
Workgroup: Network Working Group

Internet-Draft:

draft-hallambaker-mesh-protocol

Published: 27 July 2020

Intended Status: Informational

Expires: 28 January 2021

Authors: P. M. Hallam-Baker

ThresholdSecrets.com

Mathematical Mesh 3.0 Part V: Protocol Reference

Abstract

The Mathematical Mesh 'The Mesh' is an end-to-end secure

infrastructure that facilitates the exchange of configuration and

credential data between multiple user devices. The core protocols of

the Mesh are described with examples of common use cases and

reference data.

[Note to Readers]

Discussion of this draft takes place on the MATHMESH mailing list

(mathmesh@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=mathmesh.

This document is also available online at http://mathmesh.com/

Documents/draft-hallambaker-mesh-protocol.html.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

http://mathmesh.com/Documents/draft-hallambaker-mesh-protocol.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-protocol.html
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Definitions

2.1. Requirements Language

2.2. Defined Terms

2.3. Related Specifications

2.4. Implementation Status

3. Mesh Service

3.1. Data Model

3.2. Partitioning

4. Protocol Bindings

4.1. DNS Web Service Discovery

4.2. Web Service Protocol Binding

4.2.1. Transport Security

4.2.2. HTTP Message Binding

4.2.3. Request

4.2.4. Response

4.3. DARE Message Encapsulation

4.3.1. Null Authentication

4.3.2. Device Authentication

4.3.3. Profile Authentication

4.3.4. Ticket Authentication

4.4. Payload Encoding

4.5. Error handling and response codes

5. Service Description

6. Account Management

7. Container Synchronization

7.1. Status Transaction

7.2. Download Transaction

7.2.1. Conflict Detection

7.2.2. Filtering

7.3. Upload Transaction

8. Device Connection

8.1. Device Authenticated

8.2. PIN Authenticated

8.3. EARL connection mode

9. Mesh Messaging

9.1. Message Exchange

9.1.1. Client-Service (Post Transaction)

9.1.2. Service-Service (Post Transaction)

9.1.3. Service-Client (Synchronization)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

10. Protocol Schema

10.1. Request Messages

10.1.1. Message: MeshRequest

10.1.2. Message: MeshRequestUser

10.2. Response Messages

10.2.1. Message: MeshResponse

10.3. Imported Objects

10.4. Common Structures

10.4.1. Structure: KeyValue

10.4.2. Structure: ConstraintsSelect

10.4.3. Structure: ConstraintsData

10.4.4. Structure: PolicyAccount

10.4.5. Structure: ContainerStatus

10.4.6. Structure: ContainerUpdate

10.5. Transaction: Hello

10.5.1. Message: MeshHelloResponse

10.6. Transaction: CreateAccount

10.6.1. Message: CreateRequest

10.6.2. Message: CreateResponse

10.7. Transaction: DeleteAccount

10.7.1. Message: DeleteRequest

10.7.2. Message: DeleteResponse

10.8. Transaction: Complete

10.8.1. Message: CompleteRequest

10.8.2. Message: CompleteResponse

10.9. Transaction: Status

10.9.1. Message: StatusRequest

10.9.2. Message: StatusResponse

10.10. Transaction: Download

10.10.1. Message: DownloadRequest

10.10.2. Message: DownloadResponse

10.11. Transaction: Upload

10.11.1. Message: UploadRequest

10.11.2. Message: UploadResponse

10.11.3. Structure: EntryResponse

10.12. Transaction: Publish

10.12.1. Message: PublishRequest

10.12.2. Message: PublishResponse

10.13. Transaction: Post

10.13.1. Message: PostRequest

10.13.2. Message: PostResponse

10.14. Transaction: Connect

10.14.1. Message: ConnectRequest

10.14.2. Message: ConnectResponse

10.15. Transaction: Claim

10.15.1. Message: ClaimRequest

10.15.2. Message: ClaimResponse

10.16. Transaction: PollClaim

10.16.1. Message: PollClaimRequest

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

10.16.2. Message: PollClaimResponse

10.17. Transaction: CreateGroup

10.17.1. Message: CreateGroupRequest

10.17.2. Message: CreateGroupResponse

10.17.3. Structure: CryptographicOperation

10.17.4. Structure: CryptographicOperationSign

10.17.5. Structure: CryptographicOperationKeyAgreement

10.17.6. Structure: CryptographicOperationGenerate

10.17.7. Structure: CryptographicOperationShare

10.17.8. Structure: CryptographicResult

10.17.9. Structure: CryptographicResultKeyAgreement

10.18. Transaction: Operate

10.18.1. Message: OperateRequest

10.18.2. Message: OperateResponse

11. Security Considerations

12. IANA Considerations

13. Acknowledgements

14. Normative References

15. Informative References

1. Introduction

This document describes the Mesh Service protocol supported by Mesh

Services, an account-based protocol that facilitates exchange of

data between devices connected to a Mesh profile and between Mesh

accounts.

Mesh Service Accounts support the following services:

Provides the master persistence store for the Catalogs and Spools

associated with the account.

Enables synchronization of Catalogs and Spools with connected

devices.

Enforces access control on inbound Mesh Messages from other users

and other Mesh Services.

Authenticates outbound Mesh Messages, certifying that they comply

with abuse mitigation policies.

A Mesh Profile MAY be bound to multiple Mesh Service Accounts at the

same time but only one Mesh Service Account is considered to be

authoritative at a time. Users may add or remove Mesh Service

Accounts and change the account designated as authoritative at any

time.

The Mesh Services are build from a very small set of primitives

which provide a surprisingly extensive set of capabilities. These

primitives are:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Hello

CreateAccount, DeleteAccount

Status, Download, Upload

Connect

Post

Describes the features and options provided by the service

and provides a 'null' transaction which MAY be used to establish

an authentication ticket without performing any action,

Manage the creation and deletion of

accounts at the service.

Support synchronization of Mesh containers

between the service (Master) and the connected devices

(Replicas).

Initiate the process of connecting a device to a Mesh

profile from the device itself.

Request that a Mesh Message be transferred to one or more Mesh

Accounts.

Although these functions could in principle be used to replace many

if not most existing Internet application protocols, the principal

value of any communication protocol lies in the size of the audience

it allows them to communicate with. Thus, while the Mesh Messaging

service is designed to support efficient and reliable transfer of

messages ranging in size from a few bytes to multiple terabytes, the

near-term applications of these services will be to applications

that are not adequately supported by existing protocols if at all.

2. Definitions

This section presents the related specifications and standard, the

terms that are used as terms of art within the documents and the

terms used as requirements language.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2.2. Defined Terms

The terms of art used in this document are described in the Mesh

Architecture Guide [draft-hallambaker-mesh-architecture].

2.3. Related Specifications

The architecture of the Mathematical Mesh is described in the Mesh

Architecture Guide [draft-hallambaker-mesh-architecture]. The Mesh

documentation set and related specifications are described in this

document.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Data Loss

Integrity (Stale Data)

Messaging

Traffic analysis

2.4. Implementation Status

The implementation status of the reference code base is described in

the companion document [draft-hallambaker-mesh-developer].

3. Mesh Service

A Mesh Service is a minimally trusted service. In particular a user

does not need to trust a Mesh service to protect the confidentiality

or integrity of most data stored in the account catalogs and spools.

Unless the use of the Mesh Service is highly restricted, a user does

need to trust the Mesh Service in certain respects:

A service could refuse to respond to requests to download

data.

The use of Merkle Trees limits but does not

eliminate the ability of a Mesh Service to respond to requests

with stale data.

