
Workgroup: Network Working Group

Internet-Draft: draft-hallambaker-mesh-schema

Published: 5 August 2021

Intended Status: Informational

Expires: 6 February 2022

Authors: P. M. Hallam-Baker

ThresholdSecrets.com

Mathematical Mesh 3.0 Part IV: Schema Reference

Abstract

The Mathematical Mesh 'The Mesh' is an end-to-end secure

infrastructure that facilitates the exchange of configuration and

credential data between multiple user devices. The core protocols of

the Mesh are described with examples of common use cases and

reference data.

[Note to Readers]

Discussion of this draft takes place on the MATHMESH mailing list

(mathmesh@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=mathmesh.

This document is also available online at http://mathmesh.com/

Documents/draft-hallambaker-mesh-schema.html.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 February 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

http://mathmesh.com/Documents/draft-hallambaker-mesh-schema.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-schema.html
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Definitions

2.1. Requirements Language

2.2. Defined Terms

2.3. Related Specifications

2.4. Implementation Status

3. Actors

3.1. Accounts

3.2. Device

3.2.1. Activation

3.3. Service

4. Catalogs

4.1. Access

4.2. Application

4.2.1. Mesh Account

4.2.2. SSH

4.2.3. Mail

4.3. Bookmark

4.4. Contact

4.5. Credential

4.6. Device

4.7. Network

4.8. Publication

4.9. Task

5. Spools

5.1. Outbound

5.2. Inbound

5.3. Local

6. Cryptographic Operations

6.1. Key Derivation from Seed

6.2. Message Envelope and Response Identifiers.

6.3. Proof of Knowledge of PIN

6.4. EARL

6.5. Key Agreement

6.6. Service Cryptographic Operations

7. Mesh Assertions

7.1. Encoding

7.2. Mesh Profiles

7.3. Mesh Connections

¶

https://trustee.ietf.org/license-info

8. Architecture

8.1. Mesh Account

8.1.1. Account Profile

8.2. Device Management

8.2.1. The Device Catalog

8.2.2. Mesh Devices

8.3. Mesh Services

8.4. Mesh Messaging

8.4.1. Message Status

8.4.2. Four Corner Model

8.4.3. Traffic Analysis

9. Publications

9.1. Contact Exchange

9.2. Device Preconfiguration

9.3. Device Description

10. Schema

10.1. Shared Classes

10.1.1. Classes describing keys

10.1.2. Structure: KeyData

10.1.3. Structure: CompositePrivate

10.2. Assertion classes

10.2.1. Structure: Assertion

10.2.2. Structure: Condition

10.2.3. Base Classes

10.2.4. Structure: Connection

10.2.5. Structure: Activation

10.2.6. Structure: ActivationEntry

10.2.7. Mesh Profile Classes

10.2.8. Structure: Profile

10.2.9. Structure: ProfileDevice

10.2.10. Structure: ProfileAccount

10.2.11. Structure: ProfileUser

10.2.12. Structure: ProfileGroup

10.2.13. Structure: ProfileService

10.2.14. Structure: ProfileHost

10.2.15. Connection Assertions

10.2.16. Structure: ConnectionDevice

10.2.17. Structure: ConnectionApplication

10.2.18. Structure: ConnectionGroup

10.2.19. Structure: ConnectionService

10.2.20. Structure: ConnectionHost

10.2.21. Activation Assertions

10.2.22. Structure: ActivationDevice

10.2.23. Structure: ActivationAccount

10.2.24. Structure: ActivationApplication

10.3. Data Structures

10.3.1. Structure: Contact

10.3.2. Structure: Anchor

10.3.3. Structure: TaggedSource

10.3.4. Structure: ContactGroup

10.3.5. Structure: ContactPerson

10.3.6. Structure: ContactOrganization

10.3.7. Structure: OrganizationName

10.3.8. Structure: PersonName

10.3.9. Structure: NetworkAddress

10.3.10. Structure: NetworkProtocol

10.3.11. Structure: Role

10.3.12. Structure: Location

10.3.13. Structure: Bookmark

10.3.14. Structure: Reference

10.3.15. Structure: Task

10.4. Catalog Entries

10.4.1. Structure: CatalogedEntry

10.4.2. Structure: CatalogedDevice

10.4.3. Structure: CatalogedPublication

10.4.4. Structure: CatalogedCredential

10.4.5. Structure: CatalogedNetwork

10.4.6. Structure: CatalogedContact

10.4.7. Structure: CatalogedAccess

10.4.8. Structure: CryptographicCapability

10.4.9. Structure: CapabilityDecrypt

10.4.10. Structure: CapabilityDecryptPartial

10.4.11. Structure: CapabilityDecryptServiced

10.4.12. Structure: CapabilitySign

10.4.13. Structure: CapabilityKeyGenerate

10.4.14. Structure: CapabilityFairExchange

10.4.15. Structure: CatalogedBookmark

10.4.16. Structure: CatalogedTask

10.4.17. Structure: CatalogedApplication

10.4.18. Structure: CatalogedMember

10.4.19. Structure: CatalogedGroup

10.4.20. Structure: CatalogedApplicationSSH

10.4.21. Structure: CatalogedApplicationMail

10.4.22. Structure: CatalogedApplicationNetwork

10.5. Publications

10.5.1. Structure: DevicePreconfiguration

10.6. Messages

10.6.1. Structure: Message

10.6.2. Structure: MessageError

10.6.3. Structure: MessageComplete

10.6.4. Structure: MessagePinValidated

10.6.5. Structure: MessagePin

10.6.6. Structure: RequestConnection

10.6.7. Structure: AcknowledgeConnection

10.6.8. Structure: RespondConnection

10.6.9. Structure: MessageContact

10.6.10. Structure: GroupInvitation

10.6.11. Structure: RequestConfirmation

10.6.12. Structure: ResponseConfirmation

10.6.13. Structure: RequestTask

10.6.14. Structure: MessageClaim

10.6.15. Structure: ProcessResult

11. Security Considerations

12. IANA Considerations

13. Acknowledgements

14. Appendix A: Example Container Organization (not normative)

14.1. Device

14.1.1. Creating a new Mesh

14.1.2. Adding an Account

14.1.3. Adding a Device

14.2. Service

14.2.1. Creating a Service

14.2.2. Adding an Account

15. Appendix B: Collected Authentication and Encryption Requirements

15.1. Mesh Messaging

16. Normative References

17. Informative References

1. Introduction

This document describes the data structures of the Mathematical Mesh

with illustrative examples. For an overview of the Mesh objectives

and architecture, consult the accompanying Architecture Guide

[draft-hallambaker-mesh-architecture]. For information on the

implementation of the Mesh Service protocol, consult the

accompanying Protocol Reference [draft-hallambaker-mesh-protocol]

This document has two main sections. The first section presents

examples of the Mesh assertions, catalog entry and messages in use.

The second section contains the schema reference. All the material

in both sections is generated from the Mesh reference implementation

[draft-hallambaker-mesh-developer].

Although some of the services described in this document could be

used to replace existing Internet protocols including FTP and SMTP,

the principal value of any communication protocol lies in the size

of the audience it allows them to communicate with. Thus, while the

Mesh Messaging service is designed to support efficient and reliable

transfer of messages ranging in size from a few bytes to multiple

terabytes, the near-term applications of these services will be to

applications that are not adequately supported by existing protocols

if at all.

¶

¶

¶

2. Definitions

This section presents the related specifications and standard, the

terms that are used as terms of art within the documents and the

terms used as requirements language.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2.2. Defined Terms

The terms of art used in this document are described in the Mesh

Architecture Guide [draft-hallambaker-mesh-architecture].

2.3. Related Specifications

The architecture of the Mathematical Mesh is described in the Mesh

Architecture Guide [draft-hallambaker-mesh-architecture]. The Mesh

documentation set and related specifications are described in this

document.

2.4. Implementation Status

The implementation status of the reference code base is described in

the companion document [draft-hallambaker-mesh-developer].

3. Actors

The Mesh mediates interactions between three principal actors:

Accounts, Devices, and Services.

Currently two account types are specified, user accounts which

belong to an individual user and group accounts that are used to

share access to confidential information between a group of users.

It may prove useful to define new types of account over time or to

eliminate the distinction entirely. When active a Mesh account is

bound to a Mesh Service. The service to which an account is bound

MAY be changed over time but an account can only be bound to a

single service at a time.

A Mesh account is an abstract construct that (when active) is

instantiated across one or more physical machines called a device.

Each device that is connected to an account has a separate set of

cryptographic keys that are used to interact with other devices

connected to the account and MAY be provisioned with access to the

account private keys which MAY or MAY NOT be mediated by the current

Mesh Service.

¶

¶

¶

¶

¶

¶

¶

¶

ProfileUser

ProfileGroup

ProfileSignature

AccountAddress

ServiceUdf

AdministratorSignature

AccountEncryption

A Mesh Service is an abstract construct that is provided by one or

more physical machines called Hosts. A Mesh Host is a device that is

attached to a service rather than an account.

3.1. Accounts

A Mesh Account is described by a Profile descended from Profile

Account and contains a set of Mesh stores. Currently two account

profiles are defined:

Describes a user account.

Describes a group account used to share confidential

information between a group of users.

Both types of profile specify the following fields:

The public signature key used to authenticate the

profile itself

The account name to which the account is currently

bound. (e.g. alice@example.com, @alice).

If the account is active, specifies the fingerprint of

the service profile to which the account is currently bound.

The public signature key used to verify

administrative actions on the account. In particular addition of

devices to a user account or members to a group account.

The public encryption key for the account. All

messages sent to the account MUST be encrypted under this key. By

definition, all data encrypted under this account is encrypted

under this key.

User accounts specify two additional public keys, AccountSignature

and AccountAuthentication which allow signature and authentication

operations under the account context.

Every account contains a set of catalogs and spools that are managed

by the service as directed by the contents of the associated Access

catalog.

For example, the personal account profile Alice created is:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "ProfileUser":{

 "ProfileSignature":{

 "Udf":"MC44-IZC3-IWZT-VCVZ-L2AG-HI4E-LOV2",

 "PublicParameters":{

 "PublicKeyECDH":{

 "crv":"Ed448",

 "Public":"W5ugEWyCz986Pw7xPP9-ap09PFpqfc9x_MB0Uq1brUpEg

 1ylIaitE5YaJIAeTb_Cc5y4Yr5D6kgA"}}},

 "AccountAddress":"alice@example.com",

 "ServiceUdf":"MBBY-E4VA-CMWF-52T7-ESLA-PGNT-CNNX",

 "AccountEncryption":{

 "Udf":"MCQX-PF7A-LY3G-3ZPI-AIYO-LR5D-YG6W",

 "PublicParameters":{

 "PublicKeyECDH":{

 "crv":"X448",

 "Public":"0ARE0VapsMqYf_P-tFnE0FZ2Zq2wn4e21viCH4Trhyg7Q

 0N8FXmbpYv_72_L2VKuliiiOhddT1OA"}}},

 "AdministratorSignature":{

 "Udf":"MCLJ-LCFX-ENE2-5NTF-GBNV-MW3P-VHSZ",

 "PublicParameters":{

 "PublicKeyECDH":{

 "crv":"Ed448",

 "Public":"GXmg8zk0pvV9b881JNvRm69dOTuL7oyYNwziQQltWF4aX

 ZMCTjf8EM3gtCU7wHF0zuFsd1WgX8GA"}}},

 "AccountAuthentication":{

 "Udf":"MDA5-PY6A-BG2L-7YN6-EAKP-O3QB-CG5T",

 "PublicParameters":{

 "PublicKeyECDH":{

 "crv":"X448",

 "Public":"XcHN7AbMTW1TMQOd0mXyAHG62O6j7YHgIGhp1Oaj5xTOK

 2uPzGxMeCeFOzX0f-YJXijL6hl_baWA"}}},

 "AccountSignature":{

 "Udf":"MCGB-4KCI-CP3G-FJSD-W7W2-UYKO-GNLU",

 "PublicParameters":{

 "PublicKeyECDH":{

 "crv":"Ed448",

 "Public":"cA1wcKtn1daj606UD0PJ8xLqFN0kOdxyjsF2QKrPZxdUY

 gSPRVRiLsLJOEl7cIsttpaCFwuPiDOA"}}}}}

3.2. Device

Every Mesh device has a set of private keys that are unique to that

device. These keys MAY be installed during manufacture, installed

from an external source after manufacture or generated on the

device. If the platform capabilities allow, device private keys

¶

ProfileSignature

BaseEncryption

BaseAuthentication

BaseSignature

SHOULD be bound to the device so that they cannot be extracted or

exported without substantial effort.

The public keys corresponding to the device private keys are

specified in a ProfileDevice. This MUST contain at least the

following fields:

The public signature key used to authenticate the

profile itself.

Public encryption key used as a share contribution

to generation of device encryption keys to be used in the context

of an account and to decrypt data during the process of

connecting to an account.

Public authentication key used as a share

contribution to generation of device authentication keys to be

used in the context of an account and to authenticate the device

to a service during the process of connecting to an account.

Public signature key used as a share contribution to

generation of device authentication keys to be used in the

context of an account.

For example, the device profile corresponding to Alice's coffee pot

device is:

3.2.1. Activation

The device private keys are only used to perform cryptographic

operations during the process of connecting a device to an account.

During that connection process, a threshold key generation scheme is

used to generate a second set of device keys bound to the account by

combining the base key held by the device with a second device

private key provided by the administration device approving the

connection of the device to the account. The resulting key is

referred to as the device key. The process of combining the base

keys with the contributions to form the device keys is called

Activation.

The activation record for Alice's coffee pot device is:

The Mesh protocols are designed so that there is never a need to

export or escrow private keys of any type associated with a device,

neither the base key, nor the device key nor the contribution from

the administration device.

This approach to device configuration ensures that the keys that are

used by the device when operating within the context of the account

are entirely separate from those originally provided by the device

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

manufacturer or generated on the device, provided only that the key

contributions from the administration device are sufficiently random

and unguessable.

The public keys corresponding to the composite keys generated during

the connection process are described in a ConnectionUser assertion

signed by the administration key of the corresponding account.

