wWorkgroup: Network Working Group
Internet-Draft: draft-hallambaker-mesh-udf
Published: 20 April 2022
Intended Status: Informational
Expires: 22 October 2022
Authors: P. M. Hallam-Baker
ThresholdSecrets.com
Mathematical Mesh 3.0 Part II: Uniform Data Fingerprint.

Abstract

This document describes the underlying naming and addressing schemes
used in the Mathematical Mesh. The means of generating Uniform Data
Fingerprint (UDF) values and their presentation as text sequences
and as URIs are described.

A UDF consists of a binary sequence, the initial eight bits of which
specify a type identifier code. For convenience, UDFs are typically
presented to the user in the form of a Base32 encoded string. Type
identifier codes have been selected so as to provide a useful
mnemonic indicating their purpose when presented in Base32 encoding.

Two categories of UDF are described. Data UDFs provide a compact
presentation of a fixed length binary data value in a format that is
convenient for data entry. A Data UDF may represent a cryptographic
key, a nonce value or a share of a secret. Fingerprint UDFs provide
a compact presentation of a Message Digest or Message Authentication
Code value.

A Strong Internet Name (SIN) consists of a DNS name which contains
at least one label that is a UDF fingerprint of a policy document
controlling interpretation of the name. SINs allow a direct trust
model to be applied to achieve end-to-end security in existing
Internet applications without the need for trusted third parties.

UDFs may be presented as URIs to form either names or locators for
use with the UDF location service. An Encrypted Authenticated
Resource Locator (EARL) is a UDF locator URI presenting a service
from which an encrypted resource may be obtained and a symmetric key
that may be used to decrypt the content. EARLS may be presented on
paper correspondence as a QR code to securely provide a machine-
readable version of the same content. This may be applied to
automate processes such as invoicing or to provide accessibility
services for the partially sighted.

[Note to Readers]

Discussion of this draft takes place on the MATHMESH mailing list
(mathmesh@ietf.org), which is archived at https://
mailarchive.ietf.org/arch/search/?email_list=mathmesh.

This document is also available online at http://mathmesh.com/
Documents/draft-hallambaker-mesh-udf.html.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 October 2022.
Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document.

Table of Contents

1. Introduction
1.1. UDF Types
1.1.1. Cryptographic Keys and Nonces
1.1.2. Fingerprint type UDFS
1.2. Using UDFs in URIs
1.2.1. Name Form
1.2.2. Locator Form
1.3. Secure Internet Names
Definitions
2.1. Requirements Language

2.2 Defined Terms

.3. Related Specifications

N

http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-udf.html
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

3.

B

(&3}

[e}}

2.4. Implementation Status

Architecture
3.1 Base32 Presentation
3.1.1. Precision Improvement
3.2. Type Identifier
3.3. Content Type Identifier
3.4. Truncation
3.4.1. Compressed presentation
3.5. Presentation
3.6. Alternative Presentations
3.6.1. Word Lists
3.6.2. 1Image List
. Fixed Length UDFs
4.1. Nonce Type
4.2. 0ID Identified Sequence
4.3. Encryption/Authentication Type
4.4. Key Pair Derivation
4.4.1 Extraction step
4.4.2 Elliptic Curve Diffie Hellman Key Pairs type 1-4
4.4.3. Elliptic Curve Diffie Hellman Key Pairs type 5-7
4.4.4 RSA Key Pairs
4.4.5. Any Key Algorithm
4.5. Shamir Shared Secret
4.5.1. Secret Generation
4.5.2. Recovery
Variable Length UDFs
5.1 Content Digest
5.1.1. Content Digest Value
5.1.2. Typed Content Digest Value
5.1.3. Content Digest Compression
5.1.4. Content Digest Presentation
5.1.5. Example Encoding
5.1.6. Using SHA-2-512 Digest
5.1.7. Using SHA-3-512 Digest
5.1.8. Using SHA-2-512 Digest with Compression
5.1.9. Using SHA-3-512 Digest with Compression
5.2. Authenticator UDF
5.2.1. Authentication Content Digest Value
5.2.2. Authentication Value
5.3. Content Type Values
5.3.1. PKIX Certificates and Keys
5.3.2. 0OpenPGP Key
5.3.3. DNSSEC
UDF URIs
6.1 Name form URI
6.2. Locator form URI

6.2.1. DNS Web service discovery
6.2.2. Content Identifier
6.2.3. Target URI

6.2.4. Postprocessing
6.2.5. Decryption and Authentication
6.2.6. QR Presentation

7. Strong Internet Names
8. Security Considerations
8.1. Confidentiality
8.2. Availability
8.3. Integrity
8.4. Work Factor and Precision
8.5 Semantic Substitution
8.6 QR Code Scanning
9. IANA Considerations
9.1. Protocol Service Name
9.2. Well Known
9.3 URI Registration
9.4 Media Types Registrations
9.4.1. Media Type: application/pkix-keyinfo
9.4.2. Media Type: application/udf
9.5. Uniform Data Fingerprint Type Identifier Registry
9.5.1 The name of the registry
9.5.2 Required information for registrations
9.5.3. Applicable registration policy
9.5.4 Size, format, and syntax of registry entries
9.5.5. Initial assignments and reservations
10. Acknowledgements
11. Appendix A: Prime Values for Secret Sharing
12. Appendix B: Shamir Shared Secret Recovery Using Lagrange

Interpolation
13. Normative References
14. Informative References

1. Introduction

A Uniform Data Fingerprint (UDF) is a generalized format for
presenting and interpreting short binary sequences representing
cryptographic keys or fingerprints of data of any specified type.
The UDF format provides a superset of the OpenPGP [REC4880]
fingerprint encoding capability with greater encoding density and
readability.

This document describes the syntax and encoding of UDFs, the means
of constructing and comparing them and their use in other Internet
addressing schemes.

1.1. UDF Types

Two categories of UDF are described. Data UDFs provide a compact
presentation of a fixed length binary data value in a format that is
convenient for data entry. A Data UDF may represent a cryptographic

key or nonce value or a part share of a key generated using a secret
sharing mechanism. Fingerprint UDFs provide a compact presentation
of a Message Digest or Message Authentication Code value.

Both categories of UDF are encoded as a UDF binary sequence, the
first octet of which is a Type Identifier and the remaining octets
specify the binary value according to the type identifier and data
referenced.

UDFs are typically presented to the user as a Base32 encoded
sequence in groups of four characters separated by dashes. This
format provides a useful balance between compactness and
readability. The type identifier codes have been selected so as to
provide a useful mnemonic when presented in Base32 encoding.

The following are examples of UDF values:

Nonce: ND5L-BTJE-W372-4TUS-E23N-FIXU-6ARA

Secret: UXPL-WEZG-FB5I-GW2Y-MU4L-CSEM-PQ

SHA-2 Digest:MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4

SHA-3 Digest:KCM5-7VB6-IJXJ-WKHX-NZQF-0KGZ-EWVN

Public Key: OAYC-4MAH-AYBS-WZLQ-AUAA-GIYA-AQQK-XW5Y-YO6L-TIJU-43NU-2
235-VP23-IJ7A-4JCH-LBCC-LFAZ-6QHO-GLUY-FEQ

Like email addresses, UDFs are not a Uniform Resource Identifier
(URI) but may be expressed in URI form by adding the scheme
identifier (UDF) for use in contexts where an identifier in URI
syntax is required. A UDF URI MAY contain a domain name component
allowing it to be used as a locator

1.1.1. Cryptographic Keys and Nonces

A Nonce (N) UDF represents a short, fixed length randomly chosen
binary value.

Nonce UDFs are used within many Mesh protocols and data formats
where it is necessary to represent a nonce value in text form.

Nonce UDF:
ND5L-BTJE-W372-4TUS-E23N-FIXU-6ARA

An Encryption/Authentication (E) UDF has the same format as a Random
UDF but is identified as being intended to be used as a symmetric
key for encryption and/or authentication.

KeyValue:
DE BB 13 26 28 7A 83 5B 58 65 38 B1 48 8C 7C

Encryption/Authenticator UDF:
UXPL-WEZG-FB5I-GW2Y-MU4L-CSEM-PQ

A Share (S) UDF also represents a short, fixed length binary value
but only provides one share in secret sharing scheme. Recovery of
the binary value requires a sufficient number of shares.

Share UDFs are used in the Mesh to support key and data escrow
operations without the need to rely on trusted hardware. A share UDF
can be copied by hand or printed in human or machine-readable form
(e.g. QR code).

Key: UXPL-WEZG-FB5I-GW2Y-MU4L -CSEM-PQ
Share 0: SAQF-K5LV-2HDO-PSY5-YQBN-CPMS-7MXM-K
Share 1: SAQQ-KDBQ-SBT2-0G5Y-FSWT-2QTU-VXIQ-4
Share 2: SARL-JIXL-J4EG-M3CS-SVL2-SR2W-MBZY-U

1.1.2. Fingerprint type UDFS

Fingerprint type UDFs contains a fingerprint value calculated over a
content data item and an IANA media type.

A Content Digest type UDF is a fingerprint type UDF in which the
fingerprint is formed using a cryptographic algorithm. Two digest
algorithms are currently supported, SHA-2-512 (M, for Merkle
Damgard) and SHA-3-512 (K, for Keccak).

The inclusion of the media type in the calculation of the UDF value
provides protection against semantic substitution attacks in which
content that has been found to be trustworthy when interpreted as
one content type is presented in a context in which it is
interpreted as a different content type in which it is unsafe.

SHA-2-512: MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4
SHA-3-512: KCM5-7VB6-IJXJ-WKHX-NZQF-0OKGZ-EWVN

An Authentication UDF (A) is formed in the same manner as a
fingerprint but using a Message Authentication Code algorithm and a
symmetric key.

Authentication UDFs are used to express commitments and to provide a
means of blinding fingerprint values within a protocol by means of a
nonce.

SHA-2-512: ABIR-Y75D-WV63-P5WC-KR3F-VA57-YZ61

.2. Using UDFs in URIs

The UDF URI scheme allows use of a UDF in contexts where a URF 1is
expected. The UDF URI scheme has two forms, name and locator.

.2.1. Name Form
Name form UDF URIs identify a data resource but do not provide a

means of discovery. The URI is simply the scheme (udf) followed by
the UDF value:

udf :MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y -WFH4

.2.2. Locator Form

Locator form UDF URIs identify a data resource and provide a hint
that MAY provide a means of discovery. If the content is not
available from the location indicated, content obtained from a
different source that matches the fingerprint MAY be used instead.

udf://example.com/MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4

UDF locator form URIs presenting a fingerprint type UDF provide a
tight binding of the content to the locator. This allows the
resolved content to be verified and rejected if it has been
modified.