A service could reject requests to post messages to or

accept messages from other mesh users.

This risk is a necessary consequence of the fact that the Mesh

Service Provider is accountable to other Mesh Service Providers

for abuse originating from their service.

A Mesh Service has knowledge of the number of Mesh

Messages being sent and received by its users and the addresses

to which they are being sent to or received from.

The need to trust the Mesh Service in these respects is mitigated by

accountability and the user's ability to change Mesh Service

providers at any time they choose with minimal inconvenience.

It is possible that some of these risks will be reduced in future

versions of the Mesh Service Protocol but it is highly unlikely that

these can be eliminated entirely without compromising practicality

or efficiency.

3.1. Data Model

The design of the Mesh Service model followed a quasi-formal

approach in which the system was reduced to schemas which could in

principle be rendered in a formal development method but without

construction of proofs.

Like the contents of Mesh Accounts, a Mesh Service may be

represented by a collection of catalogs and spools, for example:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Account Catalog

Incident Spool

Contains the account entries.

Reports of potential abuse

Backup of the service MAY be implemented using the same container

synchronization mechanism used to synchronize account catalogs and

spools.

3.2. Partitioning

Mesh Services supporting a large number of accounts or large

activity volume MAY partition the account catalog between one or

more hosts using the usual tiered service model in which a front-end

server receives traffic for any account hosted at the server and

routes the request to the back-end service that provides the

persistence store for that account.

In addition, the Mesh Service Protocol supports a 'direct

connection' partitioning model in which devices are given a DNS name

which MAY allow for direct connection to the persistence host or to

a front-end service offering service that is in some way specific to

that account.

4. Protocol Bindings

Mesh Service transactions are mapped to an underlying messaging and

transport protocol. The following binding

Mesh Services MUST support the Web Service binding specified in this

document and MAY support the UDP binding currently in development.

4.1. DNS Web Service Discovery

The DNS Web Service discovery mechanism is used to discover Mesh

Services regardless of the protocol binding .The service name, DNS

prefix and and .well-known service suffix are specified as follows:

Service Name: mmm

DNS Prefix: _mmm._tcp

Well Known service suffix: /.well-known/mmm

4.2. Web Service Protocol Binding

The Web Service Protocol binding makes use of the most widely

deployed and used protocols:

Discovery: DNS Service discovery

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

Request Line URI

Request Line Method

Host: Header

Content-Encoding

Content-Type

Transport: TLS

Application: HTTP

Presentation: DARE Message

Encoding: JSON, JSON-B

The chief limitations of the Web Service Protocol Binding are that

the use of TCP based transport results in unsatisfactory latency for

some applications and that the HTTP application layer only serves to

allow a host to support multiple services on the same TCP/IP port.

4.2.1. Transport Security

Mesh Services MUST offer TLS transport and MAY offer non TLS

transport. MESH clients SHOULD use TLS transport when connecting to

a MESH service.

TLS version 1.3 [RFC8446] or higher MUST be supported. Client

authentication SHOULD NOT be used.

4.2.2. HTTP Message Binding

All messages are exchanged as HTTP POST transactions. Support for

and use of HTTP/1.1 [RFC7230] is REQUIRED. Services MAY support

HTTP/2.

In contrast to other approaches to the design of Web Services, the

only use made of the HTTP transport is to distinguish between

different services on the same host using the Host header and .well-

known convention and for message framing. No use is made of the URI

request line to identify commands, nor are the caching or proxy

capabilities of HTTP made use of.

4.2.3. Request

The HTTP request MAY contain any valid HTTP header specified in

[RFC7230].

/well-known/<service> (unless overridden using a

TXT path attribute)

POST

<domain>

As specified in section yy below.

As specified in section zz below.

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Content-Length or Transfer-Encoding

Payload

Response Code

Content-Type

Content-Length or Transfer-Encoding

Cache-Control

As specified in [RFC7230].

The content payload as specified in section XX below.

[Note, this is showing the payload, not the binding as is intended

because the current code doesn't implement it as intended yet]

{

 "Hello": {}}

4.2.4. Response

The response MAY contain any HTTP response header but since JWB

services do not make use of HTTP caching and messages are not

intended to be modified by HTTP intermediaries, only a limited

number of headers have significance:

The HTTP response code. This is processed as

described in section zz below.

As specified in section zz below.

As specified in [RFC7230].

Since the only valid HTTP method for a JWB request is

POST, JWB responses are not cacheable. The use of the cache-

control header is therefore unnecessary. However, experience

suggests that reviewers find it easier to understand protocol

specifications if they are reminded of the fact that caching is

neither supported nor desired.

[Note, this is showing the payload, not the binding as is intended

because the current code doesn't implement it as intended yet]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "MeshHelloResponse": {

 "Status": 201,

 "Version": {

 "Major": 3,

 "Minor": 0,

 "Encodings": [{

 "ID": ["application/json"]}]},

 "EnvelopedProfileService": [{

 "dig": "SHA2"},

 "ewogICJQcm9maWxlU2VydmljZSI6IHsKICAgICJLZXlPZmZsaW5lU2l

 nbmF0dXJlIjogewogICAgICAiVURGIjogIk1BWFotSVBHNy1WSEFPLVdRVVQtQ

 0JUTC1ITFMyLVNLT1ciLAogICAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICA

 gICAgICAiUHVibGljS2V5RUNESCI6IHsKICAgICAgICAgICJjcnYiOiAiRWQ0N

 DgiLAogICAgICAgICAgIlB1YmxpYyI6ICJiY2paaUQzQmdQcThOSEE4VFFzbEp

 RbzBzOE14R1o0VWRPUV8zcGZBWGhmUkdLdDh3aVhlCiAgZTl6MzZ4V0JxVGVKR

 khhd09uTWNPcmlBIn19fSwKICAgICJLZXlFbmNyeXB0aW9uIjogewogICAgICA

 iVURGIjogIk1EM0gtM09LRi1LTDM0LU02Q0YtSkVHVS1BMkVNLUNUWVUiLAogI

 CAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICAgICAgICAiUHVibGljS2V5RUN

 ESCI6IHsKICAgICAgICAgICJjcnYiOiAiWDQ0OCIsCiAgICAgICAgICAiUHVib

 GljIjogInBJcjlQeTVrWm52QU9paTZ0REdRejc1ZFVCNTNpQkIxM0ZKQXZzSDJ

 NdHlJU2RQWFZ3TWMKICBrU3FOTGl5TzBpUTJaanE5QkRXVmpmOEEifX19fX0",

 {

 "signatures": [{

 "alg": "SHA2",

 "kid": "MAXZ-IPG7-VHAO-WQUT-CBTL-HLS2-SKOW",

 "signature": "Q8tU8qUnPvpxEqpZd_TWkvIN8_1YtRCkxGqSk2Exad_

 4PlWzr

 AzG_cX9VT5UmOaJ6cmi-lM8hF8Am-OgRNkxGkb1y_OYtaKBXnUeBGHG3jtnplU

 vx3VlWReJn0VqYMiTfcAQ5PKNujHbf4iCso6PSAcA"}],

 "PayloadDigest": "tWH90O5uV-b6VvIjiwiClRkJ6D2C64GZLXqZk5pAhxt

 QW

 wqcCzKM3f7s6slOuJ6fZ267uDg6QQ2UF55_vjsiSA"}],

 "EnvelopedProfileHost": [{

 "dig": "SHA2"},

 "ewogICJQcm9maWxlSG9zdCI6IHsKICAgICJLZXlPZmZsaW5lU2lnbmF

 0dXJlIjogewogICAgICAiVURGIjogIk1CM1otSzVITC1FS0FCLTZNNUotM1BLW

 S1CSVlCLUpZSzUiLAogICAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICAgICA

 gICAiUHVibGljS2V5RUNESCI6IHsKICAgICAgICAgICJjcnYiOiAiRWQ0NDgiL

 AogICAgICAgICAgIlB1YmxpYyI6ICJnamlvV3pVYllqNkxMQ2I0NGRrYUw4STV

 wOTFpcE5IaHJOTVF0VlFJbFA2aXg3MmZVWnFYCiAgRFpBTmdKSzNpOXU4RGNIT

 XhpV0hsalFBIn19fSwKICAgICJLZXlBdXRoZW50aWNhdGlvbiI6IHsKICAgICA

 gIlVERiI6ICJNQ1g3LTZQQ0QtV1BISC1WRjRMLVZRNVgtSVNJSC1UVk0zIiwKI

 CAgICAgIlB1YmxpY1BhcmFtZXRlcnMiOiB7CiAgICAgICAgIlB1YmxpY0tleUV

 DREgiOiB7CiAgICAgICAgICAiY3J2IjogIlg0NDgiLAogICAgICAgICAgIlB1Y

 mxpYyI6ICJPbGViSVA0Y3otOEVWV05lRFBVTE9rajJlczd2dTdBUF9OTEo1MWs

 xSDBYb1N0UWtFaWtQCiAgQ19vM3FCVmJsVUh2Uk0wblBFQmxjdGdBIn19fX19",

 {

 "signatures": [{

 "alg": "SHA2",

 "kid": "MB3Z-K5HL-EKAB-6M5J-3PKY-BIYB-JYK5",

 "signature": "Ten3iq7kUJdif_NE94cr-RJ0OJD8qrG-9gj7eu-M6ae

 oqLk3_

 Ew9MqJ8nxvpI13YWEq1Zb9uRfaAbcOghmncfeN9rwTeoApfGEE5lZ5O2h97s1m

 inEKmUEWMOoT2-CBkVSZlH50rYADhbJ9N1ZpWRDAA"}],

 "PayloadDigest": "2K1y20hWCmxcFb_DzTRpHlEyPbqySb-TPF8cA6Y_T5i

 fc

 OupwDkIwlLqWQBML9IxCZyqtZ37vJh4DkAA6LGWWg"}]}}

4.3. DARE Message Encapsulation

The payload of the HTTP requests and responses is a DARE Message

whose payload contains the Mesh Service request or response.

The DARE Message encapsulation is used to authenticate the request

or response data. The form of the authentication depending on the

credentials available to the sender at the time the request is made.

Mesh Service MUST support the use of Mutually Authenticated Key

Exchange [draft-hallambaker-mesh-security] to establish the Master

Key used for authentication of requests and responses.

Requests and Responses MUST be authenticated. Requests and Responses

MUST be encrypted if the transport is not encrypted and MAY be

encrypted otherwise.

4.3.1. Null Authentication

Null Authentication MAY be used to make a Hello Request.

The Null Authentication mechanism MUST NOT be used for any Mesh

Service request or response other than a Hello request.

Since the Mutually Authenticated key exchange requires both parties

to know the public key of the other, it is not possible for a client

to authenticate itself to the service until it has obtained the

service public key. One means by which the client MAY obtain the

service public key is by requesting the service return the

credential in a Hello transaction.

4.3.2. Device Authentication

Device Authentication is used in two circumstances

When requesting creation of an account

When a device is requesting connection to a profile.

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

Integer

String

Boolean

Sequence

Object of known type

4.3.3. Profile Authentication

Profile Authentication has the same form as Device Authentication

except that the client provides its Device Connection Assertion as

part of the request:

4.3.4. Ticket Authentication

Ticket Authentication is used after a device has obtained an

authentication ticket from a service. The ticket is returned in the

response to a previous Profile Authentication exchange.

4.4. Payload Encoding

The Dare Message payload of a Hello request MUST be encoded in JSON

encoding. The payload of all other requests MUST be in either JSON

encoding or one of the encodings advertised as being accepted in a

Hello response from the Service. Services MUST accept JSON encoding

and MAY support the JSON-B or JSON-C encodings as specified in this

document. Services MUST generate a response that is compatible with

the DARE Message Content-Type specified in the request.

JSON was originally developed to provide a serialization format for

the JavaScript programming language [ECMA-262]. While this approach

is generally applicable to the type systems of scripting programming

languages, it is less well matched to the richer type systems of

modern object oriented programming languages such as Java and C#.

Working within a subset of the capabilities of JSON allows a Web

Service protocol to be accessed with equal ease from either platform

type. The following capabilities of JSON are avoided:

The ability to use arbitrary strings as field names.

The use of JSON objects to define maps directly

The following data field types are used:

Integer values are encoded as JSON number values.

Test strings are encoded as JSON text strings.

Boolean values are encoded as JSON 'false', 'true' or

'null' tokens according to value.

Sequences of data items that are encoded as JSON arrays

Objects whose type is known to the receiver

are encoded as JSON objects

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Object of variable type

Binary Data

Date Time

Objects whose type is not known to the

receiver are encoded as JSON objects containing a single field

whose name describes the type of the object value and whose value

contains the value.

Byte sequences are converted to BASE64-url encoding

[RFC4648] and encoded as JSON string values.

Date Time values are converted to Internet time format as

described in [RFC3339] and encoded as JSON string values.

4.5. Error handling and response codes

It is possible for an error to occur at any of the three layers in

the Web Service binding:

Service Layer

HTTP Layer

Transport Layer

Services SHOULD always attempt to return error codes at the highest

level possible. However, it is clearly impossible for a connection

that is refused at the Transport layer to return an error code at

the HTTP layer. It is however possible for a HTTP layer error

response to contain a content body.

In the case that a response contains both a HTTP response code and a

well-formed payload containing a response, the payload response

SHALL have precedence.

5. Service Description

The Hello transaction is used to determine the features supported by

the service and obtain the service credentials

The request payload:

{

 "Hello": {}}

The response payload:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "MeshHelloResponse": {

 "Status": 201,

 "Version": {

 "Major": 3,

 "Minor": 0,

 "Encodings": [{

 "ID": ["application/json"]}]},

 "EnvelopedProfileService": [{

 "dig": "SHA2"},

 "ewogICJQcm9maWxlU2VydmljZSI6IHsKICAgICJLZXlPZmZsaW5lU2l

 nbmF0dXJlIjogewogICAgICAiVURGIjogIk1BWFotSVBHNy1WSEFPLVdRVVQtQ

 0JUTC1ITFMyLVNLT1ciLAogICAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICA

 gICAgICAiUHVibGljS2V5RUNESCI6IHsKICAgICAgICAgICJjcnYiOiAiRWQ0N

 DgiLAogICAgICAgICAgIlB1YmxpYyI6ICJiY2paaUQzQmdQcThOSEE4VFFzbEp

 RbzBzOE14R1o0VWRPUV8zcGZBWGhmUkdLdDh3aVhlCiAgZTl6MzZ4V0JxVGVKR

 khhd09uTWNPcmlBIn19fSwKICAgICJLZXlFbmNyeXB0aW9uIjogewogICAgICA

 iVURGIjogIk1EM0gtM09LRi1LTDM0LU02Q0YtSkVHVS1BMkVNLUNUWVUiLAogI

 CAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICAgICAgICAiUHVibGljS2V5RUN