The connection record for Alice's coffee pot device is:

The ConnectionUser assertion MAY be used in the same fashion as an

X.509v3/PKIX certificate to mediate interactions between devices

connected to the same account without the need for interaction with

the Mesh service. Thus, a coffee pot device connected to the account

can receive and authenticate instructions issued by a voice

recognition device connected to that account.

While the ConnectionUser assertion MAY be used to mediate external

interactions, this approach is typically undesirable as it provides

the external parties with visibility to the internal configuration

of the account, in particular which connected devices are being used

on which occasions. Furthermore, the lack of the need to interact

with the service means that the service is necessarily unable to

mediate the exchange and enforce authorization policy on the

interactions.

Device keys are intended to be used to secure communications between

devices connected to the same account. All communication between

Mesh accounts SHOULD be mediated by a Mesh service. This enables

abuse mitigation by applying access control to every outbound and

every inbound message.

Since Alice's coffee pot does not require the external communication

right, the activation record for the coffee pot does not provide

access to the account keys required to perform external

communications. Alice's watch device does require access to the

account keys so it can receive messages and task updates. But since

it is a device that Alice has to carry on her person to use, it is a

device that might easily be lost or stolen. Accordingly, the

activation record for Alice's watch provides access to the account

decryption and signature keys but in the form of threshold key

shares mediated by the Mesh service. Thus, Alice's watch can sign

and read message sent to the account but only under the control of

the Mesh service.

3.3. Service

Mesh services are described by a ProfileService. This specifies the

encryption, and signature authentication keys used to interact with

the abstract service.

¶

¶

¶

¶

¶

¶

¶

¶

Access: mmm_Access

Application: mmm_Application

Bookmark: mmm_Bookmark

Contact: mmm_Contact

Since Mesh accounts and services are both abstract constructs, they

cannot interact directly. A device connected to an account can only

interact with a service by interacted with a device authorized to

provide services on behalf of one or more accounts connected to the

service. Such a device is called a Mesh Host.

Mesh hosts MAY be managed using the same ProfileDevice and device

connection mechanism provided for management of user devices or by

whatever other management protocols prove convenient. The only part

of the Service/Host interaction that is visible to devices connected

to a profile and to hosts connected to other services is the

ConnectionHost structure that describes the set of device keys to

use in interactions with that specific host.

4. Catalogs

Catalogs track sets of persistent objects associated with a Mesh

Service Account. The Mesh Service has no access to the entries in

any Mesh catalog except for the Device and Contacts catalog which

are used in device authentication and authorization of inbound

messages.

Each Mesh Catalog managed by a Mesh Account has a name of the form:

<prefix>_<name>

Where <prefix> is the IANA assigned service name. The assigned

service name for the Mathematical Mesh is mmm. Thus, all catalogs

specified by the Mesh schema have names prefixed with the sequence

mmm_.

The following catalogs are currently specified within the

Mathematical Mesh.

Describes access control policy for performing

operations on the account. The Access catalog is the only Mesh

catalog whose contents are readable by the Mesh Service under

normal circumstances.

Describes configuration information

for applications including mail (SMTP, IMAP, OpenPGP, S/MIME,

etc) and SSH and for the MeshAccount application itself.

Describes Web bookmarks and other citations

allowing them to be shared between devices connected to the

profile.

Describes logical and physical contact

information for people and organizations.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Credential: mmm_Credential

Device: mmm_Device

Network: mmm_Network

Member: mmm_Member

Publication: mmm_Publication

Task: mmm_CatalogTask

Describes credentials used to access

network resources.

Describes the set of devices connected to the

account and the permissions assigned to them

Describes network settings such as WiFi access

points, IPSEC and TLS VPN configurations, etc.

Describes the set of members connected to a

group account.

Describes data published under the

account context. The data MAY be stored in the publication

catalog itself or on a separate service (e.g. a Web server).

Describes tasks assigned to the user

including calendar entries and to do lists.

The Access, Publication, Device and Member catalogs are involved in

Mesh Service Protocol interactions. These interactions are further

described in the Protocol Reference [draft-hallambaker-mesh-

protocol].

In many cases, the Mesh Catalog offers capabilities that represent a

superset of the capabilities of an existing application. For

example, the task catalog supports the appointment tracking

functions of a traditional calendar application and the task

tracking function of the traditional 'to do list' application.

Combining these functions allows tasks to be triggered by other

events other than the passage of time such as completion of other

tasks, geographical presence, etc.

In such cases, the Mesh Catalog entries are designed to provide a

superset of the data representation capabilities of the legacy

formats and (where available) recent extensions. Where a catalog

entry is derived from input presented in a legacy format, the

original data representation MAY be attached verbatim to facilitate

interoperability.

4.1. Access

The access catalog mmm_Access contains a list of access control

entries granting a party authenticated using a particular

cryptographic credential a specific privilege such as:

Accept Mesh Messages of particular types

Perform an operation on a private key known to the service.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

As with the publication catalog, the access catalog provides

information that is necessary for the Mesh Service to act on behalf

of the user. It is therefore necessary to grant a decryption

capability for this catalog during the process of binding the

account to a service.

4.2. Application

The application catalog mmm_Application contains

CatalogEntryApplication entries which describe the use of specific

applications under the Mesh Service Account. Multiple application

accounts for a single application MAY be connected to a single Mesh

Service Account. Each account being specified in a separate entry.

The CatalogEntryApplication entries only contain configuration

information for the application as it applies to the account as a

whole. If the application requires separate configuration for

individual devices, this is specified in separate activation records

specified in the corresponding ConnectionDevice.

4.2.1. Mesh Account

Mesh Accounts are described by CatalogEntryAccount entries. The

corresponding activation records for the connected devices contain

the contributions used to derive the private keys for use of the

account.

The CatalogEntryAccount entry is described in the section describing

Mesh accounts above.

4.2.2. SSH

SSH configuration profiles are described by

CatalogEntryApplicationSSH entries. The corresponding activation

records for the connected devices contain the contributions used to

derive the private keys.

A user may have separate SSH configurations for separate purposes

within a single Mesh Account. This allows a system administrator

servicing multiple clients to maintain separate SSH profiles for

each of her customers allowing credentials to be easily (and

verifiably) revoked at contract termination.

The SSH profile contains the information that is stored in the

known_hosts and authorized_keys files of SSH clients and servers.

4.2.3. Mail

Mail configuration profiles are described by one or more

CatalogEntryApplicationMail entries, one for each email account

¶

¶

¶

¶

¶

¶

¶

¶

connected to the Mesh profile. The corresponding activation records

for the connected devices contain information used to provide the

device with the necessary decryption information.

Entries specify the email account address(es), the inbound and

outbound server configuration and the cryptographic keys to be used

for S/MIME and OpenPGP encryption.

4.3. Bookmark

The bookmark catalog mmm_bookmark contains CatalogEntryBookmark

entries which describe Web bookmarks and other citations allowing

them to be shared between devices connected to the profile.

The fields currently supported by the Bookmarks catalog are

currently limited to the fields required for tracking Web bookmarks.

Specification of additional fields to track full academic citations

is a work in progress.

{

 "CatalogedBookmark":{

 "Uri":"http://www.site1.com",

 "Title":"site1",

 "Path":"Sites.1"}}

4.4. Contact

The contact catalog mmm_contact contains CatalogEntryContact entries

which describe

¶

¶

¶

¶

¶

¶

{

 "CatalogedContact":{

 "Key":"MC44-IZC3-IWZT-VCVZ-L2AG-HI4E-LOV2",

 "Self":true,

 "Contact":{

 "ContactPerson":{

 "Id":"MC44-IZC3-IWZT-VCVZ-L2AG-HI4E-LOV2",

 "Anchors":[{

 "Udf":"MC44-IZC3-IWZT-VCVZ-L2AG-HI4E-LOV2",

 "Validation":"Self"}

],

 "NetworkAddresses":[{

 "Address":"alice@example.com",

 "EnvelopedProfileAccount":[{

 "EnvelopeId":"MC44-IZC3-IWZT-VCVZ-L2AG-HI4E-LOV2",

 "dig":"S512",

 "ContentMetaData":"ewogICJVbmlxdWVJZCI6ICJNQzQ0LU

 laQzMtSVdaVC1WQ1ZaLUwyQUctSEk0RS1MT1YyIiwKICAiTWVzc2FnZVR5cGUiOiA

 iUHJvZmlsZVVzZXIiLAogICJjdHkiOiAiYXBwbGljYXRpb24vbW1tL29iamVjdCIs

 CiAgIkNyZWF0ZWQiOiAiMjAyMS0wOC0wNVQxNjozNzozMVoifQ"},

 "ewogICJQcm9maWxlVXNlciI6IHsKICAgICJQcm9maWxlU2lnbm

 F0dXJlIjogewogICAgICAiVWRmIjogIk1DNDQtSVpDMy1JV1pULVZDVlotTDJBRy1

 ISTRFLUxPVjIiLAogICAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICAgICAgICAi

 UHVibGljS2V5RUNESCI6IHsKICAgICAgICAgICJjcnYiOiAiRWQ0NDgiLAogICAgI

 CAgICAgIlB1YmxpYyI6ICJXNXVnRVd5Q3o5ODZQdzd4UFA5LWFwMDlQRnBxZmM5eF

 9NQjBVcTFiclVwRWcxeWxJYWl0CiAgRTVZYUpJQWVUYl9DYzV5NFlyNUQ2a2dBIn1

 9fSwKICAgICJBY2NvdW50QWRkcmVzcyI6ICJhbGljZUBleGFtcGxlLmNvbSIsCiAg

 ICAiU2VydmljZVVkZiI6ICJNQkJZLUU0VkEtQ01XRi01MlQ3LUVTTEEtUEdOVC1DT

 k5YIiwKICAgICJBY2NvdW50RW5jcnlwdGlvbiI6IHsKICAgICAgIlVkZiI6ICJNQ1

 FYLVBGN0EtTFkzRy0zWlBJLUFJWU8tTFI1RC1ZRzZXIiwKICAgICAgIlB1YmxpY1B

 hcmFtZXRlcnMiOiB7CiAgICAgICAgIlB1YmxpY0tleUVDREgiOiB7CiAgICAgICAg

 ICAiY3J2IjogIlg0NDgiLAogICAgICAgICAgIlB1YmxpYyI6ICIwQVJFMFZhcHNNc

 VlmX1AtdEZuRTBGWjJacTJ3bjRlMjF2aUNINFRyaHlnN1EwTjhGWG1iCiAgcFl2Xz

 cyX0wyVkt1bGlpaU9oZGRUMU9BIn19fSwKICAgICJBZG1pbmlzdHJhdG9yU2lnbmF

 0dXJlIjogewogICAgICAiVWRmIjogIk1DTEotTENGWC1FTkUyLTVOVEYtR0JOVi1N

 VzNQLVZIU1oiLAogICAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICAgICAgICAiU

 HVibGljS2V5RUNESCI6IHsKICAgICAgICAgICJjcnYiOiAiRWQ0NDgiLAogICAgIC

 AgICAgIlB1YmxpYyI6ICJHWG1nOHprMHB2VjliODgxSk52Um02OWRPVHVMN295WU5

 3emlRUWx0V0Y0YVhaTUNUamY4CiAgRU0zZ3RDVTd3SEYwenVGc2QxV2dYOEdBIn19

 fSwKICAgICJBY2NvdW50QXV0aGVudGljYXRpb24iOiB7CiAgICAgICJVZGYiOiAiT

 URBNS1QWTZBLUJHMkwtN1lONi1FQUtQLU8zUUItQ0c1VCIsCiAgICAgICJQdWJsaW

 NQYXJhbWV0ZXJzIjogewogICAgICAgICJQdWJsaWNLZXlFQ0RIIjogewogICAgICA

 gICAgImNydiI6ICJYNDQ4IiwKICAgICAgICAgICJQdWJsaWMiOiAiWGNITjdBYk1U

 VzFUTVFPZDBtWHlBSEc2Mk82ajdZSGdJR2hwMU9hajV4VE9LMnVQekd4TQogIGVDZ

 UZPelgwZi1ZSlhpakw2aGxfYmFXQSJ9fX0sCiAgICAiQWNjb3VudFNpZ25hdHVyZS

 I6IHsKICAgICAgIlVkZiI6ICJNQ0dCLTRLQ0ktQ1AzRy1GSlNELVc3VzItVVlLTy1

 HTkxVIiwKICAgICAgIlB1YmxpY1BhcmFtZXRlcnMiOiB7CiAgICAgICAgIlB1Ymxp

 Y0tleUVDREgiOiB7CiAgICAgICAgICAiY3J2IjogIkVkNDQ4IiwKICAgICAgICAgI

 CJQdWJsaWMiOiAiY0Exd2NLdG4xZGFqNjA2VUQwUEo4eExxRk4wa09keHlqc0YyUU

 tyUFp4ZFVZZ1NQUlZSaQogIExzTEpPRWw3Y0lzdHRwYUNGd3VQaURPQSJ9fX19fQ",

 {

 "signatures":[{

 "alg":"S512",

 "kid":"MC44-IZC3-IWZT-VCVZ-L2AG-HI4E-LOV2",

 "signature":"p1UxtlxOGp8wd7oESFQkmqR6uV9s-cW4

 WtonkwN1BbH9F1KN6lllLPhnNBhlmstQ06cm7BEYtR6AwG2f1yOM1IjdPFzLmm53M

 BA-g4GLebflsg87h_kvT9JVSnHq7MDY6ewMo97Boay7r26qf-Ci4xIA"}

],

 "PayloadDigest":"gNprAKlPBfHdWXEdD7djEQ8IoJzHAJS-

 zBlZW6Bj8xjHqsbEhqbSO4AkIEizON5HsGbMSu_BQl_NPSrKZWS9pw"}

],

 "Protocols":[{

 "Protocol":"mmm"}

]}

],

 "Sources":[{

 "Validation":"Self",

 "EnvelopedSource":[{

 "dig":"S512",

 "ContentMetaData":"ewogICJNZXNzYWdlVHlwZSI6ICJDb2

 50YWN0UGVyc29uIiwKICAiY3R5IjogImFwcGxpY2F0aW9uL21tbS9vYmplY3QiLAo

 gICJDcmVhdGVkIjogIjIwMjEtMDgtMDVUMTY6Mzc6MzFaIn0"},

 "ewogICJDb250YWN0UGVyc29uIjogewogICAgIkFuY2hvcnMiOi

 BbewogICAgICAgICJVZGYiOiAiTUM0NC1JWkMzLUlXWlQtVkNWWi1MMkFHLUhJNEU

 tTE9WMiIsCiAgICAgICAgIlZhbGlkYXRpb24iOiAiU2VsZiJ9XSwKICAgICJOZXR3

 b3JrQWRkcmVzc2VzIjogW3sKICAgICAgICAiQWRkcmVzcyI6ICJhbGljZUBleGFtc

 GxlLmNvbSIsCiAgICAgICAgIkVudmVsb3BlZFByb2ZpbGVBY2NvdW50IjogW3sKIC

 AgICAgICAgICAgIkVudmVsb3BlSWQiOiAiTUM0NC1JWkMzLUlXWlQtVkNWWi1MMkF

 HLUhJNEUtTE9WMiIsCiAgICAgICAgICAgICJkaWciOiAiUzUxMiIsCiAgICAgICAg

 ICAgICJDb250ZW50TWV0YURhdGEiOiAiZXdvZ0lDSlZibWx4ZFdWSlpDSTZJQ0pOU

 XpRMExVbGFRek10U1ZkYVZDMQogIFdRMVphTFV3eVFVY3RTRWswUlMxTVQxWXlJaX

 dLSUNBaVRXVnpjMkZuWlZSNWNHVWlPaUFpVUhKdlptbHNaCiAgVlZ6WlhJaUxBb2d

 JQ0pqZEhraU9pQWlZWEJ3YkdsallYUnBiMjR2YlcxdEwyOWlhbVZqZENJc0NpQWdJ

 a04KICB5WldGMFpXUWlPaUFpTWpBeU1TMHdPQzB3TlZReE5qb3pOem96TVZvaWZRI

 n0sCiAgICAgICAgICAiZXdvZ0lDSlFjbTltYVd4bFZYTmxjaUk2SUhzS0lDQWdJQ0

 pRY205bWFXeAogIGxVMmxuYm1GMGRYSmxJam9nZXdvZ0lDQWdJQ0FpVldSbUlqb2d

 JazFETkRRdFNWcERNeTFKVjFwVUxWWkRWCiAgbG90VERKQlJ5MUlTVFJGTFV4UFZq

 SWlMQW9nSUNBZ0lDQWlVSFZpYkdsalVHRnlZVzFsZEdWeWN5STZJSHMKICBLSUNBZ

 0lDQWdJQ0FpVUhWaWJHbGpTMlY1UlVORVNDSTZJSHNLSUNBZ0lDQWdJQ0FnSUNKam

 NuWWlPaUFpUgogIFdRME5EZ2lMQW9nSUNBZ0lDQWdJQ0FnSWxCMVlteHBZeUk2SUN

 KWE5YVm5SVmQ1UTNvNU9EWlFkemQ0VUZBCiAgNUxXRndNRGxRUm5CeFptTTVlRjlO

 UWpCVmNURmljbFZ3UldjeGVXeEpZV2wwQ2lBZ1JUVlpZVXBKUVdWVVkKICBsOURZe

 lY1TkZseU5VUTJhMmRCSW4xOWZTd0tJQ0FnSUNKQlkyTnZkVzUwUVdSa2NtVnpjeU

 k2SUNKaGJHbAogIGpaVUJsZUdGdGNHeGxMbU52YlNJc0NpQWdJQ0FpVTJWeWRtbGp

 aVlZrWmlJNklDSk5Ra0paTFVVMFZrRXRRCiAgMDFYUmkwMU1sUTNMVVZUVEVFdFVF

 ZE9WQzFEVGs1WUlpd0tJQ0FnSUNKQlkyTnZkVzUwUlc1amNubHdkR2wKICB2YmlJN

 klIc0tJQ0FnSUNBZ0lsVmtaaUk2SUNKTlExRllMVkJHTjBFdFRGa3pSeTB6V2xCSk

 xVRkpXVTh0VAogIEZJMVJDMVpSelpYSWl3S0lDQWdJQ0FnSWxCMVlteHBZMUJoY21

 GdFpYUmxjbk1pT2lCN0NpQWdJQ0FnSUNBCiAgZ0lsQjFZbXhwWTB0bGVVVkRSRWdp

 T2lCN0NpQWdJQ0FnSUNBZ0lDQWlZM0oySWpvZ0lsZzBORGdpTEFvZ0kKICBDQWdJQ

 0FnSUNBZ0lsQjFZbXhwWXlJNklDSXdRVkpGTUZaaGNITk5jVmxtWDFBdGRFWnVSVE

 JHV2pKYWNUSgogIDNialJsTWpGMmFVTklORlJ5YUhsbk4xRXdUamhHV0cxaUNpQWd

 jRmwyWHpjeVgwd3lWa3QxYkdscGFVOW9aCiAgR1JVTVU5QkluMTlmU3dLSUNBZ0lD

 SkJaRzFwYm1semRISmhkRzl5VTJsbmJtRjBkWEpsSWpvZ2V3b2dJQ0EKICBnSUNBa

 VZXUm1Jam9nSWsxRFRFb3RURU5HV0MxRlRrVXlMVFZPVkVZdFIwSk9WaTFOVnpOUU

 xWWklVMW9pTAogIEFvZ0lDQWdJQ0FpVUhWaWJHbGpVR0Z5WVcxbGRHVnljeUk2SUh

 zS0lDQWdJQ0FnSUNBaVVIVmliR2xqUzJWCiAgNVJVTkVTQ0k2SUhzS0lDQWdJQ0Fn

 SUNBZ0lDSmpjbllpT2lBaVJXUTBORGdpTEFvZ0lDQWdJQ0FnSUNBZ0kKICBsQjFZb

 XhwWXlJNklDSkhXRzFuT0hwck1IQjJWamxpT0RneFNrNTJVbTAyT1dSUFZIVk1OMj

 k1V1U1M2VtbAogIFJVV3gwVjBZMFlWaGFUVU5VYW1ZNENpQWdSVTB6WjNSRFZUZDN

 TRVl3ZW5WR2MyUXhWMmRZT0VkQkluMTlmCiAgU3dLSUNBZ0lDSkJZMk52ZFc1MFFY

 VjBhR1Z1ZEdsallYUnBiMjRpT2lCN0NpQWdJQ0FnSUNKVlpHWWlPaUEKICBpVFVSQ

 k5TMVFXVFpCTFVKSE1rd3ROMWxPTmkxRlFVdFFMVTh6VVVJdFEwYzFWQ0lzQ2lBZ0

 lDQWdJQ0pRZAogIFdKc2FXTlFZWEpoYldWMFpYSnpJam9nZXdvZ0lDQWdJQ0FnSUN

 KUWRXSnNhV05MWlhsRlEwUklJam9nZXdvCiAgZ0lDQWdJQ0FnSUNBZ0ltTnlkaUk2

 SUNKWU5EUTRJaXdLSUNBZ0lDQWdJQ0FnSUNKUWRXSnNhV01pT2lBaVcKICBHTklUa

 mRCWWsxVVZ6RlVUVkZQWkRCdFdIbEJTRWMyTWs4MmFqZFpTR2RKUjJod01VOWhhal

 Y0VkU5TE1uVgogIFFla2Q0VFFvZ0lHVkRaVVpQZWxnd1ppMVpTbGhwYWt3MmFHeGZ

 ZbUZYUVNKOWZYMHNDaUFnSUNBaVFXTmpiCiAgM1Z1ZEZOcFoyNWhkSFZ5WlNJNklI

 c0tJQ0FnSUNBZ0lsVmtaaUk2SUNKTlEwZENMVFJMUTBrdFExQXpSeTEKICBHU2xOR

 UxWYzNWekl0VlZsTFR5MUhUa3hWSWl3S0lDQWdJQ0FnSWxCMVlteHBZMUJoY21GdF

 pYUmxjbk1pTwogIGlCN0NpQWdJQ0FnSUNBZ0lsQjFZbXhwWTB0bGVVVkRSRWdpT2l

 CN0NpQWdJQ0FnSUNBZ0lDQWlZM0oySWpvCiAgZ0lrVmtORFE0SWl3S0lDQWdJQ0Fn

 SUNBZ0lDSlFkV0pzYVdNaU9pQWlZMEV4ZDJOTGRHNHhaR0ZxTmpBMlYKICBVUXdVR

 W80ZUV4eFJrNHdhMDlrZUhscWMwWXlVVXR5VUZwNFpGVlpaMU5RVWxaU2FRb2dJRX

 h6VEVwUFJXdwogIDNZMGx6ZEhSd1lVTkdkM1ZRYVVSUFFTSjlmWDE5ZlEiLAogICA

 gICAgICAgewogICAgICAgICAgICAic2lnbmF0dXJlcyI6IFt7CiAgICAgICAgICAg

 ICAgICAiYWxnIjogIlM1MTIiLAogICAgICAgICAgICAgICAgImtpZCI6ICJNQzQ0L

 UlaQzMtSVdaVC1WQ1ZaLUwyQUctSEk0RS1MT1YyIiwKICAgICAgICAgICAgICAgIC

 JzaWduYXR1cmUiOiAicDFVeHRseE9HcDh3ZDdvRVNGUWttcVI2dVY5cy1jVzRXdG9

 ua3dOMUJiSDlGMUtONgogIGxsbExQaG5OQmhsbXN0UTA2Y203QkVZdFI2QXdHMmYx

 eU9NMUlqZFBGekxtbTUzTUJBLWc0R0xlYmZsc2c4CiAgN2hfa3ZUOUpWU25IcTdNR

 Fk2ZXdNbzk3Qm9heTdyMjZxZi1DaTR4SUEifV0sCiAgICAgICAgICAgICJQYXlsb2

 FkRGlnZXN0IjogImdOcHJBS2xQQmZIZFdYRWREN2RqRVE4SW9KekhBSlMtekJsWlc

 2Qmo4eGpIcQogIHNiRWhxYlNPNEFrSUVpek9ONUhzR2JNU3VfQlFsX05QU3JLWldT

 OXB3In1dLAogICAgICAgICJQcm90b2NvbHMiOiBbewogICAgICAgICAgICAiUHJvd

 G9jb2wiOiAibW1tIn1dfV19fQ",

 {

 "signatures":[{

 "alg":"S512",

 "kid":"MCGB-4KCI-CP3G-FJSD-W7W2-UYKO-GNLU",

 "signature":"JzkD8nCuWRjhfEQegsmuuV8iIhOjZ7jK

 uke3tNmKS2-zg1w_7b8kUZdaAKn3KTm-5fsUZrFq13eAej7CnvXgRT7j58zhHCHm1

 UKpxb13CQwFyNo7rCT31HKeOgS0V8Qa1npKMK6ZzsupGUttvuJ1qxIA"}

],

 "PayloadDigest":"lZVGf5kCDcfU544bSV1GOy3F3VjR7mv7

 avq71IF1Lqsmd5A4A02yBbGOdzXJt_gOWbFXIi1NzhAKFpUFAvjiaw"}

]}

]}}}}

The fields of the contact catalog provide a superset of the

capabilities of vCard [RFC2426].

The Contact catalog is typically used by the MeshService as a source

of authorization information to perform access control on inbound

and outbound message requests. For this reason, Mesh Service SHOULD

be granted read access to the contacts catalog by providing a

decryption entry for the service.

4.5. Credential

The credential catalog mmm_credential contains

CatalogEntryCredential entries which describe credentials used to

access network resources.

{

 "CatalogedCredential":{

 "Service":"ftp.example.com",

 "Username":"alice1",

 "Password":"password"}}

Only username/password credentials are stored in the credential

catalog. If public key credentials are to be used, these SHOULD be

managed as an application profile allowing separate credentials to

be created for each device.

4.6. Device

The device catalog mmm_Device contains CatalogEntryDevice entries

which describe the devices connected to the account and the

permissions assigned to them.

Each device connected to a Mesh Account has an associated

CatalogEntryDevice entry that includes the activation and connection

records for the account. These records are described in further

detail in section REF _Ref54628559 \r \h 0.

4.7. Network

The network catalog contains CatalogEntryNetwork entries which

describe network settings, IPSEC and TLS VPN configurations, etc.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inbound

Outbound

Local

{

 "CatalogedNetwork":{

 "Service":"myWiFi",

 "Password":"securePassword"}}

4.8. Publication

The publication catalog mmm_Publication contains

CatalogEntryPublication entries which describe content published

through the account.

4.9. Task

The Task catalog mmm_Task contains CatalogEntryTask entries which

describe tasks assigned to the user including calendar entries and

to do lists.

The fields of the task catalog currently reflect those offered by

the iCalendar specification [RFC5545]. Specification of additional

fields to allow task triggering on geographic location and/or

completion of other tasks is a work in progress.

{

 "CatalogedTask":{

 "Title":"SomeItem",

 "Key":"NC72-I2UG-KRON-M4MI-TCCX-5N7X-KRZ4"}}

5. Spools

Spools are DARE Containers containing an append only list of

messages sent or received by an account. Three spools are currently

defined:

Messages sent to the account. These are encrypted under the

account encryption keys of the sender and receiver that were

current at the time the message was sent.

Messages sent from the account. These are encrypted under

the account encryption keys of the sender and receiver that were

current at the time the message was sent.

Messages sent from the account for internal use. These are

encrypted under the encryption key of the intended recipient

alone. This is either the account administration encryption key

or a device encryption key.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Initial

Sent

Received

Refused

Initial

Read

Every Mesh Message has a unique message identifier. Messages created

at the beginning of a new messaging protocol interaction are

assigned a random message identifier. Responses to previous messages

are assigned message identifiers formed from the message identifier

to which they respond by means of a message digest function.

Every Mesh Message stored in a spool is encapsulated in an envelope

which bears a unique identifier that is formed by applying a message

digest function to the message identifier. Each stored message has

an associated state which is initially set to the state Initial and

MAY be subsequently altered by one or more MessageComplete messages

subsequently appended to the spool. The allowable message states

depending upon the spool in question.