UDF locator form URIs presenting an Encryptor/Authenticator type UDF
provide a mechanism for identification, discovery and decryption of
encrypted content. UDF locators of this type are known as Encrypted/
Authenticated Resource Locators (EARLS).

Regardless of the type of the embedded UDF, UDF locator form URIs
are resolved by first performing DNS Web Service Discovery to
identify the Web Service Endpoint for the mmm-udf service at the
specified domain.

Resolution is completed by presenting the Content Digest Fingerprint
of the UDF value specified in the URI to the specified Web Service
Endpoint and performing a GET method request on the result.

For example, Alice subscribes to Example.com, a purveyor of cat and
kitten images. The company generates paper and electronic invoices
on a monthly basis.

To generate the paper invoice, Example.com first creates a new
encryption key:

EA2L-PABQ-ZUIO-UR2U-KLMP-YFYK-XI5U-6Z

One or more electronic forms of the invoice are encrypted under the
key EA2L-PABQ-ZUIO-UR2U-KLMP-YFYK-XI5U-6Z and placed on the
Example.com Web site so that the appropriate version is returned if
Alice scans the QR code.

The key is then converted to form an EARL for the example.com UDF
resolution service:

udf://example.com/EA2L-PABQ-ZUIO-UR2U-KLMP-YFYK-XI5U-6Z

The EARL is then rendered as a QR code:

Figure 1: QR Code with embedded decryption and location key

A printable invoice containing the QR code is now generated and sent
to Alice.

When Alice receives the invoice, she can pay it by simply scanning
the invoice with a device that recognizes at least one of the
invoice formats supported by Example.com.

The UDF EARL locator shown above is resolved by first determining
the Web Service Endpoint for the mmm-udf service for the domain
example.com.

Discover ("example.com", "mmm-udf") =
https://example.com/.well-known/mmm-udf/

Next the fingerprint of the source UDF is obtained.

UDF (EA2L-PABQ-ZUIO-UR2U-KLMP-YFYK-XI5U-6Z) =
MBUC-DFHR-NRPA-ZLHR-CZRT-75CV-VWL2-0SIC-2YUH-QJ7C-3WWA-7CLC-W4X7-YNBO

Combining the Web Service Endpoint and the fingerprint of the source

UDF provides the URI from which the content is obtained using the
normal HTTP GET method:

https://example.com/.well-known/mmm-udf/MBUC-DFHR-NRPA-ZLHR-
CZRT-75CV-VWL2-0SIC-2YUH-QJ7C-3WWA-7CLC-W4X7-YNBO

Having established that Alice can read postal mail sent to a

physical address and having delivered a secret to that address, this

process might be extended to provide a means of automating the
process of enrolment in electronic delivery of future invoices.

1.3. Secure Internet Names

A SIN is an Internet Identifier that contains a UDF fingerprint of a

security policy document that may be used to verify the
interpretation of the identifier. This permits traditional forms of
Internet address such as URIs and RFC822 email addresses to be used
to express a trusted address that is independent of any trusted
third party.

This document only describes the syntax and interpretation of the
identifiers themselves. The means by which the security policy
documents bound to an address govern interpretation of the name is
discussed separately in [draft-hallambaker-mesh-trust].

For example, Example Inc holds the domain name example.com and has

deployed a private CA whose root of trust is a PKIX certificate with

the UDF fingerprint MB2GK-6DUF5-YGYYL-JNY5E-RWSHZ.

Alice is an employee of Example Inc., she uses three email
addresses:

alice@example.com A regular email address (not a SIN).

alice@mm--mb2gk-6duf5-ygyyl-jny5e-rwshz.example.com A strong email
address that is backwards compatible.

alice@example.com.mm--mb2gk-6duf5-ygyyl-jny5e-rwshz A strong email
address that is backwards incompatible.

All three forms of the address are valid RFC822 addresses and may be
used in a legacy email client, stored in an address book
application, etc. But the ability of a legacy client to make use of
the address differs. Addresses of the first type may always be used.
Addresses of the second type may only be used if an appropriate MX
record is provisioned. Addresses of the third type will always fail
unless the resolver understands that it is a SIN requiring special
processing.

These rules allow Bob to send email to Alice with either 'best
effort' security or mandatory security as the circumstances demand.

2. Definitions

This section presents the related specifications and standard, the
terms that are used as terms of art within the documents and the
terms used as requirements language.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

2.2. Defined Terms

Cryptographic Digest Function A hash function that has the
properties required for use as a cryptographic hash function.

These include collision resistance, first pre-image resistance
and second pre-image resistance.

Content Type An identifier indicating how a Data Value is to be
interpreted as specified in the IANA registry Media Types.

Commitment A cryptographic primitive that allows one to commit to a
chosen value while keeping it hidden to others, with the ability
to reveal the committed value later.

Data Value The binary octet stream that is the input to the digest
function used to calculate a digest value.

Data Object A Data Value and its associated Content Type
Digest Algorithm A synonym for Cryptographic Digest Function
Digest Value The output of a Cryptographic Digest Function

Data Digest Value The output of a Cryptographic Digest Function for
a given Data Value input.

Fingerprint A presentation of the digest value of a data value or
data object.

Fingerprint Presentation The representation of at least some part
of a fingerprint value in human or machine-readable form.

Fingerprint Improvement The practice of recording a higher
precision presentation of a fingerprint on successful validation.

Fingerprint Work Hardening The practice of generating a sequence of
fingerprints until one is found that matches criteria that permit
a compressed presentation form to be used. The compressed
fingerprint thus being shorter than but presenting the same work
factor as an uncompressed one.

Hash A function which takes an input and returns a fixed-size
output. Ideally, the output of a hash function is unbiased and
not correlated to the outputs returned to similar inputs in any
predictable fashion.

Precision The number of significant bits provided by a Fingerprint
Presentation.

Work Factor A measure of the computational effort required to
perform an attack against some security property.

2.3. Related Specifications

This specification makes use of Base32 [RFEC4648] encoding, SHA-2
[SHA-2] and SHA-3 [SHA-3] digest functions in the derivation of
basic fingerprints. The derivation of keyed fingerprints
additionally requires the use of the HMAC [RFC2014] and HKDF
[REC5869] functions.

Resolution of UDF URI Locators makes use of DNS Web Service
Discovery [draft-hallambaker-web-service-discovery].

2.4. Implementation Status

The implementation status of the reference code base is described in
the companion document [draft-hallambaker-mesh-developer].

3. Architecture

A Uniform Data Fingerprint (UDF) is a presentation of a UDF Binary
Data Sequence.

This document specifies seven UDF Binary Data Sequence types and one
presentation.

The first octet of a UDF Binary Data Sequence identifies the UDF
type and is referred to as the Type identifier.

UDF Binary Data Sequence types are either fixed length or variable
length. A variable length Binary Data Sequence MUST be truncated for
presentation. Fixed length Binary Data Sequences MUST not be
truncated.

3.1. Base32 Presentation
The default UDF presentation is Base32 Presentation.
Variable length Binary Data Sequences are truncated to an integer
multiple of 20 bits that provides the desired precision before

conversion to Base32 form.

Fixed length Binary Data Sequences are converted to Base32 form
without truncation.

After conversion to Base32 form, dash '-' characters are inserted
between groups of 4 characters to aid reading. This representation
improves the accuracy of both data entry and verification.

3.

3.

1.1. Precision Improvement

Precision improvement is the practice of using a high precision UDF
(e.g. 260 bits) calculated from content data that has been validated
according to a lower precision UDF (e.g. 120 bits).

This allows a lower precision UDF to be used in a medium such as a
business card where space is constrained without compromising
subsequent uses.

Applications SHOULD make use of precision improvement wherever
possible.

2. Type Identifier

A Version Identifier consists of a single byte.

The byte codes have been chosen so that the first character of the
Base32 presentation of the UDF provides a mnemonic for its type. A
SHA-2 fingerprint UDF will always have M (for Merkle Damgard) as the
initial letter, a SHA-3 fingerprint UDF will always have K (for
Keccak) as the initial letter, and so on.

The following version identifiers are specified in this document:

Type ID Initial Algorithm

(0] A HMAC_SHA_2_ 512

1 A HMAC_SHA_3_512

32 E HKDF_AES_512

33 E HKDF_AES_512

80 K SHA_3_512

81 K SHA_3_512 (20 compressed)
82 K SHA_3_512 (30 compressed)
83 K SHA_3_512 (40 compressed)
84 K SHA_3_512 (50 compressed)
96 M SHA 2 512

97 M SHA_2_512 (20 compressed)
98 M SHA_2_512 (30 compressed)
99 M SHA_2_512 (40 compressed)
100 M SHA_2_512 (50 compressed)
104 N Nonce Data

112 (0] OID distinguished sequence (DER encoded)
144 S Shamir Secret Share

200 z Secret seed

Table 1

3.3. Content Type Identifier

A secure cryptographic digest algorithm provides a unique digest
value that is probabilistically unique for a particular byte
sequence but does not fix the context in which a byte sequence is
interpreted. While such ambiguity may be tolerated in a fingerprint
format designed for a single specific field of use, it is not
acceptable in a general-purpose format.

For example, the SSH and OpenPGP applications both make use of
fingerprints as identifiers for the public keys used but using
different digest algorithms and data formats for representing the
public key data. While no such vulnerability has been demonstrated
to date, it is certainly conceivable that a crafty attacker might
construct an SSH key in such a fashion that OpenPGP interprets the
data in an insecure fashion. If the number of applications making
use of fingerprint format that permits such substitutions is
sufficiently large, the probability of a semantic substitution
vulnerability being possible becomes unacceptably large.

A simple control that defeats such attacks is to incorporate a
content type identifier within the scope of the data input to the
hash function.

3.4. Truncation

Different applications of fingerprints demand different tradeoffs
between compactness of the representation and the number of
significant bits. A larger the number of significant bits reduces
the risk of collision but at a cost to convenience.

Modern cryptographic digest functions such as SHA-2 produce output
values of at least 256 bits in length. This is considerably larger
than most uses of fingerprints require and certainly greater than
can be represented in human readable form on a business card.

Since a strong cryptographic digest function produces an output
value in which every bit in the input value affects every bit in the
output value with equal probability, it follows that truncating the
digest value to produce a finger print is at least as strong as any
other mechanism if digest algorithm used is strong.

Using truncation to reduce the precision of the digest function has
the advantage that a lower precision fingerprint of some data
content is always a prefix of a higher prefix of the same content.
This allows higher precision fingerprints to be converted to a lower
precision without the need for special tools.

3.4.1. Compressed presentation

3.

3.

5.

6.