 ESCI6IHsKICAgICAgICAgICJjcnYiOiAiWDQ0OCIsCiAgICAgICAgICAiUHVib

 GljIjogInBJcjlQeTVrWm52QU9paTZ0REdRejc1ZFVCNTNpQkIxM0ZKQXZzSDJ

 NdHlJU2RQWFZ3TWMKICBrU3FOTGl5TzBpUTJaanE5QkRXVmpmOEEifX19fX0",

 {

 "signatures": [{

 "alg": "SHA2",

 "kid": "MAXZ-IPG7-VHAO-WQUT-CBTL-HLS2-SKOW",

 "signature": "Q8tU8qUnPvpxEqpZd_TWkvIN8_1YtRCkxGqSk2Exad_

 4PlWzr

 AzG_cX9VT5UmOaJ6cmi-lM8hF8Am-OgRNkxGkb1y_OYtaKBXnUeBGHG3jtnplU

 vx3VlWReJn0VqYMiTfcAQ5PKNujHbf4iCso6PSAcA"}],

 "PayloadDigest": "tWH90O5uV-b6VvIjiwiClRkJ6D2C64GZLXqZk5pAhxt

 QW

 wqcCzKM3f7s6slOuJ6fZ267uDg6QQ2UF55_vjsiSA"}],

 "EnvelopedProfileHost": [{

 "dig": "SHA2"},

 "ewogICJQcm9maWxlSG9zdCI6IHsKICAgICJLZXlPZmZsaW5lU2lnbmF

 0dXJlIjogewogICAgICAiVURGIjogIk1CM1otSzVITC1FS0FCLTZNNUotM1BLW

 S1CSVlCLUpZSzUiLAogICAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICAgICA

 gICAiUHVibGljS2V5RUNESCI6IHsKICAgICAgICAgICJjcnYiOiAiRWQ0NDgiL

 AogICAgICAgICAgIlB1YmxpYyI6ICJnamlvV3pVYllqNkxMQ2I0NGRrYUw4STV

 wOTFpcE5IaHJOTVF0VlFJbFA2aXg3MmZVWnFYCiAgRFpBTmdKSzNpOXU4RGNIT

 XhpV0hsalFBIn19fSwKICAgICJLZXlBdXRoZW50aWNhdGlvbiI6IHsKICAgICA

 gIlVERiI6ICJNQ1g3LTZQQ0QtV1BISC1WRjRMLVZRNVgtSVNJSC1UVk0zIiwKI

 CAgICAgIlB1YmxpY1BhcmFtZXRlcnMiOiB7CiAgICAgICAgIlB1YmxpY0tleUV

 DREgiOiB7CiAgICAgICAgICAiY3J2IjogIlg0NDgiLAogICAgICAgICAgIlB1Y

 mxpYyI6ICJPbGViSVA0Y3otOEVWV05lRFBVTE9rajJlczd2dTdBUF9OTEo1MWs

 xSDBYb1N0UWtFaWtQCiAgQ19vM3FCVmJsVUh2Uk0wblBFQmxjdGdBIn19fX19",

 {

 "signatures": [{

 "alg": "SHA2",

 "kid": "MB3Z-K5HL-EKAB-6M5J-3PKY-BIYB-JYK5",

 "signature": "Ten3iq7kUJdif_NE94cr-RJ0OJD8qrG-9gj7eu-M6ae

 oqLk3_

 Ew9MqJ8nxvpI13YWEq1Zb9uRfaAbcOghmncfeN9rwTeoApfGEE5lZ5O2h97s1m

 inEKmUEWMOoT2-CBkVSZlH50rYADhbJ9N1ZpWRDAA"}],

 "PayloadDigest": "2K1y20hWCmxcFb_DzTRpHlEyPbqySb-TPF8cA6Y_T5i

 fc

 OupwDkIwlLqWQBML9IxCZyqtZ37vJh4DkAA6LGWWg"}]}}

6. Account Management

A Mesh Account is bound to a Mesh Service by completing a

CreateAccount transaction with the service.

The client requesting the account creation specifies the ProfileMesh

profile describing the requested account and lists of initial

entries to populate the devices and contacts catalogs. Additional

catalogs MAY be synchronized if the account creation request is

accepted.

The request payload:

{

 "Hello": {}}

The response payload:

¶

¶

¶

¶

¶

¶

{

 "MeshHelloResponse": {

 "Status": 201,

 "Version": {

 "Major": 3,

 "Minor": 0,

 "Encodings": [{

 "ID": ["application/json"]}]},

 "EnvelopedProfileService": [{

 "dig": "SHA2"},

 "ewogICJQcm9maWxlU2VydmljZSI6IHsKICAgICJLZXlPZmZsaW5lU2l

 nbmF0dXJlIjogewogICAgICAiVURGIjogIk1BWFotSVBHNy1WSEFPLVdRVVQtQ

 0JUTC1ITFMyLVNLT1ciLAogICAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICA

 gICAgICAiUHVibGljS2V5RUNESCI6IHsKICAgICAgICAgICJjcnYiOiAiRWQ0N

 DgiLAogICAgICAgICAgIlB1YmxpYyI6ICJiY2paaUQzQmdQcThOSEE4VFFzbEp

 RbzBzOE14R1o0VWRPUV8zcGZBWGhmUkdLdDh3aVhlCiAgZTl6MzZ4V0JxVGVKR

 khhd09uTWNPcmlBIn19fSwKICAgICJLZXlFbmNyeXB0aW9uIjogewogICAgICA

 iVURGIjogIk1EM0gtM09LRi1LTDM0LU02Q0YtSkVHVS1BMkVNLUNUWVUiLAogI

 CAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICAgICAgICAiUHVibGljS2V5RUN

 ESCI6IHsKICAgICAgICAgICJjcnYiOiAiWDQ0OCIsCiAgICAgICAgICAiUHVib

 GljIjogInBJcjlQeTVrWm52QU9paTZ0REdRejc1ZFVCNTNpQkIxM0ZKQXZzSDJ

 NdHlJU2RQWFZ3TWMKICBrU3FOTGl5TzBpUTJaanE5QkRXVmpmOEEifX19fX0",

 {

 "signatures": [{

 "alg": "SHA2",

 "kid": "MAXZ-IPG7-VHAO-WQUT-CBTL-HLS2-SKOW",

 "signature": "Q8tU8qUnPvpxEqpZd_TWkvIN8_1YtRCkxGqSk2Exad_

 4PlWzr

 AzG_cX9VT5UmOaJ6cmi-lM8hF8Am-OgRNkxGkb1y_OYtaKBXnUeBGHG3jtnplU

 vx3VlWReJn0VqYMiTfcAQ5PKNujHbf4iCso6PSAcA"}],

 "PayloadDigest": "tWH90O5uV-b6VvIjiwiClRkJ6D2C64GZLXqZk5pAhxt

 QW

 wqcCzKM3f7s6slOuJ6fZ267uDg6QQ2UF55_vjsiSA"}],

 "EnvelopedProfileHost": [{

 "dig": "SHA2"},

 "ewogICJQcm9maWxlSG9zdCI6IHsKICAgICJLZXlPZmZsaW5lU2lnbmF

 0dXJlIjogewogICAgICAiVURGIjogIk1CM1otSzVITC1FS0FCLTZNNUotM1BLW

 S1CSVlCLUpZSzUiLAogICAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICAgICA

 gICAiUHVibGljS2V5RUNESCI6IHsKICAgICAgICAgICJjcnYiOiAiRWQ0NDgiL

 AogICAgICAgICAgIlB1YmxpYyI6ICJnamlvV3pVYllqNkxMQ2I0NGRrYUw4STV

 wOTFpcE5IaHJOTVF0VlFJbFA2aXg3MmZVWnFYCiAgRFpBTmdKSzNpOXU4RGNIT

 XhpV0hsalFBIn19fSwKICAgICJLZXlBdXRoZW50aWNhdGlvbiI6IHsKICAgICA

 gIlVERiI6ICJNQ1g3LTZQQ0QtV1BISC1WRjRMLVZRNVgtSVNJSC1UVk0zIiwKI

 CAgICAgIlB1YmxpY1BhcmFtZXRlcnMiOiB7CiAgICAgICAgIlB1YmxpY0tleUV

 DREgiOiB7CiAgICAgICAgICAiY3J2IjogIlg0NDgiLAogICAgICAgICAgIlB1Y

 mxpYyI6ICJPbGViSVA0Y3otOEVWV05lRFBVTE9rajJlczd2dTdBUF9OTEo1MWs

 xSDBYb1N0UWtFaWtQCiAgQ19vM3FCVmJsVUh2Uk0wblBFQmxjdGdBIn19fX19",

 {

 "signatures": [{

 "alg": "SHA2",

 "kid": "MB3Z-K5HL-EKAB-6M5J-3PKY-BIYB-JYK5",

 "signature": "Ten3iq7kUJdif_NE94cr-RJ0OJD8qrG-9gj7eu-M6ae

 oqLk3_

 Ew9MqJ8nxvpI13YWEq1Zb9uRfaAbcOghmncfeN9rwTeoApfGEE5lZ5O2h97s1m

 inEKmUEWMOoT2-CBkVSZlH50rYADhbJ9N1ZpWRDAA"}],

 "PayloadDigest": "2K1y20hWCmxcFb_DzTRpHlEyPbqySb-TPF8cA6Y_T5i

 fc

 OupwDkIwlLqWQBML9IxCZyqtZ37vJh4DkAA6LGWWg"}]}}

An account registration is deleted using the DeleteAccount

transaction.

7. Container Synchronization

All the state associated with a Mesh profile is stored as a sequence

of DARE Messages in a Dare Container. The Mesh Service holding the

master copy of the persistence stores and the devices connected to

the profile containing complete copies (replicas) or partial copies

(redactions).

Thus, the only primitive needed to achieve synchronization of the

profile state are those required for synchronization of a DARE

Container. These steps are:

Obtain the status of the catalogs and spools associated with the

account.

Download catalog and spool updates

Upload catalog updates.

To ensure a satisfactory user experience, Mesh Messages are

intentionally limited in size to 64 KB or less, thus ensuring that

an application can retrieve the most recent 100 messages almost

instantaneously on a high bandwidth connection and without undue

delay on a slower one.

7.1. Status Transaction

The status transaction returns the status of the containers the

device is authorized to access for the specified account together

with the updated Device Connection Entry if this has been modified

since the entry presented to authenticate the request was issued.

¶

¶

¶

¶

*

¶

* ¶

* ¶

¶

¶

7.2. Download Transaction

The download transaction returns a collection of entries from one or

more containers associated with the profile.

Optional filtering criteria MAY be specified to only return objects

matching specific criteria and/or only return certain parts of the

selected messages.

The service MAY limit the number of entries returned in an

individual response for performance reasons.

7.2.1. Conflict Detection

Clients SHOULD check to determine if updates to a container conflict

with pending updates on the device waiting to be uploaded. For

example, if a contact that the user modified on the device

attempting to synchronize was subsequently deleted.

The means of resolving such conflicts is not in the scope of this

specification.

7.2.2. Filtering

Clients may request container updates be filtered to redact catalog

entries that have been updated or deleted or spool entries that have

been read, deleted or were received before a certain date.

7.3. Upload Transaction

The upload transaction upload objects to a catalog or spool.

Multiple objects MAY be uploaded at once. Object updates MAY be

conditional on the successful completion of other upload requests.

The transaction MAY be performed in one request/response round trip

or with separate round trips to confirm that the transaction is

accepted by the service before sending large number of updates.

8. Device Connection

Devices request connection to a Mesh profile using the Connect

transaction. Three connection mechanisms are currently defined. All

three of which offer strong mutual authentication.

Device Authenticated

Pin Authenticated

EARL Connection Mode

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The first two of these mechanisms are initiated from the device

being connected which requires that the Mesh Service Account it is

being connected to be entered into it. Use of these mechanisms thus

requires keyboard and display affordances or accessibility

equivalents.

The last mechanism is initiated from an administration device that

is already connected to the account. It is intended for use in

circumstances where the device being connected does not have the

necessary affordances to allow the Device or PIN authenticated

modes.

In either case, the connection request is completed by the device

requesting synchronization with the Mesh Account using its device

credential for authentication. If the connection request was

accepted, the device will be provisioned with the Device Connection

Assertion allowing it to complete the process.

The Device Connection Assertion includes an overlay device profile

containing a set of private key contributions to be used to perform

key cogeneration on the original set of device keys to create a new

device profile to be used for all purposes associated with the Mesh

Profile to which it has just been connected. This assures the user

that the keys the device uses for performing operation in the

context of their profile are not affected by any compromise that

might have occurred during manufacture or at any point after up to

the time it was connected to their profile.

8.1. Device Authenticated

The direct connection mechanism requires that both the

administration device and the device originating the connection

request have data entry and output affordances and that it is

possible for the user to compare the authentication codes presented

by the two devices to check that they are identical.

8.2. PIN Authenticated

The PIN Connection mechanism is similar to the Direct connection

mechanism except that the process is initiated on an administration

device by requesting assignment of a new authentication PIN. The PIN

is then input to the connecting device to authenticate the request.

8.3. EARL connection mode

The EARL/QR code connection mechanisms are used to connect a

constrained device to a Mesh profile by means of an Encrypted

Authenticated Resource Locator, typically presented as a QR code on

the device itself or its packaging.

¶

¶

¶

¶

¶

¶

¶

9. Mesh Messaging

Mesh Messages provide a means of communication between Mesh Service

Accounts with capabilities that are not possible or poorly supported

in traditional SMTP mail messaging:

End-to-end confidentiality and authentication by default.

Abuse mitigation by applying access control to every inbound and

outbound message.

End-to-end secure group messaging.

Transfer of very large data sets (Terabytes).

Note that although Mesh Messaging is designed to facilitate the

transfer of very large data sets, the size of Mesh Messages

themselves is severely restricted. The current default maximum size

being 64 KB. This approach allows Mesh

In addition, the platform anticipates but does not currently support

additional cryptographic security capabilities:

Traffic analysis resistance using mix networks (Chaum).

Simultaneous contract binding using fair contract signing

(Micali).

While these capabilities might in time cause Mesh Messaging to

replace SMTP, this is not a near term goal. The short-term goal of

Mesh Messaging is to support the Contact Exchange and Confirmation

applications.

Two important classes of application that are not currently

supported directly are payments and presence. While prototypes of

these applications have been considered, it is not clear if these

are best implemented as special cases of the Confirmation and

Contact Exchange applications or as separate applications in their

own right.

9.1. Message Exchange

To enable effective abuse mitigation, Mesh Messaging enforces a four

corner communication model in which all outbound and inbound

messages pass through a Mesh Service which accredits and authorizes

the messages on the user's behalf.

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

* ¶

*

¶

¶

¶

¶

To Be Specified

Figure 1

The Post transaction is used for client-service and service-service

messaging transactions.

9.1.1. Client-Service (Post Transaction)

To send a message, the client creates the Mesh Message structure,

encapsulates it in a DARE Message and forwards this to its service

using a Post transaction.

