wWorkgroup: Network Working Group
Internet-Draft:
draft-hallambaker-mesh-protocol
Published: 9 March 2020
Intended Status: Informational
Expires: 10 September 2020
Authors: P. M. Hallam-Baker

ThresholdSecrets.com

Mathematical Mesh 3.0 Part V: Protocol Reference

Abstract

The Mathematical Mesh 'The Mesh' is an end-to-end secure
infrastructure that facilitates the exchange of configuration and
credential data between multiple user devices. The core protocols of
the Mesh are described with examples of common use cases and
reference data.

[Note to Readers]
Discussion of this draft takes place on the MATHMESH mailing list
(mathmesh@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=mathmesh.

This document is also available online at http://mathmesh.com/
Documents/draft-hallambaker-mesh-protocol.html.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 September 2020.
Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.


http://mathmesh.com/Documents/draft-hallambaker-mesh-protocol.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-protocol.html
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document.

Table of Contents

=

Introduction

N

Definitions

(o)

w

1.

2.

1.

2.

2.4.

Requirements Language

Defined Terms

Related Specifications

Implementation Status

Mesh Service

Data Model

Partitioning

Protocol Bindings

A,

2.

4.

2

DNS Web Service Discovery

Web Service Protocol Binding

.1. Transport Security

4.

2.

2. HTTP Message Binding

2.

3. Request

4.

2.

4. Response

4.

4.3.

3.

DARE Message Encapsulation

1. Null Authentication

4.

3.

2. Device Authentication

4.

3.

3. Profile Authentication

4.

3

.4. Ticket Authentication



https://trustee.ietf.org/license-info

lon

o

I~

|co

|©

4.4. Payload Encoding

N

.5. Error handling and response codes

Service Description

Account Management

Container Synchronization

7.1. Status Transaction

~

.2. Download Transaction

7.2.1. Conflict Detection

7.2.2. Filtering

7.3. Upload Transaction

Device Connection
8.1. Device Authenticated
8.2 PIN Authenticated
8.3. EARL connection mode
Mesh Messaging
9.1. Message Exchange

9.1.1. Client-Service (Post Transaction)

9.1.2. Service-Service (Post Transaction)

9.1.3. Service-Client (Synchronization)

Protocol Schema

10.1. Request Messages

10.1.1. Message: MeshRequest

10.1.2. Message: MeshRequestUser

10.2. Response Messages

10.2.1. Message: MeshResponse

10.3. Imported Objects




10.4. Common Structures

10.4.1. Structure: KeyValue

10.4.2. Structure: ConstraintsSelect

10.4.3. Structure: ConstraintsData

10.4.4. Structure: PolicyAccount

10.4.5. Structure: ContainerStatus

10.4.6. Structure: ContainerUpdate
10.5. Transaction: Hello

10.5.1. Message: MeshHelloResponse
10.6. Transaction: CreateAccount

10.6.1. Message: CreateRequest

10.6.2. Message: CreateResponse
10.7. Transaction: DeleteAccount

10.7.1. Message: DeleteRequest

10.7.2. Message: DeleteResponse
10.8. Transaction: Complete

10.8.1. Message: CompleteRequest

10.8.2. Message: CompleteResponse
10.9. Transaction: Status

10.9.1. Message: StatusRequest

10.9.2. Message: StatusResponse
10.10. Transaction: Download

10.10.1. Message: DownloadRequest

10.10.2. Message: DownloadResponse
10.11. Transaction: Upload

10.11.1. Message: UploadRequest




10.11.2. Message: UploadResponse

10.11.3. Structure: EntryResponse

10.12. Transaction: Post

10.12.1. Message: PostRequest

10.12.2. Message: PostResponse

10.13. Transaction: Connect

10.13.1. Message: ConnectRequest

10.13.2. Message: ConnectResponse

11. Security Considerations

12. IANA Considerations

13. Acknowledgements

14. Normative References

15. Informative References

Introduction

This document describes the Mesh Service protocol supported by Mesh
Services, an account-based protocol that facilitates exchange of
data between devices connected to a Mesh profile and between Mesh
accounts.

Mesh Service Accounts support the following services:

*Provides the master persistence store for the Catalogs and Spools
associated with the account.

*Enables synchronization of Catalogs and Spools with connected
devices.

*Enforces access control on inbound Mesh Messages from other users
and other Mesh Services.

*Authenticates outbound Mesh Messages, certifying that they comply
with abuse mitigation policies.

A Mesh Profile MAY be bound to multiple Mesh Service Accounts at the
same time but only one Mesh Service Account is considered to be
authoritative at a time. Users may add or remove Mesh Service



Accounts and change the account designated as authoritative at any
time.

The Mesh Services are build from a very small set of primitives
which provide a surprisingly extensive set of capabilities. These
primitives are:

Hello Describes the features and options provided by the service
and provides a 'null' transaction which MAY be used to establish
an authentication ticket without performing any action,

CreateAccount, DeleteAccount Manage the creation and deletion of
accounts at the service.

Status, Download, Upload Support synchronization of Mesh containers
between the service (Master) and the connected devices
(Replicas).

Connect 1Initiate the process of connecting a device to a Mesh
profile from the device itself.

Post Request that a Mesh Message be transferred to one or more Mesh
Accounts.

Although these functions could in principle be used to replace many
if not most existing Internet application protocols, the principal
value of any communication protocol lies in the size of the audience
it allows them to communicate with. Thus, while the Mesh Messaging
service is designed to support efficient and reliable transfer of
messages ranging in size from a few bytes to multiple terabytes, the
near-term applications of these services will be to applications
that are not adequately supported by existing protocols if at all.

2. Definitions

This section presents the related specifications and standard, the
terms that are used as terms of art within the documents and the
terms used as requirements language.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

2.2. Defined Terms

The terms of art used in this document are described in the Mesh
Architecture Guide [draft-hallambaker-mesh-architecture].




2

2.

.3.

Related Specifications

The architecture of the Mathematical Mesh is described in the Mesh
Architecture Guide [draft-hallambaker-mesh-architecture]. The Mesh
documentation set and related specifications are described in this
document.

4. Implementation Status

The implementation status of the reference code base is described in
the companion document [draft-hallambaker-mesh-developer].

Mesh Service

A Mesh Service is a minimally trusted service. In particular a user
does not need to trust a Mesh service to protect the confidentiality
or integrity of most data stored in the account catalogs and spools.

Unless the use of the Mesh Service is highly restricted, a user does
need to trust the Mesh Service in certain respects:

Data Loss A service could refuse to respond to requests to download
data.

Integrity (Stale Data) The use of Merkle Trees limits but does not
eliminate the ability of a Mesh Service to respond to requests
with stale data.

Messaging A service could reject requests to post messages to or
accept messages from other mesh users.

This risk is a necessary consequence of the fact that the Mesh
Service Provider is accountable to other Mesh Service Providers
for abuse originating from their service.