The Content Digest UDF types make use of work factor compression.
Additional type identifiers are used to indicate digest values with
20, 30, 40 or 50 trailing zero bits allowing a UDF fingerprint
offering the equivalent of up to 150 bits of precision to be
expressed in 20 characters instead of 30.

To use compressed UDF identifiers, it is necessary to search for
content that can be compressed. If the digest algorithm used is
secure, this means that by definition, the fastest means of search
is brute force. Thus, the reduction in fingerprint size is achieved
by transferring the work factor from the attacker to the defender.
To maintain a work factor of 2129 with an identifier of 28° bits, it
is necessary for the content generator to perform a brute force
search at a cost of the order of 2%° operations.

For example, the smallest allowable work factor for a UDF
presentation of a public key fingerprint is 92 bits. This would
normally require a presentation with 20 significant characters.
Reducing this to 16 characters requires a brute force search of
approximately 10% attempts. Reducing this to 12 characters would
require 102 attempts and to 10 characters, 10%° attempts.

Omission of support for higher levels of compression than 2% is
intentional.

In addition to allowing use of shorter presentations, work factor
compression MAY be used as evidence of proof of work.

Presentation

The presentation of a fingerprint is the format in which it is
presented to either an application or the user.

Base32 encoding is used to produce the preferred text representation
of a UDF fingerprint. This encoding uses only the letters of the
Latin alphabet with numbers chosen to minimize the risk of ambiguity
between numbers and letters (2, 3, 4, 5, 6 and 7).

To enhance readability and improve data entry, characters are
grouped into groups of four. This means that each block of four
characters represents an increase in work factor of approximately
one million times.

Alternative Presentations

Applications that support UDF MUST support use of the Base32
presentation. Applications MAY support alternative presentations.

3.6.1. Word Lists

The use of a Word List to encode fingerprint values was introduced
by Patrick Juola and Philip Zimmerman for the PGPfone application.
The PGP Word List is designed to facilitate exchange and
verification of fingerprint values in a voice application. To
minimize the risk of misinterpretation, two-word lists of 256 values
each are used to encode alternative fingerprint bytes. The compact
size of the lists used allowed the compilers to curate them so as to
maximize the phonetic distance of the words selected.

The PGP Word List is designed to achieve a balance between ease of
entry and verification. Applications where only verification is
required may be better served by a much larger word list, permitting
shorter fingerprint encodings.

For example, a word list with 16384 entries permits 14 bits of the
fingerprint to be encoded at once, 65536 entries permit encoding of
16 bits. These encodings allow a 120-bit fingerprint to be encoded
in 9 and 8 words respectively.

3.6.2. Image List

An image list is used in the same manner as a word list affording
rapid visual verification of a fingerprint value. For obvious
reasons, this approach is not suited to data entry but is preferable
for comparison purposes. An image list of 1,048,576 images would
provide a 20-bit encoding allowing 120 bit precision fingerprints to
be displayed in six images.

4. Fixed Length UDFs

Fixed length UDFs are used to represent cryptographic keys, nonces
and secret shares and have a fixed length determined by their
function that cannot be truncated without loss of information.

All fixed length Binary Data Sequence values are an integer multiple
of eight bits.

4.1. Nonce Type

A Nonce Type UDF consists of the type identifier octet 104 followed
by the Binary Data Sequence value.

The Binary Data Sequence value is an integer number of octets that
SHOULD have been generated in accordance with processes and
procedures that ensure that it is sufficiently unpredictable for the
purposes of the protocol in which the value is to be used.
Requirements for such processes and procedures are described in
[RFC4086].

Nonce Type UDFs are intended for use in contexts where it is
necessary for a randomly chosen value to be unpredictable but not

secret. For example,

mechanism.

4.2. OID Identified Sequence

An OID Identified Sequence Type UDF consists of the type identifier

the challenge in a challenge/response

octet 108 followed by the Binary Data Sequence value.

The Binary Data Sequence value is an octet sequence that contains
the DER encoding of the following ASN.1 data:

OIDInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
data BIT STRING }
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

0ID Identified Sequences are intended to allow arbitrary data
sequences to be encoded in the UDF format without exhausting the
limited type identifier space.

In particular, 0ID Identified Sequences MAY be used to specify
public and private key values.

Given the following Ed25519 public key:

AB DB B8 C3 BC B9 A1 34 E6 DB 4D 69 3D AB F5 B4
27 EO@ E2 44 75 84 42 59 41 9F 40 EE 32 E9 82 92

The equivalent DER encoding is:

30 2E 30 07 06 03 2B 65 70 05 00 03 23 00 04 20
AB DB B8 C3 BC B9 A1 34 E6 DB 4D 69 3D AB F5 B4
27 EO E2 44 75 84 42 59 41 9F 40 EE 32 E9 82 92

To encode this key as a UDF OID sequence we prepend the value 0ID
and convert to Base32:

OID: OAYC-4MAH-AYBS-WZLQ-AUAA-GIYA-AQQK-XW5Y-YO6L-TIJU-43NU-2
2J5-VP23-IJ7A-4JCH-LBCC-LFAZ-6QHO-GLUY-FEQ

The corresponding UDF content digest value is more compact and
allows us to identify the key unambiguously but does not provide the
value:

MDGT-32T4-MBOH-S5XB-7THD-VD6U-4NOU

4.3. Encryption/Authentication Type

Encryption and Authenticator Type UDFs consists of the type
identifier specifying the algorithm to be used on the key data
followed by the Binary Data Sequence value.

The Binary Data Sequence value is an integer number of octets that
SHOULD have been generated in accordance with processes and
procedures that ensure that it is sufficiently unpredictable and
unguessable for the purposes of the protocol in which the value is
to be used. Requirements for such processes and procedures are
described in [RFC4086].

Encryption and Authenticator Type UDFs are intended to be used as a
means of specifying secret cryptographic keying material. For
example, the input to a Key Derivation Function used to encrypt a
document. Accordingly, the identifier UDF corresponding to an
Encryption or Authenticator type UDF is a UDF fingerprint of the UDF
in Base32 presentation with content type 'application/udf'.

4.4. Key Pair Derivation
The key pair derivation type is used to specify a public key pair
value by means of a sufficiently random input to a deterministic key

generation function.

A key pair derivation Type UDF consists of the type identifier octet
200 followed by the Binary Data Sequence value.

The first two octets of the Binary Data Sequence value comprise the
Key Specifier which specifies the algorithm and key uses for which
the private key is to be derived.

*Bits 6-7 of the first octet specify the key use.

*Bits 0-5 of the first byte and bits 0-7 of the second specify the
key type in network byte order.

In the unlikely event that this code space is ever exhausted,
allocation of a new UDF type code will be required.

The following key uses are specified:

Code Algorithm Description

0 Any Any

1 Encryption Encryption

2 Signature Signature

3 Authentication Authentication
Table 2

Two types of key type are defined: Explicit and Generic.

Explicit key types specify a public key cryptographic algorithm and
all the parameters required to generate a key pair. Generic key
types are used to specify a type of key but not the algorithm which
MUST be specified when the key is generated.

Derivation of key pairs for the following algorithms is specified in
this document:

Code Algorithm Description
0 Any Seed MAY be u§ed to generate keypairs
for any algorithm
1 X25519 X25519 keypair as described in
RFC7748
2 X448 X448 keypair as described in RFC7748
Ed25519 keypair as described in
3 Ed25519
RFC8032
4 Ed448 Ed448 keypair as described in RFC8032
5 P256 NIST curve P-256
6 P384 NIST curve P-384
7 P521 NIST curve P-521
8 RSA2048 2048 bit RSA keypair
9 RSA3072 3072 bit RSA keypair
10 RSA4096 4096 bit RSA keypair
11-955 ReservedIetf Reseryed for IETF recommended
algorithms
256 MeshProfileDevice Mesh device profile
257 MeshActivationDevice Mesh device activation
258 MeshProfileAccount Mesh account account
259 MeshActivationAccount Mesh account activation
260 MeshProfileService Mesh service profile
261 MeshActivationService Mesh host activation
262-511 ReservedMesh Reserved for future Mesh use
Table 3

The key parameter derivation function takes as inputs, the UDF seed
value seed, the parameter identifier param and an optional string
specifying a key name keyname.

KeyParam (seed, param, keyname)

The value param is an octet sequence determined by the actual key
type generated. The first two octets of parm are always equal to the
key identifier for the key algorithm and key usage being generated.
If the key derivation algorithm requires multiple inputs, additional
octets are specified for each of the different inputs required.

The HKDF function [RFC5869] is used to derive key pairs for all the
algorithms specified in this document. Derivation functions for

additional key algorithms MAY use a different function for this
purpose provided that it meets the applicable security requirements.

The HKDF function is specified as a two-step extract-expand process
with an optional non-secret value input at both steps.

4.4.1. Extraction step
The HKDF extraction step calculates a PRK value from a salt and IKM:

HKDF-Extract(salt, IKM) -> PRK

The IKM value is the binary presentation of the complete Binary Data
Sequence as originally specified. The salt value is null.

The output from the extraction step forms the input to the expand
step:

HKDF-Expand(PRK, info, L) -> OKM

The info parameter of the HKDF function is the concatenation of alg,
param and the UTF8 binary representation of keyname.

info = alg + param + keyname.UTF8()

An X25519 key may be derived as follows:

Fingerprint

ZAAA-CDJ5-DHPA-DUUW-WIPQ-UXNC-DSAR-U7A

IKM =

00 01 oD 3D

1A 7C

salt =
00 01

PRK =
DA 2E
5D 99
62 92
7A 64

OKM =
E7 22
14 60

Key =
E7 22
14 60

80
92
67
15

39
2F

39
2F

6F
AA
9C
84

E1
A8

E1l
A8

19 DE 01

2D
A2
B3
co

AB
76

AB
76

B1
2F
B8
6B

77
08

77
08

2D
10

AC
38

AC
38

D2

56
2A
47
F7

9C
5E

9C
5E

96 B2 1F OA

7E
50
31
19

B4
D5

B4
D5

Derivation of an X448 key:

Fingerprint

27 B4
4B 13
52 A2
4A 20

6A AO
E6 5D

6A AO
E6 5D

91
5B
42
35

12
E7

12
E7

5D

49
87
FA
BA

27
ec

27
ec

ZAAA-FFQA-3LE5-SAHG-E6K6-HOTN-TVLB-K4A

Key =

AE 6A 6D 0B
15 7C 8A 74
15 00 68 B7
A3 B8 80 67

Derivation of an Ed25519

Fingerprint

CC 48 C3 31
80 36 B7 E9
23 F5 DB 32
B3 88 06 9F

A2

OA
DF
04
2E

C8

68
C8

1C

35
63
84
D1

9E
42

9E
42

81

3A
67
39
59

28
ES8

28
E8

E7 55 OF 52 F9 96 83 C5
17 24 D7 DD A1l 56 76 3C
48 1B 72 CO 2E BO 22 45

key:

ZAAA-GZ5N-PSNF-7LMS-QJZN-302X-GJIXV-X61I

Key =

3A 36 00 56 2E EC 2F 24 A7 8C 22 F3 A9 A2 EF 1B
6E AF 07 D4 99 28 53 A5 5B OA CC EE 4C 3B 7D 30

Derivation of an Ed448 key:

Fingerprint =
ZAAA-ILZB-KTQV-YWUK-FO7E-MQVV-EWPR-UPA

Key =
DF 5A 89 B8 1D 56 92 41 32 D1 B2 C9 4F 74 69 E3
C9 E5 5F 23 33 Al CE 22 54 08 EE 53 46 OF 9B 13
9D 54 95 2B F9 D9 77 2A FA 07 3C 9D 89 CC C5 OE
7E 86 7E 84 7C 58 5D 89

4.4.2. Elliptic Curve Diffie Hellman Key Pairs type 1-4

The generation of key pairs for X25519, X448, Ed25519 and Ed448 is
specified in [REC7748] and [RFC8032]. In each case, the public and
private key parameters are generated from a string of random octets
whose transformation to the secret scalar function is described in
the document.

