
Network Working Group P. Hallam-Baker
Internet-Draft August 15, 2019
Intended status: Informational
Expires: February 16, 2020

Mathematical Mesh 3.0 Part II: Uniform Data Fingerprint.
draft-hallambaker-mesh-udf-06

Abstract

 This document describes the naming and addressing schemes used in the
 Mathematical Mesh. The means of generating Uniform Data Fingerprint
 (UDF) values and their presentation as text sequences and as URIs are
 described.

 A UDF consists of a binary sequence, the initial eight bits of which
 specify a type identifier code. Type identifier codes have been
 selected so as to provide a useful mnemonic indicating their purpose
 when presented in Base32 encoding.

 Two categories of UDF are described. Data UDFs provide a compact
 presentation of a fixed length binary data value in a format that is
 convenient for data entry. A Data UDF may represent a cryptographic
 key, a nonce value or a share of a secret. Fingerprint UDFs provide
 a compact presentation of a Message Digest or Message Authentication
 Code value.

 A Strong Internet Name (SIN) consists of a DNS name which contains at
 least one label that is a UDF fingerprint of a policy document
 controlling interpretation of the name. SINs allow a direct trust
 model to be applied to achieve end-to-end security in existing
 Internet applications without the need for trusted third parties.

 UDFs may be presented as URIs to form either names or locators for
 use with the UDF location service. An Encrypted Authenticated
 Resource Locator (EARL) is a UDF locator URI presenting a service
 from which an encrypted resource may be obtained and a symmetric key
 that may be used to decrypt the content. EARLs may be presented on
 paper correspondence as a QR code to securely provide a machine-
 readable version of the same content. This may be applied to
 automate processes such as invoicing or to provide accessibility
 services for the partially sighted.

 [Note to Readers]

Hallam-Baker Expires February 16, 2020 [Page 1]

Internet-Draft Mesh UDF August 2019

 Discussion of this draft takes place on the MATHMESH mailing list
 (mathmesh@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=mathmesh.

 This document is also available online at
http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html [1] .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 16, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. UDF Types . 5
1.1.1. Cryptographic Keys and Nonces 5
1.1.2. Fingerprint type UDFS 6

1.2. UDF URIs . 7
1.2.1. Name Form . 7
1.2.2. Locator Form . 7

https://mailarchive.ietf.org/arch/search/?email_list=mathmesh
http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Hallam-Baker Expires February 16, 2020 [Page 2]

Internet-Draft Mesh UDF August 2019

1.3. Secure Internet Names 9
2. Definitions . 10
2.1. Requirements Language 10
2.2. Defined Terms . 10
2.3. Related Specifications 11
2.4. Implementation Status 11

3. Architecture . 11
3.1. Base32 Presentation 12
3.1.1. Precision Improvement 12

3.2. Type Identifier . 12
3.3. Content Type Identifier 13
3.4. Truncation . 14
3.4.1. Compression . 14

3.5. Presentation . 15
3.6. Alternative Presentations 15
3.6.1. Word Lists . 15
3.6.2. Image List . 16

4. Fixed Length UDFs . 16
4.1. Nonce Type . 16
4.2. OID Identified Sequence 16
4.3. Encryption/Authentication Type 17
4.4. Shamir Shared Secret 18
4.4.1. Secret Generation 19
4.4.2. Recovery . 19

5. Variable Length UDFs . 21
5.1. Content Digest . 22
5.1.1. Content Digest Value 22
5.1.2. Typed Content Digest Value 22
5.1.3. Compression . 23
5.1.4. Presentation . 23
5.1.5. Example Encoding 24
5.1.6. Using SHA-2-512 Digest 24
5.1.7. Using SHA-3-512 Digest 25
5.1.8. Using SHA-2-512 Digest with Compression 26
5.1.9. Using SHA-3-512 Digest with Compression 27

5.2. Authenticator UDF . 27
5.2.1. Content Digest Value 28
5.2.2. Authentication Value 28

5.3. Content Type Values 30
5.3.1. PKIX Certificates and Keys 31
5.3.2. OpenPGP Key . 31
5.3.3. DNSSEC . 32

6. UDF URIs . 32
6.1. Name form . 32
6.2. Locator form . 33
6.2.1. DNS Web service discovery 33
6.2.2. Content Identifier 33
6.2.3. Target URI . 34

Hallam-Baker Expires February 16, 2020 [Page 3]

Internet-Draft Mesh UDF August 2019

6.2.4. Postprocessing 34
6.2.5. Decryption and Authentication 34
6.2.6. QR Presentation 35

7. Strong Internet Names . 35
8. Security Considerations 35
8.1. Confidentiality . 35
8.2. Availability . 35
8.3. Integrity . 35
8.4. Work Factor and Precision 36
8.5. Semantic Substitution 37
8.6. QR Code Scanning . 37

9. IANA Considerations . 38
9.1. Protocol Service Name 38
9.2. Well Known . 39
9.3. URI Registration . 39
9.4. Media Types Registrations 39
9.4.1. Media Type: application/pkix-keyinfo 39
9.4.2. Media Type: application/udf-encryption 40
9.4.3. Media Type: application/udf-secret 41

9.5. Uniform Data Fingerprint Type Identifier Registry 42
9.5.1. The name of the registry 42
9.5.2. Required information for registrations 42
9.5.3. Applicable registration policy 43
9.5.4. Size, format, and syntax of registry entries 43
9.5.5. Initial assignments and reservations 43

10. Acknowledgements . 44
11. Appendix A: Prime Values for Secret Sharing 44
12. Recovering Shamir Shared Secret 45
13. References . 47
13.1. Normative References 47
13.2. Informative References 48
13.3. URIs . 49

 Author's Address . 50

1. Introduction

 A Uniform Data Fingerprint (UDF) is a generalized format for
 presenting and interpreting short binary sequences representing
 cryptographic keys or fingerprints of data of any specified type.
 The UDF format provides a superset of the OpenPGP [RFC4880]
 fingerprint encoding capability with greater encoding density and
 readability.

 This document describes the syntax and encoding of UDFs, the means of
 constructing and comparing them and their use in other Internet
 addressing schemes.

https://datatracker.ietf.org/doc/html/rfc4880

Hallam-Baker Expires February 16, 2020 [Page 4]

Internet-Draft Mesh UDF August 2019

1.1. UDF Types

 Two categories of UDF are described. Data UDFs provide a compact
 presentation of a fixed length binary data value in a format that is
 convenient for data entry. A Data UDF may represent a cryptographic
 key or nonce value or a part share of a key generated using a secret
 sharing mechanism. Fingerprint UDFs provide a compact presentation
 of a Message Digest or Message Authentication Code value.

 Both categories of UDF are encoded as a UDF binary sequence, the
 first octet of which is a Type Identifier and the remaining octets
 specify the binary value according to the type identifier and data
 referenced.

 UDFs are typically presented to the user as a Base32 encoded sequence
 in groups of five characters separated by dashes. This format
 provides a useful balance between compactness and readability. The
 type identifier codes have been selected so as to provide a useful
 mnemonic when presented in Base32 encoding.

 The following are examples of UDF values:

NC6B-EYP6-O3JR-54HY-IE45-FOUU-TIPQ
EAR2-UJUY-H7TF-SFLK-CWAW-TKC4-O5HQ
SAQG-A7BL-6YQ6-G5K3-HYKQ-I54D-VWHG-C
MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4
KCM5-7VB6-IJXJ-WKHX-NZQF-OKGZ-EWVN
ACXQ-PQRC-54KV-6XXU-L3ZU-W2NZ-QVA5
OAYC-4MAH-AYBS-WZLQ-AUAA-GIYA-AQQE-E7UO-6QMY-7EGD-C63V-TROP-P2W5-HX6E-IDBE-
YVJW-B4SY-GM5U-T2LF-7HQ

 Like email addresses, UDFs are not a Uniform Resource Identifier
 (URI) but may be expressed in URI form by adding the scheme
 identifier (UDF) for use in contexts where an identifier in URI
 syntax is required. A UDF URI MAY contain a domain name component
 allowing it to be used as a locator

1.1.1. Cryptographic Keys and Nonces

 A Nonce (N) UDF represents a short, fixed length randomly chosen
 binary value.

 Nonce UDFs are used within many Mesh protocols and data formats where
 it is necessary to represent a nonce value in text form.

 Nonce UDF:
 NC6B-EYP6-O3JR-54HY-IE45-FOUU-TIPQ

Hallam-Baker Expires February 16, 2020 [Page 5]

Internet-Draft Mesh UDF August 2019

 An Encryption/Authentication (E) UDF has the same format as a Random
 UDF but is identified as being intended to be used as a symmetric key
 for encryption and/or authentication.

 KeyValue:
 23 AA 26 98 3F E6 59 15 6A 15 81 69 A8 5C 77 4F

 Encryption/Authenticator UDF:
 EAR2-UJUY-H7TF-SFLK-CWAW-TKC4-O5HQ

 A Share (S) UDF also represents a short, fixed length binary value
 but only provides one share in secret sharing scheme. Recovery of
 the binary value requires a sufficient number of shares.

 Share UDFs are used in the Mesh to support key and data escrow
 operations without the need to rely on trusted hardware. A share UDF
 can be copied by hand or printed in human or machine-readable form
 (e.g. QR code).

 Key: EAR2-UJUY-H7TF-SFLK-CWAW-TKC4-O5HQ
 Share 0: SAQG-A7BL-6YQ6-G5K3-HYKQ-I54D-VWHG-C
 Share 1: SAQZ-2TRR-KQB6-BENB-CIKI-PBK6-72SX-G
 Share 2: SARN-UIBW-WHS5-3LPG-4YKA-VEZ2-J66I-K

1.1.2. Fingerprint type UDFS

 Fingerprint type UDFs contains a fingerprint value calculated over a
 content data item and an IANA media type.

 A Content Digest type UDF is a fingerprint type UDF in which the
 fingerprint is formed using a cryptographic algorithm. Two digest
 algorithms are currently supported, SHA-2-512 (M, for Merkle Damgard)
 and SHA-3-512 (K, for Keccak).

 The inclusion of the media type in the calculation of the UDF value
 provides protection against semantic substitution attacks in which
 content that has been found to be trustworthy when interpreted as one
 content type is presented in a context in which it is interpreted as
 a different content type in which it is unsafe.

