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Abstract

This document describes the naming and addressing schemes used in

the Mathematical Mesh. The means of generating Uniform Data

Fingerprint (UDF) values and their presentation as text sequences

and as URIs are described.

A UDF consists of a binary sequence, the initial eight bits of which

specify a type identifier code. Type identifier codes have been

selected so as to provide a useful mnemonic indicating their purpose

when presented in Base32 encoding.

Two categories of UDF are described. Data UDFs provide a compact

presentation of a fixed length binary data value in a format that is

convenient for data entry. A Data UDF may represent a cryptographic

key, a nonce value or a share of a secret. Fingerprint UDFs provide

a compact presentation of a Message Digest or Message Authentication

Code value.

A Strong Internet Name (SIN) consists of a DNS name which contains

at least one label that is a UDF fingerprint of a policy document

controlling interpretation of the name. SINs allow a direct trust

model to be applied to achieve end-to-end security in existing

Internet applications without the need for trusted third parties.

UDFs may be presented as URIs to form either names or locators for

use with the UDF location service. An Encrypted Authenticated

Resource Locator (EARL) is a UDF locator URI presenting a service

from which an encrypted resource may be obtained and a symmetric key

that may be used to decrypt the content. EARLs may be presented on

paper correspondence as a QR code to securely provide a machine-

readable version of the same content. This may be applied to

automate processes such as invoicing or to provide accessibility

services for the partially sighted.

[Note to Readers]

Discussion of this draft takes place on the MATHMESH mailing list

(mathmesh@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=mathmesh.
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This document is also available online at http://mathmesh.com/

Documents/draft-hallambaker-mesh-udf.html.
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1. Introduction

A Uniform Data Fingerprint (UDF) is a generalized format for

presenting and interpreting short binary sequences representing

cryptographic keys or fingerprints of data of any specified type.

The UDF format provides a superset of the OpenPGP [RFC4880]

fingerprint encoding capability with greater encoding density and

readability.

This document describes the syntax and encoding of UDFs, the means

of constructing and comparing them and their use in other Internet

addressing schemes.

1.1. UDF Types

Two categories of UDF are described. Data UDFs provide a compact

presentation of a fixed length binary data value in a format that is

convenient for data entry. A Data UDF may represent a cryptographic

key or nonce value or a part share of a key generated using a secret

sharing mechanism. Fingerprint UDFs provide a compact presentation

of a Message Digest or Message Authentication Code value.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Both categories of UDF are encoded as a UDF binary sequence, the

first octet of which is a Type Identifier and the remaining octets

specify the binary value according to the type identifier and data

referenced.

UDFs are typically presented to the user as a Base32 encoded

sequence in groups of four characters separated by dashes. This

format provides a useful balance between compactness and

readability. The type identifier codes have been selected so as to

provide a useful mnemonic when presented in Base32 encoding.

The following are examples of UDF values:

NC6X-EVQA-M7FV-F7LJ-FFHY-SMDY-UACA

EAML-INHA-2635-5SKT-46SH-XKSL-HAZA

SAQH-SBPX-XEXR-RYGS-RCVV-DTPA-JUPD-G

MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4

KCM5-7VB6-IJXJ-WKHX-NZQF-OKGZ-EWVN

ADRU-4UV2-EGB2-7QW5-DKZZ-GDGJ-42YC

OAYC-4MAH-AYBS-WZLQ-AUAA-GIYA-AQQD-FCCZ-TFA5-FVHH-TTHZ-4JQH-HD43-SHRB

    -Y5WA-A4O5-IIE5-TEFW-JTPY-EDI

Like email addresses, UDFs are not a Uniform Resource Identifier

(URI) but may be expressed in URI form by adding the scheme

identifier (UDF) for use in contexts where an identifier in URI

syntax is required. A UDF URI MAY contain a domain name component

allowing it to be used as a locator

1.1.1. Cryptographic Keys and Nonces

A Nonce (N) UDF represents a short, fixed length randomly chosen

binary value.

Nonce UDFs are used within many Mesh protocols and data formats

where it is necessary to represent a nonce value in text form.

Nonce UDF:

  NC6X-EVQA-M7FV-F7LJ-FFHY-SMDY-UACA

An Encryption/Authentication (E) UDF has the same format as a Random

UDF but is identified as being intended to be used as a symmetric

key for encryption and/or authentication.
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KeyValue:

  18 B4 34 E0  D7 B7 DE C9  53 E7 A4 7B  AA 4B 38 32

Encryption/Authenticator UDF:

  EAML-INHA-2635-5SKT-46SH-XKSL-HAZA

A Share (S) UDF also represents a short, fixed length binary value

but only provides one share in secret sharing scheme. Recovery of

the binary value requires a sufficient number of shares.

Share UDFs are used in the Mesh to support key and data escrow

operations without the need to rely on trusted hardware. A share UDF

can be copied by hand or printed in human or machine-readable form

(e.g. QR code).

Key:     EAML-INHA-2635-5SKT-46SH-XKSL-HAZA

Share 0: SAQH-SBPX-XEXR-RYGS-RCVV-DTPA-JUPD-G

Share 1: SAQ5-SV52-SGDH-TYW3-XVXP-6IAW-J4CD-I

Share 2: SARD-TKL5-NHO5-VZHE-6IZK-Y4SM-KDVA-E

1.1.2. Fingerprint type UDFS

Fingerprint type UDFs contains a fingerprint value calculated over a

content data item and an IANA media type.

A Content Digest type UDF is a fingerprint type UDF in which the

fingerprint is formed using a cryptographic algorithm. Two digest

algorithms are currently supported, SHA-2-512 (M, for Merkle

Damgard) and SHA-3-512 (K, for Keccak).

The inclusion of the media type in the calculation of the UDF value

provides protection against semantic substitution attacks in which

content that has been found to be trustworthy when interpreted as

one content type is presented in a context in which it is

interpreted as a different content type in which it is unsafe.

SHA-2-512: MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4

SHA-3-512: KCM5-7VB6-IJXJ-WKHX-NZQF-OKGZ-EWVN

An Authentication UDF (A) is formed in the same manner as a

fingerprint but using a Message Authentication Code algorithm and a

symmetric key.
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Authentication UDFs are used to express commitments and to provide a

means of blinding fingerprint values within a protocol by means of a

nonce.

SHA-2-512: ADRU-4UV2-EGB2-7QW5-DKZZ-GDGJ-42YC

1.2. Using UDFs in URIs

The UDF URI scheme allows use of a UDF in contexts where a URF is

expected. The UDF URI scheme has two forms, name and locator.

1.2.1. Name Form

Name form UDF URIs identify a data resource but do not provide a

means of discovery. The URI is simply the scheme (udf) followed by

the UDF value:

udf:MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4

1.2.2. Locator Form

Locator form UDF URIs identify a data resource and provide a hint

that MAY provide a means of discovery. If the content is not

available from the location indicated, content obtained from a

different source that matches the fingerprint MAY be used instead.

udf://example.com/MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4

UDF locator form URIs presenting a fingerprint type UDF provide a

tight binding of the content to the locator. This allows the

resolved content to be verified and rejected if it has been

modified.

UDF locator form URIs presenting an Encryptor/Authenticator type UDF

provide a mechanism for identification, discovery and decryption of

encrypted content. UDF locators of this type are known as Encrypted/

Authenticated Resource Locators (EARLs).

Regardless of the type of the embedded UDF, UDF locator form URIs

are resolved by first performing DNS Web Service Discovery to

identify the Web Service Endpoint for the mmm-udf service at the

specified domain.
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Resolution is completed by presenting the Content Digest Fingerprint

of the UDF value specified in the URI to the specified Web Service

Endpoint and performing a GET method request on the result.

For example, Alice subscribes to Example.com, a purveyor of cat and

kitten images. The company generates paper and electronic invoices

on a monthly basis.

To generate the paper invoice, Example.com first creates a new

encryption key:

EBXI-SDDC-QJME-B3DV-DSSR-PP7V-QBVF-EG

One or more electronic forms of the invoice are encrypted under the

key EBXI-SDDC-QJME-B3DV-DSSR-PP7V-QBVF-EG and placed on the

Example.com Web site so that the appropriate version is returned if

Alice scans the QR code.

The key is then converted to form an EARL for the example.com UDF

resolution service:

udf://example.com/EBXI-SDDC-QJME-B3DV-DSSR-PP7V-QBVF-EG

The EARL is then rendered as a QR code:
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Figure 1

A printable invoice containing the QR code is now generated and sent

to Alice.¶



When Alice receives the invoice, she can pay it by simply scanning

the invoice with a device that recognizes at least one of the

invoice formats supported by Example.com.

The UDF EARL locator shown above is resolved by first determining

the Web Service Endpoint for the mmm-udf service for the domain

example.com.

Discover ("example.com", "mmm-udf") =

https://example.com/.well-known/mmm-udf/

Next the fingerprint of the source UDF is obtained.

UDF (EBXI-SDDC-QJME-B3DV-DSSR-PP7V-QBVF-EG) =

MA7I-5WGZ-NT4U-2UXI-KEP7-LYNV-JJUP-YJJB-D5UM-PYA6-PQW5-WTHS-2WD4-BZFN

Combining the Web Service Endpoint and the fingerprint of the source

UDF provides the URI from which the content is obtained using the

normal HTTP GET method:

https://example.com/.well-known/mmm-udf/MA7I-5WGZ-NT4U-2UXI-KEP7-

LYNV-JJUP-YJJB-D5UM-PYA6-PQW5-WTHS-2WD4-BZFN

Having established that Alice can read postal mail sent to a

physical address and having delivered a secret to that address, this

process might be extended to provide a means of automating the

process of enrolment in electronic delivery of future invoices.