Thus, info is the null string and the value L is specified as
follows:

Algorithm L

X25519 256
X448 448
Ed25519 256
Ed448 448
Table 4

4.4.3. Elliptic Curve Diffie Hellman Key Pairs type 5-7

The generation of key pairs for the curves P-256, P-384 and P-521
described in [RFC5903] is not mandated by the specification. FIPS
186-4 specifies two approaches. A modified form of the mechanism Key
Pair Generation Using Extra Random Bits specified in B.4.1 is used
as follows:

The number of random bits L is given by the following table:

Algorithm L

P-256 320

P-384 448

P-521 592
Table 5

Note that this rounds up the number of random bits required to the
nearest integer multiple of 8.

The OKM value is interpreted as an integer in Network Byte Order,

that

is the first byte contains the most significant bits, to yield

the parameter c.

The parameter c is reduced modulo the value of the prime field n to
yield the secret scalar value d:

d = (c mod (n?1)) + 1.

A P-256 key may be derived as follows:

Fingerprint =
ZAAA-LLBO-4A4E-LFMH-EJ73-XVFG-7PZ5-V7Y

IKM =
00 05
DA FF

salt =
00 05

PRK =
OF 48
3A E1
9F 2A
4F A9

OKM =
E2 00
EF 32
59 D1

Key =

AC 2E EO 38 45 95 87 22 7F BB D4 A6 FB F3

OF 0C 93 30 AE EE 41 FD 8F A2 1C C2 C6 CA
4B 54 E7 83 CO 25 85 FO CD 2A 65 3F 18 A7
5A ED 6A E3 64 6A 05 7D 1A 1A B8 68 B3 F3
10 9A 05 E1 A4 9A 2C CC 40 43 36 8A 24 CO

EC 22 63 17 D5 E5 52 F9 CD B6 45 23 A9 8B
26 EO 24 A0 E7 2B 7F CB C2 6B CB FA OF 5C
7C 4A D8 12 2E 4C

823521039787465146191678159095729811571036184098859836027994
10986678676075099

Derivation of a P-384 key:

Fingerprint =
ZAAA-NPLI-G7Z3-WFD2-GBJ6-00NN-ELTO-MHA

Key =

369049211431889063087900251703207474490953076630513949620729
23012683284321458397574918591433311657724460124046828583

Derivation of a P-521 key:

Fingerprint =
ZAAA-PQCC-YFVT-LRWP-7MUZ-GJV3-HLX2-JPQ

Key = 634654264002940134552342747000178673315150389242882127875899
96717989335708073735991026483008684752699986204269344550
4370476919922072068801363203357706689700

4.4.4. RSA Key Pairs

Generation of RSA key pairs requires two parameters, p, q which are
prime.

The value of the param input used to calculate info is the value of
the key identifier value with one of the following tag values
concatenated to the end.

Parameter Tag UTF8 equivalent string
p [112] p
q [113] q

Table 6

The value of L is the same for generating the OKM values from which
g are derived and is determined by the algorithm identifier:

Algorithm L
RSA-2048 1024
RSA-3072 1536
RSA-4096 2048
Table 7

The RSA parameter p is the smallest prime integer that is greater
than the OKM value corresponding to the info value "p" interpreted
as an integer in Network Byte Order.

The RSA parameter q is the smallest prime integer that is greater
than the OKM value corresponding to the info value "qg" interpreted
as an integer in Network Byte Order.

Note that this algorithm does not mandate a particular method of
primality testing nor does it impose any additional testing on the
values p or q. If an application requires the use of primes with
conditions it will be necessary to attempt multiple key derivations
with different Binary Data Sequence values until parameters with the
desired properties are found.

An RSA-2048 may be derived as follows:

Fingerprint =

ZAAA-RJIS5TI-0SMI-X2KH-MBHX-KUPB-0C54-NQI

IKM =
00 08 A7 A8
Cé C1

salt =
00 08

[Generation of

Info(p) =
70

OKM(p) =
92 D4 DA FA
34 6F 69 98

Info(q) =
71

OKM(q) =
01 50 07 9F
2F EE 38 E7

74 98 8B E9

47 60

the PRK as before]

C4 22 DB 17
54 1A F5 F3

B3 53 70 5A
8F D4 46 D9

BO 04
E3 ED

7E 95
4C 55

4F 75 51 E1 70 BB

93 C6 F1 D2 7A AF
DA 98 F5 64 EE 6A

63 BD 19 8D 52 59
E6 DD 39 CA DB 36

Key P = 664137588122357253348380132353218815863396125741622195396345
89986848279686793

Key Q = 593713231506709718978311683387355253795918273379156509909895

725618914057069

4.4.5. Any Key Algorithm

The Any key algorithm allows a single UDF value to be used to derive
key pairs for multiple algorithms. The IKM value is the same for
each key pair derived. The salt value is changed according to the
algorithm for which the key is to be derived.

Fingerprint =
ZAAA-ABWP - XMGW- FUOF - 2T5L - AHNL - FBPY -RSY

To generate an RSA-2048 key

salt =
00 08
Key P = 184377705562733023433840697873299239654937691662139401284561
64676903354830137
Key Q = 741016989403010251265552685128898155357242513700210607224783

50575007811846521
To generate an X25519 key

salt =
00 08

Key =
System.Byte[]

4.5. Shamir Shared Secret

The UDF format MAY be used to encode shares generated by a secret
sharing mechanism. The only secret sharing mechanism currently
supported is the Shamir Secret Sharing mechanism [Shamir79]. Each
secret share represents a point represents a point on (x, f(x)), a
polynomial in a modular field p. The secret being shared is an
integer multiple of 32 bits represented by the polynomial value
(o).

A Shamir Shared Secret Type UDF consists of the type identifier
octet 144 followed by the Binary Data Sequence value describing the

share value.

The first octet of the Binary Data Sequence value specifies the
threshold value and the x value of the particular share:

*Bits 4-7 of the first byte specify the threshold value.
*Bits 0-3 of the first byte specify the x value minus 1.
The remaining octets specify the value f(x) in network byte (big-

endian) order with leading padding if necessary so that the share
has the same number of bytes as the secret.

The algorithm requires that the value p be a prime larger than the
integer representing the largest secret being shared. For
compactness of representation we chose p to be the smallest prime
that is greater than 2" where n is an integer multiple of 32. This
approach leaves a small probability that a set of chosen polynomial
parameters cause one or more share values be larger than 27. Since it
is the value of the secret rather than the polynomial parameters
that is of important, such parameters MUST NOT be used.

4.5.1. Secret Generation

To share a secret of L bits with a threshold of n we use a f(x) a
polynomial of degree n in the modular field p:

f(X) = ap + a1.X + ap.X2 + ... ap.x"
where:
L Is the length of the secret in bits, an integer multiple of 32.

n Is the threshold, the number of shares required to reconstitute
the secret.

ag Is the integer representation of the secret to be shared.

a; ... ap Are randomly chosen integers less than p

p Is the smallest prime that is greater than 2\.

For L=128, p = 2128451,

The values of the key shares are the values f(1), f(2),... f(n).

The most straightforward approach to generation of Shamir secrets is
to generate the set of polynomial coefficients, ag, ai, ... a, and
use these to generate the share values f(1), f(2),... f(n).

Note that if this approach is adopted, there is a small probability
that one or more of the values f(1), f(2),... f(n) exceeds the range
of values supported by the encoding. Should this occur, at least one
of the polynomial coefficients MUST be replaced.

An alternative means of generating the set of secrets is to select

up to n-1 secret share values and use secret recovery to determine

at least one additional share. If n shares are selected, the shared
secret becomes an output of rather than an input to the process.

4

Al

a0
al
a2

(
(
(
(
(

.5.2. Recovery

To recover the value of the shared secret, it is necessary to obtain
sufficient shares to meet the threshold and recover the value f(0) =
ag.

Applications MAY employ any approach that returns the correct
result. The use of Lagrange basis polynomials is described in
Appendix C.

Alice decides to encrypt an important document and split the
encryption key so that there are five key shares, three of which
will be required to recover the key.

ice's master secret is
12 OGA C3 1B FF 09 CD 86 CD 3E 6B 4B CF BA 91 8D

This has the UDF representation:
CIFM-GG77-BHGY-NTJ6-NNF4-70UR-RU

The master secret is converted to an integer applying network byte
order conventions. Since the master secret is 128 bits, it is
guaranteed to be smaller than the modulus. The resulting value
becomes the polynomial value a0.

Since a threshold of three shares is required, we will need a second
order polynomial. The co-efficients of the polynomial al, a2 are
random numbers smaller than the modulus:

23981984180677462358025211329449202061
217449633820028444820075594055263988236
299283543253615188179136358544176182525

The master secret is the value f(0@) = a®@. The key shares are the
values f(1), f(2)...f(5):

1) = 200432794333382631893862556497121161315
2) = 294885957151441250861223403889609062605
3) = 307341472634853319260107753506912905931
4) = 237799340783618837090515605349032691293

86259561597737804352446959415968418691

5)

The first byte of each share specifies the recovery information
(quorum, x value), the remaining bytes specify the share value in
network byte order:

f(1) =
30 96 C9 F3 B9 2E 52 75 AE C9 C5 75 B1 93 DO BO
63

f(2) =
31 DD D8 F8 31 86 F7 6B B9 E2 74 52 07 3E 2A B8
cD

£(3) =
32 E7 37 DO 85 08 F7 8F A8 17 4B 00 4C CE C8 AA
cB

f(4) =
33 B2 E6 7C B3 B4 54 01 79 68 49 80 82 45 AA 86
5D

f(5) =
34 40 E4 FC BD 89 OC 61 2D D5 6F D2 A7 A2 DO 4B
83

The UDF presentation of the key shares is thus:

(1) SAYJ-NSPT-XEXF-E5NO-ZHCX-LMMT-2CYG-G
f(2) = SAY5-3WHY-GGDP-0C5Z-4J2F-EBZ6-FK4M-2
f(3) = SAZO-ON6Q-QUEP-PD5I-C5FQ-ATGO-ZCVM-W
f(4) = SAZ3-FZT4-WO2F-IALZ-NBEY-BASF-VKDF-2
f(5) = SA2E-BZH4-XWEQ-YYJIN-2VX5-FJ5C-2BFY-G

To recover the value f(0) from any three shares, we need to fit a
polynomial curve to the three points and use it to calculate the
value at x=0 using the Lagrange polynomial basis.

