 their choice of portal account name is acceptable or not while they
 are entering it. The Validate method allows the user's choice of
 account name to be validated .

 PersonalProfile PersonalProfile;
 PersonalSession PersonalSession;
 OfflineEscrowEntry OfflineEscrowEntry;

 void DebugCreateProfile () {
 var Response = MeshSession.Validate("alice@example.com");
 if (!Response.Valid) {
 throw new Exception();
 }
 ...

 The portal address is given in the usual username@domain format, for
 example alice@example.com.

Hallam-Baker Expires October 6, 2019 [Page 12]

Internet-Draft Mathematical Mesh Developer April 2019

6.5. Creating a Personal Profile

 Creating a PersonalProfile has two steps:

 1. Create a DeviceProfile (if necessary)

 2. Create the PersonalProfile

 3. Create an account bound to the profile at the portal.

 These steps are shown in .

 var Device = MeshSession.CreateDevice();
 PersonalProfile = new PersonalProfile(
 Device.DeviceProfile);
 PersonalSession = MeshSession.CreateAccount(
 "alice@example.com", PersonalProfile);

 The application could have overridden the default values of DeviceID
 and DeviceDescription when creating the device.

6.6. Creating an Offline Escrow Entry

 Having created a potentially valuable profile, we probably want to
 back it up. To do this, we create an instance of the
 OfflineEscrowEntry class with the desired quorum and number of shares
 (2 out of 4) .

 OfflineEscrowEntry = new OfflineEscrowEntry(
 PersonalProfile, 2, 4);
 PersonalSession.Escrow(OfflineEscrowEntry);

6.7. Deleting Profile Data

 We can test our escrow parameters by deleting the profile from the
 current machine using the Delete method .

 PersonalSession.Delete();

6.8. Recovering Profile Data

 Profile recovery has two steps:

 1. Reconstruct the shared secret from the recovery shares.

 2. Recover the profile.

Hallam-Baker Expires October 6, 2019 [Page 13]

Internet-Draft Mathematical Mesh Developer April 2019

 In this case our recovery shares are the first and the third key
 shares we just generated. The Recover method recovers the profile
 and rebinds it to the existing portal .

 var RecoveryShares = new KeyShare[] {
 OfflineEscrowEntry.KeyShares[0],
 OfflineEscrowEntry.KeyShares[2] };

 var Secret = new Secret(RecoveryShares);
 PersonalSession = MeshSession.Recover(
 Secret, "alice@example.com");
 }

6.9. Connecting a New Device

 Device connection involves two devices, the device to be connected
 and the device used to approve the request.

 The new device:

 1. Create a device profile for the new device.

 2. Request connection to the new device

 3. Wait for the result.

 These calls are shown .

 void RequestConnect (string Address) {
 var DeviceRegistration = MeshSession.CreateDevice();
 var Connect = MeshSession.Connect(DeviceRegistration,
 Address, out var Authenticator);
 PersonalSession = Connect.Await();
 }

 In a real example, we would want to show the connection
 authentication code to the user so that they can verify that they are
 responding to the right request on the approval device.

 On the approval device, the application

 1. Requests a list of pending requests using ConnectPending.

 2. Accepts or Rejects devices using ConnectClose.

Hallam-Baker Expires October 6, 2019 [Page 14]

Internet-Draft Mathematical Mesh Developer April 2019

 void AcceptPending () {

 var Pending = PersonalSession.ConnectPending();
 foreach (var Request in Pending.Pending) {
 var Result = PersonalSession.ConnectClose(Request,
 ConnectionStatus.Accepted);
 }
 }

6.10. Managing Applications

 Application profiles are created in the same manner as personal
 profiles .

 var PasswordProfile = new PasswordProfile(true);
 var RegistrationApplication =
 RegistrationPersonal.Add(PasswordProfile, false);

 Changes to the Application Profile are written to the
 RegistrationApplication instance and then committed using the
 Update() method.

7. Using other languages

 If you are building Mesh applications in another language, the least
 effort approach may be to rewrite the PROTOGEN build tool to target
 your language.

 Protogen does support generation of C header files that may be used
 to drive a parser. If however you are adding Mesh support for an
 application that already uses JSON based protocols, you might want to
 edit the generator scripting files to generate code for your existing
 libraries.

7.1. Lightweight API

 A lightweight API providing the minimal features required to Mesh
 enable an application is required. Such an API should exclude most
 account management features:

 o Creating new Personal Profiles and portal accounts.

 o Key escrow, recovery

 o List, accept pending device connection requests

 This leaves the following features:

Hallam-Baker Expires October 6, 2019 [Page 15]

Internet-Draft Mathematical Mesh Developer April 2019

 o Create Device Profile

 o Request device connection

 o Get Personal Profile

 o Get, Update, Application Profile

 In addition to providing less functionality, an implementation of the
 lightweight binding is likely to be written in a 'flattened' style
 rather than the abstracted, object oriented approach of the reference
 code.