1.3. Secure Internet Names

A SIN is an Internet Identifier that contains a UDF fingerprint of a

security policy document that may be used to verify the

interpretation of the identifier. This permits traditional forms of

Internet address such as URIs and RFC822 email addresses to be used

to express a trusted address that is independent of any trusted

third party.

This document only describes the syntax and interpretation of the

identifiers themselves. The means by which the security policy

documents bound to an address govern interpretation of the name is

discussed separately in [draft-hallambaker-mesh-trust].

For example, Example Inc holds the domain name example.com and has

deployed a private CA whose root of trust is a PKIX certificate with

the UDF fingerprint MB2GK-6DUF5-YGYYL-JNY5E-RWSHZ.
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alice@example.com

alice@mm--mb2gk-6duf5-ygyyl-jny5e-rwshz.example.com

alice@example.com.mm--mb2gk-6duf5-ygyyl-jny5e-rwshz

Cryptographic Digest Function

Alice is an employee of Example Inc., she uses three email

addresses:

A regular email address (not a SIN).

A strong email

address that is backwards compatible.

A strong email

address that is backwards incompatible.

All three forms of the address are valid RFC822 addresses and may be

used in a legacy email client, stored in an address book

application, etc. But the ability of a legacy client to make use of

the address differs. Addresses of the first type may always be used.

Addresses of the second type may only be used if an appropriate MX

record is provisioned. Addresses of the third type will always fail

unless the resolver understands that it is a SIN requiring special

processing.

These rules allow Bob to send email to Alice with either 'best

effort' security or mandatory security as the circumstances demand.

2. Definitions

This section presents the related specifications and standard, the

terms that are used as terms of art within the documents and the

terms used as requirements language.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2.2. Defined Terms

A hash function that has the

properties required for use as a cryptographic hash function.
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Content Type

Commitment

Data Value

Data Object

Digest Algorithm

Digest Value

Data Digest Value

Fingerprint

Fingerprint Presentation

Fingerprint Improvement

Fingerprint Work Hardening

Hash

Precision

Work Factor

These include collision resistance, first pre-image resistance

and second pre-image resistance.

An identifier indicating how a Data Value is to be

interpreted as specified in the IANA registry Media Types.

A cryptographic primitive that allows one to commit to a

chosen value while keeping it hidden to others, with the ability

to reveal the committed value later.

The binary octet stream that is the input to the digest

function used to calculate a digest value.

A Data Value and its associated Content Type

A synonym for Cryptographic Digest Function

The output of a Cryptographic Digest Function

The output of a Cryptographic Digest Function for

a given Data Value input.

A presentation of the digest value of a data value or

data object.

The representation of at least some part

of a fingerprint value in human or machine-readable form.

The practice of recording a higher

precision presentation of a fingerprint on successful validation.

The practice of generating a sequence of

fingerprints until one is found that matches criteria that permit

a compressed presentation form to be used. The compressed

fingerprint thus being shorter than but presenting the same work

factor as an uncompressed one.

A function which takes an input and returns a fixed-size

output. Ideally, the output of a hash function is unbiased and

not correlated to the outputs returned to similar inputs in any

predictable fashion.

The number of significant bits provided by a Fingerprint

Presentation.

A measure of the computational effort required to

perform an attack against some security property.
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2.3. Related Specifications

This specification makes use of Base32 [RFC4648] encoding, SHA-2 

[SHA-2] and SHA-3 [SHA-3] digest functions in the derivation of

basic fingerprints. The derivation of keyed fingerprints

additionally requires the use of the HMAC [RFC2014] and HKDF 

[RFC5869] functions.

Resolution of UDF URI Locators makes use of DNS Web Service

Discovery [draft-hallambaker-web-service-discovery].

2.4. Implementation Status

The implementation status of the reference code base is described in

the companion document [draft-hallambaker-mesh-developer].

3. Architecture

A Uniform Data Fingerprint (UDF) is a presentation of a UDF Binary

Data Sequence.

This document specifies seven UDF Binary Data Sequence types and one

presentation.

The first octet of a UDF Binary Data Sequence identifies the UDF

type and is referred to as the Type identifier.

UDF Binary Data Sequence types are either fixed length or variable

length. A variable length Binary Data Sequence MUST be truncated for

presentation. Fixed length Binary Data Sequences MUST not be

truncated.

3.1. Base32 Presentation

The default UDF presentation is Base32 Presentation.

Variable length Binary Data Sequences are truncated to an integer

multiple of 20 bits that provides the desired precision before

conversion to Base32 form.

Fixed length Binary Data Sequences are converted to Base32 form

without truncation.

After conversion to Base32 form, dash '-' characters are inserted

between groups of 4 characters to aid reading. This representation

improves the accuracy of both data entry and verification.
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3.1.1. Precision Improvement

Precision improvement is the practice of using a high precision UDF

(e.g. 260 bits) calculated from content data that has been validated

according to a lower precision UDF (e.g. 120 bits).

This allows a lower precision UDF to be used in a medium such as a

business card where space is constrained without compromising

subsequent uses.

Applications SHOULD make use of precision improvement wherever

possible.

3.2. Type Identifier

A Version Identifier consists of a single byte.

The byte codes have been chosen so that the first character of the

Base32 presentation of the UDF provides a mnemonic for its type. A

SHA-2 fingerprint UDF will always have M (for Merkle Damgard) as the

initial letter, a SHA-3 fingerprint UDF will always have K (for

Keccak) as the initial letter, and so on.

The following version identifiers are specified in this document:

Type ID Initial Algorithm

0 A HMAC-SHA-2-512

32 E HKDF-AES-512

80 K SHA-3-512

81 K SHA-3-512 (20 bits compressed)

82 K SHA-3-512 (30 bits compressed)

83 K SHA-3-512 (40 bits compressed)

84 K SHA-3-512 (50 bits compressed)

96 M SHA-2-512

97 M SHA-2-512 (20 bits compressed)

98 M SHA-2-512 (30 bits compressed)

99 M SHA-2-512 (40 bits compressed)

100 M SHA-2-512 (50 bits compressed)

104 N Nonce data

112 O OID distinguished sequence (DER encoded)

136 R Random generation seed

144 S Shamir Secret Sharing

200 Z Key pair derivation

Table 1

3.3. Content Type Identifier

A secure cryptographic digest algorithm provides a unique digest

value that is probabilistically unique for a particular byte
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sequence but does not fix the context in which a byte sequence is

interpreted. While such ambiguity may be tolerated in a fingerprint

format designed for a single specific field of use, it is not

acceptable in a general-purpose format.

For example, the SSH and OpenPGP applications both make use of

fingerprints as identifiers for the public keys used but using

different digest algorithms and data formats for representing the

public key data. While no such vulnerability has been demonstrated

to date, it is certainly conceivable that a crafty attacker might

construct an SSH key in such a fashion that OpenPGP interprets the

data in an insecure fashion. If the number of applications making

use of fingerprint format that permits such substitutions is

sufficiently large, the probability of a semantic substitution

vulnerability being possible becomes unacceptably large.

A simple control that defeats such attacks is to incorporate a

content type identifier within the scope of the data input to the

hash function.

3.4. Truncation

Different applications of fingerprints demand different tradeoffs

between compactness of the representation and the number of

significant bits. A larger the number of significant bits reduces

the risk of collision but at a cost to convenience.

Modern cryptographic digest functions such as SHA-2 produce output

values of at least 256 bits in length. This is considerably larger

than most uses of fingerprints require and certainly greater than

can be represented in human readable form on a business card.

Since a strong cryptographic digest function produces an output

value in which every bit in the input value affects every bit in the

output value with equal probability, it follows that truncating the

digest value to produce a finger print is at least as strong as any

other mechanism if digest algorithm used is strong.

Using truncation to reduce the precision of the digest function has

the advantage that a lower precision fingerprint of some data

content is always a prefix of a higher prefix of the same content.

This allows higher precision fingerprints to be converted to a lower

precision without the need for special tools.

3.4.1. Compressed presentation

The Content Digest UDF types make use of work factor compression.

Additional type identifiers are used to indicate digest values with

20, 30, 40 or 50 trailing zero bits allowing a UDF fingerprint
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offering the equivalent of up to 150 bits of precision to be

expressed in 20 characters instead of 30.

To use compressed UDF identifiers, it is necessary to search for

content that can be compressed. If the digest algorithm used is

secure, this means that by definition, the fastest means of search

is brute force. Thus, the reduction in fingerprint size is achieved

by transferring the work factor from the attacker to the defender.

To maintain a work factor of 2^120 with a 2^80 bits, it is necessary

for the content generator to perform a brute force search at a cost

of the order of 2^40 operations.

For example, the smallest allowable work factor for a UDF

presentation of a public key fingerprint is 92 bits. This would

normally require a presentation with 20 significant characters.

Reducing this to 16 characters requires a brute force search of

approximately 10  attempts. Reducing this to 12 characters would

require 10  attempts and to 10 characters, 10  attempts.

Omission of support for higher levels of compression than 2  is

intentional.

In addition to allowing use of shorter presentations, work factor

compression MAY be used as evidence of proof of work.

3.5. Presentation

The presentation of a fingerprint is the format in which it is

presented to either an application or the user.

Base32 encoding is used to produce the preferred text representation

of a UDF fingerprint. This encoding uses only the letters of the

Latin alphabet with numbers chosen to minimize the risk of ambiguity

between numbers and letters (2, 3, 4, 5, 6 and 7).

To enhance readability and improve data entry, characters are

grouped into groups of four. This means that each block of four

characters represents an increase in work factor of approximately

one million times.

3.6. Alternative Presentations

Applications that support UDF MUST support use of the Base32

presentation. Applications MAY support alternative presentations.

3.6.1. Word Lists

The use of a Word List to encode fingerprint values was introduced

by Patrick Juola and Philip Zimmerman for the PGPfone application.