5. Variable Length UDFs

Variable length UDFs are used to represent fingerprint values
calculated over a content type identifier and the cryptographic
digest of a content data item. The fingerprint value MAY be
specified at any integer multiple of 20 bits that provides a work
factor sufficient for the intended purpose.

Two types of fingerprint are specified:

Digest fingerprints
Are computed with the same cryptographic digest
algorithm used to calculate the digest of the content data.

Message Authentication Code fingerprints Are computed using a
Message Authentication Code.

For a given algorithm (and key, if requires), if two UDF
fingerprints are of the same content data and content type, either
the fingerprint values will be the same or the initial characters of
one will be exactly equal to the other.

5.1. Content Digest

A Content Digest Type UDF consists of the type identifier octet
followed by the Binary Data Sequence value.

The type identifier specifies the digest algorithm used and the
compression level. Two digest algorithms are currently specified
with four compression levels for each making a total of eight
possible type identifiers.

The Content Digest UDF for given content data is generated by the
steps of:

0. Applying the digest algorithm to determine the Content Digest
Value

1. Applying the digest algorithm to determine the Typed Content
Digest Value

2. Determining the compression level from bytes 0-3 of the Typed
Content Digest Value.

3. Determining the Type Identifier octet from the Digest algorithm
identifier and compression level.

4. Truncating bytes 4-63 of the Typed Content Digest Value to
determine the Binary Data Sequence value.

5.1.1. Content Digest Value

The Content Digest Value (CDV) is determined by applying the digest
algorithm to the content data:

CDV = H(<Data>)

Where

H(x) is the cryptographic digest function
<Data> is the binary data.
5.1.2. Typed Content Digest Value

The Typed Content Digest Value (TCDV) is determined by applying the
digest algorithm to the content type identifier and the CDV:

TCDV = H (<Content-ID> + ?:? + CDV)

Where
A + B represents concatenation of the binary sequences A and B.

<Content-ID> is the IANA Content Type of the data in UTF8
encoding

The two-step approach to calculating the Type Content Digest Value
allows an application to attempt to match a set of content data
against multiple types without the need to recalculate the value of
the content data digest.

5.1.3. Content Digest Compression
The compression factor is determined according to the number of
trailing zero bits in the first 8 bytes of the Typed Content Digest

Value as follows:

19 or fewer trailing zero bits Compression factor = 0

29 or fewer trailing zero bits Compression factor 20

39 or fewer trailing zero bits Compression factor = 30
49 or fewer trailing zero bits Compression factor = 40
50 or more trailing zero bits Compression factor = 50

The least significant bits of each octet are regarded to be
"trailing'.

Applications MUST use compression when creating and comparing UDFs.
Applications MAY support content generation techniques that search
for UDF values that use a compressed representation. Presentation of
a content digest value indicating use of compression MAY be used as
an indicator of 'proof of work'.

5.1.4. Content Digest Presentation

The type identifier is determined by the algorithm and compression
factor as specified above.

The Binary Data Sequence value is taken from the Typed Content
Digest Vvalue starting at the 9" octet and as many additional bytes
as are required to meet the presentation precision.

5.1.5. Example Encoding

In the following examples, <Content-ID> is the UTF8 encoding of the
string "text/plain" and <Data> is the UTF8 encoding of the string
"UDF Data Value"

Data =
55 44 46 20 44 61 74 61 20 56 61 6C 75 65
ContentType =
74 65 78 74 2F 70 6C 61 69 6E
5.1.6. Using SHA-2-512 Digest
H(<Data>) =
48 DA 47 CC AB FE A4 5C 76 61 D3 21 BA 34 3E 58
10 87 2A 03 B4 02 9D AB 84 7C CE D2 22 B6 9C AB
02 38 D4 E9 1E 2F 6B 36 A0 9E ED 11 09 8A EA AC
99 D9 EO BD EA 47 93 15 BD 7A E9 E1 2E AD C4 15
<Content-ID> + ':' + H(<Data>) =
74 65 78 74 2F 70 6C 61 69 6E 3A 48 DA 47 CC AB
FE A4 5C 76 61 D3 21 BA 34 3E 58 10 87 2A 03 B4
02 9D AB 84 7C CE D2 22 B6 9C AB 02 38 D4 E9 1E
2F 6B 36 A®@ 9E ED 11 09 8A EA AC 99 D9 EO BD EA
47 93 15 BD 7A E9 E1 2E AD C4 15
H(<Content-ID> + ':' + H(<Data>)) =
C6 AF B7 CO FE BE 04 E5 AE 94 E3 7B AA 5F 1A 40
5B A3 CE CC 97 4D 55 CO 9E 61 E4 BO EF 9C AE F9
EB 83 BB 9D 5F OF 39 F6 5F AA 06 DC 67 2A 67 71
4F FF 8F 83 C4 55 38 36 38 AE 42 7A 82 9C 85 BB
The prefixed Binary Data Sequence is thus
60 C6 AF B7 CO FE BE 04 E5 AE 94 E3 7B AA 5F 1A
40 5B A3 CE CC 97 4D 55 CO 9E 61 E4 BO EF 9C AE
FO EB 83 BB 9D 5F OF 39 F6 5F AA 06 DC 67 2A 67
71 4F FF 8F 83 C4 55 38 36 38 AE 42 7A 82 9C 85

The 125 bit fingerprint value is MDDK-7N6A-727A-JZNO-STRX-XKS7-DJAF

This fingerprint MAY be specified with higher or lower precision as
appropriate.

100 bit precision MDDK-7N6A-727A-JZNO-STRX

120 bit precision MDDK-7N6A-727A-JZNO-STRX-XKS7

200 bit precision MDDK-7N6A-727A-JZNO-STRX-XKS7-DJAF-XI60-ZSLU-2VOA

260 bit precision MDDK-7N6A-727A-JZNO-STRX-XKS7-DJAF-XI60-
ZSLU-2VOA-TZQ6- IMHP -TSXP

5.1.7. Using SHA-3-512 Digest

H(<Data>) =
6D 2E CF E6
Al 4E 70 AB
07 1D F3 6E
65 B4 C4 45

93 5A
72 94
0D oC
9B A2

0C FC
6E CC
8B 60
7E 97

F2
BB
39
74

A9
47
c1
7B

1A
48
8E
BE

49
F1
B4
68

EO
8E
OF
BC

eC
41
6E
A8

D8
49
c8
C2

07
95
08
17

<Content-ID> + ':' +
74 65 78 74 2F 70
5A 0C FC F2 A9 1A
94 6E CC BB 47 48
OC 8B 60 39 C1 8E
A2 7E 97 74 7B BE

H(<Data>) =
6C 61 69 6E
49 EO 0OC D8
F1 8E 41 49
B4 OF 6E C8
68 BC A8 C2

3A
07
95
08
17

6D
Al
07
65

2E
4E
1D
B4

CF
70
F3
C4

E6
AB
6E
45

93
72
oD
9B

H(<Content-ID> + ':'
8A 86 8A 06 1C 54
8E C8 45 93 1B 80
75 61 88 A1 D5 7F
FO E4 0B B2 1A 8D

+ H(<Data>)) =

6E 7E 3F 75 5F
A8 2F 29 16 7B
07 D5 9D 68 A4
B9 F5 8D FC EC

39
A3
2D
BD

88
BE
17
01

F9
21
F4
F4

FD
1F
4D
37

2F
8A
23
7C
thus

The prefixed Binary Data Sequence 1is

50 8A 86 8A
2F 8E C8 45
8A 75 61 88
23 F9 E4 0B

The 125 bit

06 1C 54 6E
93 1B 80 A8
Al D5 7F 07
B2 1A 8D B9

fingerprint value is KCFI-NCQG-DRKG-47R7-0VPT-TCHZ-7UXY

7E 3F
2F 29
D5 9D
F5 8D

75
16
68
FC

5F 39
7B A3
A4 2D
EC BD

88
BE
17
01

F9
21
F4
F4

FD
1F
4D
37

5.1.8. Using SHA-2-512 Digest with Compression

The content data "UDF Compressed Document 4187123" produces a UDF
Content Digest SHA-2-512 binary value with 20 trailing zeros and is
therefore presented using compressed presentation:

Data = "
55 44 46 20 43 6F 6D 70
6F 63 75 6D 65 6E 74 20

72 65 73 73
34 31 38 37

65
31

64
32

20 44
33"

The UTF8 Content Digest is given as:

H(<Data>) =
36 21 FA 2A
Cl1 ED F7 00
6D 5A 2B 20
C4 1D 3F 43

C5 D8
AE 6F
DE D6
DD DC

62 5C
E3 3D
A5 CF
F1 A5

2D
38
6C
67

(0]}
13
04
A7

45
FE
EG
EO

FB
AB
56
67

65
76
3F
9A

93 FC
74
co

C6

69
13
c7
B7

F3

<Content-ID> + ':' +
74 65 78 74 2F 70
D8 62 5C 2D OB 45
6F E3 3D 38 13 FE
D6 A5 CF 6C 04 E6
DC F1 A5 67 A7 EO

H(<Data>) =

6C 61 69 6E
FB 65 93 FC
AB 76 AA 74
56 3F F3 CO
67 9A BO C6

3A
69
13
Cc7
B7

21
ED
5A
1D

FA
F7
2B
3F

2A
00
20
43

C5
AE
DE
DD

C1
6D
Cc4

H(<Content-ID> + ':'
8E 14 D9 19 4E D6
AE 9A 56 7C A8 2A
60 14 24 DO C8 BC
CB 55 9C B2 87 81

+ H(<Data>)) =

02 12 C3 30 A7
23 1F 96 75 ED
55 3D CO 70 F7
27 FF 3C EC E2

BB
53
5E
FO

5F
10
86
90

c7
EC
38
AO

17
E8
1A
00

6D
F2
0B
00
thus

The prefixed Binary Data Sequence 1is

61 8E 14 D9
6D AE 9A 56
F2 60 14 24
0B CB 55 9C

19 4E D6 02
7C A8 2A 23
DO C8 BC 55
B2 87 81 27

12 C3
1F 96
3D CO
FF 3C

30
75
70
EC

A7
ED
F7
E2

BB
53
5E
FO

5F
10
86
90

Cc7
EC
38
AO

17
E8
1A
00

The 125 bit fingerprint value is MGHB-JWIZ-J3LA-EEWD-GCT3-WX6H-C5W2

5.1.9. Using SHA-3-512 Digest with Compression

The content data "UDF Compressed Document 774665" produces a UDF
Content Digest SHA-3-512 binary value with 20 trailing zeros and is
therefore presented using compressed presentation:

Data =
55 44 46 20 43 6F 6D 70 72 65 73 73 65 64 20 44
6F 63 75 6D 65 6E 74 20 37 37 34 36 36 35

The UTF8 SHA-3-512 Content Digest is KEJI-Y225-BDUG-XX22-MXKE-5ITF-
YVYM

5.2. Authenticator UDF

An authenticator Type UDF consists of the type identifier octet
followed by the Binary Data Sequence value.