 SHA-2-512: MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4
 SHA-3-512: KCM5-7VB6-IJXJ-WKHX-NZQF-OKGZ-EWVN

 An Authentication UDF (A) is formed in the same manner as a
 fingerprint but using a Message Authentication Code algorithm and a
 symmetric key.

Hallam-Baker Expires February 16, 2020 [Page 6]

Internet-Draft Mesh UDF August 2019

 Authentication UDFs are used to express commitments and to provide a
 means of blinding fingerprint values within a protocol by means of a
 nonce.

 SHA-2-512: ACXQ-PQRC-54KV-6XXU-L3ZU-W2NZ-QVA5

1.2. UDF URIs

 The UDF URI scheme allows use of a UDF in contexts where a URF is
 expected. The UDF URI scheme has two forms, name and locator.

1.2.1. Name Form

 Name form UDF URIs identify a data resource but do not provide a
 means of discovery. The URI is simply the scheme (udf) followed by
 the UDF value:

 udf:MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4

1.2.2. Locator Form

 Locator form UDF URIs identify a data resource and provide a hint
 that MAY provide a means of discovery. If the content is not
 available from the location indicated, content obtained from a
 different source that matches the fingerprint MAY be used instead.

 udf://MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4

 UDF locator form URIs presenting a fingerprint type UDF provide a
 tight binding of the content to the locator. This allows the
 resolved content to be verified and rejected if it has been modified.

 UDF locator form URIs presenting an Encryptor/Authenticator type UDF
 provide a mechanism for identification, discovery and decryption of
 encrypted content. UDF locators of this type are known as Encrypted/
 Authenticated Resource Locators (EARLs).

 Regardless of the type of the embedded UDF, UDF locator form URIs are
 resolved by first performing DNS Web Service Discovery to identify
 the Web Service Endpoint for the mmm-udf service at the specified
 domain.

 Resolution is completed by presenting the Content Digest Fingerprint
 of the UDF value specified in the URI to the specified Web Service
 Endpoint and performing a GET method request on the result.

Hallam-Baker Expires February 16, 2020 [Page 7]

Internet-Draft Mesh UDF August 2019

 For example, Alice subscribes to Example.com, a purveyor of cat and
 kitten images. The company generates paper and electronic invoices
 on a monthly basis.

 To generate the paper invoice, Example.com first creates a new
 encryption key:

 EDX6-OS5A-D4LO-IPT5-EVOR-4QFW-AZWE-4Q

 One or more electronic forms of the invoice are encrypted under the
 key EDX6-OS5A-D4LO-IPT5-EVOR-4QFW-AZWE-4Q and placed on the
 Example.com Web site so that the appropriate version is returned if
 Alice scans the QR code.

 The key is then converted to form an EARL for the example.com UDF
 resolution service:

 udf://example.com/EDX6-OS5A-D4LO-IPT5-EVOR-4QFW-AZWE-4Q

 The EARL is then rendered as a QR code:

 [[This figure is not viewable in this format. The figure is
 available at http://mathmesh.com/Documents/draft-hallambaker-mesh-

udf.html [2].]]

 QR Code with embedded decryption and location key

 A printable invoice containing the QR code is now generated and sent
 to Alice.

 When Alice receives the invoice, she can pay it by simply scanning
 the invoice with a device that recognizes at least one of the invoice
 formats supported by Example.com.

 The UDF EARL locator shown above is resolved by first determining the
 Web Service Endpoint for the mmm-udf service for the domain
 example.com.

 Discover ("example.com", "mmm-udf") =
 https://example.com/.well-known/mmm-udf/

 Next the fingerprint of the source UDF is obtained.

 UDF (EDX6-OS5A-D4LO-IPT5-EVOR-4QFW-AZWE-4Q) =
 MDWZ-WDB7-FZLG-46QL-UURR-FQ36-UQ2A-6YIX-BG4T-32A2-QHPE-5UPP-MMKA-3YR2

http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html

Hallam-Baker Expires February 16, 2020 [Page 8]

Internet-Draft Mesh UDF August 2019

 Combining the Web Service Endpoint and the fingerprint of the source
 UDF provides the URI from which the content is obtained using the
 normal HTTP GET method:

 https://example.com/.well-known/mmm-udf/MDWZ-WDB7-FZLG-46QL-UURR-
 FQ36-UQ2A-6YIX-BG4T-32A2-QHPE-5UPP-MMKA-3YR2

 Having established that Alice can read postal mail sent to a physical
 address and having delivered a secret to that address, this process
 might be extended to provide a means of automating the process of
 enrolment in electronic delivery of future invoices.

1.3. Secure Internet Names

 A SIN is an Internet Identifier that contains a UDF fingerprint of a
 security policy document that may be used to verify the
 interpretation of the identifier. This permits traditional forms of
 Internet address such as URIs and RFC822 email addresses to be used
 to express a trusted address that is independent of any trusted third
 party.

 This document only describes the syntax and interpretation of the
 identifiers themselves. The means by which the security policy
 documents bound to an address govern interpretation of the name is
 discussed separately in [draft-hallambaker-mesh-trust] .

 For example, Example Inc holds the domain name example.com and has
 deployed a private CA whose root of trust is a PKIX certificate with
 the UDF fingerprint MB2GK-6DUF5-YGYYL-JNY5E-RWSHZ.

 Alice is an employee of Example Inc., she uses three email addresses:

 alice@example.com A regular email address (not a SIN).

 alice@mm--mb2gk-6duf5-ygyyl-jny5e-rwshz.example.com A strong email
 address that is backwards compatible.

 alice@example.com.mm--mb2gk-6duf5-ygyyl-jny5e-rwshz A strong email
 address that is backwards incompatible.

 All three forms of the address are valid RFC822 addresses and may be
 used in a legacy email client, stored in an address book application,
 etc. But the ability of a legacy client to make use of the address
 differs. Addresses of the first type may always be used. Addresses
 of the second type may only be used if an appropriate MX record is
 provisioned. Addresses of the third type will always fail unless the
 resolver understands that it is a SIN requiring special processing.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-trust
https://datatracker.ietf.org/doc/html/rfc822

Hallam-Baker Expires February 16, 2020 [Page 9]

Internet-Draft Mesh UDF August 2019

 These rules allow Bob to send email to Alice with either 'best
 effort' security or mandatory security as the circumstances demand.

2. Definitions

 This section presents the related specifications and standard, the
 terms that are used as terms of art within the documents and the
 terms used as requirements language.

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] .

2.2. Defined Terms

 Cryptographic Digest Function A hash function that has the
 properties required for use as a cryptographic hash function.
 These include collision resistance, first pre-image resistance and
 second pre-image resistance.

 Content Type An identifier indicating how a Data Value is to be
 interpreted as specified in the IANA registry Media Types.

 Commitment A cryptographic primitive that allows one to commit to a
 chosen value while keeping it hidden to others, with the ability
 to reveal the committed value later.

 Data Value The binary octet stream that is the input to the digest
 function used to calculate a digest value.

 Data Object A Data Value and its associated Content Type

 Digest Algorithm A synonym for Cryptographic Digest Function

 Digest Value The output of a Cryptographic Digest Function

 Data Digest Value The output of a Cryptographic Digest Function for
 a given Data Value input.

 Fingerprint A presentation of the digest value of a data value or
 data object.

 Fingerprint Presentation The representation of at least some part of
 a fingerprint value in human or machine-readable form.

https://datatracker.ietf.org/doc/html/rfc2119

Hallam-Baker Expires February 16, 2020 [Page 10]

Internet-Draft Mesh UDF August 2019

 Fingerprint Improvement The practice of recording a higher precision
 presentation of a fingerprint on successful validation.

 Fingerprint Work Hardening The practice of generating a sequence of
 fingerprints until one is found that matches criteria that permit
 a compressed presentation form to be used. The compressed
 fingerprint thus being shorter than but presenting the same work
 factor as an uncompressed one.

 Hash A function which takes an input and returns a fixed-size
 output. Ideally, the output of a hash function is unbiased and
 not correlated to the outputs returned to similar inputs in any
 predictable fashion.

 Precision The number of significant bits provided by a Fingerprint
 Presentation.

 Work Factor A measure of the computational effort required to
 perform an attack against some security property.

2.3. Related Specifications

 This specification makes use of Base32 [RFC4648] encoding, SHA-2
 [SHA-2] and SHA-3 [SHA-3] digest functions in the derivation of basic
 fingerprints. The derivation of keyed fingerprints additionally
 requires the use of the HMAC [RFC2014] and HKDF [RFC5869] functions.

 Resolution of UDF URI Locators makes use of DNS Web Service Discovery
 [draft-hallambaker-web-service-discovery] .

2.4. Implementation Status

 The implementation status of the reference code base is described in
 the companion document [draft-hallambaker-mesh-developer] .

3. Architecture

 A Uniform Data Fingerprint (UDF) is a presentation of a UDF Binary
 Data Sequence.

 This document specifies seven UDF Binary Data Sequence types and one
 presentation.

 The first octet of a UDF Binary Data Sequence identifies the UDF type
 and is referred to as the Type identifier.

 UDF Binary Data Sequence types are either fixed length or variable
 length. A variable length Binary Data Sequence MUST be truncated for

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc2014
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/draft-hallambaker-web-service-discovery
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer

Hallam-Baker Expires February 16, 2020 [Page 11]

Internet-Draft Mesh UDF August 2019

 presentation. Fixed length Binary Data Sequences MUST not be
 truncated.

3.1. Base32 Presentation

 The default UDF presentation is Base32 Presentation.

 Variable length Binary Data Sequences are truncated to an integer
 multiple of 20 bits that provides the desired precision before
 conversion to Base32 form.

 Fixed length Binary Data Sequences are converted to Base32 form
 without truncation.

 After conversion to Base32 form, dash '-' characters are inserted
 between groups of 4 characters to aid reading. This representation
 improves the accuracy of both data entry and verification.

3.1.1. Precision Improvement

 Precision improvement is the practice of using a high precision UDF
 (e.g. 260 bits) calculated from content data that has been validated
 according to a lower precision UDF (e.g. 120 bits).

 This allows a lower precision UDF to be used in a medium such as a
 business card where space is constrained without compromising
 subsequent uses.

 Applications SHOULD make use of precision improvement wherever
 possible.

3.2. Type Identifier

 A Version Identifier consists of a single byte.

 The byte codes have been chosen so that the first character of the
 Base32 presentation of the UDF provides a mnemonic for its type. A
 SHA-2 fingerprint UDF will always have M (for Merkle Damgard) as the
 initial letter, a SHA-3 fingerprint UDF will always have K (for
 Keccak) as the initial letter, and so on.