Traffic analysis A Mesh Service has knowledge of the number of Mesh
Messages being sent and received by its users and the addresses
to which they are being sent to or received from.

The need to trust the Mesh Service in these respects is mitigated by
accountability and the user's ability to change Mesh Service
providers at any time they choose with minimal inconvenience.

It is possible that some of these risks will be reduced in future
versions of the Mesh Service Protocol but it is highly unlikely that
these can be eliminated entirely without compromising practicality
or efficiency.



3.1. Data Model

The design of the Mesh Service model followed a quasi-formal
approach in which the system was reduced to schemas which could in
principle be rendered in a formal development method but without
construction of proofs.

Like the contents of Mesh Accounts, a Mesh Service may be
represented by a collection of catalogs and spools, for example:

Account Catalog Contains the account entries.
Incident Spool Reports of potential abuse

Backup of the service MAY be implemented using the same container
synchronization mechanism used to synchronize account catalogs and
spools.

3.2. Partitioning

Mesh Services supporting a large number of accounts or large
activity volume MAY partition the account catalog between one or
more hosts using the usual tiered service model in which a front-end
server receilives traffic for any account hosted at the server and
routes the request to the back-end service that provides the
persistence store for that account.

In addition, the Mesh Service Protocol supports a 'direct
connection' partitioning model in which devices are given a DNS name
which MAY allow for direct connection to the persistence host or to
a front-end service offering service that is in some way specific to
that account.

4. Protocol Bindings

Mesh Service transactions are mapped to an underlying messaging and
transport protocol. The following binding

Mesh Services MUST support the Web Service binding specified in this
document and MAY support the UDP binding currently in development.

4.1. DNS Web Service Discovery
The DNS Web Service discovery mechanism is used to discover Mesh
Services regardless of the protocol binding .The service name, DNS
prefix and and .well-known service suffix are specified as follows:

*Service Name: mmm

*DNS Prefix: _mmm._tcp



*Well Known service suffix: /.well-known/mmm
4.2. Web Service Protocol Binding

The Web Service Protocol binding makes use of the most widely
deployed and used protocols:

*Discovery: DNS Service discovery
*Transport: TLS

*Application: HTTP

*Presentation: DARE Message
*Encoding: JSON, JSON-B

The chief limitations of the Web Service Protocol Binding are that
the use of TCP based transport results in unsatisfactory latency for
some applications and that the HTTP application layer only serves to
allow a host to support multiple services on the same TCP/IP port.

4.2.1. Transport Security

Mesh Services MUST offer TLS transport and MAY offer non TLS

transport. MESH clients SHOULD use TLS transport when connecting to
a MESH service.

TLS version 1.3 [RFC8446] or higher MUST be supported. Client
authentication SHOULD NOT be used.

4.2.2. HTTP Message Binding

All messages are exchanged as HTTP POST transactions. Support for

and use of HTTP/1.1 [REC7230] is REQUIRED. Services MAY support
HTTP/2.

In contrast to other approaches to the design of Web Services, the
only use made of the HTTP transport is to distinguish between
different services on the same host using the Host header and .well-
known convention and for message framing. No use is made of the URI
request line to identify commands, nor are the caching or proxy
capabilities of HTTP made use of.

4.2.3. Request

The HTTP request MAY contain any valid HTTP header specified in
[REC7230].

Request Line URI



/well-known/<service> (unless overridden using a TXT path
attribute)

Request Line Method POST

Host: Header <domain>

Content-Encoding As specified in section yy below.

Content-Type As specified in section zz below.

Content-Length or Transfer-Encoding As specified in [REC7230].
Payload The content payload as specified in section XX below.
[Note, this is showing the payload, not the binding as is intended

because the current code doesn't implement it as intended yet]

"Hello": {}}

.2.4. Response

The response MAY contain any HTTP response header but since JWB
services do not make use of HTTP caching and messages are not
intended to be modified by HTTP intermediaries, only a limited
number of headers have significance:

Response Code The HTTP response code. This is processed as
described in section zz below.

Content-Type As specified in section zz below.
Content-Length or Transfer-Encoding As specified in [REC7230].

Cache-Control Since the only valid HTTP method for a JWB request is
POST, JWB responses are not cacheable. The use of the cache-
control header is therefore unnecessary. However, experience
suggests that reviewers find it easier to understand protocol
specifications if they are reminded of the fact that caching is
neither supported nor desired.

[Note, this is showing the payload, not the binding as is intended
because the current code doesn't implement it as intended yet]



"MeshHelloResponse": {
"Status": 201,
"Version": {
"Major": 3,
"Minor": 0,
"Encodings": [{
"ID": ["application/json"]}13},
"EnvelopedProfileService": [{
"dig": '"SHA2"},
"ewogICJQcm9mawx1U2VydmljZSI6IHSKICAgICJILZX1PZmZsaw51U21
nbmFEAXJ1IjogewogICAgICAiIVURGIjogIK1CT1QtVOOMNY1SNE42LVdAOUTYtR
FpHSC10QVJVLVFYR1MiLAOgICAgICAiUHVibGljUGFYYW11dGVYycyI6IHSKICA
gICAgICAi1UHVibGl1jS2V5RUNESCI6IHSKICAQICAgICAQICIjcnYi0iAiRWQON
DgiLA0gICAgICAQICAQI1B1YmxpYyI6ICJICaGdOR210b3RBZXZLMWcycDlLd2V
DcmJHa®lEY191YzRnZmRSWDVqaEtPawIMdjl4cmpTCiAgCcDFrQ3EWXORNMmJILe
UXORUtQckdoek9BIn19fX19",
{
"signatures": [{
"alg": "SHA2",
"kid": "MBNT-WOL7-R4N6-WNQ6-DZGH-NARU-QXGS",
"signature": "QaCCgcOs5SWqDS-ftqKShfu2cB_VJImuh4wWuJQ-hBm3y
1QYHgo
SiL6Ht80UOjQI1ludWICXOINbB6AYYBGGOMeA6U7qZVUMEGVWTpVokuzelX8n-f
Tf21fp5XSaxz0lcwenr3JkbBbznyG2fEc7sefHykA"} ],
"PayloadDigest": "elHeM8pDoyymfVoAerBTHiXr7Yla090jatj412YBhwO
jg
ATZy-RPUuov4GPFXxG300koj2TnGejIWJTgI8BEEADEQ"}],
"EnvelopedProfileHost": [{
"dig": "SHA2"},
"ewogICJQcm9mawWx1SG9zdCIGIHSKICAQICJILZX1PZmZsaw51U21nbmF
0dXJ1IjogewogICAgICAiIVURGIjogIk1CMk8tTV1JVCITVIpNLUFQNVALTjdYU
Yy1YUEhOLUNOWUEiLA0OgICAgICAi1UHVibGljUGFYyYW11dGVycyI6IHSKICAgICA
gICAiUHVibG1jS2V5RUNESCI6IHSKICAgQICAQICAgICJIjcnYi0iAiRWQONDgiL
AOQICAQICAgICAQI1B1YmxXpYYI6ICIpbTR5QUPVUHZTT2ZKkUUC4QO93RVA4ZMQ
5MjV1dEp20ENZek1kUHJOSm1jMy1zWm4tUGtXxCiAgZGd1Sm1UcHBSejJ1bjJusS
INHQkXVWV1BIN19fSWKICAQICJILZX1BdXRoZW50aWNhdG1lvbiI6IHSKICAgICA
gI1VERII6GICINQTNWLUNESKUtTUROWC10MKJITLULISWUUtMO8zRC1QSDJIHIiwKI
CAQICAgI1B1YmxpY1BhcmFtZXR1cnMi0iB7CiAgQICAgICAQI1B1YmxpYQtleUV
DREgi0iB7CiAgICAgICAQICAiY3J21jogIkVKNDQ4IiwKICAgICAgICAgICJQd
WJsaWMi0iAiTEXXb3FZMUEOAG10VUhwZOFXN1JjcTdOWkZsVDB4bGlrbGNZd3F
uckJoalVrvVv9oawWowagogIEhJQldoMmt@aENhemtMSndxZFV1QmdjQSJ9fX19f