The type identifier specifies the digest and Message Authentication
Code algorithm. Two algorithm suites are currently specified. Use of
compression is not supported.

The Authenticator UDF for given content data and key is generated by
the steps of:

0. Applying the digest algorithm to determine the Content Digest
Value

1. Applying the MAC algorithm to determine the Authentication
value

2. Determining the Type Identifier octet from the Digest algorithm
identifier and compression level.

3. Truncating the Authentication value to determine the Binary
Data Sequence value.

The key used to calculate and Authenticator type UDF is always a
UNICODE string. If use of a binary value as a key is required, the
value MUST be converted to a string format first. For example, by
conversion to an Encryption/Authentication type UDF.

5.2.1. Authentication Content Digest Value
The Content Digest Value (CDV) is determined in the exact same
fashion as for a Content Digest UDF by applying the digest algorithm

to the content data:

CDV = H(<Dbata>))

Where

H(x) is the cryptographic digest function
<Data> is the binary data.
5.2.2. Authentication Value

The Authentication Value (AV) is determined by applying the digest
algorithm to the content type identifier and the CDV:

AV = MAC (<OKM>, (<Content-ID> + ?:? + CDV))

Where
<OKM> is the authentication key as specified below

MAC(<Key>, <data>) is the result of applying the Message
Authentication Code algorithm to with Key <Key> and data <data>

The value <OKM> is calculated as follows:

IKM = UTF8 (Key)
PRK = MAC (UTF8 ("KeyedUDFMaster"), IKM)
OKM = HKDF-Expand(PRK, UTF8 ("KeyedUDFExpand"), HashLen)

Where the function UTF8(string) converts a string to the binary UTF8
representation, HKDF-Expand is as defined in [RFEC5869] and the
function MAC(k,m) is the HMAC function formed from the specified
hash H(m) as specified in [RFC2014].

Keyed UDFs are typically used in circumstances where user
interaction requires a cryptographic commitment type functionality

In the following example, <Content-ID> is the UTF8 encoding of the
string "text/plain" and <Data> is the UTF8 encoding of the string
"Konrad is the traitor". The randomly chosen key is NDD7-6CMX-H2FW-
ISAL-K4VB-DQ3E-PEDM.

Data =
4B 6F 6E 72 61 64 20 69 73 20 74 68 65 20 74 72
61 69 74 6F 72

ContentType =
74 65 78 74 2F 70 6C 61 69 6E

Key =
4E 44 44 37 2D 36 43 4D 58 2D 48 32 46 57 2D 49
53 41 4C 2D 4B 34 56 42 2D 44 51 33 45 2D 50 45
44 4D

Processing is performed in the same manner as an unkeyed fingerprint
except that compression is never used:

H(<Data>) =
93 FC DA F9
D8 BC 3D 62
70 OA D1 CE
CE 8C 5C CE

FA FD
87 73
E8 F4
C7 9A

1E 26
2B 73
36 68
46 94

50
B8
EF
6A

26
EC
4E
35

C3
93
71
79

c1
B6
63
F9

28 43
DE 80
41 53
33 70

40
FF
91
85

73
DA
5C
01

<Content-ID> + ':' +
74 65 78 74 2F 70
FD 1E 26 50 26 C3
73 2B 73 B8 EC 93
F4 36 68 EF 4E 71
9A 46 94 6A 35 79

H(<Data>) =

6C 61 69 6E
Cl 28 43 40
B6 DE 80 FF
63 41 53 91
F9 33 70 85

3A
73
DA
5C
01

93
D8
70
CE

FC DA
BC 3D
OA D1
8C 5C

F9
62
CE
CE

FA
87
ES8
Cc7

PRK(Key) =
77 D3 OA 08
CD 17 80 03
DC 26 F5 E1
OE C3 4C EF

39 BD
B3 CF
1B 20
2D 40

9D
cC
F3
DA

Co
89
89
05

97
7A
2E
B4

44
C7
9A
70

DA
84
1A
C6

33
12
7B
1C

15 0A
B4 51
OE 73
82 C1

42
5B
23
49

5E
25
39
33

HKDF (Key) =
BF A9 B4 58
20 D7 82 67
05 06 CB C4
28 1C CA AF

9C 1D
C5 84
E4 D6
D8 B5

68
22
EG
D1

D7
ES
EE
24

9A
AOG
1F
4A

B7
F9
FO
71

11
93
D4
EC

F6
52
7A
E3

C8 98
B1 C3
97 68
AC B5

59
87
5E
D2

14
EB
CE
04

MAC(<key>, <Content-ID> + ':
4C C3 7F D3 F9 9E 52 CF
1A 2B A5 D1 68 9D 05 6D
95 39 57 08 79 C4 E5 49
30 26 25 AE 8A F4 47 C6

' + H(<Data>)) =

07 90 74 53 84 65
06 C5 CA BF 17 CB
D3 3A 59 A3 32 05
1F B5 33 7F AD 69

95
EO
45
A6

BC
49
A6
30
thus

The prefixed Binary Data Sequence is

00 4C C3 7F
BC 1A 2B A5
49 95 39 57
A6 30 26 25

D3 F9 9E 52
D1 68 9D 05
08 79 C4 E5
AE 8A F4 47

CF 07
6D 06
49 D3
C6 1F

90
C5
3A
B5

74
CA
59
33

53 84
BF 17
A3 32
7F AD

65
CB
05
69

95
EO
45
A6

The 125 bit fingerprint value is ABGM-G76T-7GPF-FTYH-SB2F-HBDF-SW6B

5.3. Content Type Values

While a UDF fingerprint MAY be used to identify any form of static
data, the use of a UDF fingerprint to identify a public key
signature key provides a level of indirection and thus the ability
to identify dynamic data. The content types used to identify public
keys are thus of particular interest.

As described in the security considerations section, the use of
fingerprints to identify a bare public key and the use of
fingerprints to identify a public key and associated security policy
information are quite different.

application/pkix-cert A PKIX Certificate
application/pkix-crl A PKIX CRL

application/pkix-keyinfo Content type identifier for PKIX KeyInfo
data type

application/pgp-keys Content type identifier for OpenPGP Key
application/dns A DNS resource record in binary format
application/udf-encryption UDF Fingerprint list
application/udf-lock UDF Fingerprint list

.3.1. PKIX Certificates and Keys

UDF fingerprints MAY be used to identify PKIX certificates, CRLs and
public keys in the ASN.1 encoding used in PKIX certificates.

Since PKIX certificates and CLRs contain security policy
information, UDF fingerprints used to identify certificates or CRLs
SHOULD be presented with a minimum of 200 bits of precision. PKIX
applications MUST not accept UDF fingerprints specified with less
than 200 bits of precision for purposes of identifying trust
anchors.

PKIX certificates, keys and related content data are identified by
the following content types:

application/pkix-cert A PKIX Certificate
application/pkix-crl A PKIX CRL

application/pkix-keyinfo The SubjectPublicKeyInfo structure defined
in the PKIX certificate specification encoded using DER encoding
rules.

The SubjectPublicKeyInfo structure is defined in [REC5280] as
follows:

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING }

This schema results in an identical DER encoding to the OIDInfo
sequence specified in section XXX. The distinction between these
productions is that the OIDInfo schema is intended to be used to
encode arbitrary data while the application/pkix-keyinfo content
type is only intended to be used to describe public keys.

5.3.2. OpenPGP Key

OpenPGPv5 keys and key set content data are identified by the
following content type:

application/pgp-keys An OpenPGP key set.
5.3.3. DNSSEC

DNSSEC record data consists of DNS records which are identified by
the following content type:

application/dns A DNS resource record in binary format
6. UDF URIs

The UDF URI scheme describes a means of constructing URIs from a UDF
value.

Two forms or UDF URI are specified, Name and Locator. In both cases
the URI MUST specify the scheme type "UDF", and a UDF fingerprint
and MAY specify a query identifier and/or a fragment identifier.

By definition a Locator form URI contains an authority field which
MUST be a DNS domain name. The use of IP address forms for this
purpose is not permitted.

Name Form URIs allow static content data to be identified without
specifying the means by which the content data may be retrieved.
Locator form URIs allow static content data or dynamic network
resources to be identified and the means of retrieval.

The syntax of a UDF URI is a subset of the generic URI syntax
specified in [REC3986]. The use of userinfo and port numbers is not
supported and the path part of the uri is a UDF in base32
presentation.

URI = "UDF:" udf ["?" query] ["" fragment]
udf = name-form / locator-form

udf-value
"//" authority "/" udf-value

name-form
locator-form

authority host
host = reg-name

6.1. Name form URI
Name form UDF URIs provide a means of presenting a UDF value in a
context in which a URI form of a name is required without providing
a means of resolution.
Adding the UDF scheme prefix to a UDF fingerprint does not change
the semantics of the fingerprint itself. The semantics of the name

result from the context in which it is used.

For example, a UDF value of any type MAY be used to give a unique
targetNamespace value in an XML Schema [XMLSchema]

6.2. Locator form URI

The locator form of an unkeyed UDF URI 1is resolved by the following
steps:

*Use DNS Web service discovery to determine the Web Service
Endpoint.

*Determine the content identifier from the source URI.

*Append the content identifier to the Web Service Endpoint as a
suffix to form the target URI.

*Retrieve content from the Web Service Endpoint by means of a GET
method.

*Perform post processing as specified by the UDF type.

6.2.1. DNS Web service discovery

DNS Web Discovery is performed as specified in [draft-hallambaker -
web-service-discovery] for the service mmm-udf and domain name
specified in the URI. For a full description of the discovery
mechanism, consult the referenced specification.