The Post transaction is authenticated to the service by device using

the usual means of profile or ticket authentication.

The DARE Message MUST be signed under a device signature key

accredited by a Device Connection Assertion provided in the message

signature block.

9.1.2. Service-Service (Post Transaction)

The Mesh Service receiving the message from the user's device MAY

attempt immediate retransmission or queue it to be sent at a future

time. Mesh Services SHOULD forward messages without undue delay.

The Post transaction forwarding the message to the destination

service carries the same payload as the original request but is

authenticated by the service forwarding it. This authentication MAY

be my means of either profile or ticket authentication.

9.1.2.1. Denial of Service Mitigation

Services SHOULD implement Denial of Service mitigation strategies

including limiting the maximum time taken to complete a transaction

and refusing connections from clients that engage in patterns of

behavior consistent with abuse.

The limitation in message size allows Mesh Services to aggressively

time out connections that take too long to complete a transaction. A

Mesh Service that hosted on a 10Mb/s link should be able to transfer

20 messages a second. If the service is taking more than 5 seconds

to complete a transaction, either the source or the destination

service is overloaded or the message itself is an attack.

¶

¶

¶

¶

¶

¶

¶

¶

HTTP Well Known Service Prefix: /.well-known/mmm

Imposing hard constraints on Mesh Service performance requires

deployments to scale and apply resources appropriately. If a service

is attempting to transfer 100 messages simultaneously and 40% are

taking 4 seconds or more, this indicates that the number of

simultaneous transfers being attempted should be reduced.

Contrawise, if 90% are completinin less than a second, the number of

threads allocated to sending outbound messages might be increased.

9.1.2.2. Access Control

The inbound service MUST subject inbound messages to Access Control

according to the credentials presented in the DARE Message payload.

After verifying the signature and checking that the key is properly

accredited in accordance with site policy, the service applies

authorization controls taking account of:

The accreditation of the sender

The accreditation of the transmitting Service

The type of Mesh Message being sent

User policy as specified in their Contact Catalog

Site policy.

9.1.3. Service-Client (Synchronization)

The final recipient receives the message by synchronizing their

inbound spool.

10. Protocol Schema

Every Mesh Portal

Service transaction consists of exactly one request followed by

exactly one response. Mesh Service transactions MAY cause

modification of the data stored in the Mesh Service or the Mesh

itself but do not cause changes to the connection state. The

protocol itself is thus idempotent. There is no set sequence in

which operations are required to be performed. It is not necessary

to perform a Hello transaction prior to any other transaction.

10.1. Request Messages

A Mesh Portal Service request consists of a payload object that

inherits from the MeshRequest class. When using the HTTP binding,

the request MUST specify the portal DNS address in the HTTP Host

field.

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

Inherits: MeshRequest

Account: String (Optional)

DeviceProfile: DareEnvelope (Optional)

Key: String (Optional)

Value: String (Optional)

10.1.1. Message: MeshRequest

Base class for all request messages.

[No fields]

10.1.2. Message: MeshRequestUser

Base class for all request messages made by a user.

The fully qualified account name (including

DNS address) to which the request is

directed.

Device profile of the device

making the request.

10.2. Response Messages

A Mesh Portal Service response consists of a payload object that

inherits from the MeshResponse class. When using the HTTP binding,

the response SHOULD report the Status response code in the HTTP

response message. However the response code returned in the payload

object MUST always be considered authoritative.

10.2.1. Message: MeshResponse

Base class for all response messages. Contains only the status code

and status description fields.

[No fields]

10.3. Imported Objects

The Mesh Service protocol makes use of JSON objects defined in the

JOSE Signatgure and Encryption specifications and in the DARE Data

At Rest Encryption extensions to JOSE.

10.4. Common Structures

The following common structures are used in the protocol messages:

10.4.1. Structure: KeyValue

Describes a Key/Value structure used to make queries for records

matching one or more selection criteria.

The data retrieval key.

The data value to match.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Container: String (Optional)

IndexMin: Integer (Optional)

IndexMax: Integer (Optional)

NotBefore: DateTime (Optional)

Before: DateTime (Optional)

PageKey: String (Optional)

MaxEntries: Integer (Optional)

BytesOffset: Integer (Optional)

BytesMax: Integer (Optional)

Header: Boolean (Optional)

Payload: Boolean (Optional)

Trailer: Boolean (Optional)

10.4.2. Structure: ConstraintsSelect

Specifies constraints to be applied to a search result. These allow

a client to limit the number of records returned, the quantity of

data returned, the earliest and latest data returned, etc.

The container to be searched.

Only return objects with an index

value that is equal to or higher than the value specified.

Only return objects with an index

value that is equal to or lower than the value specified.

Only data published on or after the

specified time instant is requested.

Only data published before the

specified time instant is requested. This excludes data published

at the specified time instant.

Specifies a page key returned in a

previous search operation in which the number of responses

exceeded the specified bounds.

When a page key is specified, all the other search parameters

except for MaxEntries and MaxBytes are ignored and the service

returns the next set of data responding to the earlier query.

10.4.3. Structure: ConstraintsData

Specifies constraints on the data to be sent.

Maximum number of entries to send.

Specifies an offset to be applied

to the payload data before it is sent. This allows large payloads

to be transferred incrementally.

Maximum number of payload bytes to

send.

Return the entry header

Return the entry payload

Return the entry trailer

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Minimum: Integer (Optional)

Maximum: Integer (Optional)

InvalidCharacters: String (Optional)

Container: String (Optional)

Index: Integer (Optional)

Digest: Binary (Optional)

Inherits: ContainerStatus

Envelopes: DareEnvelope [0..Many]

Request: HelloRequest

Response: MeshHelloResponse

ConstraintsUpdate: ConstraintsData (Optional)

ConstraintsPost: ConstraintsData (Optional)

PolicyAccount: PolicyAccount (Optional)

EnvelopedProfileService: DareEnvelope (Optional)

10.4.4. Structure: PolicyAccount

Describes the account creation policy including constraints on

account names, whether there is an open account creation policy,

etc.

Specifies the minimum length of an

account name.

Specifies the maximum length of an

account name.

A list of characters that the

service does not accept in account names. The list of characters

MAY not be exhaustive but SHOULD include any illegal characters

in the proposed account name.

10.4.5. Structure: ContainerStatus

10.4.6. Structure: ContainerUpdate

The entries to be uploaded.

10.5. Transaction: Hello

Report service and version information.

The Hello transaction provides a means of determining which protocol

versions, message encodings and transport protocols are supported by

the service.

The PostConstraints field MAY be used to advise senders of a maximum

size of payload that MAY be sent in an initial Post request.

10.5.1. Message: MeshHelloResponse

Specifies the default

data constraints for updates.

Specifies the default

data constraints for message senders.

Specifies the account

creation policy

The enveloped

master profile of the service.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

EnvelopedProfileHost: DareEnvelope (Optional)

Request: CreateRequest

Response: CreateResponse

Inherits: MeshRequest

AccountAddress: String (Optional)

SignedProfileMesh: DareEnvelope (Optional)

SignedAssertionAccount: DareEnvelope (Optional)

Inherits: MeshResponse

Reason: String (Optional)

URL: String (Optional)

Request: DeleteRequest

Response: DeleteResponse

Inherits: MeshRequestUser

The enveloped profile

of the host.

10.6. Transaction: CreateAccount

Request creation of a new service account

or group.

Attempt

10.6.1. Message: CreateRequest

Request binding of an account to a service address.

The service account to bind to.

The persistent profile

that will be used to

validate changes to the account assertion.

The signed

assertion describing the account.