8. Implementation Status

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC6892] .
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC6892] , "this will allow reviewers and working
 groups to assign due consideration to documents that have the benefit
 of running code, which may serve as evidence of valuable
 experimentation and feedback that have made the implemented protocols
 more mature. It is up to the individual working groups to use this
 information as they see fit".

8.1. Reference Implementation

 Organization: Comodo Group Inc.

 Implementer: Phillip Hallam-Baker

 Maturity: Experimental Prototype

 This implementation was used to produce the reference section and all
 the examples in this document. Since the conversion of specification
 to code is automatic, there is a high degree of assurance that the
 reference implementation is consistent with this document.

https://datatracker.ietf.org/doc/html/rfc6892
https://datatracker.ietf.org/doc/html/rfc6892

Hallam-Baker Expires October 6, 2019 [Page 16]

Internet-Draft Mathematical Mesh Developer April 2019

8.1.1. Coverage:

 The draft-xx branch describes the code used to create version xx of
 this document.

 The main current limitations are that the code only supports RSA key
 pairs and for ease of development the server does not persist keys
 across sessions. Nor does the implementation currently support the
 HTTP payload authentication and encryption layer or make use of TLS.
 These could be easily fixed.

 The client and server are implemented as libraries that may be called
 from a multi-protocol server. A standalone server will be provided
 in a future release.

 Only the JSON encoding is currently implemented. The JSON-B, JSON-C,
 ASN.1 and TLS Schema implementations are all supported by the code
 generation tool but not currently implemented as the build tool
 bindings for those encodings have not yet been finalized or
 documented.

 The key restrictions for TLS key exchange have not yet been
 implemented.

 The code has only been tested on Windows 10 but passed compatibility
 testing for both Mono and dotNetCore 2.0 run times which should in
 theory permit use on Linux and OSX platforms.

8.1.2. Licensing

 The code is released under an MIT License

 Source code is available from GitHub at
https://github.com/hallambaker/Mathematical-Mesh

8.1.3. Implementation Experience

 The implementation and specification documentation were developed in
 Visual Studio using the PHB Build Tools suite.

8.1.4. Contact Info

 Contact Phillip Hallam-Baker phill@hallambaker.com

https://datatracker.ietf.org/doc/html/draft-xx
https://github.com/hallambaker/Mathematical-Mesh

Hallam-Baker Expires October 6, 2019 [Page 17]

Internet-Draft Mathematical Mesh Developer April 2019

9. Security Considerations

 Security Considerations are addressed in the companion document
 [draft-hallambaker-mesh-architecture]

10. IANA Considerations

 This document specifies no actions for IANA

11. Acknowledgements

 Comodo Group: Egemen Tas, Melhi Abdulhayo?lu, Rob Stradling, Robin
 Alden.

12. References

12.1. Normative References

 [RFC4716] Galbraith, J. and R. Thayer, "The Secure Shell (SSH)
 Public Key File Format", RFC 4716, DOI 10.17487/RFC4716,
 November 2006.

12.2. Informative References

 [draft-hallambaker-mesh-architecture]
 Hallam-Baker, P., "Mathematical Mesh Part I: Architecture
 Guide", draft-hallambaker-mesh-architecture-06 (work in
 progress), August 2018.

 [draft-hallambaker-mesh-developer]
 Hallam-Baker, P., "Mathematical Mesh: Reference
 Implementation", draft-hallambaker-mesh-developer-07 (work
 in progress), April 2018.

 [PHB2017] "[Reference Not Found!]".

 [RFC6892] Wilde, E., "The 'describes' Link Relation Type", RFC 6892,
 DOI 10.17487/RFC6892, March 2013.

 [VS2017] "[Reference Not Found!]".

12.3. URIs

 [1] http://mathmesh.com/Documents/draft-hallambaker-mesh-
developer.html

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/rfc4716
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-06
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-07
https://datatracker.ietf.org/doc/html/rfc6892
http://mathmesh.com/Documents/draft-hallambaker-mesh-developer.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-developer.html

Hallam-Baker Expires October 6, 2019 [Page 18]

Internet-Draft Mathematical Mesh Developer April 2019

Author's Address

 Phillip Hallam-Baker

 Email: phill@hallambaker.com

Hallam-Baker Expires October 6, 2019 [Page 19]