The PGP Word List is designed to facilitate exchange and
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verification of fingerprint values in a voice application. To

minimize the risk of misinterpretation, two-word lists of 256 values

each are used to encode alternative fingerprint bytes. The compact

size of the lists used allowed the compilers to curate them so as to

maximize the phonetic distance of the words selected.

The PGP Word List is designed to achieve a balance between ease of

entry and verification. Applications where only verification is

required may be better served by a much larger word list, permitting

shorter fingerprint encodings.

For example, a word list with 16384 entries permits 14 bits of the

fingerprint to be encoded at once, 65536 entries permits encoding of

16 bits. These encodings allow a 120 bit fingerprint to be encoded

in 9 and 8 words respectively.

3.6.2. Image List

An image list is used in the same manner as a word list affording

rapid visual verification of a fingerprint value. For obvious

reasons, this approach is not suited to data entry but is preferable

for comparison purposes. An image list of 1,048,576 images would

provide a 20 bit encoding allowing 120 bit precision fingerprints to

be displayed in six images.

4. Fixed Length UDFs

Fixed length UDFs are used to represent cryptographic keys, nonces

and secret shares and have a fixed length determined by their

function that cannot be truncated without loss of information.

All fixed length Binary Data Sequence values are an integer multiple

of eight bits.

4.1. Nonce Type

A Nonce Type UDF consists of the type identifier octet 104 followed

by the Binary Data Sequence value.

The Binary Data Sequence value is an integer number of octets that 

SHOULD have been generated in accordance with processes and

procedures that ensure that it is sufficiently unpredictable for the

purposes of the protocol in which the value is to be used.

Requirements for such processes and procedures are described in 

[RFC4086].

Nonce Type UDFs are intended for use in contexts where it is

necessary for a randomly chosen value to be unpredictable but not

secret. For example, the challenge in a challenge/response

mechanism.

¶

¶

¶

¶

¶

¶

¶

¶

¶



4.2. OID Identified Sequence

An OID Identified Sequence Type UDF consists of the type identifier

octet 108 followed by the Binary Data Sequence value.

The Binary Data Sequence value is an octet sequence that contains

the DER encoding of the following ASN.1 data:

   OIDInfo ::=  SEQUENCE  {

        algorithm            AlgorithmIdentifier,

        data                 BIT STRING  }

   AlgorithmIdentifier  ::=  SEQUENCE  {

        algorithm               OBJECT IDENTIFIER,

        parameters              ANY DEFINED BY algorithm OPTIONAL  }

OID Identified Sequences are intended to allow arbitrary data

sequences to be encoded in the UDF format without exhausting the

limited type identifier space.

In particular, OID Identified Sequences MAY be used to specify

public and private key values.

Given the following Ed25519 public key:

  32 88 59 99  41 D2 D4 E7  9C CF 9E 26  07 38 F9 B9

  1E 21 C7 6C  00 71 DD 42  09 D9 90 B6  4C DF 82 0D

The equivalent DER encoding is:

  30 2E 30 07  06 03 2B 65  70 05 00 03  23 00 04 20

  32 88 59 99  41 D2 D4 E7  9C CF 9E 26  07 38 F9 B9

  1E 21 C7 6C  00 71 DD 42  09 D9 90 B6  4C DF 82 0D

To encode this key as a UDF OID sequence we prepend the value OID

and convert to Base32:

OAYC-4MAH-AYBS-WZLQ-AUAA-GIYA-AQQD-FCCZ-TFA5-FVHH-TTHZ-4JQH-HD43-SHRB

    -Y5WA-A4O5-IIE5-TEFW-JTPY-EDI
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The corresponding UDF content digest value is more compact and

allows us to identify the key unambiguously but does not provide the

value:

MABG-IFIZ-EOYV-7EF6-FC54-JOAW-M3GT

4.3. Encryption/Authentication Type

An Encryption/Authentication Type UDF consists of the type

identifier octet 0 followed by the Binary Data Sequence value.

The Binary Data Sequence value is an integer number of octets that 

SHOULD have been generated in accordance with processes and

procedures that ensure that it is sufficiently unpredictable and

unguessable for the purposes of the protocol in which the value is

to be used. Requirements for such processes and procedures are

described in [RFC4086].

Encryption/Authentication Type UDFs are intended to be used as a

means of specifying secret cryptographic keying material. For

example, the input to a Key Derivation Function used to encrypt a

document. Accordingly, the identifier UDF corresponding to an

Encryption/Authentication type UDF is a UDF fingerprint of the

Encryption/Authentication Type UDF in Base32 presentation with

content type 'application/udf-encryption'.

4.4. Key Pair Derivation

The key pair derivation type is used to specify a public key pair

value by means of a sufficiently random input to a deterministic key

generation function.

A key pair derivation Type UDF consists of the type identifier octet

200 followed by the Binary Data Sequence value.

The first two octets of the Binary Data Sequence value comprise the

Key Specifier which specifies the algorithm and key uses for which

the private key is to be derived.

Bits 6-7 of the first octet specify the key use.

Bits 0-5 of the first byte and bits 0-7 of the second specify the

key algorithm in network byte order.

In the unlikely event that this code space is ever exhausted,

allocation of a new UDF type code will be required.

The following key uses are specified:
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Code Key Use

0 Any

1 Encryption

2 Signature

3 Authentication

Table 2

Derivation of key pairs for the following algorithms is specified in

this document:

Code Algorithm Description

0 Any
Seed MAY be used to generate keypairs for any

algorithm

1 X25519 X25519 keypair as described in RFC7748

2 X448 X448 keypair as described in RFC7748

3 Ed25519 Ed25519 keypair as described in RFC8032

4 Ed448 Ed448 keypair as described in RFC8032

5 P-256 NIST curve P-256

6 P-384 NIST curve P-384

7 P-521 NIST curve P-521

8 RSA-2048 2048 bit RSA keypair

9 RSA-3072 3072 bit RSA keypair

10 RSA-4096 4096 bit RSA keypair

Table 3

It is intended that the key derivation mechanism completely specify

all parameters of the keypair generated for all key algorithms other

than type 0 which is intended for applications where multiple keys

are to be generated.

The HKDF function [RFC5869] is used to derive key pairs for all the

algorithms specified in this document. Derivation functions for

additional key algorithms MAY use a different function for this

purpose provided that it meets the applicable security requirements.

The HKDF function is specified as a two-step extract-expand process

with an optional non-secret value input at both steps.

4.4.1. Extraction step

The HKDF extraction step calculates a PRK value from a salt and IKM:

HKDF-Extract(salt, IKM) -> PRK

The IKM value is the binary presentation of the complete Binary Data

Sequence as originally specified.
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The salt value is the 16-bit Key Specifier value specifying the

algorithm for which the key pair is to be derived in network byte

order. Note that this value MAY differ from the one specified in the

Binary Data Sequence by the replacement of algorithm type or key use

Any with a specific algorithm or key use.

The output from the extraction step forms the input to the expand

step:

HKDF-Expand(PRK, info, L) -> OKM

For cases where the key pair generation requires a single parameter,

the value info is the null string and it suffices to specify the

number of bits required and how they are to be used to generate the

algorithm parameter.

For cases where the key pair generation requires multiple

parameters, a different value of the info parameter is required for

each.

An X25519 key may be derived as follows:
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Fingerprint =

    ZAAA-CDJ5-DHPA-DUUW-WIPQ-UXNC-DSAR-U7A

IKM =

  00 01 0D 3D  19 DE 01 D2  96 B2 1F 0A  5D A2 1C 81

  1A 7C

salt =

  00 01

PRK =

  DA 2E 80 6F  2D B1 54 56  7E 27 B4 91  49 0A 35 3A

  5D 99 92 AA  A2 2F 2D 2A  50 4B 13 5B  87 DF 63 67

  62 92 67 9C  B3 B8 10 47  31 52 A2 42  FA 04 84 39

  7A 64 15 84  C0 6B 51 F7  19 4A 20 35  BA 2E D1 59

OKM =

  E7 22 39 E1  AB 77 AC 9C  B4 6A A0 12  27 68 9E 28

  14 60 2F A8  76 08 38 5E  D5 E6 5D E7  0C C8 42 E8

Key =

  E7 22 39 E1  AB 77 AC 9C  B4 6A A0 12  27 68 9E 28

  14 60 2F A8  76 08 38 5E  D5 E6 5D E7  0C C8 42 E8

Derivation of an X448 key:

Fingerprint =

    ZAAA-FFQA-3LE5-SAHG-E6K6-HOTN-TVLB-K4A

Key =

  AE 6A 6D 0B  CC 48 C3 31  E7 55 0F 52  F9 96 83 C5

  15 7C 8A 74  80 36 B7 E9  17 24 D7 DD  A1 56 76 3C

  15 00 68 B7  23 F5 DB 32  48 1B 72 C0  2E B0 22 45

  A3 B8 80 67  B3 88 06 9F

Derivation of an Ed25519 key:
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Fingerprint =

    ZAAA-GZ5N-PSNF-7LMS-QJZN-3O2X-GJXV-X6I

Key =

  3A 36 00 56  2E EC 2F 24  A7 8C 22 F3  A9 A2 EF 1B

  6E AF 07 D4  99 28 53 A5  5B 0A CC EE  4C 3B 7D 30

Derivation of an Ed448 key:

Fingerprint =

    ZAAA-ILZB-KTQV-YWUK-FO7E-MQVV-EWPR-UPA

Key =

  DF 5A 89 B8  1D 56 92 41  32 D1 B2 C9  4F 74 69 E3

  C9 E5 5F 23  33 A1 CE 22  54 08 EE 53  46 0F 9B 13

  9D 54 95 2B  F9 D9 77 2A  FA 07 3C 9D  89 CC C5 0E

  7E 86 7E 84  7C 58 5D 89

4.4.2. Elliptic Curve Diffie Hellman Key Pairs type 1-4

The generation of key pairs for X25519, X448, Ed25519 and Ed448 is

specified in [RFC7748] and [RFC8032]. In each case, the public and

private key parameters are generated from a string of random octets

whose transformation to the secret scalar function is described in

the document.