Q",

"signatures": [{
"alg": "SHA2",
"kid": "MB20-MYIT-SVZM-AP5P-N7XS-XPHN-CNYA",
"signature": "Iu3PBwD1lL_8tYTXhEAVABwfnvPH1GQgVjmACHGT1bPK
L9bDJIw



Z41ct7tLm16II6yCHyoSWsSPTfgoAhiwuNGTmtdSiSnWPDcCMEDOMISXuzdvyKa
VXCIWKCCGZOXX2T6RQt_uwjIzQ14NOBJ_OKqODBKA"}],
"PayloadDigest": "XOuVH5GtU_-ChBeUrSEpeunqcZI_T401sX0pP4L_dFL
ey
8VQINGVMKiFOQ1LOH2cHMgAd26gfjEU0JItVZWIh6g"}]}}

4.3. DARE Message Encapsulation

The payload of the HTTP requests and responses is a DARE Message
whose payload contains the Mesh Service request or response.

The DARE Message encapsulation is used to authenticate the request
or response data. The form of the authentication depending on the
credentials available to the sender at the time the request is made.

Mesh Service MUST support the use of Mutually Authenticated Key
Exchange [draft-hallambaker-mesh-security] to establish the Master
Key used for authentication of requests and responses.

Requests and Responses MUST be authenticated. Requests and Responses
MUST be encrypted if the transport is not encrypted and MAY be
encrypted otherwise.

4.3.1. Null Authentication
Null Authentication MAY be used to make a Hello Request.

The Null Authentication mechanism MUST NOT be used for any Mesh
Service request or response other than a Hello request.

Since the Mutually Authenticated key exchange requires both parties
to know the public key of the other, it is not possible for a client
to authenticate itself to the service until it has obtained the
service public key. One means by which the client MAY obtain the
service public key is by requesting the service return the
credential in a Hello transaction.

4.3.2. Device Authentication
Device Authentication is used in two circumstances

*When requesting creation of an account

*When a device is requesting connection to a profile.



4.3.3. Profile Authentication

Profile Authentication has the same form as Device Authentication
except that the client provides its Device Connection Assertion as
part of the request:

4.3.4. Ticket Authentication

Ticket Authentication is used after a device has obtained an
authentication ticket from a service. The ticket is returned in the
response to a previous Profile Authentication exchange.

4.4. Payload Encoding

The Dare Message payload of a Hello request MUST be encoded in JSON
encoding. The payload of all other requests MUST be in either JSON
encoding or one of the encodings advertised as being accepted in a
Hello response from the Service. Services MUST accept JSON encoding
and MAY support the JSON-B or JSON-C encodings as specified in this
document. Services MUST generate a response that is compatible with
the DARE Message Content-Type specified in the request.

JSON was originally developed to provide a serialization format for
the JavaScript programming language [ECMA-262]. While this approach
is generally applicable to the type systems of scripting programming
languages, it is less well matched to the richer type systems of
modern object oriented programming languages such as Java and C#.
wWorking within a subset of the capabilities of JSON allows a Web
Service protocol to be accessed with equal ease from either platform
type. The following capabilities of JSON are avoided:

The ability to use arbitrary strings as field names.

The use of JSON objects to define maps directly

The following data field types are used:

Integer 1Integer values are encoded as JSON number values.

String Test strings are encoded as JSON text strings.

Boolean Boolean values are encoded as JSON 'false', 'true' or
'null' tokens according to value.

Sequence Sequences of data items that are encoded as JSON arrays

Object of known type Objects whose type is known to the receiver
are encoded as JSON objects



Object of variable type
Objects whose type is not known to the

receiver are encoded as JSON objects containing a single field
whose name describes the type of the object value and whose value
contains the value.

Binary Data Byte sequences are converted to BASE64-url encoding
[REC4648] and encoded as JSON string values.

Date Time Date Time values are converted to Internet time format as
described in [REC3339] and encoded as JSON string values.

4.5. Error handling and response codes

It is possible for an error to occur at any of the three layers in
the Web Service binding:

Service Layer
HTTP Layer
Transport Layer

Services SHOULD always attempt to return error codes at the highest
level possible. However, it is clearly impossible for a connection
that is refused at the Transport layer to return an error code at
the HTTP layer. It is however possible for a HTTP layer error
response to contain a content body.

In the case that a response contains both a HTTP response code and a
well-formed payload containing a response, the payload response
SHALL have precedence.

5. Service Description

The Hello transaction is used to determine the features supported by
the service and obtain the service credentials

The request payload:

"Hello": {}}

The response payload:



"MeshHelloResponse": {
"Status": 201,
"Version": {
"Major": 3,
"Minor": 0,
"Encodings": [{
"ID": ["application/json"]}13},
"EnvelopedProfileService": [{
"dig": '"SHA2"},
"ewogICJQcm9mawx1U2VydmljZSI6IHSKICAgICJILZX1PZmZsaw51U21
nbmFEAXJ1IjogewogICAgICAiIVURGIjogIK1CT1QtVOOMNY1SNE42LVdAOUTYtR
FpHSC10QVJVLVFYR1MiLAOgICAgICAiUHVibGljUGFYYW11dGVYycyI6IHSKICA
gICAgICAi1UHVibGl1jS2V5RUNESCI6IHSKICAQICAgICAQICIjcnYi0iAiRWQON
DgiLA0gICAgICAQICAQI1B1YmxpYyI6ICJICaGdOR210b3RBZXZLMWcycDlLd2V
DcmJHa®lEY191YzRnZmRSWDVqaEtPawIMdjl4cmpTCiAgCcDFrQ3EWXORNMmJILe
UXORUtQckdoek9BIn19fX19",
{
"signatures": [{
"alg": "SHA2",
"kid": "MBNT-WOL7-R4N6-WNQ6-DZGH-NARU-QXGS",
"signature": "QaCCgcOs5SWqDS-ftqKShfu2cB_VJImuh4wWuJQ-hBm3y
1QYHgo
SiL6Ht80UOjQI1ludWICXOINbB6AYYBGGOMeA6U7qZVUMEGVWTpVokuzelX8n-f
Tf21fp5XSaxz0lcwenr3JkbBbznyG2fEc7sefHykA"} ],
"PayloadDigest": "elHeM8pDoyymfVoAerBTHiXr7Yla090jatj412YBhwO
jg
ATZy-RPUuov4GPFXxG300koj2TnGejIWJTgI8BEEADEQ"}],
"EnvelopedProfileHost": [{
"dig": "SHA2"},
"ewogICJQcm9mawWx1SG9zdCIGIHSKICAQICJILZX1PZmZsaw51U21nbmF
0dXJ1IjogewogICAgICAiIVURGIjogIk1CMk8tTV1JVCITVIpNLUFQNVALTjdYU
Yy1YUEhOLUNOWUEiLA0OgICAgICAi1UHVibGljUGFYyYW11dGVycyI6IHSKICAgICA
gICAiUHVibG1jS2V5RUNESCI6IHSKICAgQICAQICAgICJIjcnYi0iAiRWQONDgiL
AOQICAQICAgICAQI1B1YmxXpYYI6ICIpbTR5QUPVUHZTT2ZKkUUC4QO93RVA4ZMQ
5MjV1dEp20ENZek1kUHJOSm1jMy1zWm4tUGtXxCiAgZGd1Sm1UcHBSejJ1bjJusS
INHQkXVWV1BIN19fSWKICAQICJILZX1BdXRoZW50aWNhdG1lvbiI6IHSKICAgICA
gI1VERII6GICINQTNWLUNESKUtTUROWC10MKJITLULISWUUtMO8zRC1QSDJIHIiwKI
CAQICAgI1B1YmxpY1BhcmFtZXR1cnMi0iB7CiAgQICAgICAQI1B1YmxpYQtleUV
DREgi0iB7CiAgICAgICAQICAiY3J21jogIkVKNDQ4IiwKICAgICAgICAgICJQd
WJsaWMi0iAiTEXXb3FZMUEOAG10VUhwZOFXN1JjcTdOWkZsVDB4bGlrbGNZd3F
uckJoalVrvVv9oawWowagogIEhJQldoMmt@aENhemtMSndxZFV1QmdjQSJ9fX19f

Q",

"signatures": [{
"alg": "SHA2",
"kid": "MB20-MYIT-SVZM-AP5P-N7XS-XPHN-CNYA",
"signature": "Iu3PBwD1lL_8tYTXhEAVABwfnvPH1GQgVjmACHGT1bPK
L9bDJIw



Z41ct7tLm16II6yCHyoSWsSPTfgoAhiwuNGTmtdSiSnWPDcCMEDOMISXuzdvyKa
VXCIWKCCGZOXX2T6RQt_uwjIzQ14NOBJ_OKqODBKA"}],
"PayloadDigest": "XOuVH5GtU_-ChBeUrSEpeunqcZI_T401sX0pP4L_dFL
ey
8VQINGVMKiFOQ1LOH2cHMgAd26gfjEU0JItVZWIh6g"}]}}

6. Account Management

A Mesh Account is bound to a Mesh Service by completing a
CreateAccount transaction with the service.

The client requesting the account creation specifies the ProfileMesh
profile describing the requested account and lists of initial
entries to populate the devices and contacts catalogs. Additional
catalogs MAY be synchronized if the account creation request is
accepted.

The request payload:



"CreateAccount": {
"ServiceID": "alice@example.com",
"SignedProfileMesh": [{3},
"ewogICJQcm9maWx1TwWVzaCI6IHSKICAQICJILZX1PZ
mZsaw51U21nbmFOdXJ1IjogewogICAgICAiIVURGI jogIk1ESOQtWFRVUi1HR1A
OLVFENTItU1ROQi1RNOATLU1FV1cilLA0OgICAgICAiUHVibG1jUGFYYW11ldGVyc
yI6IHSKICAgICAgICALUHVibG1jS2V5RUNESCI6IHSKICAgICAGICAgICIjcnY
10iAiRWQONDgiLAOgICAgICAgICAQIIB1YmXxpYYI6ICJIZLUVZOVIOXYy1tROh2S
FVFSjQ4bF10clViM3BFOTZWaWZ4SmVoORjZkW1FOW1JjMDdFR29XCiAgSWRrZjd
gMXotMG82ZURDLVgtckJiVKNBIN19fSWKICAQICJILZX1zT25saw51uU21nbmFod
XJ1IjogW3sKICAgICAgICAiVURGIjogIk1BNKEtNUpFQSO3UFJOLUhIRZYtRON
MU11DWUhTLURSQUkiLA0gICAgICAgICJIQdWIsaWNQYXJIhbWVOZXJzIjogewogI
CAgICAQICAQI1B1YmxpYOtleUVDREgGiOiB7CiAgICAgICAgGICAgICJIjcnYi0iA
1RWQONDgiLA0OgICAgICAgICAgICAiLIUHVibGljIjogIlIlkWGwweEJ4SFROCNpae
jRVRZRDSV1XN3RNVFMtcDRWeFZ2UmxKLXkwQVpzZOVBNS1yLWKkKICBUZGXTVVN
1IWGM3WkXhROZ5TG13U3IWCUELifX19XSWKICAQICJILZX1FbmNyeXBOawouIjoge
wOQgICAQICAiVURGIjogIk1ESOQtWFRVUi1HRI1AGLVFENTItU1RO0Qi1RNOdTLUL
FV1ciLAogICAgICAiUHVibG1ljUGFYYW11dGVycyI6IHSKICAgICAgICALUHVib
G1jS2V5RUNESCI6IHSKICAgICAQICAQICJIjcnYi0iAiRWQONDgilAogICAgICA
gICAgI1B1YmxpYyI6ICJZLUVZOVIOXy1tROh2SFVFSjQ4bF10clViM3BFOTZWa
WZ4SmVoRjZkW1FOW1JjMDAFR29XCiAgSWRrZjdgqMXotMG82ZURDLVgtckJiVKN
BIn19fXx19"],
"SignedAssertionAccount": [{
"dig": "SHA2"},
"ewogICJQcm9mawWx1QWNjb3VudCI6IHSKICAgICILZX1PZmZsaw51U21
nbmFOdXJ1IjogewogICAgICAiIVURGIjogIk1CQUWENDRZWi1YNEAYLVVTQkwtS
kFNVS1BVzMyLVNMQ1lEiLA0ogICAgICAiUHVibG1ljUGFYyYW11dGVycyI6IHSKICA
gICAgICAiUHVibG1jS2V5RUNESCI6IHSKICAgICAgICAGICIjcnYi0iAiRWQON
DgilLA0ogICAgICAgICAGI1B1YmxpYyI6ICItUKNVeG5RSWIDbOhNT1IWUUSITEL
ERFVQQ3JvcjJIXLU9MaDFGT1MzQVZ5QnJ3TzNCZWROCiAgYzduwHJO0QO1yT1RhZ
JFENRmUWWK1HCVIBIN19fSWKICAQICJILZX1zT25saw51U21nbmFOdXJ1IjogW3s
KICAgICAgICAiVURGIjogIk1BREUtSjNTRSIMTOFNLTAGNjQtUOpaSy1CTO5FL
URSUEMiLA0gICAgICAQICJIQdWJIsaWNQYXJhbWVOZXJzIjogewogICAgICAgICA
gI1B1YmxpYOtleUVDREgi0iB7CiAgICAgICAgICAgICJIjcnYi0iAiRWQONDgiL
A0gICAgICAgICAgICAiUHVibG1jIjogIndvQWO1X1hpVWtFdDA2alVpalR1eGJ
2Q3jdPdU1hc®10ND1TMzYOYkpqcOo2WVMzZ3ZDM1EKICB4eDNXQUZBYVhGTjgoZ
mMNpM110dk1lpeUEifX19XSwKICAgICJITZXJ2aWN1SURzIjogWyJhbGljZUBleGF
tcGx1LmNvbSJdLA0gICAgIk11lc2hQecm9Imawx1VURGIjogIK1ESOQtWFRVUi1HR
1AOLVFENTItU1ROQi1RNOATLU1FV1ciLAogICAgIktleUVuY3J5cHRpb2410iB
7CiAgICAQICIVREYi0iAiTUJIMUi1KQVNXLU1lET1EtRFZIUS1RR]jJOLVIQWVULR
VIONiIsCiAgICAQICJIQdWJIsaWNQYXJhbwWVezZXJzIjogewogICAgICAgICJIQdWI
saWNLZX1FQORIIjogewogICAgICAQICAgIMNYydiI6ICJIJFZDQOOCISCiAgICAQI
CAQICAiUHVibG1ljIjogInVnejk4Z3A0X3M4bnR1Q28wdlpxX1pJZU9iV25SNwW1
pZjRiclo5S2FX0XdLUWFjSORTLWUKICBDcUdBUMg4Q2dLME1Ra0FqaXvXbG82d
PEifX19fXe",
{
"signatures": [{
"alg": "SHA2",