10.6.2. Message: CreateResponse

Reports the success or failure of a Create

transaction.

Text explaining the status of the

creation request.

A URL to which the user is directed to

complete the account creation request.

10.7. Transaction: DeleteAccount

Request deletion of a service account.

10.7.1. Message: DeleteRequest

Request creation of a new portal account. The request specifies the

requested account identifier and the Mesh profile to be associated

with the account.

[No fields]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inherits: MeshResponse

Request: CompleteRequest

Response: CompleteResponse

Inherits: StatusRequest

AccountAddress: String (Optional)

ResponseID: String (Optional)

Inherits: MeshResponse

SignedResponse: DareEnvelope (Optional)

Request: StatusRequest

Response: StatusResponse

Inherits: MeshRequestUser

DeviceUDF: String (Optional)

ProfileMasterDigest: Binary (Optional)

Catalogs: String [0..Many]

Spools: String [0..Many]

Inherits: MeshResponse

EnvelopedProfileMaster: DareEnvelope (Optional)

EnvelopedCatalogEntryDevice: DareEnvelope (Optional)

ContainerStatus: ContainerStatus [0..Many]

Request: DownloadRequest

Response: DownloadResponse

Inherits: MeshRequestUser

10.7.2. Message: DeleteResponse

Reports the success or failure of a Delete

transaction.

[No fields]

10.8. Transaction: Complete

10.8.1. Message: CompleteRequest

10.8.2. Message:

CompleteResponse

The signed assertion describing the result

of the connect request

10.9. Transaction: Status

10.9.1. Message: StatusRequest

10.9.2. Message: StatusResponse

The master profile that provides the root of

trust for this Mesh

The catalog

device entry

10.10. Transaction:

Download

Request objects from the specified

container with the specified search

criteria.

10.10.1. Message: DownloadRequest

Request objects from the specified

container(s).

¶

¶

¶

¶

¶

¶

¶

Select: ConstraintsSelect [0..Many]

ConstraintsPost: ConstraintsData (Optional)

Inherits: MeshResponse

Updates: ContainerUpdate [0..Many]

Request: UploadRequest

Response: UploadResponse

Inherits: MeshRequestUser

Updates: ContainerUpdate [0..Many]

Self: DareEnvelope [0..Many]

Inherits: MeshResponse

A client MAY request only objects matching specified search criteria

be returned and MAY request that only specific fields or parts of

the payload be returned.

Specifies constraints to be

applied to a search result. These allow a client to limit the

number of records returned, the quantity of data returned, the

earliest and latest data returned, etc.

Specifies the data

constraints to be applied to the responses.

10.10.2. Message: DownloadResponse

Return the set of objects requested.

Services SHOULD NOT return a response that is disproportionately

large relative to the speed of the network connection without a

clear indication from the client that it is relevant. A service MAY

limit the number of objects returned. A service MAY limit the scope

of each response.

The updated data

10.11. Transaction: Upload

Request objects from the specified

container with the specified search

criteria.

10.11.1. Message: UploadRequest

Upload entries to a container. This

request is only valid if it is issued by the owner of the account

The data to be updated

Entries to be added to the inbound

spool on the account, e.g. completion messages.

10.11.2. Message: UploadResponse

Response to an upload request.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Entries: EntryResponse [0..Many]

ConstraintsData: ConstraintsData (Optional)

IndexRequest: Integer (Optional)

IndexContainer: Integer (Optional)

Result: String (Optional)

ConstraintsData: ConstraintsData (Optional)

Request: PublishRequest

Response: PublishResponse

Inherits: MeshRequest

Publications: CatalogedPublication [0..Many]

Inherits: MeshResponse

Request: PostRequest

Response: PostResponse

The responses to the entries.

If the upload request

contains redacted entries, specifies constraints that apply to

the redacted entries as a group. Thus the total payloads of all

the messages must not exceed the specified value.

10.11.3. Structure: EntryResponse

The index value of the entry in

the request.

The index value assigned to the

entry in the container.

Specifies the result of attempting to add

the entry to a catalog or spool. Valid values for a message are

'Accept', 'Reject'. Valid values for an entry are 'Accept',

'Reject' and 'Conflict'.

If the entry was

redacted, specifies constraints that apply to the redacted

entries as a group. Thus the total payloads of all the messages

must not exceed the specified value.

10.12. Transaction: Publish

Request to post to a spool from an

external party. The request and response

messages are extensions of the corresponding messages for the Upload

transaction. It is expected that additional fields will be added as

the need arises.

10.12.1. Message: PublishRequest

The entries to be published. These may

contain the full data

or just the identifier, length and fingerprint.

10.12.2. Message: PublishResponse

[No fields]

10.13. Transaction: Post

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inherits: MeshRequest

Accounts: String [0..Many]

Message: DareEnvelope [0..Many]

Self: DareEnvelope [0..Many]

Inherits: UploadResponse

Request: ConnectRequest

Response: ConnectResponse

Inherits: MeshRequest

MessageConnectionRequestClient: DareEnvelope (Optional)

Inherits: MeshResponse

EnvelopedConnectionResponse: DareEnvelope (Optional)

EnvelopedProfileMaster: DareEnvelope (Optional)

EnvelopedAccountAssertion: DareEnvelope (Optional)

Request: ClaimRequest

Response: ClaimResponse

Request to post to a spool from an external party. The request and

response messages are extensions of the corresponding messages for

the Upload transaction. It is expected that additional fields will

be added as the need arises.

10.13.1. Message: PostRequest

The account(s) to which the request is

directed.

The entries to be uploaded. These

MAY be either complete messages or redacted messages. In either

case, the messages MUST conform to the ConstraintsUpdate

specified by the service

Messages to be appended to the user's

self spool. this is typically used to post notifications to the

user to mark messages as having been read or responded to.

10.13.2. Message: PostResponse

[No fields]

10.14. Transaction: Connect

Request information necessary to begin

making a connection request.

10.14.1. Message: ConnectRequest

The connection request generated by the

client

10.14.2. Message: ConnectResponse

The connection request generated by the

client

The master profile

that provides the root of trust for this Mesh

The current

account assertion

10.15. Transaction: Claim

Claim a publication

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inherits: MeshRequest

EnvelopedMessageClaim: DareEnvelope (Optional)

Inherits: MeshResponse

CatalogedPublication: CatalogedPublication (Optional)

Request: PollClaimRequest

Response: PollClaimResponse

Inherits: MeshRequest

PublicationId: String (Optional)

TargetAccountAddress: String (Optional)

Inherits: MeshResponse

EnvelopedMessageClaim: DareEnvelope (Optional)

Request: CreateGroupRequest

Response: CreateGroupResponse

Inherits: MeshRequest

AccountAddress: String (Optional)

SignedProfileGroup: DareEnvelope (Optional)

Inherits: CreateResponse

KeyId: String (Optional)

KeyCoefficient: Binary (Optional)

10.15.1. Message: ClaimRequest

The claim message

10.15.2. Message:

ClaimResponse

The encrypted device profile

10.16. Transaction: PollClaim

Check party making claim

10.16.1. Message: PollClaimRequest

The envelope identifier formed from the

PublicationId.

Account to which the claim

is directed

10.16.2. Message: PollClaimResponse

The claim message

10.17. Transaction:

CreateGroup

Check party making claim

10.17.1. Message: CreateGroupRequest

The service account to bind to.

The persistent profile

that will be used to

validate changes to the account assertion.