Thus, info is the null string and the value L is specified as

follows:

Algorithm L

X25519 256

X448 448

Ed25519 256

Ed448 448

Table 4

4.4.3. Elliptic Curve Diffie Hellman Key Pairs type 5-7

The generation of key pairs for the curves P-256, P-384 and P-521

described in [RFC5903] is not mandated by the specification. FIPS

186-4 specifies two approaches. A modified form of the mechanism Key

Pair Generation Using Extra Random Bits specified in B.4.1 is used

as follows:
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The number of random bits L is given by the following table:

Algorithm L

P-256 320

P-384 448

p-521 592

Table 5

Note that this rounds up the number of random bits required to the

nearest integer multiple of 8.

The OKM value is interpreted as an integer in Network Byte Order,

that is the first byte contains the most significant bits, to yield

the parameter c.

The parameter c is reduced modulo the value of the prime field n to

yield the secret scalar value d:

d = (c mod (n?1)) + 1.

A P-256 key may be derived as follows:

Fingerprint =

    ZAAA-LLBO-4A4E-LFMH-EJ73-XVFG-7PZ5-V7Y

IKM =

  00 05 AC 2E  E0 38 45 95  87 22 7F BB  D4 A6 FB F3

  DA FF

salt =

  00 05

PRK =

  0F 48 0F 0C  93 30 AE EE  41 FD 8F A2  1C C2 C6 CA

  3A E1 4B 54  E7 83 C0 25  85 F0 CD 2A  65 3F 18 A7

  9F 2A 5A ED  6A E3 64 6A  05 7D 1A 1A  B8 68 B3 F3

  4F A9 10 9A  05 E1 A4 9A  2C CC 40 43  36 8A 24 C0

OKM =

  E2 00 EC 22  63 17 D5 E5  52 F9 CD B6  45 23 A9 8B

  EF 32 26 E0  24 A0 E7 2B  7F CB C2 0B  CB FA 0F 5C

  59 D1 7C 4A  D8 12 2E 4C

Key =

    82352103978746514619167815909572981157103618409885983602799410986

        678676075099
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Derivation of a P-384 key:

Fingerprint =

    ZAAA-NPLI-G7Z3-WFD2-GBJ6-OONN-ELTO-MHA

Key =

    36904921143188906308790025170320747449095307663051394962072923012

        683284321458397574918591433311657724460124046828583

Derivation of a P-521 key:

Fingerprint =

    ZAAA-PQCC-YFVT-LRWP-7MUZ-GJV3-HLX2-JPQ

Key =

    63465426400294013455234274700017867331515038924288212787589996717

        9893357080737359910264830086847526999862042693445504370476919

        922072068801363203357706689700

4.4.4. RSA Key Pairs

Generation of RSA key pairs requires two parameters, p, q which are

prime.

Parameter Info UTF8 equivalent string

p [112] "p"

q [113] "q"

Table 6

The value of L is the same for generating the OKM values from which

q are derived and is determined by the algorithm identifier:

Algorithm L

RSA-2048 1024

RSA-3072 1536

RSA-4096 2048

Table 7

The RSA parameter p is the smallest prime integer that is greater

than the OKM value corresponding to the info value "p" interpreted

as an integer in Network Byte Order.
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The RSA parameter q is the smallest prime integer that is greater

than the OKM value corresponding to the info value "q" interpreted

as an integer in Network Byte Order.

Note that this algorithm does not mandate a particular method of

primality testing nor does it impose any additional testing on the

values p or q. If an application requires the use of primes with

conditions it will be necessary to attempt multiple key derivations

with different Binary Data Sequence values until parameters with the

desired properties are found.

An RSA-2048 may be derived as follows:
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Fingerprint =

    ZAAA-RJ5I-OSMI-X2KH-MBHX-KUPB-OC54-NQI

IKM =

  00 08 A7 A8  74 98 8B E9  47 60 4F 75  51 E1 70 BB

  C6 C1

salt =

  00 08

[Generation of the PRK as before]

Info(p) =

  70

OKM(p) =

  92 D4 DA FA  C4 22 DB 17  B0 04 93 C6  F1 D2 7A AF

  34 6F 69 98  54 1A F5 F3  E3 ED DA 98  F5 64 EE 6A

Info(q) =

  71

OKM(q) =

  01 50 07 9F  B3 53 70 5A  7E 95 63 BD  19 8D 52 59

  2F EE 38 E7  8F D4 46 D9  4C 55 E6 DD  39 CA DB 36

Key P =

    66413758812235725334838013235321881586339612574162219539634589986

        848279686793

Key Q =

    59371323150670971897831168338735525379591827337915650990989572561

        8914057069

4.4.5. Any Key Algorithm

The Any key algorithm allows a single UDF value to be used to derive

key pairs for multiple algorithms. The IKM value is the same for

each key pair derived. The salt value is changed according to the

algorithm for which the key is to be derived.
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Fingerprint =

    ZAAA-A6WP-XMGW-FUOF-2T5L-AHNL-FBPY-RSY

To generate an RSA-2048 key

salt =

  00 08

Key P =

    18437770556273302343384069787329923965493769166213940128456164676

        903354830137

Key Q =

    74101698940301025126555268512889815535724251370021060722478350575

        007811846521

To generate an X25519 key

salt =

  00 08

Key =

    System.Byte[]

4.5. Shamir Shared Secret

The UDF format MAY be used to encode shares generated by a secret

sharing mechanism. The only secret sharing mechanism currently

supported is the Shamir Secret Sharing mechanism [Shamir79]. Each

secret share represents a point represents a point on (x, f(x)), a

polynomial in a modular field p. The secret being shared is an

integer multiple of 32 bits represented by the polynomial value 

f(0).

A Shamir Shared Secret Type UDF consists of the type identifier

octet 144 followed by the Binary Data Sequence value describing the

share value.

The first octet of the Binary Data Sequence value specifies the

threshold value and the x value of the particular share:

Bits 4-7 of the first byte specify the threshold value.

Bits 0-3 of the first byte specify the x value minus 1.
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L

n

a

a  ... a

p

The remaining octets specify the value f(x) in network byte (big-

endian) order with leading padding if necessary so that the share

has the same number of bytes as the secret.

The algorithm requires that the value p be a prime larger than the

integer representing the largest secret being shared. For

compactness of representation we chose p to be the smallest prime

that is greater than 2  where n is an integer multiple of 32. This

approach leaves a small probability that a set of chosen polynomial

parameters cause one or more share values be larger than 2 . Since it

is the value of the secret rather than the polynomial parameters

that is of important, such parameters MUST NOT be used.

4.5.1. Secret Generation

To share a secret of L bits with a threshold of n we use a f(x) a

polynomial of degree n in the modular field p:

f(x) = a  + a .x + a .x  + ... a .x

where:

Is the length of the secret in bits, an integer multiple of 32.

Is the threshold, the number of shares required to reconstitute

the secret.

Is the integer representation of the secret to be shared.

Are randomly chosen integers less than p

Is the smallest prime that is greater than 2 .

For L=128, p = 2 +51.

The values of the key shares are the values f(1), f(2),... f(n).

The most straightforward approach to generation of Shamir secrets is

to generate the set of polynomial coefficients, a , a , ... a  and

use these to generate the share values f(1), f(2),... f(n).

Note that if this approach is adopted, there is a small probability

that one or more of the values f(1), f(2),... f(n) exceeds the range

of values supported by the encoding. Should this occur, at least one

of the polynomial coefficients MUST be replaced.

An alternative means of generating the set of secrets is to select

up to n-1 secret share values and use secret recovery to determine

at least one additional share. If n shares are selected, the shared

secret becomes an output of rather than an input to the process.
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4.5.2. Recovery

To recover the value of the shared secret, it is necessary to obtain

sufficient shares to meet the threshold and recover the value f(0) =

a .

Applications MAY employ any approach that returns the correct

result. The use of Lagrange basis polynomials is described in

Appendix C.

Alice decides to encrypt an important document and split the

encryption key so that there are five key shares, three of which

will be required to recover the key.

Alice's master secret is

  CA 65 A1 30  57 25 91 56  B9 6F 32 D0  17 F0 A2 5A

This has the UDF representation:

EDFG-LIJQ-K4SZ-CVVZ-N4ZN-AF7Q-UJNA

The master secret is converted to an integer applying network byte

order conventions. Since the master secret is 128 bits, it is

guaranteed to be smaller than the modulus. The resulting value

becomes the polynomial value a0.