"kid": "MAG6A-5JEA-7PRN-HHG6-GCLR-CYHS-DRAI",
"signature": "XOpsadhMHH_5eH8Np42s0_lp49a2Hc1tvspOIyYiHAh
XWAONZ
VPAw1Mox6kwjfdntb3EyaHNnFF2AXLrqI4GvwYjNmcuk2RDWOmMC]j7uRZ38_jcX
--9Ld_MYQucH8lankfDDRU1I6Vbglp_40ubloYgIA"}],
"PayloadDigest": "woWiugDhBt-mBSTPaikozWhXk8oioqg4ntulInpK9_cH

r8

VKt3PEX8rwW96F5LFCGbNkd3u4Mp8cVILis45KIBjg"}]}}

The response payload:

"CreateResponse": {
"Status": 201,
"StatusDescription": "Operation completed successfully"}}

An account registration is deleted using the DeleteAccount
transaction.

Container Synchronization

All the state associated with a Mesh profile is stored as a sequence
of DARE Messages in a Dare Container. The Mesh Service holding the
master copy of the persistence stores and the devices connected to
the profile containing complete copies (replicas) or partial copies
(redactions).

Thus, the only primitive needed to achieve synchronization of the
profile state are those required for synchronization of a DARE
Container. These steps are:

*Obtain the status of the catalogs and spools associated with the
account.

*Download catalog and spool updates
*Upload catalog updates.

To ensure a satisfactory user experience, Mesh Messages are
intentionally limited in size to 64 KB or less, thus ensuring that
an application can retrieve the most recent 100 messages almost
instantaneously on a high bandwidth connection and without undue
delay on a slower one.



7.1. Status Transaction

The status transaction returns the status of the containers the
device is authorized to access for the specified account together
with the updated Device Connection Entry if this has been modified
since the entry presented to authenticate the request was issued.

7.2. Download Transaction

The download transaction returns a collection of entries from one or
more containers associated with the profile.

Optional filtering criteria MAY be specified to only return objects
matching specific criteria and/or only return certain parts of the
selected messages.

The service MAY limit the number of entries returned in an
individual response for performance reasons.

7.2.1. Conflict Detection

Clients SHOULD check to determine if updates to a container conflict
with pending updates on the device waiting to be uploaded. For
example, if a contact that the user modified on the device
attempting to synchronize was subsequently deleted.

The means of resolving such conflicts is not in the scope of this
specification.

7.2.2. Filtering
Clients may request container updates be filtered to redact catalog
entries that have been updated or deleted or spool entries that have
been read, deleted or were received before a certain date.

7.3. Upload Transaction

The upload transaction upload objects to a catalog or spool.

Multiple objects MAY be uploaded at once. Object updates MAY be
conditional on the successful completion of other upload requests.

The transaction MAY be performed in one request/response round trip
or with separate round trips to confirm that the transaction is
accepted by the service before sending large number of updates.



8.

8.

Device Connection

Devices request connection to a Mesh profile using the Connect
transaction. Three connection mechanisms are currently defined. All
three of which offer strong mutual authentication.

Device Authenticated
Pin Authenticated
EARL Connection Mode

The first two of these mechanisms are initiated from the device
being connected which requires that the Mesh Service Account it is
being connected to be entered into it. Use of these mechanisms thus
requires keyboard and display affordances or accessibility
equivalents.

The last mechanism is initiated from an administration device that
is already connected to the account. It is intended for use in
circumstances where the device being connected does not have the
necessary affordances to allow the Device or PIN authenticated
modes.

In either case, the connection request is completed by the device
requesting synchronization with the Mesh Account using its device
credential for authentication. If the connection request was
accepted, the device will be provisioned with the Device Connection
Assertion allowing it to complete the process.

The Device Connection Assertion includes an overlay device profile
containing a set of private key contributions to be used to perform
key cogeneration on the original set of device keys to create a new
device profile to be used for all purposes associated with the Mesh
Profile to which it has just been connected. This assures the user
that the keys the device uses for performing operation in the
context of their profile are not affected by any compromise that
might have occurred during manufacture or at any point after up to
the time it was connected to their profile.

1. Device Authenticated

The direct connection mechanism requires that both the
administration device and the device originating the connection
request have data entry and output affordances and that it is
possible for the user to compare the authentication codes presented
by the two devices to check that they are identical.



8.

8.