5.1. Outbound

The outbound spool stores messages that are to be or have been sent

and MessageComplete messages reporting changes to the status of the

messages stored on the spool.

Messages posted to the outbound spool have the state Initial, Sent,

Received or Refused:

The initial state of a message posted to the spool.

The Mesh Service of the sender has delivered the message to

the Mesh Service of the recipient which accepted it.

The Mesh Service of the sender has delivered the message

to the Mesh Service of the recipient and the recipient has

acknowledged receipt.

The Mesh Service of the sender has delivered the message to

the Mesh Service of the recipient which refused to accept it.

MessageComplete messages are only valid when posted to the spool by

the service.

5.2. Inbound

The inbound spool stores messages that have been received by the

Mesh service servicing the account and MessageComplete messages

reporting changes to the status of the messages stored on the spool.

Messages posted to the outbound spool have the state Initial, Read:

The initial state of a message posted to the spool.

The message has been read.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Initial

Closed

A message previously marked as read MAY be returned to the unread

state by marking it as being in the Initial state.

5.3. Local

The local spool stores messages that are used for administrative

functions. In normal circumstances, only administrator devices and

the Mesh Service require access to the local spool.

The local spool is used to store MessagePin messages used to notify

administration devices that a PIN code has been registered for some

purpose and RespondConnection messages used to inform a device of

the result of a connection request.

The local spool is used in a device connection operation to provide

a device with the activation and connection records required to

access the service as an authorized client. Servicing these requests

requires that the service be able to access messages stored in the

spool by envelope id.

Messages posted to the outbound spool have the states Initial,

Closed:

The initial state of a message posted to the spool.

The action associated with the message has been completed.

6. Cryptographic Operations

The Mesh makes use of various cryptographic operations including

threshold operations. For convenience, these are gathered here and

specified as functions that are referenced by other parts of the

specification.

6.1. Key Derivation from Seed

Mesh Keys that derived from a seed value use the mechanism described

in [draft-hallambaker-mesh-udf]. Use of the keyname parameter allows

multiple keys for different uses to be derived from a single key.

Thus escrow of a single seed value permits recovery of all the

private keys associated with the profile.

The keyname parameter is a string formed by concatenating

identifiers specifying the key type, the actor that will use the key

and the key operation:

6.2. Message Envelope and Response Identifiers.

Every Mesh message has a unique Message Identifier MessageId. The

MakeID() function is used to calculate the value of Envelope

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

PIN: string

Identifier and Response identifier from the message identifier as

follows:

static string MakeID(string udf, string content) {

 var (code, bds) = UDF.Parse(udf);

 return code switch

 {

 UdfTypeIdentifier.Digest_SHA_3_512 =>

 UDF.ContentDigestOfDataString(

 bds, content, cryptoAlgorithmId:

 CryptoAlgorithmId.SHA_3_512),

 _ => UDF.ContentDigestOfDataString(

 bds, content, cryptoAlgorithmId:

 CryptoAlgorithmId.SHA_2_512),

 };

Where the values of content are given as follows:

String String

For example:

MessageID

 = NBF4-4PTH-UTSC-RYHZ-EQMK-BVH7-MU3F

EnvelopeID

 = MD22-62AQ-PVVT-NPUS-ATUC-MQH4-PWV2

ResponseID

 = MCZ5-YD47-KD23-MHLY-F34Z-PFVI-47VK

6.3. Proof of Knowledge of PIN

Mesh Message classes that are subclasses of MessagePinValidated MAY

be authenticated by means of a PIN. Currently two such messages are

defined: MessageContact used in contact exchange and

RequestConnection message used in device connection.

The PIN codes used to authenticate MessagePinValidated messages are

UDF Authenticator strings. The type code of the identifier specifies

the algorithm to be used to authenticate the PIN code and the Binary

Data Sequence value specifies the key.

The inputs to the PIN proof of knowledge functions are:

¶

¶

¶

¶

¶

¶

¶

¶

¶

Action: string

Account: string

ClientNonce: binary

PayloadDigest: binary

A UDF Authenticator. The type code of the identifier specifies

the algorithm to be used to authenticate the PIN code and the

Binary Data Sequence value specifies the key.

A code determining the specific action that the PIN

code MAY be used to authenticate. By convention this is the name

of the Mesh message type used to perform the action.

The account for which the PIN code is issued.

Nonce value generated by the client using the

PIN code to authenticate its message.

The PayloadDigest of a DARE Envelope that

contains the message to be authenticated. Note that if the

envelope is encrypted, this value is calculated over the

ciphertext and does not provide proof of knowledge of the

plaintext.

The following values of Action are currently defined:

String String

These inputs are used to derive values as follows:

alg = UdfAlg (PIN)

pinData = UdfBDS (PIN)

saltedPINData = MAC (Action, pinData)

saltedPIN = UDFPresent (HMAC_SHA_2_512 + saltedPINData)

PinId = UDFPresent (MAC (Account, saltedPINData))

The issuer of the PIN code stores the value saltedPIN for retrieval

using the key PinId.

The witness value for a Dare Envelope with payload digest

PayloadDigest authenticated by a PIN code whose salted value is

saltedPINData, issued by account Account is given by PinWitness() as

follows:

witnessData = Account.ToUTF8() + ClientNonce + PayloadDigest

witnessValue = MAC (witnessData , saltedPINData)

For example, to generate saltedPIN for the pin AAJP-KPYV-NSB4-GIYL-

AM used to authenticate a an action of type Device:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

pin = AAJP-KPYV-NSB4-GIYL-AM

action = message.

alg = UdfAlg (PIN)

 = Authenticator_HMAC_SHA_2_512

hashalg = default (alg, HMAC_SHA_2_512)

pinData = UdfBDS (PIN)

 = System.Byte[]

saltedPINData

 = hashalg(pinData, hashalg);

 = System.Byte[]

saltedPIN = UDFPresent (hashalg + saltedPINData)

 = ADBB-JTKR-RGGL-ACEM-TW6E-ZFY6-NQXF

The PinId binding the pin to the account alice@example.com is

Account = alice@example.com

PinId = UDFPresent (MAC (Account, saltedPINData))

 = ADVR-47UA-ZHDX-6CFS-GDDD-RYTA-LSB6

Where MAC(data, key) is the message authentication code algorithm

specified by the value of alg.

When an administrative device issues a PIN code, a Message PIN is

appended to the local spool. This has the MessageId PinId and

specifies the value saltedPIN in the field of that name.

When PIN code authentication is used, a message of type

MessagePinValidated specifies the values ClientNonce, PinWitness and

PinId in the fields of those names. These values are used to

authenticate the inner message data specified by the

AuthenticatedData field.

6.4. EARL

The UDF Encrypted Authenticated Resource Locator mechanism is used

to publish data and provide means of authentication and access

through a static identifier such as a QR code.

This mechanism is used to allow contact exchange by means of a QR

code printed on a business card and to connect a device to an

¶

¶

¶

¶

¶

¶

¶

DARE Envelope over HTTPS

UDP Transport

account using a static identifier printed on the device in the form

of a QR code.

In both cases, the information is passed using the EARL format

described in [draft-hallambaker-mesh-udf].

6.5. Key Agreement

All Mesh Protocol requests except for the HelloRequest and every

response MUST be authenticated under the device key of the host or

device making the request.

Initial authentication is achieved by performing a Key agreement

under the DeviceAuthentication key of each of the hosts and

combining the result with nonce values provided by the requestor and

respondent using a KDF function as follows:

Two bindings are currently planned.

The request or response is encapsulated in

a DARE Envelope that is exchanged by means of a HTTP POST method

over a TLS transport. The shared secret is used as the key on

Message Authentication Code that authenticates the request

payload.

Presents the same information as for the DARE

Envelope over HTTPS case but in a compact encoding using the

shared secret and an authenticated encryption scheme to pass the

required information.

Once authentication has been performed, the same pair of devices MAY

re-authenticate using the previously agreed key. To facilitate

stateless implementation, a host specifies an opaque identifier to

be used to identify the shared secret on subsequent uses which MAY

be used to recover the shared secret from the opaque identifier.

[To be specified]

6.6. Service Cryptographic Operations

A Mesh Service acts as the counterparty for threshold operations

allowing mitigation of the risk of compromise of an individual

device connected to a user account or an insider threat from an

individual member of a group account.

When acting in this role, the Mesh service controls the use of the

cryptographic function but does not have the ability to perform the

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Threshold Key Share

Threshold Key Agreement

Threshold Signature

action either by itself or by collaborating with other services to

which the account has been bound in the past.

Note that this approach limits rather than eliminates trust in the

service. As with services presenting themselves as 'zero trust', a

Mesh service becomes a trusted service after a sufficient number of

breaches in other parts of the system have occurred. And the user

trusts the service to provide availability of the service.

Three service cryptographic operations are currently specified:

A private key share s, held by the service is

split into key shares x, y such that a = x + y. One key share is

encrypted under a decryption key held by the service. The other

is encrypted under a public key specified by the party making the

request.

A private key share s, held by the service

is used to calculate the value (sl + c).P where l, c are integers

specified by the requestor and P is a point on the curve.

A private key share s, held by the service is

used to calculate a contribution to a threshold signature scheme.

The implementation of the cryptographic operations described above

is described in [draft-hallambaker-threshold] and [draft-

hallambaker-threshold-sigs].

7. Mesh Assertions

Mesh Assertions are signed DARE Envelopes that contain one of more

claims. Mesh Assertions provide the basis for trust in the

Mathematical Mesh.

Mesh Assertions are divided into two classes. Mesh Profiles are

self-signed assertions. Assertions that are not self-signed are

called declarations. The only type of declaration currently defined

is a Connection Declaration describing the connection of a device to

an account.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Identifier

Updated

NotaryToken

Conditions

u

P

e

e a

a

r
g

e

e

u
r

o

e

e

u
n e

i

V

u f

u

V

e

t s
a

o
t

u

S
s

n

s

n

C

n

r

t

n

P

A
o

S e

n

c

r a
s g

n
t . n

c

e i

i

d

l

e

p

f

d
E

u

e

a
c

d
v r

v

S

o
h

c e
c p

a

i

g

i

e

D

o

l

t

n

e

S

i

s
i

g

a

A

A o

o

u d

e

g

g

t

S

e

t
a

i

v

A

t

i

r
t

n

n
n

i

a t

l

i

e

i

c

e P e
S

f

t

as t

e

n

r

D

n r

c
c

c

l

m e

u l

r

n

u

f

S n

e

n c

d t

u

e

c i

o

A B

i

d
v

t

c c

r

e t

f n

i

V

s

u

E
t

A r

i

U
n a

a

v

e

t
i

D
r

o g

r

c

t

t e

A

o

S

i

c

l
s

i

i

e

o

v

n

e

r

u
y

r

g a

y

i

i

o o

rt

D

e

e

a

u

B

u

c

S

e

t r

D c

P
e

e

a

i

hi

l

i

A

i

o

i
B a r

n

n

Figure 1: Profiles And Connections

7.1. Encoding

The payload of a Mesh Assertion is a JSON encoded object that is a

subclass of the Assertion class which defines the following fields:

An identifier for the assertion.

The date and time at which the assertion was issued or last

updated

An assertion may optionally contain one or more notary

tokens issued by a Mesh Notary service. These establish a proof

that the assertion was signed after the date the notary token was

created.

A list of conditions that MAY be used to verify the

status of the assertion if the relying party requires.

The implementation of the NotaryToken and Conditions mechanisms is

to be specified in [draft-hallambaker-mesh-notary] at a future date.

Note that the implementation of Conditions differs significantly

from that of SAML. Relying parties are required to process condition

¶

¶

¶

¶

¶

¶

clauses in a SAML assertion to determine validity. Mesh Relying

parties MAY verify the conditions clauses or rely on the

trustworthiness of the provider.

The reason for weakening the processing of conditions clauses in the

Mesh is that it is only ever possible to validate a conditions

clause of any type relative to a ground truth. In SAML applications,

the relying party almost invariably has access to an independent

source of ground truth. A Mesh device connected to a Mesh Service

does not. Thus the types of verification that can be achieved in

practice are limited to verifying the consistency of current and

previous statements from the Mesh Service.

7.2. Mesh Profiles

Mesh Profiles perform a similar role to X.509v3 certificates but

with important differences:

Profiles describe credentials, they do not make identity

statements

Profiles do not expire, there is therefore no need to support

renewal processing.

Profiles may be modified over time, the current and past status

of a profile being recorded in an append only log.

Profiles provide the axioms of trust for the Mesh PKI. Unlike in the

PKIX model in which all trust flows from axioms of trust held by a

small number of Certificate Authorities, every part in the Mesh

contributes their own axiom of trust.

It should be noted however that the role of Certificate Authorities

is redefined rather than eliminated. Rather than making assertions

whose subject is represented by identities which are inherently

mutable and subjective, Certificate Authorities can now make

assertions about immutable cryptographic keys.

Every Profile MUST contain a SignatureKey field and MUST be signed

by the key specified in that field.

A Profile is valid if and only if:

There is a SignatureKey field.

The profile is signed under the key specified in the SignatureKey

field.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

* ¶

*

¶

A profile has the status current if and only if:

The Profile is valid

Every Conditions clause in the profile is understood by the

relying party and evaluates to true.

7.3. Mesh Connections

A Mesh connection is an assertion describing the connection of a

device or a member to an account.

Mesh connections provide similar functionality to 'end-entity'

certificates in PKIX but with the important proviso that they are

only used to provide trust between a device connected to an account

and the service to which that account is bound and between the

devices connected to an account.

A connection is valid with respect to an account with profile P if

and only if:

The profile P is valid

The AuthorityUdf field of the connection is consistent with the

UDF of P

The profile is signed under the key specified in the

AdministrationKey field of P.

Any conditions specified in the profile are met

A connection has the status current with respect to an account with

profile if and only if:

The connection is valid with respect to the account with profile

P.

The profile P is current.

A device is authenticated with respect to an account with profile P

if and only if:

The connection is valid with respect to the account with profile

P.

The device has presented an appropriate proof of knowledge of the

DeviceAuthentication key specified in the connection.