Since a threshold of three shares is required, we will need a second

order polynomial. The co-efficients of the polynomial a1, a2 are

random numbers smaller than the modulus:

a0 = 269031746429133624973381789488312787546

a1 = 322115533094025657321906342357735266839

a2 = 32658764136027301650768999736923473956

The master secret is the value f(0) = a0. The key shares are the

values f(1), f(2)...f(5):

f(1) = 283523676738248120482682524151203316834

f(2) = 23050768398478755830146650856172582527

f(3) = 168177755251702457942523384466757007639

f(4) = 38339903456042299893063510119420169156

f(5) = 314101946853375208608516242677698490092
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The first byte of each share specifies the recovery information

(quorum, x value), the remaining bytes specify the share value in

network byte order:

f(1) =

  30 D5 4C AC  84 88 7E AF  0F 3C E4 8B  92 BC 61 44

  62

f(2) =

  31 11 57 6A  A0 65 D7 A1  45 95 07 AE  BC D2 44 76

  7F

f(3) =

  32 7E 85 DB  83 EF 30 67  F9 C1 D8 9C  4E 59 9A 39

  17

f(4) =

  33 1C D7 FF  2F 24 89 03  2B C3 57 54  47 52 62 8B

  C4

f(5) =

  34 EC 4D D5  A2 05 E1 72  DB 99 83 D6  A7 BC 9D 6E

  EC

The UDF presentation of the key shares is thus:

f(1) = SAYN-KTFM-QSEH-5LYP-HTSI-XEV4-MFCG-E

f(2) = SAYR-CV3K-UBS5-PIKF-SUD2-5PGS-IR3H-6

f(3) = SAZH-5BO3-QPXT-AZ7Z-YHMJ-YTSZ-TI4R-O

f(4) = SAZR-ZV77-F4SI-SAZL-YNLV-IR2S-MKF4-I

f(5) = SA2O-YTOV-UIC6-C4W3-TGB5-NJ54-TVXO-Y

To recover the value f(0) from any three shares, we need to fit a

polynomial curve to the three points and use it to calculate the

value at x=0 using the Lagrange polynomial basis.

5. Variable Length UDFs

Variable length UDFs are used to represent fingerprint values

calculated over a content type identifier and the cryptographic

digest of a content data item. The fingerprint value MAY be

specified at any integer multiple of 20 bits that provides a work

factor sufficient for the intended purpose.

Two types of fingerprint are specified:
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Digest fingerprints

Message Authentication Code fingerprints

Are computed with the same cryptographic digest

algorithm used to calculate the digest of the content data.

Are computed using a

Message Authentication Code.

For a given algorithm (and key, if requires), if two UDF

fingerprints are of the same content data and content type, either

the fingerprint values will be the same or the initial characters of

one will be exactly equal to the other.

5.1. Content Digest

A Content Digest Type UDF consists of the type identifier octet

followed by the Binary Data Sequence value.

The type identifier specifies the digest algorithm used and the

compression level. Two digest algorithms are currently specified

with four compression levels for each making a total of eight

possible type identifiers.

The Content Digest UDF for given content data is generated by the

steps of:

Applying the digest algorithm to determine the Content Digest

Value

Applying the digest algorithm to determine the Typed Content

Digest Value

Determining the compression level from bytes 0-3 of the Typed

Content Digest Value.

Determining the Type Identifier octet from the Digest algorithm

identifier and compression level.

Truncating bytes 4-63 of the Typed Content Digest Value to

determine the Binary Data Sequence value.

5.1.1. Content Digest Value

The Content Digest Value (CDV) is determined by applying the digest

algorithm to the content data:

CDV = H(<Data>)

Where
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19 or fewer leading zero bits

29 or fewer leading zero bits

39 or fewer leading zero bits

49 or fewer leading zero bits

50 or more leading zero bits

H(x) is the cryptographic digest function

<Data> is the binary data.

5.1.2. Typed Content Digest Value

The Typed Content Digest Value (TCDV) is determined by applying the

digest algorithm to the content type identifier and the CDV:

TCDV = H (<Content-ID> + ?:? + CDV)

Where

A + B represents concatenation of the binary sequences A and B.

<Content-ID> is the IANA Content Type of the data in UTF8

encoding

The two-step approach to calculating the Type Content Digest Value

allows an application to attempt to match a set of content data

against multiple types without the need to recalculate the value of

the content data digest.

5.1.3. Content Digest Compression

The compression factor is determined according to the number of

trailing zero bits in the first 8 bytes of the Typed Content Digest

Value as follows:

Compression factor = 0

Compression factor = 20

Compression factor = 30

Compression factor = 40

Compression factor = 50

The least significant bits of each octet are regarded to be

'trailing'.

Applications MUST use compression when creating and comparing UDFs.

Applications MAY support content generation techniques that search

for UDF values that use a compressed representation. Presentation of

a content digest value indicating use of compression MAY be used as

an indicator of 'proof of work'.
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5.1.4. Content Digest Presentation

The type identifier is determined by the algorithm and compression

factor as follows:

Type ID Initial Algorithm Compression

80 K SHA-3-512 0

81 K SHA-3-512 20

82 K SHA-3-512 30

83 K SHA-3-512 40

84 K SHA-3-512 50

96 M SHA-2-512 0

97 M SHA-2-512 20

98 M SHA-2-512 30

99 M SHA-2-512 40

100 M SHA-2-512 50

Table 8

The Binary Data Sequence value is taken from the Typed Content

Digest Value starting at the 9  octet and as many additional bytes

as are required to meet the presentation precision.

5.1.5. Example Encoding

In the following examples, <Content-ID> is the UTF8 encoding of the

string "text/plain" and <Data> is the UTF8 encoding of the string

"UDF Data Value"

Data =

  55 44 46 20  44 61 74 61  20 56 61 6C  75 65

ContentType =

  74 65 78 74  2F 70 6C 61  69 6E
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100 bit precision

120 bit precision

200 bit precision

260 bit precision

5.1.6. Using SHA-2-512 Digest

H(<Data>) =

  48 DA 47 CC  AB FE A4 5C  76 61 D3 21  BA 34 3E 58

  10 87 2A 03  B4 02 9D AB  84 7C CE D2  22 B6 9C AB

  02 38 D4 E9  1E 2F 6B 36  A0 9E ED 11  09 8A EA AC

  99 D9 E0 BD  EA 47 93 15  BD 7A E9 E1  2E AD C4 15

<Content-ID> + ':' + H(<Data>) =

  74 65 78 74  2F 70 6C 61  69 6E 3A 48  DA 47 CC AB

  FE A4 5C 76  61 D3 21 BA  34 3E 58 10  87 2A 03 B4

  02 9D AB 84  7C CE D2 22  B6 9C AB 02  38 D4 E9 1E

  2F 6B 36 A0  9E ED 11 09  8A EA AC 99  D9 E0 BD EA

  47 93 15 BD  7A E9 E1 2E  AD C4 15

H(<Content-ID> + ':' + H(<Data>)) =

  C6 AF B7 C0  FE BE 04 E5  AE 94 E3 7B  AA 5F 1A 40

  5B A3 CE CC  97 4D 55 C0  9E 61 E4 B0  EF 9C AE F9

  EB 83 BB 9D  5F 0F 39 F6  5F AA 06 DC  67 2A 67 71

  4F FF 8F 83  C4 55 38 36  38 AE 42 7A  82 9C 85 BB

The prefixed Binary Data Sequence is thus

  60 C6 AF B7  C0 FE BE 04  E5 AE 94 E3  7B AA 5F 1A

  40 5B A3 CE  CC 97 4D 55  C0 9E 61 E4  B0 EF 9C AE

  F9 EB 83 BB  9D 5F 0F 39  F6 5F AA 06  DC 67 2A 67

  71 4F FF 8F  83 C4 55 38  36 38 AE 42  7A 82 9C 85

The 125 bit fingerprint value is MDDK-7N6A-727A-JZNO-STRX-XKS7-DJAF

This fingerprint MAY be specified with higher or lower precision as

appropriate.

MDDK-7N6A-727A-JZNO-STRX

MDDK-7N6A-727A-JZNO-STRX-XKS7

MDDK-7N6A-727A-JZNO-STRX-XKS7-DJAF-XI6O-ZSLU-2VOA

MDDK-7N6A-727A-JZNO-STRX-XKS7-DJAF-XI6O-

ZSLU-2VOA-TZQ6-JMHP-TSXP
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5.1.7. Using SHA-3-512 Digest

H(<Data>) =

  6D 2E CF E6  93 5A 0C FC  F2 A9 1A 49  E0 0C D8 07

  A1 4E 70 AB  72 94 6E CC  BB 47 48 F1  8E 41 49 95

  07 1D F3 6E  0D 0C 8B 60  39 C1 8E B4  0F 6E C8 08

  65 B4 C4 45  9B A2 7E 97  74 7B BE 68  BC A8 C2 17

<Content-ID> + ':' + H(<Data>) =

  74 65 78 74  2F 70 6C 61  69 6E 3A 6D  2E CF E6 93

  5A 0C FC F2  A9 1A 49 E0  0C D8 07 A1  4E 70 AB 72

  94 6E CC BB  47 48 F1 8E  41 49 95 07  1D F3 6E 0D

  0C 8B 60 39  C1 8E B4 0F  6E C8 08 65  B4 C4 45 9B

  A2 7E 97 74  7B BE 68 BC  A8 C2 17

H(<Content-ID> + ':' + H(<Data>)) =

  8A 86 8A 06  1C 54 6E 7E  3F 75 5F 39  88 F9 FD 2F

  8E C8 45 93  1B 80 A8 2F  29 16 7B A3  BE 21 1F 8A

  75 61 88 A1  D5 7F 07 D5  9D 68 A4 2D  17 F4 4D 23

  F9 E4 0B B2  1A 8D B9 F5  8D FC EC BD  01 F4 37 7C

The prefixed Binary Data Sequence is thus

  50 8A 86 8A  06 1C 54 6E  7E 3F 75 5F  39 88 F9 FD

  2F 8E C8 45  93 1B 80 A8  2F 29 16 7B  A3 BE 21 1F

  8A 75 61 88  A1 D5 7F 07  D5 9D 68 A4  2D 17 F4 4D

  23 F9 E4 0B  B2 1A 8D B9  F5 8D FC EC  BD 01 F4 37

The 125 bit fingerprint value is KCFI-NCQG-DRKG-47R7-OVPT-TCHZ-7UXY

5.1.8. Using SHA-2-512 Digest with Compression

The content data "UDF Compressed Document 4187123" produces a UDF

Content Digest SHA-2-512 binary value with 20 trailing zeros and is

therefore presented using compressed presentation:

Data = "

  55 44 46 20  43 6F 6D 70  72 65 73 73  65 64 20 44

  6F 63 75 6D  65 6E 74 20  34 31 38 37  31 32 33"

The UTF8 Content Digest is given as:

¶

¶

¶

¶

¶



H(<Data>) =

  36 21 FA 2A  C5 D8 62 5C  2D 0B 45 FB  65 93 FC 69

  C1 ED F7 00  AE 6F E3 3D  38 13 FE AB  76 AA 74 13

  6D 5A 2B 20  DE D6 A5 CF  6C 04 E6 56  3F F3 C0 C7

  C4 1D 3F 43  DD DC F1 A5  67 A7 E0 67  9A B0 C6 B7

<Content-ID> + ':' + H(<Data>) =

  74 65 78 74  2F 70 6C 61  69 6E 3A 36  21 FA 2A C5

  D8 62 5C 2D  0B 45 FB 65  93 FC 69 C1  ED F7 00 AE

  6F E3 3D 38  13 FE AB 76  AA 74 13 6D  5A 2B 20 DE

  D6 A5 CF 6C  04 E6 56 3F  F3 C0 C7 C4  1D 3F 43 DD

  DC F1 A5 67  A7 E0 67 9A  B0 C6 B7

H(<Content-ID> + ':' + H(<Data>)) =

  8E 14 D9 19  4E D6 02 12  C3 30 A7 BB  5F C7 17 6D

  AE 9A 56 7C  A8 2A 23 1F  96 75 ED 53  10 EC E8 F2

  60 14 24 D0  C8 BC 55 3D  C0 70 F7 5E  86 38 1A 0B

  CB 55 9C B2  87 81 27 FF  3C EC E2 F0  90 A0 00 00

The prefixed Binary Data Sequence is thus

  61 8E 14 D9  19 4E D6 02  12 C3 30 A7  BB 5F C7 17

  6D AE 9A 56  7C A8 2A 23  1F 96 75 ED  53 10 EC E8

  F2 60 14 24  D0 C8 BC 55  3D C0 70 F7  5E 86 38 1A

  0B CB 55 9C  B2 87 81 27  FF 3C EC E2  F0 90 A0 00

The 125 bit fingerprint value is MGHB-JWIZ-J3LA-EEWD-GCT3-WX6H-C5W2

5.1.9. Using SHA-3-512 Digest with Compression

The content data "UDF Compressed Document 774665" produces a UDF

Content Digest SHA-3-512 binary value with 20 trailing zeros and is

therefore presented using compressed presentation:

Data =

  55 44 46 20  43 6F 6D 70  72 65 73 73  65 64 20 44

  6F 63 75 6D  65 6E 74 20  37 37 34 36  36 35

The UTF8 SHA-3-512 Content Digest is KEJI-Y225-BDUG-XX22-MXKE-5ITF-

YVYM

5.2. Authenticator UDF

An authenticator Type UDF consists of the type identifier octet

followed by the Binary Data Sequence value.
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The type identifier specifies the digest and Message Authentication

Code algorithm. Two algorithm suites are currently specified. Use of

compression is not supported.

The Authenticator UDF for given content data and key is generated by

the steps of:

Applying the digest algorithm to determine the Content Digest

Value

Applying the MAC algorithm to determine the Authentication

value

Determining the Type Identifier octet from the Digest algorithm

identifier and compression level.

Truncating the Authentication value to determine the Binary

Data Sequence value.

The key used to calculate and Authenticator type UDF is always a

UNICODE string. If use of a binary value as a key is required, the

value MUST be converted to a string format first. For example, by

conversion to an Encryption/Authentication type UDF.

5.2.1. Authentication Content Digest Value

The Content Digest Value (CDV) is determined in the exact same

fashion as for a Content Digest UDF by applying the digest algorithm

to the content data:

CDV = H(<Data>))

Where

H(x) is the cryptographic digest function

<Data> is the binary data.

5.2.2. Authentication Value

The Authentication Value (AV) is determined by applying the digest

algorithm to the content type identifier and the CDV:

AV = MAC (<OKM>, (<Content-ID> + ?:? + CDV))

Where
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<OKM> is the authentication key as specified below

MAC( <Key>, <data>) is the result of applying the Message

Authentication Code algorithm to with Key <Key> and data <data>

The value <OKM> is calculated as follows:

IKM = UTF8 (Key)

PRK = MAC (UTF8 ("KeyedUDFMaster"), IKM)

OKM = HKDF-Expand(PRK, UTF8 ("KeyedUDFExpand"), HashLen)

Where the function UTF8(string) converts a string to the binary UTF8

representation, HKDF-Expand is as defined in [RFC5869] and the

function MAC(k,m) is the HMAC function formed from the specified

hash H(m) as specified in [RFC2014].

Keyed UDFs are typically used in circumstances where user

interaction requires a cryptographic commitment type functionality

In the following example, <Content-ID> is the UTF8 encoding of the

string "text/plain" and <Data> is the UTF8 encoding of the string

"Konrad is the traitor". The randomly chosen key is NDD7-6CMX-H2FW-

ISAL-K4VB-DQ3E-PEDM.

Data =

  4B 6F 6E 72  61 64 20 69  73 20 74 68  65 20 74 72

  61 69 74 6F  72

ContentType =

  74 65 78 74  2F 70 6C 61  69 6E

Key =

  4E 44 44 37  2D 36 43 4D  58 2D 48 32  46 57 2D 49

  53 41 4C 2D  4B 34 56 42  2D 44 51 33  45 2D 50 45

  44 4D

Processing is performed in the same manner as an unkeyed fingerprint

except that compression is never used:
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H(<Data>) =

  93 FC DA F9  FA FD 1E 26  50 26 C3 C1  28 43 40 73

  D8 BC 3D 62  87 73 2B 73  B8 EC 93 B6  DE 80 FF DA

  70 0A D1 CE  E8 F4 36 68  EF 4E 71 63  41 53 91 5C

  CE 8C 5C CE  C7 9A 46 94  6A 35 79 F9  33 70 85 01

<Content-ID> + ':' + H(<Data>) =

  74 65 78 74  2F 70 6C 61  69 6E 3A 93  FC DA F9 FA

  FD 1E 26 50  26 C3 C1 28  43 40 73 D8  BC 3D 62 87

  73 2B 73 B8  EC 93 B6 DE  80 FF DA 70  0A D1 CE E8

  F4 36 68 EF  4E 71 63 41  53 91 5C CE  8C 5C CE C7

  9A 46 94 6A  35 79 F9 33  70 85 01

PRK(Key) =

  77 D3 0A 08  39 BD 9D C0  97 44 DA 33  15 0A 42 5E

  CD 17 80 03  B3 CF CC 89  7A C7 84 12  B4 51 5B 25

  DC 26 F5 E1  1B 20 F3 89  2E 9A 1A 7B  0E 73 23 39

  0E C3 4C EF  2D 40 DA 05  B4 70 C6 1C  82 C1 49 33

HKDF(Key) =

  BF A9 B4 58  9C 1D 68 D7  9A B7 11 F6  C8 98 59 14

  20 D7 82 67  C5 84 22 E5  A0 F9 93 52  B1 C3 87 EB

  05 06 CB C4  E4 D6 E6 EE  1F F0 D4 7A  97 68 5E CE

  28 1C CA AF  D8 B5 D1 24  4A 71 EC E3  AC B5 D2 04

MAC(<key>, <Content-ID> + ':' + H(<Data>)) =

  4C C3 7F D3  F9 9E 52 CF  07 90 74 53  84 65 95 BC

  1A 2B A5 D1  68 9D 05 6D  06 C5 CA BF  17 CB E0 49

  95 39 57 08  79 C4 E5 49  D3 3A 59 A3  32 05 45 A6

  30 26 25 AE  8A F4 47 C6  1F B5 33 7F  AD 69 A6 30

The prefixed Binary Data Sequence is thus

  00 4C C3 7F  D3 F9 9E 52  CF 07 90 74  53 84 65 95

  BC 1A 2B A5  D1 68 9D 05  6D 06 C5 CA  BF 17 CB E0

  49 95 39 57  08 79 C4 E5  49 D3 3A 59  A3 32 05 45

  A6 30 26 25  AE 8A F4 47  C6 1F B5 33  7F AD 69 A6

The 125 bit fingerprint value is ABGM-G76T-7GPF-FTYH-SB2F-HBDF-SW6B

5.3. Content Type Values

While a UDF fingerprint MAY be used to identify any form of static

data, the use of a UDF fingerprint to identify a public key

signature key provides a level of indirection and thus the ability

to identify dynamic data. The content types used to identify public

keys are thus of particular interest.
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application/pkix-cert

application/pkix-crl

application/pkix-keyinfo

application/pgp-keys

As described in the security considerations section, the use of

fingerprints to identify a bare public key and the use of

fingerprints to identify a public key and associated security policy

information are very different.

5.3.1. PKIX Certificates and Keys

UDF fingerprints MAY be used to identify PKIX certificates, CRLs and

public keys in the ASN.1 encoding used in PKIX certificates.

Since PKIX certificates and CLRs contain security policy

information, UDF fingerprints used to identify certificates or CRLs 

SHOULD be presented with a minimum of 200 bits of precision. PKIX

applications MUST not accept UDF fingerprints specified with less

than 200 bits of precision for purposes of identifying trust

anchors.

PKIX certificates, keys and related content data are identified by

the following content types:

A PKIX Certificate

A PKIX CRL

The SubjectPublicKeyInfo structure defined

in the PKIX certificate specification encoded using DER encoding

rules.