The use of DNS Web Discovery permits service providers to make full
use of the load balancing and service description capabilities
afforded by use of DNS SRV and TXT records in accordance with the
approach described in [RFC6763].

If no SRV or TXT records are specified, DNS Web Discovery specifies
that the Web Service Endpoint be the Well Known Service [RFC5785]
with the prefix /.well-known/srv/mmm-udf.

6.2.2. Content Identifier

For all UDF types other than Secret Share, the Content Identifier
value is the UDF SHA-2-512 Content Digest of the canonical form of
the UDF specified in the source URI presented at twice the precision
to a maximum of 440 bits.

If the UDF is of type Secret Share, the shared secret MUST be
recovered before the content identifier can be resolved. The shared
secret is then expressed as a UDF of type Encryption/Authentication
and the Content Identifier determined as for an Encryption/
Authentication type UDF.

6.2.3. Target URI

The target URI is formed by appending a slash separator '/' and the
Content Identifier value to the Web Service Endpoint.

Since the path portion of a URI is case sensitive, the UDF value
MUST be specified in upper case and MUST include separator marks.

6.2.4. Postprocessing

After retrieving the content data, the resolver MUST perform post
processing as indicated by the content type:

Nonce No additional post processing is required.

Content Digest The resolver MUST verify that the content returned
matches the UDF fingerprint value.

Authenticator The resolver MUST verify that the content returned
matches the UDF fingerprint value.

Encryption/Authentication The content data returned is decrypted
and authenticated using the key specified in the UDF value as the
initial keying material (see below).

Secret Share (set) The content data returned is decrypted and
authenticated using the shared secret as the initial keying
material (see below).

6.2.5. Decryption and Authentication

The steps performed to decode cryptographically enhanced content
data depends on the content type specified in the returned content.
Two formats are currently supported:

*DARE Envelope format as specified in [draft-hallambaker-mesh-
dare]

*Cryptographic Message Syntax (CMS) Symmetric Key Package as
specified in [REC6031]

6.2.6. QR Presentation

Encoding of a UDF URI as a QR code requires only the characters in
alphanumeric encoding, thus achieving compactness with minimal
overhead.

7. Strong Internet Names

A Strong Internet Name is an Internet address that is bound to a
policy governing interpretation of that address by means of a
Content Digest type UDF of the policy expressed as a UDF prefixed
DNS label within the address itself.

The Reserved LDH labels as defined in [RFC5890] that begin with the
prefix mm-- are reserved for use as Strong Internet Names. The
characters following the prefix are a Content Digest type UDF in
Base32 presentation.

Since DNS labels are limited to 63 characters, the presentation of
the SIN itself is limited to 59 characters and thus 240 bits of
precision.

8. Security Considerations

This section describes security considerations arising from the use
of UDF in general applications.

Additional security considerations for use of UDFs in Mesh services
and applications are described in the Mesh Security Considerations
guide [draft-hallambaker-mesh-security].

8.1. Confidentiality
Encrypted locator is a bearer token
8.2. Availability

Corruption of a part of a shared secret may prevent recovery

8.3.

8.4.

Integrity

Shared secret parts do not contain context information to specify
which secret they relate to.

wWork Factor and Precision

A given UDF data object has a single fingerprint value that may be
presented at different precisions. The shortest legitimate precision
with which a UDF fingerprint may be presented has 96 significant
bits

A UDF fingerprint presents the same work factor as any other
cryptographic digest function. The difficulty of finding a second
data item that matches a given fingerprint is 2" and the difficulty
or finding two data items that have the same fingerprint is 2(7/2),
Where n is the precision of the fingerprint.

For the algorithms specified in this document, n = 512 and thus the
work factor for finding collisions is 22°6, a value that is generally
considered to be computationally infeasible.

Since the use of 512 bit fingerprints is impractical in the type of
applications where fingerprints are generally used, truncation is a
practical necessity. The longer a fingerprint is, the less likely it
is that a user will check every character. It is therefore important
to consider carefully whether the security of an application depends
on second pre-image resistance or collision resistance.

In most fingerprint applications, such as the use of fingerprints to
identify public keys, the fact that a malicious party might generate
two keys that have the same fingerprint value is a minor concern.
Combined with a flawed protocol architecture, such a vulnerability
may permit an attacker to construct a document such that the
signature will be accepted as valid by some parties but not by
others.

For example, Alice generates keypairs until two are generated that
have the same 100 bit UDF presentation (typically 2%% attempts). She
registers one keypair with a merchant and the other with her bank.
This allows Alice to create a payment instrument that will be
accepted as valid by one and rejected by the other.

The ability to generate of two PKIX certificates with the same
fingerprint and different certificate attributes raises very
different and more serious security concerns. For example, an
attacker might generate two certificates with the same key and
different use constraints. This might allow an attacker to present a
highly constrained certificate that does not present a security risk

to an application for purposes of gaining approval and an
unconstrained certificate to request a malicious action.

In general, any use of fingerprints to identify data that has
security policy semantics requires the risk of collision attacks to
be considered. For this reason, the use of short, 'user friendly'
fingerprint presentations (Less than 200 bits) SHOULD only be used
for public key values.

8.5. Semantic Substitution

Many applications record the fact that a data item is trusted,
rather fewer record the circumstances in which the data item is
trusted. This results in a semantic substitution vulnerability which
an attacker may exploit by presenting the trusted data item in the
wrong context.

The UDF format provides protection against high level semantic
substitution attacks by incorporating the content type into the
input to the outermost fingerprint digest function. The work factor
for generating a UDF fingerprint that is valid in both contexts is
thus the same as the work factor for finding a second preimage in
the digest function (2°'? for the specified digest algorithms).

It is thus infeasible to generate a data item such that some
applications will interpret it as a PKIX key and others will accept
as an OpenPGP key. While attempting to parse a PKIX key as an
OpenPGP key is virtually certain to fail to return the correct key
parameters it cannot be assumed that the attempt is guaranteed to
fail with an error message.

The UDF format does not provide protection against semantic
substitution attacks that do not affect the content type.

8.6. QR Code Scanning

The act of scanning a QR code SHOULD be considered equivalent to
clicking on an unlabeled hypertext link. Since QR codes are scanned
in many different contexts, the mere act of scanning a QR code MUST
NOT be interpreted as constituting an affirmative acceptance of
terms or conditions or as creating an electronic signature.

If such semantics are required in the context of an application,
these MUST be established by secondary user actions made subsequent
to the scanning of the QR code.

There is a risk that use of QR codes to automate processes such as
payment will lead to abusive practices such as presentation of
fraudulent invoices for goods not ordered or delivered. It is

therefore important to ensure that such requests are subject to
adequate accountability controls.

9. IANA Considerations
Registrations are requested in the following registries:
*Service Name and Transport Protocol Port Number
*well-known URI registry
*Uniform Resource Identifier (URI) Schemes
*Media Types

In addition, the creation of the following registry is requested:
Uniform Data Fingerprint Type Identifier Registry.

9.1. Protocol Service Name

The following registration is requested in the Service Name and
Transport Protocol Port Number Registry in accordance with [REC6355]

Service Name (REQUIRED) mmm-udf

Transport Protocol(s) (REQUIRED) TCP

Assignee (REQUIRED) Phillip Hallam-Baker, phill@hallambaker.com

Contact (REQUIRED) Phillip Hallam-Baker, phill@hallambaker.com

Description (REQUIRED) mmm-udf is a Web Service protocol that
resolves Mathematical Mesh Uniform Data Fingerprints (UDF) to
resources. The mmm-udf service name is used in service discovery
to identify a Web Service endpoint to perform resolution of a UDF
presented in URI locator form.

Reference (REQUIRED) [This document]

Port Number (OPTIONAL) None

Service Code (REQUIRED for DCCP only) None

Known Unauthorized Uses (OPTIONAL) None

Assignment Notes (OPTIONAL) None

9.2. Well Known

The following registration is requested in the well-known URI
registry in accordance with [REC5785]

URI suffix
srv/mmm-udf

Change controller Phillip Hallam-Baker, phill@hallambaker.com
Specification document(s): [This document]

Related information [draft-hallambaker-web-service-discovery]

9.3. URI Registration

The following registration is requested in the Uniform Resource
Identifier (URI) Schemes registry in accordance with [RFC7595]

Scheme name: UDF
Status: Provisional

Applications/protocols that use this scheme name: Mathematical Mesh
Service protocols (mmm)

Contact: Phillip Hallam-Baker mailto:phill@hallambaker.com
Change controller: Phillip Hallam-Baker
References: [This document]
9.4. Media Types Registrations
9.4.1. Media Type: application/pkix-keyinfo
Type name: application
Subtype name: pkix-keyinfo
Required parameters: None
Optional parameters: None
Encoding considerations: Binary
Security considerations: Described in [This]
Interoperability considerations: None
Published specification: [This]
Applications that use this media type: Uniform Data Fingerprint

Fragment identifier considerations: None

Additional information:
Deprecated alias names for this type: None

Magic number(s): None
File extension(s): None
Macintosh file type code(s): None

Person & email address to contact for further information: Phillip
Hallam-Baker @hallambaker.com>

Intended usage: Content type identifier to be used in constructing
UDF Content Digests and Authenticators and related cryptographic
purposes.

Restrictions on usage: None

Author: Phillip Hallam-Baker

Change controller: Phillip Hallam-Baker

Provisional registration? (standards tree only): Yes

.4.2. Media Type: application/udf

Type name: application

Subtype name: udf

Required parameters: None

Optional parameters: None

Encoding considerations: None

Security considerations: Described in [This]

Interoperability considerations: None

Published specification: [This]

Applications that use this media type: Uniform Data Fingerprint

Fragment identifier considerations: None

Additional information: Deprecated alias names for this type: None
Magic number(s): None

File extension(s): None

Macintosh file type code(s): None

Person & email address to contact for further information: Phillip
Hallam-Baker @hallambaker.com>

Intended usage: Content type identifier to be used in constructing
UDF Content Digests and Authenticators and related cryptographic
purposes.

Restrictions on usage: None

Author: Phillip Hallam-Baker

Change controller: Phillip Hallam-Baker

Provisional registration? (standards tree only): Yes
.5. Uniform Data Fingerprint Type Identifier Registry

This document describes a new extensible data format employing fixed
length version identifiers for UDF types.

.5.1. The name of the registry
Uniform Data Fingerprint Type Identifier Registry
.5.2. Required information for registrations

Registrants must specify the Type identifier code(s) requested,
description and RFC number for the corresponding standards action
document.

The standards document must specify the means of generating and
interpreting the UDF Data Sequence Value and the purpose(s) for
which it is proposed.