¶

* ¶

*

¶

¶

¶

¶

* ¶

*

¶

*

¶

* ¶

¶

*

¶

* ¶

¶

*

¶

*

¶

Mesh Account

Mesh Device Management

Mesh Service

Mesh Messaging

8. Architecture

The Mesh architecture has four principal components:

A collection of information (contacts, calendar

entries, inbound and outbound messages, etc.) belonging to a user

who uses the Mesh to management.

The various functions that manage binding of

devices to a Mesh to grant access to information and services

bound to that account.

Provides network services through which devices and

other Mesh users may interact with a Mesh Account.

An end to end secure messaging service that allows

short messages (less than 32KB) to be exchanged between Mesh

Accounts and between the Mesh devices connected to a particular

account.

The separation of accounts and services as separate components is a

key distinction between the Mesh and earlier Internet applications.

A Mesh account belongs to the owner of the Mesh and not the Mesh

Service Provider which the user may change at any time of their

choosing.

A Mesh Account May be active or inactive. By definition, an active

Mesh account is serviced by exactly one Mesh Service, an inactive

Mesh account is not serviced by a Mesh Service. A Mesh Service

Provider MAY offer a backup service for accounts hosted by other

providers. In this case the backup provider is connected to the

account as a Mesh device, thus allowing the backup provider to

maintain a copy of the stores contained in the account and

facilitating a rapid transfer of responsibility for servicing the

account should that be desired. The use of backup providers is

described further in [draft-hallambaker-mesh-discovery].

8.1. Mesh Account

Mesh Accounts contains all the stateful information (contacts,

calendar entries, inbound and outbound messages, etc.) related to a

particular persona used by the owner.

By definition a Mesh Account is active if it is serviced by a Mesh

Service and inactive otherwise. A Mesh user MAY change their service

provider at any time. An active Mesh Account is serviced by exactly

one Mesh Service at once but a user MAY register a 'backup' service

provider to their account in the same manner as adding an advice.

This ensures that the backup service is pre-populated with all the

¶

¶

¶

¶

¶

¶

¶

¶

information required to allow the user to switch to the new provider

without interruption of service.

Each Mesh account is described by an Account Profile. Currently

separate profile Account Profile are defined for user accounts and

group accounts. It is not clear if this distinction is a useful one.

8.1.1. Account Profile

A Mesh account profile provides the axiom of trust for a mesh user.

It contains a Master Signature Key and one or more Administration

Signature Keys. The unique identifier of the master profile is the

UDF of the Master Signature Key.

An Account Profile MUST specify an EscrowEncryption key. This key

MAY be used to escrow private keys used for encryption of stored

data. They SHOULD NOT be used to escrow authentication keys and MUST

NOT be used to escrow signature keys.

A user should not need to replace their account profile unless they

intend to establish a separate identity. To minimize the risk of

disclosure, the Profile Signature Key is only ever used to sign

updates to the account profile itself. This allows the user to

secure their Profile Signature Key by either keeping it on hardware

token or device dedicated to that purpose or by using the escrow

mechanism and paper recovery keys as described in this document.

8.1.1.1. Creating a ProfileMaster

Creating a ProfileMaster comprises the steps of:

Creating a Master Signature key.

Creating an Online Signing Key

Signing the ProfileMaster using the Master Signature Key

Persisting the ProfileMaster on the administration device to

the CatalogHost.

(Optional) Connecting at least one Administration Device and

granting it the ActivationAdministration activation.

8.1.1.2. Updating a ProfileMaster

Updating a ProfileMaster comprises the steps of:

Making the necessary changes.

Signing the ProfileMaster using the Master Signature Key

¶

¶

¶

¶

¶

¶

0. ¶

1. ¶

2. ¶

3.

¶

4.

¶

¶

0. ¶

1. ¶

Persisting the ProfileMaster on the administration device to

the CatalogHost.

8.2. Device Management

Device management allows a collection of devices belonging to a user

to function as a single personal Mesh.

The device management functions are principally concerned with the

catalog containing the entries describing the connected devices.

8.2.1. The Device Catalog

Each Mesh Account has a Device Catalog CatalogDevice associated with

it. The Device Catalog is used to manage the connection of devices

to the Personal Mesh and has a CatalogEntryDevice for each device

currently connected to the catalog.

Each Administration Device MUST have access to an up-to-date copy of

the Device Catalog in order to manage the devices connected to the

Mesh. The Mesh Service protocol MAY be used to synchronize the

Device Catalog between administration devices in the case that there

is more than one administration device.

The CatalogEntryDevice contains fields for the device profile,

device private and device connection.

8.2.2. Mesh Devices

The principle of radical distrust requires us to consider the

possibility that a device might be compromised during manufacture.

Once consequence of this possibility is that when an administration

device connects a new device to a user's personal Mesh, we cannot

put our full trust in either the device being connected or the

administration device connecting it.

This concern is resolved by (at minimum) combining keying material

generated from both sources to create the keys to be used in the

context of the user's personal Mesh with the process being fully

verified by both parties.

Additional keying material sources could be added if protection

against the possibility of compromise at both devices was required

but this is not supported by the current specifications.

A device profile provides the axiom of trust and the key

contributions of the device. When bound to an account, the base keys

specified in the Device Profile are combined with the key data

provided in the Activation device to construct the keys the device

will use in the context of the account.

2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

De vr e i

i

o p

at

c

i n n

s c

e i e

e

o

B s

t n

t t

u A

n

e

r c

Dh

D r

i

De

c

ot

t

r

B

ur

E

a

f c

v

i e

n o

A

l

n

c o i

e e

De a

t

A

i

v

a

a t

v i

c

S

n

v

o

e

s

on

p

i

n t

n n

D

e

e u

o

i e t

e

v t

S

i

i

c

g

c

e t

eu

i

c e c

a

n

y

P

c

t i

a v y

h

e i

B i E

C

a e g

n

n i

Figure 2: Mapping of Device Profile and Device Private to Device

Connection Keys.

Unless exceptional circumstances require, a device should not

require more than one Device profile even if the device supports use

by multiple users under different accounts. But a device MAY have

multiple profiles if this approach is more convenient for

implementation.

The derivation of the Connection encryption and signature keys from

the Profile and Private contributions in this example is shown in

[draft-hallambaker-mesh-cryptography].

8.2.2.1. Creating a ProfileDevice

Creating a ProfileDevice comprises the steps of:

Creating the necessary key

Signing the ProfileDevice using the Master Signature Key

Once created, a ProfileDevice is never changed. In the unlikely

event that any modification is required, a completely new

ProfileDevice MUST be created.

8.2.2.2. Connection to a Personal Mesh

Devices are only connected to a personal Mesh by an administration

device. This comprises the steps of:

Generating the PrivateDevice keys.

¶

¶

¶

0. ¶

1. ¶

2.

¶

¶

0. ¶

Creating the ConnectionDevice data from the public components

of the ProfileDevice and PrivateDevice keys and signing it

using the administration key.

Creating the Activations for the device and signing them using

the administration key.

Creating the CatalogEntryDevice for the device and adding it to

the CatalogDevice of the Personal Mesh.

If the Personal Mesh has accounts that are connected to a Mesh

Service, synchronizing the CatalogEntryDevice to those

services.

These steps are usually performed through use of the Mesh Protocol

Connection mechanism. However, Mesh clients MAY support additional

mechanisms as circumstances require provided that the appropriate

authentication and private key protection controls are provided.

8.3. Mesh Services

A Mesh Service provides one or more Mesh Hosts that support Mesh

Accounts through the Mesh Web Service Protocol.

Mesh Services and Hosts are described by Service Profiles and Host

Profiles. The means by which services manage the hosts through which

they provide service is outside the scope of this document.

As with a Device connected to a Mesh Account, a the binding of a

Host to the service it supports is described by a connection record:

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

¶

¶

r

a

g

S

o

n

e g t

e

s

n

r
g

u

o

v

u

i e

i
t

i

i

l u
r

d
c

n

v i
B

o

p

e

i E y

S

i e

e

i n

r i

s
i

c i

u

A t

of

p

S

n

g

h

e

e

e

P

i
c t i

S

r o

d

v

e n

c H

i
i

re

f

n P

S e

y

t y
c

n

D

i

m i

tu

A

a

d

i
r e

A r
t

c

s
n

n

a

P

r

S
e

v

l

e

n
E

e

i

i t

g

c

c

e

l

f
d

e

n

u
e

S

a

.
e

S

v

r

l

t

e

r

u

on

a u

V

H s

s

P

n
h

o

d e

S

t

i

B
a

i

a

a
a

t

r

o i

a

C

t

t

S u

S

u

a

r

D

s r

t

a

c

r

t
v p e

n

g

n s
a

r

e

n

r r
A

o

a

e

n

r
u

V

e n
i

t

l

e c

t

s o

r

n

e

g

e

g
t

o

o

a t

c

u

i

o

r

s o
a

e

V

e

c

l

e
e

B

e i

c
D i

S

i
e

r

t

i e l

A

E

f

nt

s

v

Figure 3: Service Profile and Delegated Host Assertion.

The credentials provided by the ProfileService and ProfileHost are

distinct from those provided by the WebPKI that typically services

TLS requests. WebPKI credentials provide service introduction and

authentication while a Mesh ProfileHost only provides

authentication.

Unless exceptional circumstances require, a service should not need

to revise its Service Profile unless it is intended to change its

identity. Service Profiles MAY be countersigned by Trusted Third

Parties to establish accountability.

8.4. Mesh Messaging

Mesh Messaging is an end-to-end secure messaging system used to

exchange short (32KB) messages between Mesh devices and services. In

cases where exchange of longer messages is required, Mesh Messaging

MAY be used to provide a control plane to advise the intended

message recipient(s) of the type of data being offered and the means

of retrieval (e.g an EARL).

All communications between Mesh accounts takes the form of a Mesh

Message carried in a Dare Envelope. Mesh Messages are stored in two

¶

¶

¶

spools associated with the account, the SpoolOutbound and the

SpoolInbound containing the messages sent and received respectively.

This document only describes the representation of the messages

within the message spool. The Mesh Service protocol by which the

messages are exchanged between devices and services and between

services is described in [draft-hallambaker-mesh-protocol].

8.4.1. Message Status

As previously described in section ###, every message stored in a

spool has a specified state. The range of allowable states is

defined by the message type. New message states MAY be defined for

new message types as they are defined.

By default, messages are appended to a spool in the Initial state,

but a spool entry MAY specify any state that is valid for that

message type.

The state of a message is changed by appending a completion message

to the spool as described in [draft-hallambaker-mesh-protocol].

Services MAY erase or redact messages in accordance with local site

policy. Since messages are not removed from the spool on being

marked deleted, they may be undeleted by marking them as read or

unread. Marking a message deleted MAY make it more likely that the

message will be removed if the sequence is subsequently purged.

8.4.2. Four Corner Model

A four-corner messaging model is enforced. Mesh Services only accept

outbound messages from devices connected to accounts that it

services. Inbound messages are only accepted from other Mesh

Services. This model enables access control at both the outbound and

inbound services

A e b

o s
S

b
P M P

i

A c B

Bc

l s '
M S

l o

i e '

¶

¶

¶

¶

¶

¶

¶

Figure 4: Four Corner Messaging Model

The outbound Mesh Service checks to see that the request to send a

message does not violate its acceptable use policy. Accounts that

make a large number of message requests that result in complaints

SHOULD be subject to consequences ranging from restriction of the

number and type of messages sent to suspending or terminating

messaging privileges. Services that fail to implement appropriate

controls are likely to be subject to sanctions from either their

users or from other services.

i lS

v
s e

i

M ASl p r d
e ag

'e s
ce e

o c

c
A P

A i
i p

e p

l

M s

t y

o

Figure 5: Performing Access Control on Outbound Messages

The inbound Mesh Service also checks to see that messages received

are consistent with the service Acceptable Use Policy and the user's

personal access control settings.

Mesh Services that fail to police abuse by their account holders

SHOULD be subject to consequences in the same fashion as account

holders.

M p
M

o
e

oB c

ge
c

B
l i

y

ed

i

s

o

o l

e
b

M s '
c
e a

S

i

Bob s
P

y

P

e a
e
s g

b

c

s
S A t

t P

Figure 6: Performing Access Control on Inbound Messages

8.4.3. Traffic Analysis

The Mesh Messaging protocol as currently specified provides only

limited protection against traffic analysis attacks. The use of TLS

¶

¶

¶

to encrypt communication between Mesh Services limits the

effectiveness of na?ve traffic analysis mechanisms but does not

prevent timing attacks unless dummy traffic is introduced to

obfuscate traffic flows.

The limitation of the message size is in part intended to facilitate

use of mechanisms capable of providing high levels of traffic

analysis such as mixmaster and onion routing but the current Mesh

Service Protocol does not provide support for such approaches and

there are no immediate plans to do so.

9. Publications

Static QR codes MAY be used to allow contact exchange or device

connection. In either case, the QR code contains an EARL providing

the means of locating, decrypting and authenticating the published

data.

The use of EARLs as a means of publishing encrypted data and the use

of EARLs for location, decryption and authentication is discussed in

[draft-hallambaker-mesh-dare] .

9.1. Contact Exchange

When used for contact exchange, the envelope payload is a

CatalogedContact record.

Besides allowing for exchange of contact information on a business

card, a user might have their contact information printed on

personal property to facilitate return of lost property.

9.2. Device Preconfiguration

The static QR code device connection interaction allows a device

with no keyboard, display or other user affordances to be connected

to a Mesh account.

The information necessary to establish communication with the device

and to complete a device connection workflow is provided by means of

a DevicePreconfiguration record accessed by means of an EARL.