2. PIN Authenticated

The PIN Connection mechanism is similar to the Direct connection
mechanism except that the process is initiated on an administration
device by requesting assignment of a new authentication PIN. The PIN
is then input to the connecting device to authenticate the request.

3. EARL connection mode

The EARL/QR code connection mechanisms are used to connect a
constrained device to a Mesh profile by means of an Encrypted
Authenticated Resource Locator, typically presented as a QR code on
the device itself or its packaging.

Mesh Messaging

Mesh Messages provide a means of communication between Mesh Service
Accounts with capabilities that are not possible or poorly supported
in traditional SMTP mail messaging:

*End-to-end confidentiality and authentication by default.

*Abuse mitigation by applying access control to every inbound and
outbound message.

*End-to-end secure group messaging.
*Transfer of very large data sets (Terabytes).

Note that although Mesh Messaging is designed to facilitate the
transfer of very large data sets, the size of Mesh Messages
themselves is severely restricted. The current default maximum size
being 64 KB. This approach allows Mesh

In addition, the platform anticipates but does not currently support
additional cryptographic security capabilities:

*Traffic analysis resistance using mix networks (Chaum).

*Simultaneous contract binding using fair contract signing
(Micali).

While these capabilities might in time cause Mesh Messaging to
replace SMTP, this is not a near term goal. The short-term goal of
Mesh Messaging is to support the Contact Exchange and Confirmation
applications.

Two important classes of application that are not currently
supported directly are payments and presence. While prototypes of
these applications have been considered, it is not clear if these



are best implemented as special cases of the Confirmation and
Contact Exchange applications or as separate applications in their
own right.

9.1. Message Exchange

To enable effective abuse mitigation, Mesh Messaging enforces a four
corner communication model in which all outbound and inbound
messages pass through a Mesh Service which accredits and authorizes
the messages on the user's behalf.

To Be Specified

Figure 1

The Post transaction is used for client-service and service-service
messaging transactions.

9.1.1. Client-Service (Post Transaction)

To send a message, the client creates the Mesh Message structure,
encapsulates it in a DARE Message and forwards this to its service
using a Post transaction.

The Post transaction is authenticated to the service by device using
the usual means of profile or ticket authentication.

The DARE Message MUST be signed under a device signature key
accredited by a Device Connection Assertion provided in the message
signature block.

9.1.2. Service-Service (Post Transaction)

The Mesh Service receiving the message from the user's device MAY
attempt immediate retransmission or queue it to be sent at a future
time. Mesh Services SHOULD forward messages without undue delay.

The Post transaction forwarding the message to the destination
service carries the same payload as the original request but is
authenticated by the service forwarding it. This authentication MAY
be my means of either profile or ticket authentication.



9.1.2.1. Denial of Service Mitigation

Services SHOULD implement Denial of Service mitigation strategies
including limiting the maximum time taken to complete a transaction
and refusing connections from clients that engage in patterns of
behavior consistent with abuse.

The limitation in message size allows Mesh Services to aggressively
time out connections that take too long to complete a transaction. A
Mesh Service that hosted on a 10Mb/s link should be able to transfer
20 messages a second. If the service is taking more than 5 seconds
to complete a transaction, either the source or the destination
service is overloaded or the message itself is an attack.

Imposing hard constraints on Mesh Service performance requires
deployments to scale and apply resources appropriately. If a service
is attempting to transfer 100 messages simultaneously and 40% are
taking 4 seconds or more, this indicates that the number of
simultaneous transfers being attempted should be reduced.
Contrawise, if 90% are completinin less than a second, the number of
threads allocated to sending outbound messages might be increased.

9.1.2.2. Access Control

The inbound service MUST subject inbound messages to Access Control
according to the credentials presented in the DARE Message payload.

After verifying the signature and checking that the key is properly
accredited in accordance with site policy, the service applies
authorization controls taking account of:

*The accreditation of the sender

*The accreditation of the transmitting Service

*The type of Mesh Message being sent

*User policy as specified in their Contact Catalog

*Site policy.

9.1.3. Service-Client (Synchronization)

The final recipient receives the message by synchronizing their
inbound spool.

10. Protocol Schema

HTTP Well Known Service Prefix: /.well-known/mmm



10.

10

10.

10.

10.

Every Mesh Portal Service transaction consists of exactly one
request followed by exactly one response. Mesh Service transactions
MAY cause modification of the data stored in the Mesh Service or the
Mesh itself but do not cause changes to the connection state. The
protocol itself is thus idempotent. There is no set sequence in
which operations are required to be performed. It is not necessary
to perform a Hello transaction prior to any other transaction.

1. Request Messages

A Mesh Portal Service request consists of a payload object that
inherits from the MeshRequest class. When using the HTTP binding,
the request MUST specify the portal DNS address in the HTTP Host
field.

.1.1. Message: MeshRequest

Base class for all request messages.

[No fields]

1.2. Message: MeshRequestUser

Base class for all request messages made by a user.
Inherits: MeshRequest

Account: String (Optional) The fully qualified account name
(including DNS address) to which the request is directed.

DeviceProfile: DareEnvelope (Optional) Device profile of the device
making the request.

2. Response Messages

A Mesh Portal Service response consists of a payload object that
inherits from the MeshResponse class. When using the HTTP binding,
the response SHOULD report the Status response code in the HTTP
response message. However the response code returned in the payload
object MUST always be considered authoritative.

2.1. Message: MeshResponse

Base class for all response messages. Contains only the status code
and status description fields.

[No fields]



10.3. TImported Objects
The Mesh Service protocol makes use of JSON objects defined in the
JOSE Signatgure and Encryption specifications and in the DARE Data
At Rest Encryption extensions to JOSE.

10.4. Common Structures
The following common structures are used in the protocol messages:

10.4.1. Structure: KeyValue

Describes a Key/Value structure used to make queries for records
matching one or more selection criteria.

Key: String (Optional) The data retrieval key.
Value: String (Optional) The data value to match.
10.4.2. Structure: ConstraintsSelect

Specifies constraints to be applied to a search result. These allow
a client to limit the number of records returned, the quantity of
data returned, the earliest and latest data returned, etc.

Container: String (Optional) The container to be searched.

IndexMin: Integer (Optional) Only return objects with an index
value that is equal to or higher than the value specified.

IndexMax: Integer (Optional) Only return objects with an index
value that is equal to or lower than the value specified.

NotBefore: DateTime (Optional) Only data published on or after the
specified time instant is requested.

Before: DateTime (Optional) Only data published before the
specified time instant is requested. This excludes data published
at the specified time instant.

PageKey: String (Optional) Specifies a page key returned in a
previous search operation in which the number of responses
exceeded the specified bounds.

When a page key is specified, all the other search parameters
except for MaxEntries and MaxBytes are ignored and the service
returns the next set of data responding to the earlier query.



10.

10.

10.

10.

10.