The SubjectPublicKeyInfo structure is defined in [RFC5280] as

follows:

   SubjectPublicKeyInfo  ::=  SEQUENCE  {

        algorithm            AlgorithmIdentifier,

        subjectPublicKey     BIT STRING  }

This schema results in an identical DER encoding to the OIDInfo

sequence specified in section XXX. The distinction between these

productions is that the OIDInfo schema is intended to be used to

encode arbitrary data while the application/pkix-keyinfo content

type is only intended to be used to describe public keys.

5.3.2. OpenPGP Key

OpenPGPv5 keys and key set content data are identified by the

following content type:

An OpenPGP key set.
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application/dns

5.3.3. DNSSEC

DNSSEC record data consists of DNS records which are identified by

the following content type:

A DNS resource record in binary format

6. UDF URIs

The UDF URI scheme describes a means of constructing URIs from a UDF

value.

Two forms or UDF URI are specified, Name and Locator. In both cases

the URI MUST specify the scheme type "UDF", and a UDF fingerprint

and MAY specify a query identifier and/or a fragment identifier.

By definition a Locator form URI contains an authority field which 

MUST be a DNS domain name. The use of IP address forms for this

purpose is not permitted.

Name Form URIs allow static content data to be identified without

specifying the means by which the content data may be retrieved.

Locator form URIs allow static content data or dynamic network

resources to be identified and the means of retrieval.

The syntax of a UDF URI is a subset of the generic URI syntax

specified in [RFC3986]. The use of userinfo and port numbers is not

supported and the path part of the uri is a UDF in base32

presentation.

URI           = "UDF:" udf [ "?" query ] [ "" fragment ]

udf           = name-form / locator-form

name-form     = udf-value

locator-form  = "//" authority "/" udf-value

authority     = host

host          = reg-name

6.1. Name form URI

Name form UDF URIs provide a means of presenting a UDF value in a

context in which a URI form of a name is required without providing

a means of resolution.
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Adding the UDF scheme prefix to a UDF fingerprint does not change

the semantics of the fingerprint itself. The semantics of the name

result from the context in which it is used.

For example, a UDF value of any type MAY be used to give a unique

targetNamespace value in an XML Schema [XMLSchema]

6.2. Locator form URI

The locator form of an unkeyed UDF URI is resolved by the following

steps:

Use DNS Web service discovery to determine the Web Service

Endpoint.

Determine the content identifier from the source URI.

Append the content identifier to the Web Service Endpoint as a

suffix to form the target URI.

Retrieve content from the Web Service Endpoint by means of a GET

method.

Perform post processing as specified by the UDF type.

6.2.1. DNS Web service discovery

DNS Web Discovery is performed as specified in [draft-hallambaker-

web-service-discovery] for the service mmm-udf and domain name

specified in the URI. For a full description of the discovery

mechanism, consult the referenced specification.

The use of DNS Web Discovery permits service providers to make full

use of the load balancing and service description capabilities

afforded by use of DNS SRV and TXT records in accordance with the

approach described in [RFC6763].

If no SRV or TXT records are specified, DNS Web Discovery specifies

that the Web Service Endpoint be the Well Known Service [RFC5785]

with the prefix /.well-known/srv/mmm-udf.

6.2.2. Content Identifier

For all UDF types other than Secret Share, the Content Identifier

value is the UDF SHA-2-512 Content Digest of the canonical form of

the UDF specified in the source URI presented at twice the precision

to a maximum of 440 bits.

If the UDF is of type Secret Share, the shared secret MUST be

recovered before the content identifier can be resolved. The shared
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Nonce

Content Digest

Authenticator

Encryption/Authentication

Secret Share (set)

secret is then expressed as a UDF of type Encryption/Authentication

and the Content Identifier determined as for an Encryption/

Authentication type UDF.

6.2.3. Target URI

The target URI is formed by appending a slash separator '/' and the

Content Identifier value to the Web Service Endpoint.

Since the path portion of a URI is case sensitive, the UDF value 

MUST be specified in upper case and MUST include separator marks.

6.2.4. Postprocessing

After retrieving the content data, the resolver MUST perform post

processing as indicated by the content type:

No additional post processing is required.

The resolver MUST verify that the content returned

matches the UDF fingerprint value.

The resolver MUST verify that the content returned

matches the UDF fingerprint value.

The content data returned is decrypted

and authenticated using the key specified in the UDF value as the

initial keying material (see below).

The content data returned is decrypted and

authenticated using the shared secret as the initial keying

material (see below).

6.2.5. Decryption and Authentication

The steps performed to decode cryptographically enhanced content

data depends on the content type specified in the returned content.

Two formats are currently supported:

DARE Envelope format as specified in [draft-hallambaker-mesh-

dare]

Cryptographic Message Syntax (CMS) Symmetric Key Package as

specified in [RFC6031]

6.2.6. QR Presentation

Encoding of a UDF URI as a QR code requires only the characters in

alphanumeric encoding, thus achieving compactness with minimal

overhead.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶



7. Strong Internet Names

A Strong Internet Name is an Internet address that is bound to a

policy governing interpretation of that address by means of a

Content Digest type UDF of the policy expressed as a UDF prefixed

DNS label within the address itself.

The Reserved LDH labels as defined in [RFC5890] that begin with the

prefix mm-- are reserved for use as Strong Internet Names. The

characters following the prefix are a Content Digest type UDF in

Base32 presentation.

Since DNS labels are limited to 63 characters, the presentation of

the SIN itself is limited to 59 characters and thus 240 bits of

precision.

8. Security Considerations

This section describes security considerations arising from the use

of UDF in general applications.

Additional security considerations for use of UDFs in Mesh services

and applications are described in the Mesh Security Considerations

guide [draft-hallambaker-mesh-security].

8.1. Confidentiality

Encrypted locator is a bearer token

8.2. Availability

Corruption of a part of a shared secret may prevent recovery

8.3. Integrity

Shared secret parts do not contain context information to specify

which secret they relate to.

8.4. Work Factor and Precision

A given UDF data object has a single fingerprint value that may be

presented at different precisions. The shortest legitimate precision

with which a UDF fingerprint may be presented has 96 significant

bits

A UDF fingerprint presents the same work factor as any other

cryptographic digest function. The difficulty of finding a second

data item that matches a given fingerprint is 2^n and the difficulty

or finding two data items that have the same fingerprint is 2^(n/2).

Where n is the precision of the fingerprint.
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For the algorithms specified in this document, n = 512 and thus the

work factor for finding collisions is 2^256, a value that is

generally considered to be computationally infeasible.

Since the use of 512 bit fingerprints is impractical in the type of

applications where fingerprints are generally used, truncation is a

practical necessity. The longer a fingerprint is, the less likely it

is that a user will check every character. It is therefore important

to consider carefully whether the security of an application depends

on second pre-image resistance or collision resistance.

In most fingerprint applications, such as the use of fingerprints to

identify public keys, the fact that a malicious party might generate

two keys that have the same fingerprint value is a minor concern.

Combined with a flawed protocol architecture, such a vulnerability

may permit an attacker to construct a document such that the

signature will be accepted as valid by some parties but not by

others.

For example, Alice generates keypairs until two are generated that

have the same 100 bit UDF presentation (typically 2^48 attempts).

She registers one keypair with a merchant and the other with her

bank. This allows Alice to create a payment instrument that will be

accepted as valid by one and rejected by the other.

The ability to generate of two PKIX certificates with the same

fingerprint and different certificate attributes raises very

different and more serious security concerns. For example, an

attacker might generate two certificates with the same key and

different use constraints. This might allow an attacker to present a

highly constrained certificate that does not present a security risk

to an application for purposes of gaining approval and an

unconstrained certificate to request a malicious action.

In general, any use of fingerprints to identify data that has

security policy semantics requires the risk of collision attacks to

be considered. For this reason, the use of short, 'user friendly'

fingerprint presentations (Less than 200 bits) SHOULD only be used

for public key values.

8.5. Semantic Substitution

Many applications record the fact that a data item is trusted,

rather fewer record the circumstances in which the data item is

trusted. This results in a semantic substitution vulnerability which

an attacker may exploit by presenting the trusted data item in the

wrong context.

The UDF format provides protection against high level semantic

substitution attacks by incorporating the content type into the
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input to the outermost fingerprint digest function. The work factor

for generating a UDF fingerprint that is valid in both contexts is

thus the same as the work factor for finding a second preimage in

the digest function (2^512 for the specified digest algorithms).

It is thus infeasible to generate a data item such that some

applications will interpret it as a PKIX key and others will accept

as an OpenPGP key. While attempting to parse a PKIX key as an

OpenPGP key is virtually certain to fail to return the correct key

parameters it cannot be assumed that the attempt is guaranteed to

fail with an error message.

The UDF format does not provide protection against semantic

substitution attacks that do not affect the content type.

8.6. QR Code Scanning

The act of scanning a QR code SHOULD be considered equivalent to

clicking on an unlabeled hypertext link. Since QR codes are scanned

in many different contexts, the mere act of scanning a QR code MUST

NOT be interpreted as constituting an affirmative acceptance of

terms or conditions or as creating an electronic signature.

If such semantics are required in the context of an application,

these MUST be established by secondary user actions made subsequent

to the scanning of the QR code.

There is a risk that use of QR codes to automate processes such as

payment will lead to abusive practices such as presentation of

fraudulent invoices for goods not ordered or delivered. It is

therefore important to ensure that such requests are subject to

adequate accountability controls.