 The following version identifiers are specified in this document:

Hallam-Baker Expires February 16, 2020 [Page 12]

Internet-Draft Mesh UDF August 2019

 +---------+---------+--+
 | Type ID | Initial | Algorithm |
 +---------+---------+--+
 | 0 | A | HMAC-SHA-2-512 |
 | 32 | E | HKDF-AES-512 |
 | 80 | K | SHA-3-512 |
 | 81 | K | SHA-3-512 (20 bits compressed) |
 | 82 | K | SHA-3-512 (30 bits compressed) |
 | 83 | K | SHA-3-512 (40 bits compressed) |
 | 84 | K | SHA-3-512 (50 bits compressed) |
 | 96 | M | SHA-2-512 |
 | 97 | M | SHA-2-512 (20 bits compressed) |
 | 98 | M | SHA-2-512 (30 bits compressed) |
 | 99 | M | SHA-2-512 (40 bits compressed) |
 | 100 | M | SHA-2-512 (50 bits compressed) |
 | 104 | N | Nonce data |
 | 108 | O | OID distinguished sequence (DER encoded) |
 | 144 | S | Shamir Secret Sharing |
 +---------+---------+--+

 Table 1

3.3. Content Type Identifier

 A secure cryptographic digest algorithm provides a unique digest
 value that is probabilistically unique for a particular byte sequence
 but does not fix the context in which a byte sequence is interpreted.
 While such ambiguity may be tolerated in a fingerprint format
 designed for a single specific field of use, it is not acceptable in
 a general-purpose format.

 For example, the SSH and OpenPGP applications both make use of
 fingerprints as identifiers for the public keys used but using
 different digest algorithms and data formats for representing the
 public key data. While no such vulnerability has been demonstrated
 to date, it is certainly conceivable that a crafty attacker might
 construct an SSH key in such a fashion that OpenPGP interprets the
 data in an insecure fashion. If the number of applications making
 use of fingerprint format that permits such substitutions is
 sufficiently large, the probability of a semantic substitution
 vulnerability being possible becomes unacceptably large.

 A simple control that defeats such attacks is to incorporate a
 content type identifier within the scope of the data input to the
 hash function.

Hallam-Baker Expires February 16, 2020 [Page 13]

Internet-Draft Mesh UDF August 2019

3.4. Truncation

 Different applications of fingerprints demand different tradeoffs
 between compactness of the representation and the number of
 significant bits. A larger the number of significant bits reduces
 the risk of collision but at a cost to convenience.

 Modern cryptographic digest functions such as SHA-2 produce output
 values of at least 256 bits in length. This is considerably larger
 than most uses of fingerprints require and certainly greater than can
 be represented in human readable form on a business card.

 Since a strong cryptographic digest function produces an output value
 in which every bit in the input value affects every bit in the output
 value with equal probability, it follows that truncating the digest
 value to produce a finger print is at least as strong as any other
 mechanism if digest algorithm used is strong.

 Using truncation to reduce the precision of the digest function has
 the advantage that a lower precision fingerprint of some data content
 is always a prefix of a higher prefix of the same content. This
 allows higher precision fingerprints to be converted to a lower
 precision without the need for special tools.

3.4.1. Compression

 The Content Digest UDF types make use of work factor compression.
 Additional type identifiers are used to indicate digest values with
 20, 30, 40 or 50 trailing zero bits allowing a UDF fingerprint
 offering the equivalent of up to 150 bits of precision to be
 expressed in 20 characters instead of 30.

 To use compressed UDF identifiers, it is necessary to search for
 content that can be compressed. If the digest algorithm used is
 secure, this means that by definition, the fastest means of search is
 brute force. Thus, the reduction in fingerprint size is achieved by
 transferring the work factor from the attacker to the defender. To
 maintain a work factor of 2^120 with a 2^80 bits, it is necessary for
 the content generator to perform a brute force search at a cost of
 the order of 2^40 operations.

 For example, the smallest allowable work factor for a UDF
 presentation of a public key fingerprint is 92 bits. This would
 normally require a presentation with 20 significant characters.
 Reducing this to 16 characters requires a brute force search of
 approximately 10^6 attempts. Reducing this to 12 characters would
 require 10^12 attempts and to 10 characters, 10^15 attempts.

Hallam-Baker Expires February 16, 2020 [Page 14]

Internet-Draft Mesh UDF August 2019

 Omission of support for higher levels of compression than 2^50 is
 intentional.

 In addition to allowing use of shorter presentations, work factor
 compression MAY be used as evidence of proof of work.

3.5. Presentation

 The presentation of a fingerprint is the format in which it is
 presented to either an application or the user.

 Base32 encoding is used to produce the preferred text representation
 of a UDF fingerprint. This encoding uses only the letters of the
 Latin alphabet with numbers chosen to minimize the risk of ambiguity
 between numbers and letters (2, 3, 4, 5, 6 and 7).

 To enhance readability and improve data entry, characters are grouped
 into groups of four. This means that each block of four characters
 represents an increase in work factor of approximately one million
 times.

3.6. Alternative Presentations

 Applications that support UDF MUST support use of the Base32
 presentation. Applications MAY support alternative presentations.

3.6.1. Word Lists

 The use of a Word List to encode fingerprint values was introduced by
 Patrick Juola and Philip Zimmerman for the PGPfone application. The
 PGP Word List is designed to facilitate exchange and verification of
 fingerprint values in a voice application. To minimize the risk of
 misinterpretation, two-word lists of 256 values each are used to
 encode alternative fingerprint bytes. The compact size of the lists
 used allowed the compilers to curate them so as to maximize the
 phonetic distance of the words selected.

 The PGP Word List is designed to achieve a balance between ease of
 entry and verification. Applications where only verification is
 required may be better served by a much larger word list, permitting
 shorter fingerprint encodings.

 For example, a word list with 16384 entries permits 14 bits of the
 fingerprint to be encoded at once, 65536 entries permits encoding of
 16 bits. These encodings allow a 120 bit fingerprint to be encoded
 in 9 and 8 words respectively.

Hallam-Baker Expires February 16, 2020 [Page 15]

Internet-Draft Mesh UDF August 2019

3.6.2. Image List

 An image list is used in the same manner as a word list affording
 rapid visual verification of a fingerprint value. For obvious
 reasons, this approach is not suited to data entry but is preferable
 for comparison purposes. An image list of 1,048,576 images would
 provide a 20 bit encoding allowing 120 bit precision fingerprints to
 be displayed in six images.

4. Fixed Length UDFs

 Fixed length UDFs are used to represent cryptographic keys, nonces
 and secret shares and have a fixed length determined by their
 function that cannot be truncated without loss of information.

 All fixed length Binary Data Sequence values are an integer multiple
 of eight bits.

4.1. Nonce Type

 A Nonce Type UDF consists of the type identifier octet 104 followed
 by the Binary Data Sequence value.

 The Binary Data Sequence value is an integer number of octets that
 SHOULD have been generated in accordance with processes and
 procedures that ensure that it is sufficiently unpredictable for the
 purposes of the protocol in which the value is to be used.
 Requirements for such processes and procedures are described in
 [RFC4086] .

 Nonce Type UDFs are intended for use in contexts where it is
 necessary for a randomly chosen value to be unpredictable but not
 secret. For example, the challenge in a challenge/response
 mechanism.

4.2. OID Identified Sequence

 An OID Identified Sequence Type UDF consists of the type identifier
 octet 108 followed by the Binary Data Sequence value.

 The Binary Data Sequence value is an octet sequence that contains the
 DER encoding of the following ASN.1 data:

https://datatracker.ietf.org/doc/html/rfc4086

Hallam-Baker Expires February 16, 2020 [Page 16]

Internet-Draft Mesh UDF August 2019

 OIDInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 data BIT STRING }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

 OID Identified Sequences are intended to allow arbitrary data
 sequences to be encoded in the UDF format without exhausting the
 limited type identifier space.

 In particular, OID Identified Sequences MAY be used to specify public
 and private key values.

 Given the following Ed25519 public key:

 42 7E 8E F4 19 8F 90 C3 17 B7 59 C5 CF 7E AD D3
 DF C4 40 C2 4C 55 36 0F 25 83 33 B4 9E 96 5F 9E

 The equivalent DER encoding is:

 30 2E 30 07 06 03 2B 65 70 05 00 03 23 00 04 20
 42 7E 8E F4 19 8F 90 C3 17 B7 59 C5 CF 7E AD D3
 DF C4 40 C2 4C 55 36 0F 25 83 33 B4 9E 96 5F 9E

 To encode this key as a UDF OID sequence we prepend the value OID and
 convert to Base32:

OAYC-4MAH-AYBS-WZLQ-AUAA-GIYA-AQQE-E7UO-6QMY-7EGD-C63V-TROP-P2W5-HX6E-IDBE-
YVJW-B4SY-GM5U-T2LF-7HQ

 The corresponding UDF content digest value is more compact and allows
 us to identify the key unambiguously but does not provide the value:

 MD7J-UW6O-EUSZ-UWKO-JQTB-JFKY-EF5S

4.3. Encryption/Authentication Type

 An Encryption/Authentication Type UDF consists of the type identifier
 octet 0 followed by the Binary Data Sequence value.

 The Binary Data Sequence value is an integer number of octets that
 SHOULD have been generated in accordance with processes and
 procedures that ensure that it is sufficiently unpredictable and
 unguessable for the purposes of the protocol in which the value is to

Hallam-Baker Expires February 16, 2020 [Page 17]

Internet-Draft Mesh UDF August 2019

 be used. Requirements for such processes and procedures are
 described in [RFC4086] .

 Encryption/Authentication Type UDFs are intended to be used as a
 means of specifying secret cryptographic keying material. For
 example, the input to a Key Derivation Function used to encrypt a
 document. Accordingly, the identifier UDF corresponding to an
 Encryption/Authentication type UDF is a UDF fingerprint of the
 Encryption/Authentication Type UDF in Base32 presentation with
 content type 'application/udf-encryption'.

4.4. Shamir Shared Secret

 The UDF format MAY be used to encode shares generated by a secret
 sharing mechanism. The only secret sharing mechanism currently
 supported is the Shamir Secret Sharing mechanism [Shamir79] . Each
 secret share represents a point represents a point on (x, f(x)), a
 polynomial in a modular field p. The secret being shared is an
 integer multiple of 32 bits represented by the polynomial value f(0).