10.17.2. Message: CreateGroupResponse

[No fields]

10.17.3. Structure: CryptographicOperation

The key identifier

Lagrange coefficient multiplier

to be applied to the private key

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inherits: CryptographicOperation

Data: Binary (Optional)

PartialR: Binary (Optional)

Inherits: CryptographicOperation

Inherits: CryptographicOperation

Inherits: CryptographicOperation

Threshold: Integer (Optional)

Shares: Integer (Optional)

Error: String (Optional)

Inherits: CryptographicResult

Request: OperateRequest

Response: OperateResponse

Inherits: MeshRequest

AccountAddress: String (Optional)

Inherits: MeshResponse

10.17.4. Structure: CryptographicOperationSign

The data to sign

Contribution to the R offset.

10.17.5. Structure: CryptographicOperationKeyAgreement

[No fields]

10.17.6. Structure: CryptographicOperationGenerate

[No fields]

10.17.7. Structure: CryptographicOperationShare

10.17.8. Structure:

CryptographicResult

10.17.9. Structure:

CryptographicResultKeyAgreement

[No fields]

10.18. Transaction: Operate

Perform a set of cryptographic operations

10.18.1. Message: OperateRequest

The service account the capability is bound

to

10.18.2. Message: OperateResponse

[No fields]

11. Security Considerations

The security considerations for use and implementation of Mesh

services and applications are described in the Mesh Security

Considerations guide [draft-hallambaker-mesh-security].

¶

¶

¶

¶

¶

¶

¶

¶

¶

[draft-hallambaker-mesh-architecture]

[draft-hallambaker-mesh-security]

[RFC2119]

[RFC3339]

[RFC4648]

[RFC7230]

[RFC8446]

12. IANA Considerations

All the IANA considerations for the Mesh documents are specified in

this document

13. Acknowledgements

A list of people who have contributed to the design of the Mesh is

presented in [draft-hallambaker-mesh-architecture].

14. Normative References

Hallam-Baker, P., "Mathematical Mesh 3.0 Part I:

Architecture Guide", Work in Progress, Internet-Draft,

draft-hallambaker-mesh-architecture-13, 9 March 2020,

<https://tools.ietf.org/html/draft-hallambaker-mesh-

architecture-13>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part VII:

Security Considerations", Work in Progress, Internet-

Draft, draft-hallambaker-mesh-security-04, 9 March 2020,

<https://tools.ietf.org/html/draft-hallambaker-mesh-

security-04>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/rfc/rfc3339>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/rfc/rfc4648>.

Fielding, R. and J. Reschke, "Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI

10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/

rfc/rfc7230>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

15. Informative References

¶

¶

https://tools.ietf.org/html/draft-hallambaker-mesh-architecture-13
https://tools.ietf.org/html/draft-hallambaker-mesh-architecture-13
https://tools.ietf.org/html/draft-hallambaker-mesh-security-04
https://tools.ietf.org/html/draft-hallambaker-mesh-security-04
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3339
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc8446

[draft-hallambaker-mesh-developer]

[ECMA-262]

Hallam-Baker, P., "Mathematical Mesh: Reference

Implementation", Work in Progress, Internet-Draft, draft-

hallambaker-mesh-developer-09, 23 October 2019, <https://

tools.ietf.org/html/draft-hallambaker-mesh-developer-09>.

Ecma International, "ECMAScript(R) 2017 Language

Specification", June 2017.

https://tools.ietf.org/html/draft-hallambaker-mesh-developer-09
https://tools.ietf.org/html/draft-hallambaker-mesh-developer-09

	Mathematical Mesh 3.0 Part V: Protocol Reference
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Definitions
	2.1. Requirements Language
	2.2. Defined Terms
	2.3. Related Specifications
	2.4. Implementation Status

	3. Mesh Service
	3.1. Data Model
	3.2. Partitioning

	4. Protocol Bindings
	4.1. DNS Web Service Discovery
	4.2. Web Service Protocol Binding
	4.2.1. Transport Security
	4.2.2. HTTP Message Binding
	4.2.3. Request
	4.2.4. Response

	4.3. DARE Message Encapsulation
	4.3.1. Null Authentication
	4.3.2. Device Authentication
	4.3.3. Profile Authentication
	4.3.4. Ticket Authentication

	4.4. Payload Encoding
	4.5. Error handling and response codes

	5. Service Description
	6. Account Management
	7. Container Synchronization
	7.1. Status Transaction
	7.2. Download Transaction
	7.2.1. Conflict Detection
	7.2.2. Filtering

	7.3. Upload Transaction

	8. Device Connection
	8.1. Device Authenticated
	8.2. PIN Authenticated
	8.3. EARL connection mode

	9. Mesh Messaging
	9.1. Message Exchange
	9.1.1. Client-Service (Post Transaction)
	9.1.2. Service-Service (Post Transaction)
	9.1.2.1. Denial of Service Mitigation
	9.1.2.2. Access Control

	9.1.3. Service-Client (Synchronization)

	10. Protocol Schema
	10.1. Request Messages
	10.1.1. Message: MeshRequest
	10.1.2. Message: MeshRequestUser

	10.2. Response Messages
	10.2.1. Message: MeshResponse

	10.3. Imported Objects
	10.4. Common Structures
	10.4.1. Structure: KeyValue
	10.4.2. Structure: ConstraintsSelect
	10.4.3. Structure: ConstraintsData
	10.4.4. Structure: PolicyAccount
	10.4.5. Structure: ContainerStatus
	10.4.6. Structure: ContainerUpdate

	10.5. Transaction: Hello
	10.5.1. Message: MeshHelloResponse

	10.6. Transaction: CreateAccount
	10.6.1. Message: CreateRequest
	10.6.2. Message: CreateResponse

	10.7. Transaction: DeleteAccount
	10.7.1. Message: DeleteRequest
	10.7.2. Message: DeleteResponse

	10.8. Transaction: Complete
	10.8.1. Message: CompleteRequest
	10.8.2. Message: CompleteResponse

	10.9. Transaction: Status
	10.9.1. Message: StatusRequest
	10.9.2. Message: StatusResponse

	10.10. Transaction: Download
	10.10.1. Message: DownloadRequest
	10.10.2. Message: DownloadResponse

	10.11. Transaction: Upload
	10.11.1. Message: UploadRequest
	10.11.2. Message: UploadResponse
	10.11.3. Structure: EntryResponse

	10.12. Transaction: Publish
	10.12.1. Message: PublishRequest
	10.12.2. Message: PublishResponse

	10.13. Transaction: Post
	10.13.1. Message: PostRequest
	10.13.2. Message: PostResponse

	10.14. Transaction: Connect
	10.14.1. Message: ConnectRequest
	10.14.2. Message: ConnectResponse

	10.15. Transaction: Claim
	10.15.1. Message: ClaimRequest
	10.15.2. Message: ClaimResponse

	10.16. Transaction: PollClaim
	10.16.1. Message: PollClaimRequest
	10.16.2. Message: PollClaimResponse

	10.17. Transaction: CreateGroup
	10.17.1. Message: CreateGroupRequest
	10.17.2. Message: CreateGroupResponse
	10.17.3. Structure: CryptographicOperation
	10.17.4. Structure: CryptographicOperationSign
	10.17.5. Structure: CryptographicOperationKeyAgreement
	10.17.6. Structure: CryptographicOperationGenerate
	10.17.7. Structure: CryptographicOperationShare
	10.17.8. Structure: CryptographicResult
	10.17.9. Structure: CryptographicResultKeyAgreement

	10.18. Transaction: Operate
	10.18.1. Message: OperateRequest
	10.18.2. Message: OperateResponse

	11. Security Considerations
	12. IANA Considerations
	13. Acknowledgements
	14. Normative References
	15. Informative References