For example, Alice's coffee pot was preconfigured for connection to

a Mesh account at the factory and the following

DevicePreconfiguration record created:

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "DevicePreconfiguration":{

 "EnvelopedProfileDevice":[{

 "EnvelopeId":"MC6H-2IFS-4OXA-U2YQ-QZ6Y-RZWX-JC3Q",

 "dig":"S512",

 "ContentMetaData":"ewogICJVbmlxdWVJZCI6ICJNQzZILTJJRlMtNE

 9YQS1VMllRLVFaNlktUlpXWC1KQzNRIiwKICAiTWVzc2FnZVR5cGUiOiAiUHJvZml

 sZURldmljZSIsCiAgImN0eSI6ICJhcHBsaWNhdGlvbi9tbW0vb2JqZWN0IiwKICAi

 Q3JlYXRlZCI6ICIyMDIxLTA4LTA1VDE2OjM3OjQzWiJ9"},

 "ewogICJQcm9maWxlRGV2aWNlIjogewogICAgIlByb2ZpbGVTaWduYXR1cm

 UiOiB7CiAgICAgICJVZGYiOiAiTUM2SC0ySUZTLTRPWEEtVTJZUS1RWjZZLVJaV1g

 tSkMzUSIsCiAgICAgICJQdWJsaWNQYXJhbWV0ZXJzIjogewogICAgICAgICJQdWJs

 aWNLZXlFQ0RIIjogewogICAgICAgICAgImNydiI6ICJFZDQ0OCIsCiAgICAgICAgI

 CAiUHVibGljIjogIjdaV0RBem50bXl4aFV2elhDdmw5dEF4UlhlQnoyV3V3VHFsTl

 Zub2pzb0s3NTNfTnZqOVoKICBYV19KT0p6UkFlU082U1lyQ3VYNThlVUEifX19LAo

 gICAgIkVuY3J5cHRpb24iOiB7CiAgICAgICJVZGYiOiAiTUFOVy1BN1pFLVJVQ04t

 R0wyQi03VEtYLVYyVUYtS1RHMiIsCiAgICAgICJQdWJsaWNQYXJhbWV0ZXJzIjoge

 wogICAgICAgICJQdWJsaWNLZXlFQ0RIIjogewogICAgICAgICAgImNydiI6ICJYND

 Q4IiwKICAgICAgICAgICJQdWJsaWMiOiAiejZKdUtyTFVfaG5najBwdzF4eHVGcDZ

 uS3ZVSTYtZVVzOS1ZR3dtYlplMHhFR2FOM2hMZwogIDZORkdHTFFDSmpfc2kyWmhw

 UGhOWTJZQSJ9fX0sCiAgICAiU2lnbmF0dXJlIjogewogICAgICAiVWRmIjogIk1CV

 VEtSFVNWi1IWk9SLUVBQUEtRERCSC1VTUc1LVQzNksiLAogICAgICAiUHVibGljUG

 FyYW1ldGVycyI6IHsKICAgICAgICAiUHVibGljS2V5RUNESCI6IHsKICAgICAgICA

 gICJjcnYiOiAiRWQ0NDgiLAogICAgICAgICAgIlB1YmxpYyI6ICJpaFgwQ3B6d1Zx

 RFU5NWgybWlPbkswYWtjUkFFSEgxUHc3cGJPdEpldkVhM3dDaHg0VjZMCiAgenZme

 kw4Smw2SHVlMXhlOXpBNDBPY0dBIn19fSwKICAgICJBdXRoZW50aWNhdGlvbiI6IH

 sKICAgICAgIlVkZiI6ICJNQTZKLTNURk8tQ09YVi1UUE5GLUNPQUYtRExaTy1MN09

 aIiwKICAgICAgIlB1YmxpY1BhcmFtZXRlcnMiOiB7CiAgICAgICAgIlB1YmxpY0tl

 eUVDREgiOiB7CiAgICAgICAgICAiY3J2IjogIlg0NDgiLAogICAgICAgICAgIlB1Y

 mxpYyI6ICIzVGZDTWxpdk5Ta1k0b0UtdkczMVUzbXZ2M1YzWTVZUlg5YzhrSmdaOE

 czRDB6eFhjR1pDCiAgTWZueE5KTUItYTNKbktSRF9DZHZvRGFBIn19fX19",

 {

 "signatures":[{

 "alg":"S512",

 "kid":"MC6H-2IFS-4OXA-U2YQ-QZ6Y-RZWX-JC3Q",

 "signature":"TbXfDJHac9bh1mRbgm6pcCOfjAC4kAe9xb-Bf2XG

 V3idDknG7xcFsvv-hOCGnNd0ca3k35tcBXiAiMMs5xfysFT_5sOpbWNsivC3o63yW

 AN4332vd-2O1-VuRRE-j4F9cR2kn9PPW8oOkBcdSOUY8SAA"}

],

 "PayloadDigest":"wCvIv_8ngV6HWhb3MG-sEidG4X7Xsvl8NnJf9BJO

 XNKVymd5rr6_TwzAGThCLw4-kh45Pb5OA7gYJZh-zTojVA"}

],

 "EnvelopedConnectionDevice":[{

 "dig":"S512",

 "ContentMetaData":"ewogICJNZXNzYWdlVHlwZSI6ICJDb25uZWN0aW

 9uRGV2aWNlIiwKICAiY3R5IjogImFwcGxpY2F0aW9uL21tbS9vYmplY3QiLAogICJ

 DcmVhdGVkIjogIjIwMjEtMDgtMDVUMTY6Mzc6NDNaIn0"},

 "ewogICJDb25uZWN0aW9uRGV2aWNlIjogewogICAgIkF1dGhlbnRpY2F0aW

 9uIjogewogICAgICAiVWRmIjogIk1BTlctQTdaRS1SVUNOLUdMMkItN1RLWC1WMlV

 GLUtURzIiLAogICAgICAiUHVibGljUGFyYW1ldGVycyI6IHsKICAgICAgICAiUHVi

 bGljS2V5RUNESCI6IHsKICAgICAgICAgICJjcnYiOiAiWDQ0OCIsCiAgICAgICAgI

 CAiUHVibGljIjogIno2SnVLckxVX2huZ2owcHcxeHh1RnA2bkt2VUk2LWVVczktWU

 d3bWJaZTB4RUdhTjNoTGcKICA2TkZHR0xRQ0pqX3NpMlpocFBoTlkyWUEifX19LAo

 gICAgIlNpZ25hdHVyZSI6IHsKICAgICAgIlVkZiI6ICJNQlVRLUhVTVotSFpPUi1F

 QUFBLUREQkgtVU1HNS1UMzZLIiwKICAgICAgIlB1YmxpY1BhcmFtZXRlcnMiOiB7C

 iAgICAgICAgIlB1YmxpY0tleUVDREgiOiB7CiAgICAgICAgICAiY3J2IjogIkVkND

 Q4IiwKICAgICAgICAgICJQdWJsaWMiOiAiaWhYMENwendWcURVOTVoMm1pT25LMGF

 rY1JBRUhIMVB3N3BiT3RKZXZFYTN3Q2h4NFY2TAogIHp2ZnpMOEpsNkh1ZTF4ZTl6

 QTQwT2NHQSJ9fX0sCiAgICAiRW5jcnlwdGlvbiI6IHsKICAgICAgIlVkZiI6ICJNQ

 U5XLUE3WkUtUlVDTi1HTDJCLTdUS1gtVjJVRi1LVEcyIiwKICAgICAgIlB1YmxpY1

 BhcmFtZXRlcnMiOiB7CiAgICAgICAgIlB1YmxpY0tleUVDREgiOiB7CiAgICAgICA

 gICAiY3J2IjogIlg0NDgiLAogICAgICAgICAgIlB1YmxpYyI6ICJ6Nkp1S3JMVV9o

 bmdqMHB3MXh4dUZwNm5LdlVJNi1lVXM5LVlHd21iWmUweEVHYU4zaExnCiAgNk5GR

 0dMUUNKal9zaTJaaHBQaE5ZMllBIn19fX19",

 {

 "signatures":[{

 "alg":"S512",

 "kid":"MB4T-TWDN-IFT2-PU43-N4CQ-YTOK-AOIO",

 "signature":"BlY5NDotpRXQhVyURm-IS1aldtt5B9xZXO1bQ9CX

 qKstEgRG1EVPTf9K5WamWo3cToRMxMNg832AyEbp4nOmnfwkRsNACc9wElgEuGCPh

 2IPKBO6FpysIxZSSEUDV7Q08zmyfoRO9lxFMdavQ56RnDYA"}

],

 "PayloadDigest":"2U9aYu58E5UvYkBQAL5eNMoK-PhNBeGg3xCG_swk

 CdYSkOh2bznyoh7BF_JVFz01lJWd9VkIYGYej8IEBFgqJA"}

],

 "PrivateKey":{

 "PrivateKeyUDF":{

 "PrivateValue":"ZAAQ-AO3M-SYLX-X7ET-MZHC-BURC-V2OE-ZWUX-ZWP

F-KAL4-6C3G-6IPV-2D76-MT4N",

 "KeyType":"MeshProfileDevice"}},

 "ConnectUri":"mcu://maker@example.com/EALU-LAUT-XB5I-I2ZV-M2VN-

NKAW-QLYX-JTS7-64DV-44NF-7YS7-2SHB-7ZE7-4"}}

To connect to the coffee pot, Alice first scans the QR code with her

administrative device which uses the PIN code and service to

retrieve, decrypt and authenticate the DevicePreconfiguration

record. Future versions of the specification will allow this record

to specify means by which the administration device can establish

direct peer-to-peer communication to complete the connection process

by any communication modality supported by both devices (e.g. IR,

Bluetooth, WiFi-Direct, etc.)

The use of the publication mechanism in device connection is

discussed further in [draft-hallambaker-mesh-protocol].

¶

¶

¶

Udf: String (Optional)

X509Certificate: Binary (Optional)

X509Chain: Binary [0..Many]

X509CSR: Binary (Optional)

NotBefore: DateTime (Optional)

NotOnOrAfter: DateTime (Optional)

Inherits: Key

DeviceKeyUdf: String (Optional)

Names: String [0..Many]

9.3. Device Description

The device description publication is a JSON Record that describes a

device that is available for connection.

[Not yet implemented.]

10. Schema

10.1. Shared Classes

The following classes are used as common elements in Mesh profile

specifications.

10.1.1. Classes describing keys

10.1.2. Structure: KeyData

The KeyData class is used to describe public key pairs and trust

assertions associated with a public key.

UDF fingerprint of the public key parameters

List of X.509 Certificates

X.509 Certificate chain.

X.509 Certificate Signing Request.

If present specifies a time instant

that use of the private key is not valid before.

If present specifies a time

instant that use of the private key is not valid on or after.

10.1.3. Structure: CompositePrivate

UDF fingerprint of the bound device key (if used).

10.2. Assertion classes

Classes that are derived from an assertion.

10.2.1. Structure: Assertion

Parent class from which all assertion classes are derived

Fingerprints of index terms for profile

retrieval. The use of the fingerprint of the name rather than the

name itself is a precaution against enumeration attacks and other

forms of abuse.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Updated: DateTime (Optional)

NotaryToken: String (Optional)

Inherits: Assertion

SubjectUdf: String (Optional)

AuthorityUdf: String (Optional)

Inherits: Assertion

ActivationKey: String (Optional)

Entries: ActivationEntry [0..Many]

Resource: String (Optional)

Key: KeyData (Optional)

Inherits: Assertion

The time instant the profile was last

modified.

A Uniform Notary Token providing

evidence that a signature was performed after the notary token

was created.

10.2.2. Structure: Condition

Parent class from which all condition classes are derived.

[No fields]

10.2.3. Base Classes

Abstract classes from which the Profile, Activation and Connection

classes are derrived.

10.2.4. Structure: Connection

UDF of the connection target.

UDF of the connection source.

10.2.5. Structure: Activation

Contains the private activation information for

a Mesh application running on a specific device

Secret seed used to derive keys

that are not explicitly specified.

Activation of named resources.

10.2.6. Structure: ActivationEntry

Name of the activated resource

The activation key or key share

10.2.7. Mesh Profile Classes

Classes describing Mesh Profiles. All Profiles are Assertions

derrived from Assertion.

10.2.8. Structure: Profile

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

ProfileSignature: KeyData (Optional)

Inherits: Profile

Description: String (Optional)

BaseEncryption: KeyData (Optional)

BaseAuthentication: KeyData (Optional)

BaseSignature: KeyData (Optional)

Inherits: Profile

AccountAddress: String (Optional)

ServiceUdf: String (Optional)

EscrowEncryption: KeyData (Optional)

AccountEncryption: KeyData (Optional)

AdministratorSignature: KeyData (Optional)

Inherits: ProfileAccount

Parent class from which all profile classes are derived

The permanent signature key

used to sign the profile itself. The UDF of the key is used as

the permanent object identifier of the profile. Thus, by

definition, the KeySignature value of a Profile does not change

under any circumstance.

10.2.9. Structure: ProfileDevice

Describes a mesh device.

Description of the device

Base key contribution for

encryption keys. Also used to decrypt activation data sent to the

device during connection to an account.

Base key contribution for

authentication keys. Also used to authenticate the device during

connection to an account.

Base key contribution for

signature keys.

10.2.10. Structure: ProfileAccount

Base class for the account profiles ProfileUser and ProfileGroup.

These subclasses may be merged at some future date.

The account address. This is either a DNS service

address (e.g. alice@example.com)

or a Mesh Name (@alice).

The fingerprint of the service

profile to which the account is currently bound.

Escrow key associated with the

account.

Key currently used to encrypt

data under this profile

Key used to sign

connection assertions to the account.

10.2.11. Structure: ProfileUser

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

AccountAuthentication: KeyData (Optional)

AccountSignature: KeyData (Optional)

Inherits: ProfileAccount

Inherits: Profile

ServiceAuthentication: KeyData (Optional)

ServiceEncryption: KeyData (Optional)

ServiceSignature: KeyData (Optional)

Inherits: Profile

KeyAuthentication: KeyData (Optional)

KeyEncryption: KeyData (Optional)

Inherits: Connection

Account assertion. This is signed by the service hosting the

account.

Key used to authenticate

requests made under this user account.

Key used to sign data under

the account.

10.2.12. Structure: ProfileGroup

Describes a group. Note that while a group

is created by one person who becomes its first administrator,

control of the group may pass to other administrators over time.

[No fields]

10.2.13. Structure: ProfileService

Profile of a Mesh Service

Key used to authenticate

service connections.

Key used to encrypt data

under this profile

Key used to sign data under

the account.