 A Shamir Shared Secret Type UDF consists of the type identifier octet
 144 followed by the Binary Data Sequence value describing the share
 value.

 The first octet of the Binary Data Sequence value specifies the
 threshold value and the x value of the particular share:

 o Bits 4-7 of the first byte specify the threshold value.

 o Bits 0-3 of the first byte specify the x value minus 1.

 The remaining octets specify the value f(x) in network byte (big-
 endian) order with leading padding if necessary so that the share has
 the same number of bytes as the secret.

 The algorithm requires that the value p be a prime larger than the
 integer representing the largest secret being shared. For
 compactness of representation we chose p to be the smallest prime
 that is greater than 2^n where n is an integer multiple of 32. This
 approach leaves a small probability that a set of chosen polynomial
 parameters cause one or more share values be larger than 2^n. Since
 it is the value of the secret rather than the polynomial parameters
 that is of important, such parameters MUST NOT be used.

https://datatracker.ietf.org/doc/html/rfc4086

Hallam-Baker Expires February 16, 2020 [Page 18]

Internet-Draft Mesh UDF August 2019

4.4.1. Secret Generation

 To share a secret of L bits with a threshold of n we use a f(x) a
 polynomial of degree n in the modular field p:

 f(x) = a_0 + a_1.x + a_2.x^2 + ... a_n.x^n

 where:

 L Is the length of the secret in bits, an integer multiple of 32.

 n Is the threshold, the number of shares required to reconstitute
 the secret.

 a0 Is the integer representation of the secret to be shared.

 a1 ... an Are randomly chosen integers less than p

 p Is the smallest prime that is greater than 2^L.

 For L=128, p = 2^128+51.

 The values of the key shares are the values f(1), f(2),... f(n).

 The most straightforward approach to generation of Shamir secrets is
 to generate the set of polynomial coefficients, a_0, a_1, ... a_n and
 use these to generate the share values f(1), f(2),... f(n).

 Note that if this approach is adopted, there is a small probability
 that one or more of the values f(1), f(2),... f(n) exceeds the range
 of values supported by the encoding. Should this occur, at least one
 of the polynomial coefficients MUST be replaced.

 An alternative means of generating the set of secrets is to select up
 to n-1 secret share values and use secret recovery to determine at
 least one additional share. If n shares are selected, the shared
 secret becomes an output of rather than an input to the process.

4.4.2. Recovery

 To recover the value of the shared secret, it is necessary to obtain
 sufficient shares to meet the threshold and recover the value f(0) =
 a_0.

 Applications MAY employ any approach that returns the correct result.
 The use of Lagrange basis polynomials is described in Appendix C.

Hallam-Baker Expires February 16, 2020 [Page 19]

Internet-Draft Mesh UDF August 2019

 Alice decides to encrypt an important document and split the
 encryption key so that there are five key shares, three of which will
 be required to recover the key.

 Alice's master secret is
 97 BE C3 8C EC 32 E3 A8 14 BE 38 AC 49 B3 58 D0

 This has the UDF representation:

 ECL3-5Q4M-5QZO-HKAU-XY4K-YSNT-LDIA

 The master secret is converted to an integer applying network byte
 order conventions. Since the master secret is 128 bits, it is
 guaranteed to be smaller than the modulus. The resulting value
 becomes the polynomial value a0.

 Since a threshold of three shares is required, we will need a second
 order polynomial. The co-efficients of the polynomial a1, a2 are
 random numbers smaller than the modulus:

 a0 = 201703930001559361817193071124445092048
 a1 = 150940799172659682039015718883035617571
 a2 = 86155479518555634547489350117128484052

 The master secret is the value f(0) = a0. The key shares are the
 values f(1), f(2)...f(5):

 f(1) = 98517841771836214940323532692840982164
 f(2) = 167642712579224337158432694495493840384
 f(3) = 68796175502785265008145949100635455201
 f(4) = 142260597463457461952837903940034038122
 f(5) = 47753611540302464529133951581921377640

 The first byte of each share specifies the recovery information
 (quorum, x value), the remaining bytes specify the share value in
 network byte order:

Hallam-Baker Expires February 16, 2020 [Page 20]

Internet-Draft Mesh UDF August 2019

 f(1) =
 30 4A 1D D8 9D 72 E5 BC D3 C8 0C 4F A6 96 F3 26
 94
 f(2) =
 31 7E 1E CF DF FB B5 F1 FB 6F 25 E1 68 DC 85 5E
 00
 f(3) =
 32 33 C1 A9 54 86 A3 83 1F 0A 0A ED F3 1A 69 FE
 E1
 f(4) =
 33 6B 06 64 FB 13 AE 70 3E 98 BB 75 45 50 A1 09
 6A
 f(5) =
 34 23 ED 02 D3 A2 D6 B9 5A 1B 37 77 5F 7F 2A 7D
 68

 The UDF presentation of the key shares is thus:

 f(1) = SAYE-UHOY-TVZO-LPGT-ZAGE-7JUW-6MTJ-I
 f(2) = SAYX-4HWP-3753-L4P3-N4S6-C2G4-QVPA-A
 f(3) = SAZD-HQNJ-KSDK-HAY7-BIFO-34Y2-NH7O-C
 f(4) = SAZW-WBTE-7MJ2-44B6-TC5X-KRKQ-UEEW-U
 f(5) = SA2C-H3IC-2ORN-NOK2-DM3X-OX37-FJ6W-Q

 To recover the value f(0) from any three shares, we need to fit a
 polynomial curve to the three points and use it to calculate the
 value at x=0 using the Lagrange polynomial basis.

5. Variable Length UDFs

 Variable length UDFs are used to represent fingerprint values
 calculated over a content type identifier and the cryptographic
 digest of a content data item. The fingerprint value MAY be
 specified at any integer multiple of 20 bits that provides a work
 factor sufficient for the intended purpose.

 Two types of fingerprint are specified:

 Digest fingerprints Are computed with the same cryptographic digest
 algorithm used to calculate the digest of the content data.

 Message Authentication Code fingerprints Are computed using a
 Message Authentication Code.

 For a given algorithm (and key, if requires), if two UDF fingerprints
 are of the same content data and content type, either the fingerprint
 values will be the same or the initial characters of one will be
 exactly equal to the other.

Hallam-Baker Expires February 16, 2020 [Page 21]

Internet-Draft Mesh UDF August 2019

5.1. Content Digest

 A Content Digest Type UDF consists of the type identifier octet
 followed by the Binary Data Sequence value.

 The type identifier specifies the digest algorithm used and the
 compression level. Two digest algorithms are currently specified
 with four compression levels for each making a total of eight
 possible type identifiers.

 The Content Digest UDF for given content data is generated by the
 steps of:

 1. Applying the digest algorithm to determine the Content Digest
 Value

 2. Applying the digest algorithm to determine the Typed Content
 Digest Value

 3. Determining the compression level from bytes 0-3 of the Typed
 Content Digest Value.

 4. Determining the Type Identifier octet from the Digest algorithm
 identifier and compression level.

 5. Truncating bytes 4-63 of the Typed Content Digest Value to
 determine the Binary Data Sequence value.

5.1.1. Content Digest Value

 The Content Digest Value (CDV) is determined by applying the digest
 algorithm to the content data:

 CDV = H(<Data>))

 Where

 H(x) is the cryptographic digest function

 <Data> is the binary data.

5.1.2. Typed Content Digest Value

 The Typed Content Digest Value (TCDV) is determined by applying the
 digest algorithm to the content type identifier and the CDV:

 TCDV = H (<Content-ID> + ?:? + CDV)

Hallam-Baker Expires February 16, 2020 [Page 22]

Internet-Draft Mesh UDF August 2019

 Where

 A + B represents concatenation of the binary sequences A and B.

 <Content-ID> is the IANA Content Type of the data in UTF8 encoding

 The two-step approach to calculating the Type Content Digest Value
 allows an application to attempt to match a set of content data
 against multiple types without the need to recalculate the value of
 the content data digest.

5.1.3. Compression

 The compression factor is determined according to the number of
 trailing zero bits in the first 8 bytes of the Typed Content Digest
 Value as follows:

 19 or fewer leading zero bits Compression factor = 0

 29 or fewer leading zero bits Compression factor = 20

 39 or fewer leading zero bits Compression factor = 30

 49 or fewer leading zero bits Compression factor = 40

 50 or more leading zero bits Compression factor = 50

 The least significant bits of each octet are regarded to be
 'trailing'.

 Applications MUST use compression when creating and comparing UDFs.
 Applications MAY support content generation techniques that search
 for UDF values that use a compressed representation. Presentation of
 a content digest value indicating use of compression MAY be used as
 an indicator of 'proof of work'.

5.1.4. Presentation

 The type identifier is determined by the algorithm and compression
 factor as follows:

Hallam-Baker Expires February 16, 2020 [Page 23]

Internet-Draft Mesh UDF August 2019

 +---------+---------+-----------+-------------+
 | Type ID | Initial | Algorithm | Compression |
 +---------+---------+-----------+-------------+
 | 80 | K | SHA-3-512 | 0 |
 | 81 | K | SHA-3-512 | 20 |
 | 82 | K | SHA-3-512 | 30 |
 | 83 | K | SHA-3-512 | 40 |
 | 84 | K | SHA-3-512 | 50 |
 | 96 | M | SHA-2-512 | 0 |
 | 97 | M | SHA-2-512 | 20 |
 | 98 | M | SHA-2-512 | 30 |
 | 99 | M | SHA-2-512 | 40 |
 | 100 | M | SHA-2-512 | 50 |
 +---------+---------+-----------+-------------+

 Table 2

 The Binary Data Sequence value is taken from the Typed Content Digest
 Value starting at the 9^th octet and as many additional bytes as are
 required to meet the presentation precision.