9. IANA Considerations

Registrations are requested in the following registries:

Service Name and Transport Protocol Port Number

well-known URI registry

Uniform Resource Identifier (URI) Schemes

Media Types

In addition, the creation of the following registry is requested:

Uniform Data Fingerprint Type Identifier Registry.
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Service Name (REQUIRED)

Transport Protocol(s) (REQUIRED)

Assignee (REQUIRED)

Contact (REQUIRED)

Description (REQUIRED)

Reference (REQUIRED)

Port Number (OPTIONAL)

Service Code (REQUIRED for DCCP only)

Known Unauthorized Uses (OPTIONAL)

Assignment Notes (OPTIONAL)

URI suffix

Change controller

Specification document(s):

Related information

Scheme name:

Status:

9.1. Protocol Service Name

The following registration is requested in the Service Name and

Transport Protocol Port Number Registry in accordance with [RFC6355]

mmm-udf

TCP

Phillip Hallam-Baker, phill@hallambaker.com

Phillip Hallam-Baker, phill@hallambaker.com

mmm-udf is a Web Service protocol that

resolves Mathematical Mesh Uniform Data Fingerprints (UDF) to

resources. The mmm-udf service name is used in service discovery

to identify a Web Service endpoint to perform resolution of a UDF

presented in URI locator form.

[This document]

None
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9.2. Well Known

The following registration is requested in the well-known URI

registry in accordance with [RFC5785]

srv/mmm-udf

Phillip Hallam-Baker, phill@hallambaker.com

[This document]
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9.3. URI Registration

The following registration is requested in the Uniform Resource

Identifier (URI) Schemes registry in accordance with [RFC7595]

UDF

Provisional
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Applications/protocols that use this scheme name:

Contact:

Change controller:

References:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Mathematical Mesh

Service protocols (mmm)

Phillip Hallam-Baker mailto:phill@hallambaker.com

Phillip Hallam-Baker

[This document]

9.4. Media Types Registrations

9.4.1. Media Type: application/pkix-keyinfo

application

pkix-keyinfo

None

None

Binary

Described in [This]

None

[This]

Uniform Data Fingerprint

None

Deprecated alias names for this type: None

Magic number(s): None

File extension(s): None

Macintosh file type code(s): None

Phillip

Hallam-Baker @hallambaker.com>

Content type identifier to be used in constructing

UDF Content Digests and Authenticators and related cryptographic

purposes.

None
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Author:

Change controller:

Provisional registration? (standards tree only):

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Provisional registration? (standards tree only):

Phillip Hallam-Baker

Phillip Hallam-Baker

Yes

9.4.2. Media Type: application/udf-encryption

application

udf-encryption

None

None

None

Described in [This]

None

[This]

Uniform Data Fingerprint

None

Deprecated alias names for this type: None

Magic number(s): None

File extension(s): None

Macintosh file type code(s): None

Phillip

Hallam-Baker @hallambaker.com>

Content type identifier to be used in constructing

UDF Content Digests and Authenticators and related cryptographic

purposes.

None

Phillip Hallam-Baker

Phillip Hallam-Baker

Yes

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Provisional registration? (standards tree only):

9.4.3. Media Type: application/udf-secret

application

udf- secret

None

None

None

Described in [This]

None

[This]

Uniform Data Fingerprint

None

Deprecated alias names for this type: None

Magic number(s): None

File extension(s): None

Macintosh file type code(s): None

Phillip

Hallam-Baker @hallambaker.com>

Content type identifier to be used in constructing

UDF Content Digests and Authenticators and related cryptographic

purposes.

None

Phillip Hallam-Baker

Phillip Hallam-Baker

Yes

9.5. Uniform Data Fingerprint Type Identifier Registry

This document describes a new extensible data format employing fixed

length version identifiers for UDF types.
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9.5.1. The name of the registry

Uniform Data Fingerprint Type Identifier Registry

9.5.2. Required information for registrations

Registrants must specify the Type identifier code(s) requested,

description and RFC number for the corresponding standards action

document.

The standards document must specify the means of generating and

interpreting the UDF Data Sequence Value and the purpose(s) for

which it is proposed.

Since the initial letter of the Base32 presentation provides a

mnemonic function in UDFs, the standards document must explain why

the proposed Type Identifier and associated initial letter are

appropriate. In cases where a new initial letter is to be created,

there must be an explanation of why this is appropriate. If an

existing initial letter is to be created, there must be an

explanation of why this is appropriate and/or acceptable.

9.5.3. Applicable registration policy

Due to the intended field of use (human data entry), the code space

is severely constrained. Accordingly, it is intended that code point

registrations be as infrequent as possible.

Registration of new digest algorithms is strongly discouraged and

should not occur unless, (1) there is a known security vulnerability

in one of the two schemes specified in the original assignment and

(2) the proposed algorithm has been subjected to rigorous peer

review, preferably in the form of an open, international competition

and (3) the proposed algorithm has been adopted as a preferred

algorithm for use in IETF protocols.

Accordingly, the applicable registration policy is Standards Action.

9.5.4. Size, format, and syntax of registry entries

Each registry entry consists of a single byte code,

9.5.5. Initial assignments and reservations

The following entries should be added to the registry as initial

assignments:
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Code  Description                      Reference

---  -------------------               ---------

00   HMAC and SHA-2-512                [This document]

32   HKDF-AES-512                      [This document]

80   SHA-3-512                         [This document]

81   SHA-3-512 with 20 trailing zeros  [This document]

82   SHA-3-512 with 30 trailing zeros  [This document]

82   SHA-3-512 with 40 trailing zeros  [This document]

83   SHA-3-512 with 50 trailing zeros  [This document]

96   SHA-2-512                         [This document]

97   SHA-2-512 with 20 trailing zeros  [This document]

98   SHA-2-512 with 30 trailing zeros  [This document]

99   SHA-2-512 with 40 trailing zeros  [This document]

100  SHA-2-512 with 50 trailing zeros  [This document]

104  Random nonce                      [This document]

144  Shamir Secret Share               [This document]
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11. Appendix A: Prime Values for Secret Sharing

The following are the prime values to be used for sharing secrets of

up to 512 bits.

If it is necessary to share larger secrets, the corresponding prime

may be found by choosing a value (2 )  that is larger than the

secret to be encoded and determining the next largest number that is

prime.

Number of bits Offset = Primen - 2n

32 15

64 13

96 61

128 51

160 7

192 133

224 735

256 297

288 127

320 27
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Number of bits Offset = Primen - 2n

352 55

384 231

416 235

448 211

480 165

512 75

Table 9

For example, the prime to be used to share a 128 bit value is 2  +

51.

12. Recovering Shamir Shared Secret

The value of a Shamir Shared secret may be recovered using Lagrange

basis polynomials.

To share a secret with a threshold of n shares and L bits we

constructed f(x) a polynomial of degree n in the modular field p

where p is the smallest prime greater than 2 :

f(x) = a  + a .x + a .x  + ... a .x

The shared secret is the binary representation of the value a

Given n shares (x , y ), (x , y ), ... (x , y ), The corresponding

the Lagrange basis polynomials l , l , .. l  are given by:

lm = ((x - x(m )) / (x(m) - x(m ))) . ((x - x(m )) / (x(m) -

x(m ))) . ... . ((x - x(m )) / (x(m) - x(m )))

Where the values m , m , ... m , are the integers 0, 1, .. n-1,

excluding the value m.

These can be used to compute f(x) as follows:

f(x) = y l  + y l  + ... y l

Since it is only the value of f(0) that we are interested in, we

compute the Lagrange basis for the value x = 0:

lz  = ((x(m )) / (x(m) - x(m ))) . ((x(m )) / (x(m) - x(m )))

Hence,

a  = f(0) = y lz  + y lz  + ... y l

The following C# code recovers the values.

128

¶

¶

L ¶

0 1 2
2

n
n¶

0¶

0 0 1 1 n-1 n-1

0 1 n-1 ¶

0 0 1

1 n-2 n-2 ¶

0 1 n-2

¶

¶

0 0 1 1 n-1 n-1¶

¶

m 1 1 2 2 ¶

¶

0 0 0 1 1 n-1 n-1¶

¶



using System;

using System.Collections.Generic;

using System.Numerics;

namespace Examples {

    class Examples {

        ///

        /// Combine a set of  points (x, f(x))

        /// on a polynomial of degree  in a

        /// discrete field modulo prime  to

        /// recover the value f(0) using Lagrange basis polynomials.

        ///

        /// The values f(x).

        /// The values for x.

        /// The modulus.

        /// The polynomial degree.

        /// The value f(0).

        static BigInteger CombineNK(

                    BigInteger[] fx,

                    int[] x,

                    BigInteger p,

                    int n) {

            if (fx.Length < n) {

                throw new Exception("Insufficient shares");

                }

            BigInteger accumulator = 0;

            for (var formula = 0; formula < n; formula++) {

                var value = fx[formula];

                BigInteger numerator = 1, denominator = 1;

                for (var count = 0; count < n; count++) {

                    if (formula == count) {

                        continue;  // If not the same value

                        }

                    var start = x[formula];

                    var next = x[count];

                    numerator = (numerator * -next) % p;

                    denominator = (denominator * (start - next)) % p;

                    }

                var InvDenominator = ModInverse(denominator, p);

                accumulator = Modulus((accumulator +

                    (fx[formula] * numerator * InvDenominator)), p);

                }
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            return accumulator;

            }

        ///

        /// Compute the modular multiplicative inverse of the value

        ///  modulo

        ///

        /// The value to find the inverse of

        /// The modulus.

        ///

        static BigInteger ModInverse(

                    BigInteger k,

                    BigInteger p) {

            var m2 = p - 2;

            if (k < 0) {

                k = k + p;

                }

            return BigInteger.ModPow(k, m2, p);

            }

        ///

        /// Calculate the modulus of a number with correct handling

        /// for negative numbers.

        ///

        /// Value

        /// The modulus.

        /// x mod p

        public static BigInteger Modulus(

                    BigInteger x,

                    BigInteger p) {

            var Result = x % p;

            return Result.Sign >= 0 ? Result : Result + p;

            }

        }

    }
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