10.2.14. Structure: ProfileHost

Key used to authenticate service connections.

Key used to pass encrypted

data to the device such as a

10.2.15. Connection Assertions

Connection assertions are used to authenticate and authorize

interactions between devices and the service currently servicing the

account. They SHOULD NOT be visible to external parties.

10.2.16. Structure: ConnectionDevice

Connection assertion used to authenticate

service requests made by a device.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

AccountAddress: String (Optional)

DeviceSignature: KeyData (Optional)

DeviceEncryption: KeyData (Optional)

DeviceAuthentication: KeyData (Optional)

Inherits: Connection

Inherits: Connection

Inherits: Connection

Inherits: Connection

Inherits: Activation

AccountUdf: String (Optional)

The account address

The signature key for use of

the device under the profile

The encryption key for use of

the device under the profile

The authentication key for

use of the device under the profile

10.2.17. Structure: ConnectionApplication

Connection assertion stating that a particular

device is

[No fields]

10.2.18. Structure: ConnectionGroup

Describes the connection of a member to a group.

[No fields]

10.2.19. Structure: ConnectionService

[No fields]

10.2.20. Structure: ConnectionHost

[No fields]

10.2.21. Activation Assertions

10.2.22. Structure: ActivationDevice

Contains activation data for device specific keys used in the

context of a Mesh account.

The UDF of the account

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inherits: Activation

ProfileSignature: KeyData (Optional)

AdministratorSignature: KeyData (Optional)

AccountEncryption: KeyData (Optional)

AccountAuthentication: KeyData (Optional)

AccountSignature: KeyData (Optional)

Inherits: Activation

Inherits: Assertion

Id: String (Optional)

Anchors: Anchor [0..Many]

NetworkAddresses: NetworkAddress [0..Many]

Locations: Location [0..Many]

Roles: Role [0..Many]

Bookmark: Bookmark [0..Many]

Sources: TaggedSource [0..Many]

10.2.23. Structure: ActivationAccount

Grant access to profile online signing key

used to sign updates to the

profile.

Grant access to Profile

administration key used to make changes to administrator

catalogs.

Grant access to ProfileUser

account encryption key

Grant access to

ProfileUser account authentication key

Grant access to ProfileUser

account signature key

10.2.24. Structure: ActivationApplication

[No fields]

10.3. Data Structures

Classes describing data used in cataloged data.

10.3.1. Structure: Contact

Base class for contact entries.

The globally unique contact identifier.

Mesh fingerprints associated with the

contact.

Network address entries

The physical locations the contact is

associated with.

The roles of the contact

The Web sites and other online

presences of the contact

Source(s) from which this contact

was constructed.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Udf: String (Optional)

Validation: String (Optional)

LocalName: String (Optional)

Validation: String (Optional)

BinarySource: Binary (Optional)

EnvelopedSource: Enveloped (Optional)

Inherits: Contact

Inherits: Contact

CommonNames: PersonName [0..Many]

Inherits: Contact

CommonNames: OrganizationName [0..Many]

Inactive: Boolean (Optional)

RegisteredName: String (Optional)

DBA: String (Optional)

10.3.2. Structure: Anchor

Trust anchor

The trust anchor.

The means of validation.

10.3.3. Structure: TaggedSource

Source from which contact information was obtained.

Short name for the contact

information.

The means of validation.

The contact data in binary form.

The contact data in enveloped

form. If present, the BinarySource property is ignored.

10.3.4. Structure: ContactGroup

Contact for a group, including encryption groups.

[No fields]

10.3.5. Structure: ContactPerson

List of person names in order of preference

10.3.6. Structure:

ContactOrganization

List of person names in order of preference

10.3.7. Structure:

OrganizationName

The name of an organization

If true, the name is not in current

use.

The registered name.

Names that the organization uses including

trading names and doing business as names.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inactive: Boolean (Optional)

FullName: String (Optional)

Prefix: String (Optional)

First: String (Optional)

Middle: String [0..Many]

Last: String (Optional)

Suffix: String (Optional)

PostNominal: String (Optional)

Inactive: Boolean (Optional)

Address: String (Optional)

NetworkCapability: String [0..Many]

EnvelopedProfileAccount: Enveloped (Optional)

Protocols: NetworkProtocol [0..Many]

Protocol: String (Optional)

OrganizationName: String (Optional)

10.3.8. Structure: PersonName

The name of a natural person

If true, the name is not in current

use.

The preferred presentation of the full

name.

Honorific or title, E.g. Sir, Lord, Dr.,

Mr.

First name.

Middle names or initials.

Last name.

Nominal suffix, e.g. Jr., III, etc.

Post nominal letters (if used).

10.3.9. Structure: NetworkAddress

Provides all means of contacting the individual according to a

particular network address

If true, the name is not in current

use.

The network address, e.g.

alice@example.com

The capabilities bound to this

address.

The account profile

Public keys associated with

the network address

10.3.10. Structure: NetworkProtocol

The IANA protocol|identifier of the

network protocols by which the contact may be reached using the

specified Address.

10.3.11. Structure: Role

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Titles: String [0..Many]

Locations: Location [0..Many]

Appartment: String (Optional)

Street: String (Optional)

District: String (Optional)

Locality: String (Optional)

County: String (Optional)

Postcode: String (Optional)

Country: String (Optional)

Uri: String (Optional)

Title: String (Optional)

Role: String [0..Many]

MessageId: String (Optional)

ResponseId: String (Optional)

Relationship: String (Optional)

Key: String (Optional)

Start: DateTime (Optional)

Finish: DateTime (Optional)

StartTravel: String (Optional)

FinishTravel: String (Optional)

TimeZone: String (Optional)

Title: String (Optional)

Description: String (Optional)

Location: String (Optional)

Trigger: String [0..Many]

Conference: String [0..Many]

Repeat: String (Optional)

Busy: Boolean (Optional)

Labels: String [0..Many]

The organization at which the role is held

The titles held with respect to that

organization.

Postal or physical addresses

associated with the role.

10.3.12. Structure: Location

10.3.13. Structure: Bookmark

10.3.14. Structure: Reference

The received message to which this is

a response

Message that was generated in

response to the original (optional).

The relationship type. This can be

Read, Unread, Accept, Reject.

10.3.15. Structure: Task

Unique key.

10.4. Catalog Entries

10.4.1. Structure: CatalogedEntry

Base class for cataloged Mesh data.

The set of labels describing the entry

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inherits: CatalogedEntry

Udf: String (Optional)

DeviceUdf: String (Optional)

SignatureUdf: String (Optional)

EnvelopedProfileUser: Enveloped (Optional)

EnvelopedProfileDevice: Enveloped (Optional)

EnvelopedConnectionUser: Enveloped (Optional)

EnvelopedActivationDevice: Enveloped (Optional)

EnvelopedActivationAccount: Enveloped (Optional)

EnvelopedActivationApplication: Enveloped [0..Many]

Inherits: CatalogedEntry

Id: String (Optional)

Authenticator: String (Optional)

EnvelopedData: DareEnvelope (Optional)

NotOnOrAfter: DateTime (Optional)

Inherits: CatalogedEntry

Protocol: String (Optional)

Service: String (Optional)

10.4.2. Structure: CatalogedDevice

Public device entry, indexed under the

device ID Hello

UDF of the signature key of the device in

the Mesh

UDF of the offline signature key of

the device

UDF of the account online signature

key

The Mesh profile

The device profile

The public assertion

demonstrating connection of the Device to the Mesh

The activation of

the device within the Mesh account

The activation of

the device within the Mesh account

Application

activations granted to the device.

10.4.3. Structure: CatalogedPublication

A publication.

Unique identifier code

The witness key value to use to

request access to the record.

Dare Envelope containing the

entry data. The data type is specified by the envelope metadata.

Epiration time (inclusive)

10.4.4. Structure: CatalogedCredential

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Username: String (Optional)

Password: String (Optional)

Inherits: CatalogedEntry

Protocol: String (Optional)

Service: String (Optional)

Username: String (Optional)

Password: String (Optional)

Inherits: CatalogedEntry

Key: String (Optional)

Self: Boolean (Optional)

Inherits: CatalogedEntry

Id: String (Optional)

KeyData: KeyData (Optional)

EnvelopedKeyShares: Enveloped [0..Many]

SubjectId: String (Optional)

SubjectAddress: String (Optional)

Inherits: CryptographicCapability

Inherits: CapabilityDecrypt

10.4.5. Structure: CatalogedNetwork

10.4.6. Structure: CatalogedContact

Unique key.

If true, this catalog entry is for the

user who created the catalog.

10.4.7. Structure: CatalogedAccess

[No fields]

10.4.8. Structure: CryptographicCapability

The identifier of the capability. If this is

a user capability, MUST match the KeyData identifier. If this is

a serviced capability, MUST match the value of ServiceId on the

corresponding service capability.

The key that enables the capability

One or more enveloped key

shares.

The identifier of the resource that is

controlled using the key.

The address of the resource that

is controlled using the key.

10.4.9. Structure: CapabilityDecrypt

The corresponding key is a

decryption key

[No fields]

10.4.10. Structure: CapabilityDecryptPartial

The corresponding key is an encryption

key

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

ServiceId: String (Optional)

ServiceAddress: String (Optional)

Inherits: CapabilityDecrypt

AuthenticationId: String (Optional)

Inherits: CryptographicCapability

Inherits: CryptographicCapability

Inherits: CryptographicCapability

Inherits: CatalogedEntry

Uri: String (Optional)

Title: String (Optional)

Path: String (Optional)

Inherits: CatalogedEntry

The identifier used to claim the

capability from the service.[Only present for a partial

capability.]

The service account that supports

a serviced capability. [Only present for a partial capability.]

10.4.11. Structure: CapabilityDecryptServiced

The corresponding key is an encryption

key

UDF of trust root under which

request to use a serviced capability must be authorized. [Only

present for a serviced capability]

10.4.12. Structure: CapabilitySign

The corresponding key is an

administration key

[No fields]

10.4.13. Structure: CapabilityKeyGenerate

The corresponding key is a key

that may be used to generate key shares.

[No fields]

10.4.14. Structure: CapabilityFairExchange

The corresponding key is a

decryption key to be used in accordance with the Micali Fair

Electronic Exchange with Invisible Trusted Parties protocol.

[No fields]

10.4.15. Structure: CatalogedBookmark

10.4.16. Structure: CatalogedTask

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

EnvelopedTask: Enveloped (Optional)

Title: String (Optional)

Key: String (Optional)

Inherits: CatalogedEntry

Key: String (Optional)

EnvelopedCapabilities: DareEnvelope [0..Many]

ContactAddress: String (Optional)

MemberCapabilityId: String (Optional)

ServiceCapabilityId: String (Optional)

Inherits: CatalogedEntry

Inherits: CatalogedApplication

EnvelopedProfileGroup: Enveloped (Optional)

EnvelopedActivationAccount: Enveloped (Optional)

Inherits: CatalogedApplication

Inherits: CatalogedApplication

Inherits: CatalogedApplication

EnvelopedProfileDevice: Enveloped (Optional)

EnvelopedConnectionDevice: Enveloped (Optional)

ConnectUri: String (Optional)

Unique key.

10.4.17. Structure: CatalogedApplication

Enveloped keys for use with Application

10.4.18. Structure:

CatalogedMember

10.4.19. Structure:

CatalogedGroup

The Mesh profile

The activation of

the device within

the Mesh account

10.4.20. Structure: CatalogedApplicationSSH

[No fields]

10.4.21. Structure: CatalogedApplicationMail

[No fields]

10.4.22. Structure: CatalogedApplicationNetwork

[No fields]

10.5. Publications

10.5.1. Structure: DevicePreconfiguration

A data structure that is passed

The device profile

The device

connection

The connection URI. This would

normally be printed on the device as a QR code.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

MessageId: String (Optional)

Sender: String (Optional)

Recipient: String (Optional)

Inherits: Message

ErrorCode: String (Optional)

Inherits: Message

References: Reference [0..Many]

Inherits: Message

AuthenticatedData: DareEnvelope (Optional)

ClientNonce: Binary (Optional)

PinId: String (Optional)

PinWitness: Binary (Optional)

Account: String (Optional)

Inherits: Message

Expires: DateTime (Optional)

Automatic: Boolean (Optional)

SaltedPin: String (Optional)

Action: String (Optional)

Inherits: MessagePinValidated

AccountAddress: String (Optional)

10.6. Messages

10.6.1. Structure: Message

Unique per-message ID. When

encapsulating a Mesh Message in a DARE envelope, the envelope

EnvelopeID field MUST be a UDF fingerprint of the MessageId

value.

10.6.2. Structure: MessageError

10.6.3. Structure: MessageComplete

10.6.4. Structure:

MessagePinValidated

Enveloped data that is authenticated by means of

the PIN

Nonce provided by the client to

validate the PIN

Pin identifier value calculated from the

PIN code, action and account address.

Witness value calculated as KDF

(Device.Udf + AccountAddress, ClientNonce)

10.6.5. Structure: MessagePin

If true, authentication against the PIN

code is sufficient to complete the associated

action without further authorization.

PIN code bound to the specified

action.

The action to which this PIN code is

bound.

10.6.6. Structure: RequestConnection

Connection request message. This message contains the information

¶

¶

¶

¶

¶

¶

¶

¶

¶

Inherits: Message

EnvelopedRequestConnection: Enveloped (Optional)

ServerNonce: Binary (Optional)

Witness: String (Optional)

Inherits: Message

Result: String (Optional)

CatalogedDevice: CatalogedDevice (Optional)

Inherits: MessagePinValidated

Reply: Boolean (Optional)

Subject: String (Optional)

PIN: String (Optional)

Inherits: Message

Text: String (Optional)

Inherits: Message

Text: String (Optional)

Inherits: Message

Request: Enveloped (Optional)

Accept: Boolean (Optional)

Inherits: Message

Inherits: Message

PublicationId: String (Optional)

10.6.7. Structure: AcknowledgeConnection

Connection request message generated by a service on receipt of a

valid MessageConnectionRequestClient

The client connection request.

10.6.8.

Structure: RespondConnection

Respond to RequestConnection message to grant or refuse the

connection request.