5.1.5. Example Encoding

 In the following examples, <Content-ID> is the UTF8 encoding of the
 string "text/plain" and <Data> is the UTF8 encoding of the string
 "UDF Data Value"

 Data =
 55 44 46 20 44 61 74 61 20 56 61 6C 75 65

 ContentType =
 74 65 78 74 2F 70 6C 61 69 6E

5.1.6. Using SHA-2-512 Digest

Hallam-Baker Expires February 16, 2020 [Page 24]

Internet-Draft Mesh UDF August 2019

 H(<Data>) =
 48 DA 47 CC AB FE A4 5C 76 61 D3 21 BA 34 3E 58
 10 87 2A 03 B4 02 9D AB 84 7C CE D2 22 B6 9C AB
 02 38 D4 E9 1E 2F 6B 36 A0 9E ED 11 09 8A EA AC
 99 D9 E0 BD EA 47 93 15 BD 7A E9 E1 2E AD C4 15

 <Content-ID> + ':' + H(<Data>) =
 74 65 78 74 2F 70 6C 61 69 6E 3A 48 DA 47 CC AB
 FE A4 5C 76 61 D3 21 BA 34 3E 58 10 87 2A 03 B4
 02 9D AB 84 7C CE D2 22 B6 9C AB 02 38 D4 E9 1E
 2F 6B 36 A0 9E ED 11 09 8A EA AC 99 D9 E0 BD EA
 47 93 15 BD 7A E9 E1 2E AD C4 15

 H(<Content-ID> + ':' + H(<Data>)) =
 C6 AF B7 C0 FE BE 04 E5 AE 94 E3 7B AA 5F 1A 40
 5B A3 CE CC 97 4D 55 C0 9E 61 E4 B0 EF 9C AE F9
 EB 83 BB 9D 5F 0F 39 F6 5F AA 06 DC 67 2A 67 71
 4F FF 8F 83 C4 55 38 36 38 AE 42 7A 82 9C 85 BB

 The prefixed Binary Data Sequence is thus
 60 C6 AF B7 C0 FE BE 04 E5 AE 94 E3 7B AA 5F 1A
 40 5B

 The 125 bit fingerprint value is MDDK-7N6A-727A-JZNO-STRX-XKS7-DJAF

 This fingerprint MAY be specified with higher or lower precision as
 appropriate.

 100 bit precision MDDK-7N6A-727A-JZNO-STRX

 120 bit precision MDDK-7N6A-727A-JZNO-STRX-XKS7

 200 bit precision MDDK-7N6A-727A-JZNO-STRX-XKS7-DJAF-XI6O-ZSLU-2VOA

 260 bit precision MDDK-7N6A-727A-JZNO-STRX-XKS7-DJAF-XI6O-ZSLU-2VOA-
 TZQ6-JMHP-TSXP

5.1.7. Using SHA-3-512 Digest

Hallam-Baker Expires February 16, 2020 [Page 25]

Internet-Draft Mesh UDF August 2019

 H(<Data>) =
 6D 2E CF E6 93 5A 0C FC F2 A9 1A 49 E0 0C D8 07
 A1 4E 70 AB 72 94 6E CC BB 47 48 F1 8E 41 49 95
 07 1D F3 6E 0D 0C 8B 60 39 C1 8E B4 0F 6E C8 08
 65 B4 C4 45 9B A2 7E 97 74 7B BE 68 BC A8 C2 17

 <Content-ID> + ':' + H(<Data>) =
 74 65 78 74 2F 70 6C 61 69 6E 3A 6D 2E CF E6 93
 5A 0C FC F2 A9 1A 49 E0 0C D8 07 A1 4E 70 AB 72
 94 6E CC BB 47 48 F1 8E 41 49 95 07 1D F3 6E 0D
 0C 8B 60 39 C1 8E B4 0F 6E C8 08 65 B4 C4 45 9B
 A2 7E 97 74 7B BE 68 BC A8 C2 17

 H(<Content-ID> + ':' + H(<Data>)) =
 8A 86 8A 06 1C 54 6E 7E 3F 75 5F 39 88 F9 FD 2F
 8E C8 45 93 1B 80 A8 2F 29 16 7B A3 BE 21 1F 8A
 75 61 88 A1 D5 7F 07 D5 9D 68 A4 2D 17 F4 4D 23
 F9 E4 0B B2 1A 8D B9 F5 8D FC EC BD 01 F4 37 7C

 The prefixed Binary Data Sequence is thus
 50 8A 86 8A 06 1C 54 6E 7E 3F 75 5F 39 88 F9 FD
 2F 8E

 The 125 bit fingerprint value is KCFI-NCQG-DRKG-47R7-OVPT-TCHZ-7UXY

5.1.8. Using SHA-2-512 Digest with Compression

 The content data "UDF Compressed Document 4187123" produces a UDF
 Content Digest SHA-2-512 binary value with 20 trailing zeros and is
 therefore presented using compressed presentation:

 Data = "
 55 44 46 20 43 6F 6D 70 72 65 73 73 65 64 20 44
 6F 63 75 6D 65 6E 74 20 34 31 38 37 31 32 33"

 The UTF8 Content Digest is given as:

Hallam-Baker Expires February 16, 2020 [Page 26]

Internet-Draft Mesh UDF August 2019

 H(<Data>) =
 36 21 FA 2A C5 D8 62 5C 2D 0B 45 FB 65 93 FC 69
 C1 ED F7 00 AE 6F E3 3D 38 13 FE AB 76 AA 74 13
 6D 5A 2B 20 DE D6 A5 CF 6C 04 E6 56 3F F3 C0 C7
 C4 1D 3F 43 DD DC F1 A5 67 A7 E0 67 9A B0 C6 B7

 <Content-ID> + ':' + H(<Data>) =
 74 65 78 74 2F 70 6C 61 69 6E 3A 36 21 FA 2A C5
 D8 62 5C 2D 0B 45 FB 65 93 FC 69 C1 ED F7 00 AE
 6F E3 3D 38 13 FE AB 76 AA 74 13 6D 5A 2B 20 DE
 D6 A5 CF 6C 04 E6 56 3F F3 C0 C7 C4 1D 3F 43 DD
 DC F1 A5 67 A7 E0 67 9A B0 C6 B7

 H(<Content-ID> + ':' + H(<Data>)) =
 8E 14 D9 19 4E D6 02 12 C3 30 A7 BB 5F C7 17 6D
 AE 9A 56 7C A8 2A 23 1F 96 75 ED 53 10 EC E8 F2
 60 14 24 D0 C8 BC 55 3D C0 70 F7 5E 86 38 1A 0B
 CB 55 9C B2 87 81 27 FF 3C EC E2 F0 90 A0 00 00

 The prefixed Binary Data Sequence is thus
 61 8E 14 D9 19 4E D6 02 12 C3 30 A7 BB 5F C7 17
 6D AE

 The 125 bit fingerprint value is MGHB-JWIZ-J3LA-EEWD-GCT3-WX6H-C5W2

5.1.9. Using SHA-3-512 Digest with Compression

 The content data "UDF Compressed Document 774665" produces a UDF
 Content Digest SHA-3-512 binary value with 20 trailing zeros and is
 therefore presented using compressed presentation:

 Data =
 55 44 46 20 43 6F 6D 70 72 65 73 73 65 64 20 44
 6F 63 75 6D 65 6E 74 20 37 37 34 36 36 35

 The UTF8 SHA-3-512 Content Digest is KEJI-Y225-BDUG-XX22-MXKE-5ITF-
 YVYM

5.2. Authenticator UDF

 An authenticator Type UDF consists of the type identifier octet
 followed by the Binary Data Sequence value.

 The type identifier specifies the digest and Message Authentication
 Code algorithm. Two algorithm suites are currently specified. Use
 of compression is not supported.

Hallam-Baker Expires February 16, 2020 [Page 27]

Internet-Draft Mesh UDF August 2019

 The Authenticator UDF for given content data and key is generated by
 the steps of:

 1. Applying the digest algorithm to determine the Content Digest
 Value

 2. Applying the MAC algorithm to determine the Authentication value

 3. Determining the Type Identifier octet from the Digest algorithm
 identifier and compression level.

 4. Truncating the Authentication value to determine the Binary Data
 Sequence value.

 The key used to calculate and Authenticator type UDF is always a
 UNICODE string. If use of a binary value as a key is required, the
 value MUST be converted to a string format first. For example, by
 conversion to an Encryption/Authentication type UDF.

5.2.1. Content Digest Value

 The Content Digest Value (CDV) is determined in the exact same
 fashion as for a Content Digest UDF by applying the digest algorithm
 to the content data:

 CDV = H(<Data>))

 Where

 H(x) is the cryptographic digest function

 <Data> is the binary data.

5.2.2. Authentication Value

 The Authentication Value (AV) is determined by applying the digest
 algorithm to the content type identifier and the CDV:

 AV = MAC (<OKM>, (<Content-ID> + ?:? + CDV))

 Where

 <OKM> is the authentication key as specified below

 MAC(<Key>, <data>) is the result of applying the Message
 Authentication Code algorithm to with Key <Key> and data <data>

 The value is calculated as follows:

Hallam-Baker Expires February 16, 2020 [Page 28]

Internet-Draft Mesh UDF August 2019

 IKM = UTF8 (Key)
 PRK = MAC (UTF8 ("KeyedUDFMaster"), IKM)
 OKM = HKDF-Expand(PRK, UTF8 ("KeyedUDFExpand"), HashLen)

 Where the function UTF8(string) converts a string to the binary UTF8
 representation, HKDF-Expand is as defined in [RFC5869] and the
 function MAC(k,m) is the HMAC function formed from the specified hash
 H(m) as specified in [RFC2014] .

 Keyed UDFs are typically used in circumstances where user interaction
 requires a cryptographic commitment type functionality

 In the following example, <Content-ID> is the UTF8 encoding of the
 string "text/plain" and <Data> is the UTF8 encoding of the string
 "Konrad is the traitor". The randomly chosen key is NDD7-6CMX-H2FW-
 ISAL-K4VB-DQ3E-PEDM.