4.3. Structure: ConstraintsData

Specifies constraints on the data to be sent.

MaxEntries: Integer (Optional) Maximum number of entries to send.

BytesOffset: Integer (Optional) Specifies an offset to be applied
to the payload data before it is sent. This allows large payloads

to be transferred incrementally.

BytesMax: Integer (Optional) Maximum number of payload bytes to
send.

Header: Boolean (Optional) Return the entry header

Payload: Boolean (Optional) Return the entry payload

Trailer: Boolean (Optional) Return the entry trailer

4.4. Structure: PolicyAccount

Describes the account creation policy including constraints on
account names, whether there is an open account creation policy,

etc.

Minimum: Integer (Optional) Specifies the minimum length of an
account name.

Maximum: Integer (Optional) Specifies the maximum length of an
account name.

InvalidCharacters: String (Optional) A list of characters that the
service does not accept in account names. The list of characters
MAY not be exhaustive but SHOULD include any illegal characters
in the proposed account name.

4.5. Structure: ContainerStatus

Container: String (Optional)

Index: Integer (Optional)

Digest: Binary (Optional)

4.6. Structure: ContainerUpdate

Inherits: ContainerStatus

Envelopes: DareEnvelope [0..Many] The entries to be uploaded.

5. Transaction: Hello



10.

10.

10.

Request: HelloRequest

Response: MeshHelloResponse
Report service and version information.

The Hello transaction provides a means of determining which protocol
versions, message encodings and transport protocols are supported by
the service.

The PostConstraints field MAY be used to advise senders of a maximum
size of payload that MAY be sent in an initial Post request.

5.1. Message: MeshHelloResponse

ConstraintsUpdate: ConstraintsData (Optional) Specifies the default
data constraints for updates.

ConstraintsPost: ConstraintsData (Optional) Specifies the default
data constraints for message senders.

PolicyAccount: PolicyAccount (Optional) Specifies the account
creation policy

EnvelopedProfileService: DareEnvelope (Optional) The enveloped
master profile of the service.

EnvelopedProfileHost: DareEnvelope (Optional) The enveloped profile
of the host.

6. Transaction: CreateAccount

Request: CreateRequest

Response: CreateResponse

Request creation of a new service account.

Attempt

6.1. Message: CreateRequest

Request binding of an account to a service address.

Inherits: MeshRequest

ServicelID: String (Optional) The service account to bind to.

SignedProfileMesh: DareEnvelope (Optional) The persistent profile
that will be used to validate changes to the account assertion.



10.

10.

10.

10.

10.

10.

SignedAssertionAccount: DareEnvelope (Optional)
The signed
assertion describing the account.
6.2. Message: CreateResponse
Inherits: MeshResponse

Reports the success or failure of a Create transaction.

Reason: String (Optional) Text explaining the status of the
creation request.

URL: String (Optional) A URL to which the user is directed to
complete the account creation request.

7. Transaction: DeleteAccount
Request: DeleteRequest

Response: DeleteResponse

Request deletion of a service account.

7.1. Message: DeleteRequest

Request creation of a new portal account. The request specifies the
requested account identifier and the Mesh profile to be associated

with the account.

Inherits: MeshRequestUser

[No fields]

7.2. Message: DeleteResponse
Inherits: MeshResponse

Reports the success or failure of a Delete transaction.
[No fields]

8. Transaction: Complete
Request: CompleteRequest
Response: CompleteResponse
8.1. Message: CompleteRequest

Inherits: StatusRequest



10.

10.

10.

10.

10.

ServicelID: String (Optional)

ResponseID: String (Optional)
8.2. Message: CompleteResponse
Inherits: MeshResponse

SignedResponse: DareEnvelope (Optional) The signed assertion
describing the result of the connect request

9. Transaction: Status
Request: StatusRequest
Response: StatusResponse

9.1. Message: StatusRequest
Inherits: MeshRequestUser
DeviceUDF: String (Optional)
ProfileMasterDigest: Binary (Optional)
Catalogs: String [0..Many]
Spools: String [0..Many]

9.2. Message: StatusResponse
Inherits: MeshResponse

EnvelopedProfileMaster: DareEnvelope (Optional) The master profile
that provides the root of trust for this Mesh

EnvelopedCatalogEntryDevice: DareEnvelope (Optional) The catalog
device entry

ContainerStatus: ContainerStatus [0..Many]
10. Transaction: Download

Request: DownloadRequest

Response: DownloadResponse

Request objects from the specified container with the specified
search criteria.



10.

10.

10.

10.

10.1. Message: DownloadRequest

Inherits: MeshRequestUser

Request objects from the specified container(s).

A client MAY request only objects matching specified search criteria

be returned and MAY request that only specific fields or parts of

the payload be returned.

Select: ConstraintsSelect [0..Many] Specifies constraints to be
applied to a search result. These allow a client to limit the
number of records returned, the quantity of data returned, the

earliest and latest data returned, etc.

ConstraintsPost: ConstraintsData (Optional) Specifies the data
constraints to be applied to the responses.

10.2. Message: DownloadResponse

Inherits: MeshResponse

Return the set of objects requested.

Services SHOULD NOT return a response that is disproportionately
large relative to the speed of the network connection without a
clear indication from the client that it is relevant. A service MAY
limit the number of objects returned. A service MAY limit the scope
of each response.

Updates: ContainerUpdate [0..Many] The updated data

11. Transaction: Upload

Request: UploadRequest

Response: UploadResponse

Request objects from the specified container with the specified
search criteria.

11.1. Message: UploadRequest
Inherits: MeshRequestUser

Upload entries to a container. This request is only valid if it is
issued by the owner of the account

Updates: ContainerUpdate [0..Many] The data to be updated



10.

10.

10.

10.

Self: DareEnvelope [0..Many]
Entries to be added to the inbound

spool on the account, e.g. completion messages.

11.2. Message: UploadResponse

Inherits: MeshResponse

Response to an upload request.

Entries: EntryResponse [0..Many] The responses to the entries.

ConstraintsData: ConstraintsData (Optional) If the upload request
contains redacted entries, specifies constraints that apply to

the redacted entries as a group. Thus the total payloads of all
the messages must not exceed the specified value.

11.3. Structure: EntryResponse

IndexRequest: Integer (Optional) The index value of the entry in
the request.

IndexContainer: Integer (Optional) The index value assigned to the
entry in the container.

Result: String (Optional) Specifies the result of attempting to add
the entry to a catalog or spool. Valid values for a message are
'Accept', 'Reject'. Valid values for an entry are 'Accept',
'Reject' and 'Conflict'.

ConstraintsData: ConstraintsData (Optional) If the entry was
redacted, specifies constraints that apply to the redacted

entries as a group. Thus the total payloads of all the messages
must not exceed the specified value.

12. Transaction: Post

Request: PostRequest

Response: PostResponse

Request to post to a spool from an external party. The request and
response messages are extensions of the corresponding messages for
the Upload transaction. It is expected that additional fields will
be added as the need arises.