The response to the request. One of "Accept",

"Reject" or "Pending".

The device information.

MUST be present if the value of Result is "Accept". MUST be

absent or null otherwise.

10.6.9. Structure: MessageContact

If true, requests that the recipient

return their own contact information in

reply.

Optional explanation of the reason for

the request.

One time authentication code supplied to a

recipient to allow authentication of the response.

10.6.10. Structure: GroupInvitation

10.6.11. Structure: RequestConfirmation

10.6.12. Structure: ResponseConfirmation

10.6.13. Structure: RequestTask

[No fields]

10.6.14. Structure: MessageClaim

¶

¶

¶

¶

¶

¶

¶

¶

¶

ServiceAuthenticate: String (Optional)

DeviceAuthenticate: String (Optional)

Expires: DateTime (Optional)

Inherits: Message

Success: Boolean (Optional)

ErrorReport: String (Optional)

Host Catalog: Host.dare

MeshCatalog: [UDF-Mesh].dcat

Account Catalogs: [UDF-Account]/mmm_Device.dcat

Account Catalogs: [UDF-Account]/[Catalog name].dcat

10.6.15. Structure:

ProcessResult

For future use, allows logging of operations and results

The error report code.

11. Security Considerations

The security considerations for use and implementation of Mesh

services and applications are described in the Mesh Security

Considerations guide [draft-hallambaker-mesh-security].

12. IANA Considerations

All the IANA considerations for the Mesh documents are specified in

this document

13. Acknowledgements

A list of people who have contributed to the design of the Mesh is

presented in [draft-hallambaker-mesh-architecture].

14. Appendix A: Example Container Organization (not normative)

The means by which profiles are stored on devices is outside the

scope of the specification. Only catalogs that are required to be

shared between machines by means of accounts need to be

standardized.

14.1. Device

Catalog of all the Mesh Profiles that the

user has registered with the device and the latest version of the

device profile for this device.

Catalog containing the Account Entries

for the Mesh [UDF-Mesh].

The device catalog

associated with the specified account

The set of

account catalogs that are shared verbatim between the devices

connected to the account.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Master Catalog

Service Catalog

14.1.1. Creating a new Mesh

Create new Mesh Profile, Device Profile, Add to Host Catalog

Create MeshCatalog

14.1.2. Adding an Account

Create new Account Profile, Add to MeshCatalog

Create new Account Device Catalog

For each device to be added to the account: Create Account

Connection Assertion, add to Account Device Catalog.

14.1.3. Adding a Device

Create a Device Connection Assertion.

For each account the device is to be added to: Create Account

Connection Assertion, add to Account Device Catalog.

14.2. Service

Catalog of all services on machine

Catalog of accounts in the service.

14.2.1. Creating a Service

Create a Service Description, add to Master Catalog

14.2.2. Adding an Account

Create the account entry, add to Service Catalog

Create the Account Directory

15. Appendix B: Collected Authentication and Encryption Requirements

15.1. Mesh Messaging

Message Signer Recipients

RequestConnection Device Service

AcknowledgeConnection Service Device, Receiver

OfferGroup Sender Receiver

RequestContact Sender Receiver

ReplyContact Sender Receiver

RequestConfirmation Sender Receiver

ResponseConfirmation Sender Receiver

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[draft-hallambaker-mesh-architecture]

[draft-hallambaker-mesh-cryptography]

[draft-hallambaker-mesh-dare]

[draft-hallambaker-mesh-discovery]

[draft-hallambaker-mesh-notary]

[draft-hallambaker-mesh-protocol]

[draft-hallambaker-mesh-security]

Message Signer Recipients

RequestTask Sender Receiver

ResponseTask Sender Receiver

Table 1

16. Normative References

Hallam-Baker, P., "Mathematical Mesh 3.0 Part I:

Architecture Guide", Work in Progress, Internet-Draft,

draft-hallambaker-mesh-architecture-16, 13 January 2021,

<https://datatracker.ietf.org/doc/html/draft-hallambaker-

mesh-architecture-16>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part VIII:

Cryptographic Algorithms", Work in Progress, Internet-

Draft, draft-hallambaker-mesh-cryptography-07, 2 November

2020, <https://datatracker.ietf.org/doc/html/draft-

hallambaker-mesh-cryptography-07>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part III : Data

At Rest Encryption (DARE)", Work in Progress, Internet-

Draft, draft-hallambaker-mesh-dare-11, 13 January 2021,

<https://datatracker.ietf.org/doc/html/draft-hallambaker-

mesh-dare-11>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part VI: Mesh

Discovery Service", Work in Progress, Internet-Draft,

draft-hallambaker-mesh-discovery-01, 13 January 2021,

<https://datatracker.ietf.org/doc/html/draft-hallambaker-

mesh-discovery-01>.

"[Reference Not Found!]".

Hallam-Baker, P., "Mathematical Mesh 3.0 Part V: Protocol

Reference", Work in Progress, Internet-Draft, draft-

hallambaker-mesh-protocol-08, 13 January 2021, <https://

datatracker.ietf.org/doc/html/draft-hallambaker-mesh-

protocol-08>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part VII:

Security Considerations", Work in Progress, Internet-

Draft, draft-hallambaker-mesh-security-06, 2 November

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-16
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-16
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-cryptography-07
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-cryptography-07
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-dare-11
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-dare-11
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-discovery-01
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-discovery-01
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-protocol-08
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-protocol-08
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-protocol-08

[draft-hallambaker-mesh-udf]

[draft-hallambaker-threshold]

[draft-hallambaker-threshold-sigs]

[RFC2119]

[draft-hallambaker-mesh-developer]

[RFC2426]

[RFC5545]

2020, <https://datatracker.ietf.org/doc/html/draft-

hallambaker-mesh-security-06>.

Hallam-Baker, P., "Mathematical Mesh 3.0 Part II: Uniform

Data Fingerprint.", Work in Progress, Internet-Draft,

draft-hallambaker-mesh-udf-12, 13 January 2021, <https://

datatracker.ietf.org/doc/html/draft-hallambaker-mesh-

udf-12>.

Hallam-Baker, P., "Threshold Modes in Elliptic Curves",

Work in Progress, Internet-Draft, draft-hallambaker-

threshold-05, 13 January 2021, <https://

datatracker.ietf.org/doc/html/draft-hallambaker-

threshold-05>.

Hallam-Baker, P., "Threshold Signatures in Elliptic

Curves", Work in Progress, Internet-Draft, draft-

hallambaker-threshold-sigs-06, 13 January 2021, <https://

datatracker.ietf.org/doc/html/draft-hallambaker-

threshold-sigs-06>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

17. Informative References

Hallam-Baker, P., "Mathematical Mesh: Reference

Implementation", Work in Progress, Internet-Draft, draft-

hallambaker-mesh-developer-10, 27 July 2020, <https://

datatracker.ietf.org/doc/html/draft-hallambaker-mesh-

developer-10>.

Dawson, F. and T. Howes, "vCard MIME Directory Profile",

RFC 2426, DOI 10.17487/RFC2426, September 1998, <https://

www.rfc-editor.org/rfc/rfc2426>.

Desruisseaux, B., "Internet Calendaring and Scheduling

Core Object Specification (iCalendar)", RFC 5545, DOI

10.17487/RFC5545, September 2009, <https://www.rfc-

editor.org/rfc/rfc5545>.

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security-06
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security-06
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-udf-12
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-udf-12
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-udf-12
https://datatracker.ietf.org/doc/html/draft-hallambaker-threshold-05
https://datatracker.ietf.org/doc/html/draft-hallambaker-threshold-05
https://datatracker.ietf.org/doc/html/draft-hallambaker-threshold-05
https://datatracker.ietf.org/doc/html/draft-hallambaker-threshold-sigs-06
https://datatracker.ietf.org/doc/html/draft-hallambaker-threshold-sigs-06
https://datatracker.ietf.org/doc/html/draft-hallambaker-threshold-sigs-06
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-10
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-10
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-10
https://www.rfc-editor.org/rfc/rfc2426
https://www.rfc-editor.org/rfc/rfc2426
https://www.rfc-editor.org/rfc/rfc5545
https://www.rfc-editor.org/rfc/rfc5545

	Mathematical Mesh 3.0 Part IV: Schema Reference
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Definitions
	2.1. Requirements Language
	2.2. Defined Terms
	2.3. Related Specifications
	2.4. Implementation Status

	3. Actors
	3.1. Accounts
	3.2. Device
	3.2.1. Activation

	3.3. Service

	4. Catalogs
	4.1. Access
	4.2. Application
	4.2.1. Mesh Account
	4.2.2. SSH
	4.2.3. Mail

	4.3. Bookmark
	4.4. Contact
	4.5. Credential
	4.6. Device
	4.7. Network
	4.8. Publication
	4.9. Task

	5. Spools
	5.1. Outbound
	5.2. Inbound
	5.3. Local

	6. Cryptographic Operations
	6.1. Key Derivation from Seed
	6.2. Message Envelope and Response Identifiers.
	6.3. Proof of Knowledge of PIN
	6.4. EARL
	6.5. Key Agreement
	6.6. Service Cryptographic Operations

	7. Mesh Assertions
	7.1. Encoding
	7.2. Mesh Profiles
	7.3. Mesh Connections

	8. Architecture
	8.1. Mesh Account
	8.1.1. Account Profile
	8.1.1.1. Creating a ProfileMaster
	8.1.1.2. Updating a ProfileMaster

	8.2. Device Management
	8.2.1. The Device Catalog
	8.2.2. Mesh Devices
	8.2.2.1. Creating a ProfileDevice
	8.2.2.2. Connection to a Personal Mesh

	8.3. Mesh Services
	8.4. Mesh Messaging
	8.4.1. Message Status
	8.4.2. Four Corner Model
	8.4.3. Traffic Analysis

	9. Publications
	9.1. Contact Exchange
	9.2. Device Preconfiguration
	9.3. Device Description

	10. Schema
	10.1. Shared Classes
	10.1.1. Classes describing keys
	10.1.2. Structure: KeyData
	10.1.3. Structure: CompositePrivate

	10.2. Assertion classes
	10.2.1. Structure: Assertion
	10.2.2. Structure: Condition
	10.2.3. Base Classes
	10.2.4. Structure: Connection
	10.2.5. Structure: Activation
	10.2.6. Structure: ActivationEntry
	10.2.7. Mesh Profile Classes
	10.2.8. Structure: Profile
	10.2.9. Structure: ProfileDevice
	10.2.10. Structure: ProfileAccount
	10.2.11. Structure: ProfileUser
	10.2.12. Structure: ProfileGroup
	10.2.13. Structure: ProfileService
	10.2.14. Structure: ProfileHost
	10.2.15. Connection Assertions
	10.2.16. Structure: ConnectionDevice
	10.2.17. Structure: ConnectionApplication
	10.2.18. Structure: ConnectionGroup
	10.2.19. Structure: ConnectionService
	10.2.20. Structure: ConnectionHost
	10.2.21. Activation Assertions
	10.2.22. Structure: ActivationDevice
	10.2.23. Structure: ActivationAccount
	10.2.24. Structure: ActivationApplication

	10.3. Data Structures
	10.3.1. Structure: Contact
	10.3.2. Structure: Anchor
	10.3.3. Structure: TaggedSource
	10.3.4. Structure: ContactGroup
	10.3.5. Structure: ContactPerson
	10.3.6. Structure: ContactOrganization
	10.3.7. Structure: OrganizationName
	10.3.8. Structure: PersonName
	10.3.9. Structure: NetworkAddress
	10.3.10. Structure: NetworkProtocol
	10.3.11. Structure: Role
	10.3.12. Structure: Location
	10.3.13. Structure: Bookmark
	10.3.14. Structure: Reference
	10.3.15. Structure: Task

	10.4. Catalog Entries
	10.4.1. Structure: CatalogedEntry
	10.4.2. Structure: CatalogedDevice
	10.4.3. Structure: CatalogedPublication
	10.4.4. Structure: CatalogedCredential
	10.4.5. Structure: CatalogedNetwork
	10.4.6. Structure: CatalogedContact
	10.4.7. Structure: CatalogedAccess
	10.4.8. Structure: CryptographicCapability
	10.4.9. Structure: CapabilityDecrypt
	10.4.10. Structure: CapabilityDecryptPartial
	10.4.11. Structure: CapabilityDecryptServiced
	10.4.12. Structure: CapabilitySign
	10.4.13. Structure: CapabilityKeyGenerate
	10.4.14. Structure: CapabilityFairExchange
	10.4.15. Structure: CatalogedBookmark
	10.4.16. Structure: CatalogedTask
	10.4.17. Structure: CatalogedApplication
	10.4.18. Structure: CatalogedMember
	10.4.19. Structure: CatalogedGroup
	10.4.20. Structure: CatalogedApplicationSSH
	10.4.21. Structure: CatalogedApplicationMail
	10.4.22. Structure: CatalogedApplicationNetwork

	10.5. Publications
	10.5.1. Structure: DevicePreconfiguration

	10.6. Messages
	10.6.1. Structure: Message
	10.6.2. Structure: MessageError
	10.6.3. Structure: MessageComplete
	10.6.4. Structure: MessagePinValidated
	10.6.5. Structure: MessagePin
	10.6.6. Structure: RequestConnection
	10.6.7. Structure: AcknowledgeConnection
	10.6.8. Structure: RespondConnection
	10.6.9. Structure: MessageContact
	10.6.10. Structure: GroupInvitation
	10.6.11. Structure: RequestConfirmation
	10.6.12. Structure: ResponseConfirmation
	10.6.13. Structure: RequestTask
	10.6.14. Structure: MessageClaim
	10.6.15. Structure: ProcessResult

	11. Security Considerations
	12. IANA Considerations
	13. Acknowledgements
	14. Appendix A: Example Container Organization (not normative)
	14.1. Device
	14.1.1. Creating a new Mesh
	14.1.2. Adding an Account
	14.1.3. Adding a Device

	14.2. Service
	14.2.1. Creating a Service
	14.2.2. Adding an Account

	15. Appendix B: Collected Authentication and Encryption Requirements
	15.1. Mesh Messaging

	16. Normative References
	17. Informative References