 Data =
 4B 6F 6E 72 61 64 20 69 73 20 74 68 65 20 74 72
 61 69 74 6F 72

 ContentType =
 74 65 78 74 2F 70 6C 61 69 6E

 Key =
 4E 44 44 37 2D 36 43 4D 58 2D 48 32 46 57 2D 49
 53 41 4C 2D 4B 34 56 42 2D 44 51 33 45 2D 50 45
 44 4D

 Processing is performed in the same manner as an unkeyed fingerprint
 except that compression is never used:

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc2014

Hallam-Baker Expires February 16, 2020 [Page 29]

Internet-Draft Mesh UDF August 2019

 H(<Data>) =
 93 FC DA F9 FA FD 1E 26 50 26 C3 C1 28 43 40 73
 D8 BC 3D 62 87 73 2B 73 B8 EC 93 B6 DE 80 FF DA
 70 0A D1 CE E8 F4 36 68 EF 4E 71 63 41 53 91 5C
 CE 8C 5C CE C7 9A 46 94 6A 35 79 F9 33 70 85 01

 <Content-ID> + ':' + H(<Data>) =
 74 65 78 74 2F 70 6C 61 69 6E 3A 93 FC DA F9 FA
 FD 1E 26 50 26 C3 C1 28 43 40 73 D8 BC 3D 62 87
 73 2B 73 B8 EC 93 B6 DE 80 FF DA 70 0A D1 CE E8
 F4 36 68 EF 4E 71 63 41 53 91 5C CE 8C 5C CE C7
 9A 46 94 6A 35 79 F9 33 70 85 01

 PRK(Key) =
 77 D3 0A 08 39 BD 9D C0 97 44 DA 33 15 0A 42 5E
 CD 17 80 03 B3 CF CC 89 7A C7 84 12 B4 51 5B 25
 DC 26 F5 E1 1B 20 F3 89 2E 9A 1A 7B 0E 73 23 39
 0E C3 4C EF 2D 40 DA 05 B4 70 C6 1C 82 C1 49 33

 HKDF(Key) =
 BF A9 B4 58 9C 1D 68 D7 9A B7 11 F6 C8 98 59 14
 20 D7 82 67 C5 84 22 E5 A0 F9 93 52 B1 C3 87 EB
 05 06 CB C4 E4 D6 E6 EE 1F F0 D4 7A 97 68 5E CE
 28 1C CA AF D8 B5 D1 24 4A 71 EC E3 AC B5 D2 04

 MAC(<key>, <Content-ID> + ':' + H(<Data>)) =
 4C C3 7F D3 F9 9E 52 CF 07 90 74 53 84 65 95 BC
 1A 2B A5 D1 68 9D 05 6D 06 C5 CA BF 17 CB E0 49
 95 39 57 08 79 C4 E5 49 D3 3A 59 A3 32 05 45 A6
 30 26 25 AE 8A F4 47 C6 1F B5 33 7F AD 69 A6 30

 The prefixed Binary Data Sequence is thus
 00 4C C3 7F D3 F9 9E 52 CF 07 90 74 53 84 65 95
 BC 1A

 The 125 bit fingerprint value is ABGM-G76T-7GPF-FTYH-SB2F-HBDF-SW6B

5.3. Content Type Values

 While a UDF fingerprint MAY be used to identify any form of static
 data, the use of a UDF fingerprint to identify a public key signature
 key provides a level of indirection and thus the ability to identify
 dynamic data. The content types used to identify public keys are
 thus of particular interest.

 As described in the security considerations section, the use of
 fingerprints to identify a bare public key and the use of

Hallam-Baker Expires February 16, 2020 [Page 30]

Internet-Draft Mesh UDF August 2019

 fingerprints to identify a public key and associated security policy
 information are very different.

5.3.1. PKIX Certificates and Keys

 UDF fingerprints MAY be used to identify PKIX certificates, CRLs and
 public keys in the ASN.1 encoding used in PKIX certificates.

 Since PKIX certificates and CLRs contain security policy information,
 UDF fingerprints used to identify certificates or CRLs SHOULD be
 presented with a minimum of 200 bits of precision. PKIX applications
 MUST not accept UDF fingerprints specified with less than 200 bits of
 precision for purposes of identifying trust anchors.

 PKIX certificates, keys and related content data are identified by
 the following content types:

 application/pkix-cert A PKIX Certificate

 application/pkix-crl A PKIX CRL

 application/pkix-keyinfo The SubjectPublicKeyInfo structure defined
 in the PKIX certificate specification encoded using DER encoding
 rules.

 The SubjectPublicKeyInfo structure is defined in [RFC5280] as
 follows:

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 This schema results in an identical DER encoding to the OIDInfo
 sequence specified in section XXX. The distinction between these
 productions is that the OIDInfo schema is intended to be used to
 encode arbitrary data while the application/pkix-keyinfo content type
 is only intended to be used to describe public keys.

5.3.2. OpenPGP Key

 OpenPGPv5 keys and key set content data are identified by the
 following content type:

 application/pgp-keys An OpenPGP key set.

https://datatracker.ietf.org/doc/html/rfc5280

Hallam-Baker Expires February 16, 2020 [Page 31]

Internet-Draft Mesh UDF August 2019

5.3.3. DNSSEC

 DNSSEC record data consists of DNS records which are identified by
 the following content type:

 application/dns A DNS resource record in binary format

6. UDF URIs

 The UDF URI scheme describes a means of constructing URIs from a UDF
 value.

 Two forms or UDF URI are specified, Name and Locator. In both cases
 the URI MUST specify the scheme type "UDF", and a UDF fingerprint and
 MAY specify a query identifier and/or a fragment identifier.

 By definition a Locator form URI contains an authority field which
 MUST be a DNS domain name. The use of IP address forms for this
 purpose is not permitted.

 Name Form URIs allow static content data to be identified without
 specifying the means by which the content data may be retrieved.
 Locator form URIs allow static content data or dynamic network
 resources to be identified and the means of retrieval.

 The syntax of a UDF URI is a subset of the generic URI syntax
 specified in [RFC3986] . The use of userinfo and port numbers is not
 supported and the path part of the uri is a UDF in base32
 presentation.

 URI = "UDF:" udf ["?" query] ["" fragment]

 udf = name-form / locator-form

 name-form = udf-value
 locator-form = "//" authority "/" udf-value

 authority = host
 host = reg-name

6.1. Name form

 Name form UDF URIs provide a means of presenting a UDF value in a
 context in which a URI form of a name is required without providing a
 means of resolution.

https://datatracker.ietf.org/doc/html/rfc3986

Hallam-Baker Expires February 16, 2020 [Page 32]

Internet-Draft Mesh UDF August 2019

 Adding the UDF scheme prefix to a UDF fingerprint does not change the
 semantics of the fingerprint itself. The semantics of the name
 result from the context in which it is used.

 For example, a UDF value of any type MAY be used to give a unique
 targetNamespace value in an XML Schema [XMLSchema]

6.2. Locator form

 The locator form of an unkeyed UDF URI is resolved by the following
 steps:

 o Use DNS Web service discovery to determine the Web Service
 Endpoint.

 o Determine the content identifier from the source URI.

 o Append the content identifier to the Web Service Endpoint as a
 suffix to form the target URI.

 o Retrieve content from the Web Service Endpoint by means of a GET
 method.

 o Perform post processing as specified by the UDF type.

6.2.1. DNS Web service discovery

 DNS Web Discovery is performed as specified in
 [draft-hallambaker-web-service-discovery] for the service mmm-udf and
 domain name specified in the URI. For a full description of the
 discovery mechanism, consult the referenced specification.

 The use of DNS Web Discovery permits service providers to make full
 use of the load balancing and service description capabilities
 afforded by use of DNS SRV and TXT records in accordance with the
 approach described in [RFC6763] .

 If no SRV or TXT records are specified, DNS Web Discovery specifies
 that the Web Service Endpoint be the Well Known Service [RFC5785]
 with the prefix /.well-known/srv/mmm-udf.

6.2.2. Content Identifier

 For all UDF types other than Secret Share, the Content Identifier
 value is the UDF SHA-2-512 Content Digest of the canonical form of
 the UDF specified in the source URI presented at twice the precision
 to a maximum of 440 bits.

https://datatracker.ietf.org/doc/html/draft-hallambaker-web-service-discovery
https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc5785

Hallam-Baker Expires February 16, 2020 [Page 33]

Internet-Draft Mesh UDF August 2019

 If the UDF is of type Secret Share, the shared secret MUST be
 recovered before the content identifier can be resolved. The shared
 secret is then expressed as a UDF of type Encryption/Authentication
 and the Content Identifier determined as for an Encryption/
 Authentication type UDF.

6.2.3. Target URI

 The target URI is formed by appending a slash separator '/' and the
 Content Identifier value to the Web Service Endpoint.

 Since the path portion of a URI is case sensitive, the UDF value MUST
 be specified in upper case and MUST include separator marks.

6.2.4. Postprocessing

 After retrieving the content data, the resolver MUST perform post
 processing as indicated by the content type:

 Nonce No additional post processing is required.

 Content Digest The resolver MUST verify that the content returned
 matches the UDF fingerprint value.

 Authenticator The resolver MUST verify that the content returned
 matches the UDF fingerprint value.

 Encryption/Authentication The content data returned is decrypted and
 authenticated using the key specified in the UDF value as the
 initial keying material (see below).

 Secret Share (set) The content data returned is decrypted and
 authenticated using the shared secret as the initial keying
 material (see below).

6.2.5. Decryption and Authentication

 The steps performed to decode cryptographically enhanced content data
 depends on the content type specified in the returned content. Two
 formats are currently supported:

 o DARE Envelope format as specified in [draft-hallambaker-mesh-dare]

 o Cryptographic Message Syntax (CMS) Symmetric Key Package as
 specified in [RFC6031]

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-dare
https://datatracker.ietf.org/doc/html/rfc6031

Hallam-Baker Expires February 16, 2020 [Page 34]

Internet-Draft Mesh UDF August 2019

6.2.6. QR Presentation

 Encoding of a UDF URI as a QR code requires only the characters in
 alphanumeric encoding, thus achieving compactness with minimal
 overhead.

7. Strong Internet Names

 A Strong Internet Name is an Internet address that is bound to a
 policy governing interpretation of that address by means of a Content
 Digest type UDF of the policy expressed as a UDF prefixed DNS label
 within the address itself.

 The Reserved LDH labels as defined in [RFC5890] that begin with the
 prefix mm-- are reserved for use as Strong Internet Names. The
 characters following the prefix are a Content Digest type UDF in
 Base32 presentation.

 Since DNS labels are limited to 63 characters, the presentation of
 the SIN itself is limited to 59 characters and thus 240 bits of
 precision.

8. Security Considerations

 This section describes security considerations arising from the use
 of UDF in general applications.

 Additional security considerations for use of UDFs in Mesh services
 and applications are described in the Mesh Security Considerations
 guide [draft-hallambaker-mesh-security] .