12.1. Message: PostRequest

Inherits: MeshRequest



10.

10.

10.

10.

Accounts: String [0..Many]

The account(s) to which the request is
directed.

Message: DareEnvelope [0..Many] The entries to be uploaded. These
MAY be either complete messages or redacted messages. In either
case, the messages MUST conform to the ConstraintsUpdate
specified by the service

Self: DareEnvelope [0..Many] Messages to be appended to the user's
self spool. this is typically used to post notifications to the
user to mark messages as having been read or responded to.

12.2. Message: PostResponse

Inherits: UploadResponse

[No fields]

13. Transaction: Connect

Request: ConnectRequest

Response: ConnectResponse

Request information necessary to begin making a connection request.

13.1. Message: ConnectRequest

Inherits: MeshRequest

MessageConnectionRequestClient: DareEnvelope (Optional) The
connection request generated by the client

13.2. Message: ConnectResponse
Inherits: MeshResponse

EnvelopedConnectionResponse: DareEnvelope (Optional) The connection
request generated by the client

EnvelopedProfileMaster: DareEnvelope (Optional) The master profile
that provides the root of trust for this Mesh

EnvelopedAccountAssertion: DareEnvelope (Optional) The current
account assertion



11. Security Considerations

The security considerations for use and implementation of Mesh
services and applications are described in the Mesh Security
Considerations guide [draft-hallambaker-mesh-security].

12. TIANA Considerations

All the IANA considerations for the Mesh documents are specified in
this document

13. Acknowledgements

A list of people who have contributed to the design of the Mesh is
presented in [draft-hallambaker-mesh-architecture].

14. Normative References

[draft-hallambaker-mesh-architecture]
Hallam-Baker, P., "Mathematical Mesh 3.0 Part I:
Architecture Guide", Work in Progress, Internet-Draft,
draft-hallambaker-mesh-architecture-12, 16 January 2020,
<https://tools.ietf.org/html/draft-hallambaker-mesh-
architecture-12>.

[draft-hallambaker-mesh-security]
Hallam-Baker, P., "Mathematical Mesh 3.0 Part VII:
Security Considerations", Work in Progress, Internet-
Draft, draft-hallambaker-mesh-security-03, 16 January
2020, <https://tools.ietf.org/html/draft-hallambaker-
mesh-security-03>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, <https://www.rfc-editor.org/rfc/
rfc2119>.

[RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
<https://www.rfc-editor.org/rfc/rfc3339>.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
<https://www.rfc-editor.org/rfc/rfc4648>.

[RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI
10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/
rfc/rfc7230>.



https://tools.ietf.org/html/draft-hallambaker-mesh-architecture-12
https://tools.ietf.org/html/draft-hallambaker-mesh-architecture-12
https://tools.ietf.org/html/draft-hallambaker-mesh-security-03
https://tools.ietf.org/html/draft-hallambaker-mesh-security-03
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3339
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc7230

[RFC8446]
Rescorla, E., "The Transport Layer Security (TLS)
Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,
August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

15. Informative References

[draft-hallambaker-mesh-developer]
Hallam-Baker, P., "Mathematical Mesh: Reference
Implementation", Work in Progress, Internet-Draft, draft-
hallambaker-mesh-developer-09, 23 October 2019, <https://
tools.jetf.org/html/draft-hallambaker-mesh-developer-09>.

[ECMA-262] Ecma International, "ECMAScript(R) 2017 Language
Specification", June 2017.


https://www.rfc-editor.org/rfc/rfc8446
https://tools.ietf.org/html/draft-hallambaker-mesh-developer-09
https://tools.ietf.org/html/draft-hallambaker-mesh-developer-09

	Mathematical Mesh 3.0 Part V: Protocol Reference
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Definitions
	2.1. Requirements Language
	2.2. Defined Terms
	2.3. Related Specifications
	2.4. Implementation Status

	3. Mesh Service
	3.1. Data Model
	3.2. Partitioning

	4. Protocol Bindings
	4.1. DNS Web Service Discovery
	4.2. Web Service Protocol Binding
	4.2.1. Transport Security
	4.2.2. HTTP Message Binding
	4.2.3. Request
	4.2.4. Response

	4.3. DARE Message Encapsulation
	4.3.1. Null Authentication
	4.3.2. Device Authentication
	4.3.3. Profile Authentication
	4.3.4. Ticket Authentication

	4.4. Payload Encoding
	4.5. Error handling and response codes

	5. Service Description
	6. Account Management
	7. Container Synchronization
	7.1. Status Transaction
	7.2. Download Transaction
	7.2.1. Conflict Detection
	7.2.2. Filtering

	7.3. Upload Transaction

	8. Device Connection
	8.1. Device Authenticated
	8.2. PIN Authenticated
	8.3. EARL connection mode

	9. Mesh Messaging
	9.1. Message Exchange
	9.1.1. Client-Service (Post Transaction)
	9.1.2. Service-Service (Post Transaction)
	9.1.2.1. Denial of Service Mitigation
	9.1.2.2. Access Control

	9.1.3. Service-Client (Synchronization)


	10. Protocol Schema
	10.1. Request Messages
	10.1.1. Message: MeshRequest
	10.1.2. Message: MeshRequestUser

	10.2. Response Messages
	10.2.1. Message: MeshResponse

	10.3. Imported Objects
	10.4. Common Structures
	10.4.1. Structure: KeyValue
	10.4.2. Structure: ConstraintsSelect
	10.4.3. Structure: ConstraintsData
	10.4.4. Structure: PolicyAccount
	10.4.5. Structure: ContainerStatus
	10.4.6. Structure: ContainerUpdate

	10.5. Transaction: Hello
	10.5.1. Message: MeshHelloResponse

	10.6. Transaction: CreateAccount
	10.6.1. Message: CreateRequest
	10.6.2. Message: CreateResponse

	10.7. Transaction: DeleteAccount
	10.7.1. Message: DeleteRequest
	10.7.2. Message: DeleteResponse

	10.8. Transaction: Complete
	10.8.1. Message: CompleteRequest
	10.8.2. Message: CompleteResponse

	10.9. Transaction: Status
	10.9.1. Message: StatusRequest
	10.9.2. Message: StatusResponse

	10.10. Transaction: Download
	10.10.1. Message: DownloadRequest
	10.10.2. Message: DownloadResponse

	10.11. Transaction: Upload
	10.11.1. Message: UploadRequest
	10.11.2. Message: UploadResponse
	10.11.3. Structure: EntryResponse

	10.12. Transaction: Post
	10.12.1. Message: PostRequest
	10.12.2. Message: PostResponse

	10.13. Transaction: Connect
	10.13.1. Message: ConnectRequest
	10.13.2. Message: ConnectResponse


	11. Security Considerations
	12. IANA Considerations
	13. Acknowledgements
	14. Normative References
	15. Informative References