8.1. Confidentiality

 Encrypted locator is a bearer token

8.2. Availability

 Corruption of a part of a shared secret may prevent recovery

8.3. Integrity

 Shared secret parts do not contain context information to specify
 which secret they relate to.

https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security

Hallam-Baker Expires February 16, 2020 [Page 35]

Internet-Draft Mesh UDF August 2019

8.4. Work Factor and Precision

 A given UDF data object has a single fingerprint value that may be
 presented at different precisions. The shortest legitimate precision
 with which a UDF fingerprint may be presented has 96 significant bits

 A UDF fingerprint presents the same work factor as any other
 cryptographic digest function. The difficulty of finding a second
 data item that matches a given fingerprint is 2^n and the difficulty
 or finding two data items that have the same fingerprint is 2^(n/2).
 Where n is the precision of the fingerprint.

 For the algorithms specified in this document, n = 512 and thus the
 work factor for finding collisions is 2^256, a value that is
 generally considered to be computationally infeasible.

 Since the use of 512 bit fingerprints is impractical in the type of
 applications where fingerprints are generally used, truncation is a
 practical necessity. The longer a fingerprint is, the less likely it
 is that a user will check every character. It is therefore important
 to consider carefully whether the security of an application depends
 on second pre-image resistance or collision resistance.

 In most fingerprint applications, such as the use of fingerprints to
 identify public keys, the fact that a malicious party might generate
 two keys that have the same fingerprint value is a minor concern.
 Combined with a flawed protocol architecture, such a vulnerability
 may permit an attacker to construct a document such that the
 signature will be accepted as valid by some parties but not by
 others.

 For example, Alice generates keypairs until two are generated that
 have the same 100 bit UDF presentation (typically 2^48 attempts).
 She registers one keypair with a merchant and the other with her
 bank. This allows Alice to create a payment instrument that will be
 accepted as valid by one and rejected by the other.

 The ability to generate of two PKIX certificates with the same
 fingerprint and different certificate attributes raises very
 different and more serious security concerns. For example, an
 attacker might generate two certificates with the same key and
 different use constraints. This might allow an attacker to present a
 highly constrained certificate that does not present a security risk
 to an application for purposes of gaining approval and an
 unconstrained certificate to request a malicious action.

 In general, any use of fingerprints to identify data that has
 security policy semantics requires the risk of collision attacks to

Hallam-Baker Expires February 16, 2020 [Page 36]

Internet-Draft Mesh UDF August 2019

 be considered. For this reason, the use of short, 'user friendly'
 fingerprint presentations (Less than 200 bits) SHOULD only be used
 for public key values.

8.5. Semantic Substitution

 Many applications record the fact that a data item is trusted, rather
 fewer record the circumstances in which the data item is trusted.
 This results in a semantic substitution vulnerability which an
 attacker may exploit by presenting the trusted data item in the wrong
 context.

 The UDF format provides protection against high level semantic
 substitution attacks by incorporating the content type into the input
 to the outermost fingerprint digest function. The work factor for
 generating a UDF fingerprint that is valid in both contexts is thus
 the same as the work factor for finding a second preimage in the
 digest function (2^512 for the specified digest algorithms).

 It is thus infeasible to generate a data item such that some
 applications will interpret it as a PKIX key and others will accept
 as an OpenPGP key. While attempting to parse a PKIX key as an
 OpenPGP key is virtually certain to fail to return the correct key
 parameters it cannot be assumed that the attempt is guaranteed to
 fail with an error message.

 The UDF format does not provide protection against semantic
 substitution attacks that do not affect the content type.

8.6. QR Code Scanning

 The act of scanning a QR code SHOULD be considered equivalent to
 clicking on an unlabeled hypertext link. Since QR codes are scanned
 in many different contexts, the mere act of scanning a QR code MUST
 NOT be interpreted as constituting an affirmative acceptance of terms
 or conditions or as creating an electronic signature.

 If such semantics are required in the context of an application,
 these MUST be established by secondary user actions made subsequent
 to the scanning of the QR code.

 There is a risk that use of QR codes to automate processes such as
 payment will lead to abusive practices such as presentation of
 fraudulent invoices for goods not ordered or delivered. It is
 therefore important to ensure that such requests are subject to
 adequate accountability controls.

Hallam-Baker Expires February 16, 2020 [Page 37]

Internet-Draft Mesh UDF August 2019

9. IANA Considerations

 Registrations are requested in the following registries:

 o Service Name and Transport Protocol Port Number

 o well-known URI registry

 o Uniform Resource Identifier (URI) Schemes

 o Media Types

 In addition, the creation of the following registry is requested:
 Uniform Data Fingerprint Type Identifier Registry.

9.1. Protocol Service Name

 The following registration is requested in the Service Name and
 Transport Protocol Port Number Registry in accordance with [RFC6355]

 Service Name (REQUIRED) mmm-udf

 Transport Protocol(s) (REQUIRED) TCP

 Assignee (REQUIRED) Phillip Hallam-Baker, phill@hallambaker.com

 Contact (REQUIRED) Phillip Hallam-Baker, phill@hallambaker.com

 Description (REQUIRED) mmm-udf is a Web Service protocol that
 resolves Mathematical Mesh Uniform Data Fingerprints (UDF) to
 resources. The mmm-udf service name is used in service discovery
 to identify a Web Service endpoint to perform resolution of a UDF
 presented in URI locator form.

 Reference (REQUIRED) [This document]

 Port Number (OPTIONAL) None

 Service Code (REQUIRED for DCCP only) None

 Known Unauthorized Uses (OPTIONAL) None

 Assignment Notes (OPTIONAL) None

https://datatracker.ietf.org/doc/html/rfc6355

Hallam-Baker Expires February 16, 2020 [Page 38]

Internet-Draft Mesh UDF August 2019

9.2. Well Known

 The following registration is requested in the well-known URI
 registry in accordance with [RFC5785]

 URI suffix srv/mmm-udf

 Change controller Phillip Hallam-Baker, phill@hallambaker.com

 Specification document(s): [This document]

 Related information

 [draft-hallambaker-web-service-discovery]

9.3. URI Registration

 The following registration is requested in the Uniform Resource
 Identifier (URI) Schemes registry in accordance with [RFC7595]

 Scheme name: UDF

 Status: Provisional

 Applications/protocols that use this scheme name: Mathematical Mesh
 Service protocols (mmm)

 Contact: Phillip Hallam-Baker mailto:phill@hallambaker.com

 Change controller: Phillip Hallam-Baker

 References: [This document]

9.4. Media Types Registrations

9.4.1. Media Type: application/pkix-keyinfo

 Type name: application

 Subtype name: pkix-keyinfo

 Required parameters: None

 Optional parameters: None

 Encoding considerations: Binary

 Security considerations: Described in [This]

https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/draft-hallambaker-web-service-discovery
https://datatracker.ietf.org/doc/html/rfc7595

Hallam-Baker Expires February 16, 2020 [Page 39]

Internet-Draft Mesh UDF August 2019

 Interoperability considerations: None

 Published specification: [This]

 Applications that use this media type: Uniform Data Fingerprint

 Fragment identifier considerations: None

 Additional information: Deprecated alias names for this type: None

 Magic number(s): None

 File extension(s): None

 Macintosh file type code(s): None

 Person & email address to contact for further information:
 Phillip Hallam-Baker @hallambaker.com>

 Intended usage: Content type identifier to be used in constructing
 UDF Content Digests and Authenticators and related cryptographic
 purposes.

 Restrictions on usage: None

 Author: Phillip Hallam-Baker

 Change controller: Phillip Hallam-Baker

 Provisional registration? (standards tree only): Yes

9.4.2. Media Type: application/udf-encryption

 Type name: application

 Subtype name: udf-encryption

 Required parameters: None

 Optional parameters: None

 Encoding considerations: None

 Security considerations: Described in [This]

 Interoperability considerations: None

 Published specification: [This]

Hallam-Baker Expires February 16, 2020 [Page 40]

Internet-Draft Mesh UDF August 2019

 Applications that use this media type: Uniform Data Fingerprint

 Fragment identifier considerations: None

 Additional information: Deprecated alias names for this type: None

 Magic number(s): None

 File extension(s): None

 Macintosh file type code(s): None

 Person & email address to contact for further information:
 Phillip Hallam-Baker @hallambaker.com>

 Intended usage: Content type identifier to be used in constructing
 UDF Content Digests and Authenticators and related cryptographic
 purposes.

 Restrictions on usage: None

 Author: Phillip Hallam-Baker

 Change controller: Phillip Hallam-Baker

 Provisional registration? (standards tree only): Yes

9.4.3. Media Type: application/udf-secret

 Type name: application

 Subtype name: udf- secret

 Required parameters: None

 Optional parameters: None

 Encoding considerations: None

 Security considerations: Described in [This]

 Interoperability considerations: None

 Published specification: [This]

 Applications that use this media type: Uniform Data Fingerprint

 Fragment identifier considerations: None

Hallam-Baker Expires February 16, 2020 [Page 41]

Internet-Draft Mesh UDF August 2019

 Additional information: Deprecated alias names for this type: None

 Magic number(s): None

 File extension(s): None

 Macintosh file type code(s): None

 Person & email address to contact for further information:
 Phillip Hallam-Baker @hallambaker.com>

 Intended usage: Content type identifier to be used in constructing
 UDF Content Digests and Authenticators and related cryptographic
 purposes.

 Restrictions on usage: None

 Author: Phillip Hallam-Baker

 Change controller: Phillip Hallam-Baker

 Provisional registration? (standards tree only): Yes

9.5. Uniform Data Fingerprint Type Identifier Registry

 This document describes a new extensible data format employing fixed
 length version identifiers for UDF types.

9.5.1. The name of the registry

 Uniform Data Fingerprint Type Identifier Registry

9.5.2. Required information for registrations

 Registrants must specify the Type identifier code(s) requested,
 description and RFC number for the corresponding standards action
 document.

 The standards document must specify the means of generating and
 interpreting the UDF Data Sequence Value and the purpose(s) for which
 it is proposed.

 Since the initial letter of the Base32 presentation provides a
 mnemonic function in UDFs, the standards document must explain why
 the proposed Type Identifier and associated initial letter are
 appropriate. In cases where a new initial letter is to be created,
 there must be an explanation of why this is appropriate. If an

Hallam-Baker Expires February 16, 2020 [Page 42]

Internet-Draft Mesh UDF August 2019

 existing initial letter is to be created, there must be an
 explanation of why this is appropriate and/or acceptable.

9.5.3. Applicable registration policy

 Due to the intended field of use (human data entry), the code space
 is severely constrained. Accordingly, it is intended that code point
 registrations be as infrequent as possible.

 Registration of new digest algorithms is strongly discouraged and
 should not occur unless, (1) there is a known security vulnerability
 in one of the two schemes specified in the original assignment and
 (2) the proposed algorithm has been subjected to rigorous peer
 review, preferably in the form of an open, international competition
 and (3) the proposed algorithm has been adopted as a preferred
 algorithm for use in IETF protocols.

 Accordingly, the applicable registration policy is Standards Action.

9.5.4. Size, format, and syntax of registry entries

 Each registry entry consists of a single byte code,

9.5.5. Initial assignments and reservations

 The following entries should be added to the registry as initial
 assignments:

 Code Description Reference
 --- ------------------- ---------
 00 HMAC and SHA-2-512 [This document]
 32 HKDF-AES-512 [This document]
 80 SHA-3-512 [This document]
 81 SHA-3-512 with 20 trailing zeros [This document]
 82 SHA-3-512 with 30 trailing zeros [This document]
 82 SHA-3-512 with 40 trailing zeros [This document]
 83 SHA-3-512 with 50 trailing zeros [This document]
 96 SHA-2-512 [This document]
 97 SHA-2-512 with 20 trailing zeros [This document]
 98 SHA-2-512 with 30 trailing zeros [This document]
 99 SHA-2-512 with 40 trailing zeros [This document]
 100 SHA-2-512 with 50 trailing zeros [This document]
 104 Random nonce [This document]
 144 Shamir Secret Share [This document]

Hallam-Baker Expires February 16, 2020 [Page 43]

Internet-Draft Mesh UDF August 2019

10. Acknowledgements

 A list of people who have contributed to the design of the Mesh is
 presented in [draft-hallambaker-mesh-architecture] .

 Thanks are due to Viktor Dukhovni, Damian Weber and an anonymous
 member of the cryptography@metzdowd.com list for assisting in the
 compilation of the table of prime values.

11. Appendix A: Prime Values for Secret Sharing

 The following are the prime values to be used for sharing secrets of
 up to 512 bits.

 If it is necessary to share larger secrets, the corresponding prime
 may be found by choosing a value (2^32)^n that is larger than the
 secret to be encoded and determining the next largest number that is
 prime.

 +----------------+----------------------+
 | Number of bits | Offset = Primen - 2n |
 +----------------+----------------------+
 | 32 | 15 |
 | 64 | 13 |
 | 96 | 61 |
 | 128 | 51 |
 | 160 | 7 |
 | 192 | 133 |
 | 224 | 735 |
 | 256 | 297 |
 | 288 | 127 |
 | 320 | 27 |
 | 352 | 55 |
 | 384 | 231 |
 | 416 | 235 |
 | 448 | 211 |
 | 480 | 165 |
 | 512 | 75 |
 +----------------+----------------------+

 Table 3

 For example, the prime to be used to share a 128 bit value is 2^128 +
 51.

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture

Hallam-Baker Expires February 16, 2020 [Page 44]

Internet-Draft Mesh UDF August 2019

12. Recovering Shamir Shared Secret

 The value of a Shamir Shared secret may be recovered using Lagrange
 basis polynomials.

 To share a secret with a threshold of n shares and L bits we
 constructed f(x) a polynomial of degree n in the modular field p
 where p is the smallest prime greater than 2^L:

 f(x) = a_0 + a_1.x + a_2.x^2 + ... a_n.x^n

 The shared secret is the binary representation of the value a_0

 Given n shares (x_0, y_0), (x_1, y_1), ... (x_n-1, y_n-1), The
 corresponding the Lagrange basis polynomials l_0, l_1, .. l_n-1 are
 given by:

 lm = ((x - x(m_0)) / (x(m) - x(m_0))) . ((x - x(m_1)) / (x(m) -
 x(m_1))) ((x - x(m_n-2)) / (x(m) - x(m_n-2)))

 Where the values m_0, m_1, ... m_n-2, are the integers 0, 1, .. n-1,
 excluding the value m.

 These can be used to compute f(x) as follows:

 f(x) = y_0l_0 + y_1l_1 + ... y_n-1l_n-1

 Since it is only the value of f(0) that we are interested in, we
 compute the Lagrange basis for the value x = 0:

 lz_m = ((x(m_1)) / (x(m) - x(m_1))) . ((x(m_2)) / (x(m) - x(m_2)))

 Hence,

 a_0 = f(0) = y_0lz_0 + y_1lz_1 + ... y_n-1l_n-1

 The following C# code recovers the values.

 using System;
 using System.Collections.Generic;
 using System.Numerics;

 namespace Examples {

 class Examples {

 ///
 /// Combine a set of points (x, f(x))

Hallam-Baker Expires February 16, 2020 [Page 45]

Internet-Draft Mesh UDF August 2019

 /// on a polynomial of degree in a
 /// discrete field modulo prime to
 /// recover the value f(0) using Lagrange basis polynomials.
 ///
 /// The values f(x).
 /// The values for x.
 /// The modulus.
 /// The polynomial degree.
 /// The value f(0).
 static BigInteger CombineNK(
 BigInteger[] fx,
 int[] x,
 BigInteger p,
 int n) {
 if (fx.Length < n) {
 throw new Exception("Insufficient shares");
 }

 BigInteger accumulator = 0;
 for (var formula = 0; formula < n; formula++) {
 var value = fx[formula];

 BigInteger numerator = 1, denominator = 1;
 for (var count = 0; count < n; count++) {
 if (formula == count) {
 continue; // If not the same value
 }

 var start = x[formula];
 var next = x[count];

 numerator = (numerator * -next) % p;
 denominator = (denominator * (start - next)) % p;
 }

 var InvDenominator = ModInverse(denominator, p);

 accumulator = Modulus((accumulator +
 (fx[formula] * numerator * InvDenominator)), p);
 }

 return accumulator;
 }

 ///
 /// Compute the modular multiplicative inverse of the value
 /// modulo
 ///

Hallam-Baker Expires February 16, 2020 [Page 46]

Internet-Draft Mesh UDF August 2019

 /// The value to find the inverse of
 /// The modulus.
 ///
 static BigInteger ModInverse(
 BigInteger k,
 BigInteger p) {
 var m2 = p - 2;
 if (k < 0) {
 k = k + p;
 }

 return BigInteger.ModPow(k, m2, p);
 }

 ///
 /// Calculate the modulus of a number with correct handling
 /// for negative numbers.
 ///
 /// Value
 /// The modulus.
 /// x mod p
 public static BigInteger Modulus(
 BigInteger x,
 BigInteger p) {
 var Result = x % p;
 return Result.Sign >= 0 ? Result : Result + p;
 }
 }
 }

13. References

13.1. Normative References

 [draft-hallambaker-mesh-architecture]
 Hallam-Baker, P., "Mathematical Mesh 3.0 Part I:
 Architecture Guide", draft-hallambaker-mesh-

architecture-10 (work in progress), August 2019.

 [draft-hallambaker-mesh-dare]
 Hallam-Baker, P., "Mathematical Mesh 3.0 Part III : Data
 At Rest Encryption (DARE)", draft-hallambaker-mesh-dare-04
 (work in progress), August 2019.

 [draft-hallambaker-mesh-security]
 Hallam-Baker, P., "Mathematical Mesh Part VII: Security
 Considerations", draft-hallambaker-mesh-security-01 (work
 in progress), July 2019.

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-10
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-10
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-dare
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-dare-04
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security-01

Hallam-Baker Expires February 16, 2020 [Page 47]

Internet-Draft Mesh UDF August 2019

 [draft-hallambaker-web-service-discovery]
 Hallam-Baker, P., "DNS Web Service Discovery", draft-

hallambaker-web-service-discovery-02 (work in progress),
 April 2019.

 [RFC2014] Weinrib, A. and J. Postel, "IRTF Research Group Guidelines
 and Procedures", BCP 8, RFC 2014, DOI 10.17487/RFC2014,
 October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010.

 [RFC6031] Turner, S. and R. Housley, "Cryptographic Message Syntax
 (CMS) Symmetric Key Package Content Type", RFC 6031,
 DOI 10.17487/RFC6031, December 2010.

 [SHA-2] NIST, "Secure Hash Standard", August 2015.

 [SHA-3] Dworkin, M., "SHA-3 Standard: Permutation-Based Hash and
 Extendable-Output Functions", August 2015.

13.2. Informative References

 [draft-hallambaker-mesh-developer]
 Hallam-Baker, P., "Mathematical Mesh: Reference
 Implementation", draft-hallambaker-mesh-developer-08 (work
 in progress), April 2019.

https://datatracker.ietf.org/doc/html/draft-hallambaker-web-service-discovery
https://datatracker.ietf.org/doc/html/draft-hallambaker-web-service-discovery-02
https://datatracker.ietf.org/doc/html/draft-hallambaker-web-service-discovery-02
https://datatracker.ietf.org/doc/html/bcp8
https://datatracker.ietf.org/doc/html/rfc2014
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc6031
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-08

Hallam-Baker Expires February 16, 2020 [Page 48]

Internet-Draft Mesh UDF August 2019

 [draft-hallambaker-mesh-trust]
 Hallam-Baker, P., "Mathematical Mesh Part VI: The Trust
 Mesh", draft-hallambaker-mesh-trust-02 (work in progress),
 July 2019.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880,
 DOI 10.17487/RFC4880, November 2007.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, DOI 10.17487/RFC5890, August 2010.

 [RFC6355] Narten, T. and J. Johnson, "Definition of the UUID-Based
 DHCPv6 Unique Identifier (DUID-UUID)", RFC 6355,
 DOI 10.17487/RFC6355, August 2011.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013.

 [RFC7595] Thaler, D., Hansen, T., and T. Hardie, "Guidelines and
 Registration Procedures for URI Schemes", BCP 35,

RFC 7595, DOI 10.17487/RFC7595, June 2015.

 [Shamir79]
 "[Reference Not Found!]".

 [XMLSchema]
 Gao, S., Sperberg-McQueen, C., Thompson, H., Mendelsohn,
 N., Beech, D., and M. Maloney, "W3C XML Schema Definition
 Language (XSD) 1.1 Part 1: Structures", April 2012.

13.3. URIs

 [1] http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html

 [2] http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-trust
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-trust-02
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc6355
https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/bcp35
https://datatracker.ietf.org/doc/html/rfc7595
http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html

Hallam-Baker Expires February 16, 2020 [Page 49]

Internet-Draft Mesh UDF August 2019

Author's Address

 Phillip Hallam-Baker

 Email: phill@hallambaker.com

Hallam-Baker Expires February 16, 2020 [Page 50]