Since the initial letter of the Base32 presentation provides a
mnemonic function in UDFs, the standards document must explain why
the proposed Type Identifier and associated initial letter are
appropriate. In cases where a new initial letter is to be created,
there must be an explanation of why this is appropriate. If an
existing initial letter is to be created, there must be an
explanation of why this is appropriate and/or acceptable.

.5.3. Applicable registration policy
Due to the intended field of use (human data entry), the code space

is severely constrained. Accordingly, it is intended that code point
registrations be as infrequent as possible.

9.

9.

Co

1
1
1
1
2

10.

Registration of new digest algorithms is strongly discouraged and
should not occur unless, (1) there is a known security vulnerability
in one of the two schemes specified in the original assignment and
(2) the proposed algorithm has been subjected to rigorous peer
review, preferably in the form of an open, international competition
and (3) the proposed algorithm has been adopted as a preferred
algorithm for use in IETF protocols.

Accordingly, the applicable registration policy is Standards Action.
5.4. Size, format, and syntax of registry entries

Each registry entry consists of a single byte code,
5.5. Initial assignments and reservations

The following entries should be added to the registry as initial
assignments:

de Description Reference

©® HMAC_SHA_2_512 [This document]

1 HMAC_SHA_3_512 [This document]
32 HKDF_AES_512 [This document]
33 HKDF_AES_512 [This document]
80 SHA_3_512 [This document]
81 SHA_3_512 (20 compressed) [This document]
82 SHA_3_512 (30 compressed) [This document]
83 SHA_3_512 (40 compressed) [This document]
84 SHA_3_512 (50 compressed) [This document]
96 SHA 2 512 [This document]
97 SHA_2 512 (20 compressed) [This document]
98 SHA_2 512 (30 compressed) [This document]
99 SHA_2_ 512 (40 compressed) [This document]
00 SHA_2 512 (50 compressed) [This document]
04 Nonce Data [This document]
12 0ID distinguished sequence (DER encoded) [This document]
44 Shamir Secret Share [This document]
00 Secret seed [This document]

Acknowledgements

A list of people who have contributed to the design of the Mesh is
presented in [draft-hallambaker-mesh-architecture].

Thanks are due to Viktor Dukhovni, Damian Weber and an anonymous
member of the cryptography@metzdowd.com list for assisting in the
compilation of the table of prime values.

11. Appendix A: Prime Values for Secret Sharing

The following are the prime values to be used for sharing secrets of
up to 512 bits.

If it is necessary to share larger secrets, the corresponding prime
may be found by choosing a value (28)" that is larger than the secret
to be encoded and determining the next largest number that is prime.

Bytes Bits Prime

1 8 2A8+1

2 16 2N16+1

3 24 2N24+43

4 32 2N32+15

5 40 2N 40+15

6 48 2N 48+21

7 56 2N56+81

8 64 2N64+13

9 72 2N72+15
10 80 2/A80+13
11 88 2N88+7

12 96 2N96+61
13 104 27104+111
14 112 27A112+25
15 120 2N120+451
16 128 27A128+51
17 136 2/136+85
18 144 2A144+175
19 152 2N152+253
20 160 2N160+7
21 168 27A168+87
22 176 2N176+427
23 184 27N184+27
24 192 27A192+133
25 200 2/200+235
26 208 2/208+375
27 216 2N216+423
28 224 2N224+735
29 232 2N232+357
30 240 2N240+115
31 248 27h248+81
32 256 2N256+297
33 264 2/264+175
34 272 2N272+57
35 280 2/280+45
36 288 2n288+127

w
~

296 27A296+61

Bytes Bits Prime

38 304 2/304+37
39 312 27A312+91
40 320 2N320+27
41 328 2N328+15
42 336 2N336+241
43 344 2N344+231
44 352 2N352+55
45 360 2N360+105
46 368 2/368+127
47 376 2N376+115
48 384 2"384+231
49 392 2N392+207
50 400 2N 400+181
51 408 2N408+37
52 416 2N416+235
53 424 2N424+163
54 432 2N432+1093
55 440 2N440+187
56 448 2N448+211
57 456 2N456+21
58 464 2N464+841
59 472 2N4T72+445
60 480 2N480+165
61 488 2N488+777
62 496 2N 496+583
63 504 27A504+133
64 512 2N\512+75
Table 8

For example, the prime to be used to share a 128 bit value is 21?8 +
51.

12. Appendix B: Shamir Shared Secret Recovery Using Lagrange
Interpolation

The value of a Shamir Shared secret may be recovered using Lagrange
basis polynomials.

To share a secret with a threshold of n shares and L bits we
constructed f(x) a polynomial of degree n in the modular field p
where p is the smallest prime greater than 2':

f(Xx) = ag + a1.x + ap.x2 + ... ap.x"

The shared secret is the binary representation of the value ag

Given n shares (Xo, Vo), (X1, Y1), ++. (Xn-1, Yn-1), The corresponding
the Lagrange basis polynomials 1y, 1;, .. 1l,.; are given by:

Im = ((x - x(mg)) 7/ (x(m) - x(mg))) . ((x - x(mg)) / (x(m) -
x(m))) « .. . ((x - x(mM2)) /7 (X(m) - x(mn_2)))

Where the values mg, mqy, ... m,.», are the integers 0, 1, .. n-1,
excluding the value m.

These can be used to compute f(x) as follows:
f(x) = yolo + y1l1 + ... VYn-1lna

Since it is only the value of f(0) that we are interested in, we
compute the Lagrange basis for the value x = 0:

1z = ((x(my)) /7 (x(m) - x(my))) . ((x(mz)) /7 (x(m) - x(mz)))
Hence,
ag = f(0) = yelzg + y11z3 + ... Yn.alna

The following C# code recovers the values.

using System;
using System.Collections.Generic;
using System.Numerics;

namespace Examples {
class Examples {

/177
/// Combine a set of points (x, f(x))
/// on a polynomial of degree 1in a
/// discrete field modulo prime to
/// recover the value f(0) using Lagrange basis polynomials.
/177
/// The values f(x).
/// The values for x.
/// The modulus.
/// The polynomial degree.
/// The value f(0).
static BigInteger CombineNK(
BigInteger[] fXx,
int[] x,
BigInteger p,
int n) {
if (fx.Length < n) {
throw new Exception("Insufficient shares");

}

BigInteger accumulator = 0;
for (var formula = 0; formula < n; formula++) {
var value = fx[formula];

BigInteger numerator = 1, denominator = 1;
for (var count = 0; count < n; count++) {

if (formula == count) {
continue; // If not the same value
}

var start = x[formula];
var next = x[count];

numerator = (numerator * -next) % p;
denominator = (denominator * (start - next)) % p;

}

var InvDenominator = ModInverse(denominator, p);

accumulator = Modulus((accumulator +
(fx[formula] * numerator * InvDenominator)), p);

return accumulator;

}

///

/// Compute the modular multiplicative inverse of the value

/// modulo

///

/// The value to find the inverse of

/// The modulus.

///

static BigInteger ModInverse(
BigInteger Kk,
BigInteger p) {

var m2 = p - 2;

if (k < 0) {
k =k + p;
}

return BigInteger.ModPow(k, m2, p);
}

/177
/// Calculate the modulus of a number with correct handling
/// for negative numbers.
/177
/// Value
/// The modulus.
/// x mod p
public static BigInteger Modulus(
BigInteger x,
BigInteger p) {
var Result = x % p;
return Result.Sign >= 0@ ? Result : Result + p;

}

13. Normative References

[draft-hallambaker-mesh-architecture]
Hallam-Baker, P., "Mathematical Mesh 3.0 Part I:
Architecture Guide", Work in Progress, Internet-Draft,
draft-hallambaker-mesh-architecture-19, 25 October 2021,

<https://datatracker.ietf.org/doc/html/draft-hallambaker -
mesh-architecture-19>.

[draft-hallambaker-mesh-dare]

Hallam-Baker, P., "Mathematical Mesh 3.0 Part III : Data
At Rest Encryption (DARE)", Work in Progress, Internet-
Draft, draft-hallambaker-mesh-dare-14, 25 October 2021,
<https://datatracker.ietf.org/doc/html/draft-hallambaker-
mesh-dare-14>.

[draft-hallambaker-mesh-security]

Hallam-Baker, P., "Mathematical Mesh 3.0 Part IX Security
Considerations", Work in Progress, Internet-Draft, draft-
hallambaker-mesh-security-08, 20 September 2021,
<https://datatracker.ietf.org/doc/html/draft-hallambaker-
mesh-security-08>.

[draft-hallambaker-web-service-discovery]

[RFC2014]

[RFC2119]

[RFC3986]

[RFC4648]

[RFC5280]

Hallam-Baker, P., "DNS Web Service Discovery'", Work in
Progress, Internet-Draft, draft-hallambaker-web-service-
discovery-06, 5 August 2021, <https://
datatracker.ietf.org/doc/html/draft-hallambaker-web-
service-discovery-06>.

Weinrib, A. and J. Postel, "IRTF Research Group
Guidelines and Procedures", BCP 8, RFC 2014, DOI
10.17487/RFC2014, October 1996, <https://www.rfc-
editor.org/rfc/rfc2014>.

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, <https://www.rfc-editor.org/rfc/
rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66, RFC
3986, DOI 10.17487/RFC3986, January 2005, <https://
www.rfc-editor.org/rfc/rfc3986>.

Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
<https://www.rfc-editor.org/rfc/rfc4648>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation

https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-19
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-19
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-dare-14
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-dare-14
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security-08
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-security-08
https://datatracker.ietf.org/doc/html/draft-hallambaker-web-service-discovery-06
https://datatracker.ietf.org/doc/html/draft-hallambaker-web-service-discovery-06
https://datatracker.ietf.org/doc/html/draft-hallambaker-web-service-discovery-06
https://www.rfc-editor.org/rfc/rfc2014
https://www.rfc-editor.org/rfc/rfc2014
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc4648

14.

[RFC5869]

[RFC5903]

[RFC6031]

[RFC7748]

[RFC8032]

[SHA-2]

[SHA-3]

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May
2008, <https://www.rfc-editor.org/rfc/rfc5280>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-
Expand Key Derivation Function (HKDF)", RFC 5869, DOI
10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/
rfc/rfc5869>.

Fu, D. and J. Solinas, "Elliptic Curve Groups modulo a
Prime (ECP Groups) for IKE and IKEv2", RFC 5903, DOI
10.17487/RFC5903, June 2010, <https://www.rfc-editor.org/

rfc/rfc5903>.

Turner, S. and R. Housley, "Cryptographic Message Syntax
(CMS) Symmetric Key Package Content Type", RFC 6031, DOI
10.17487/RFC6031, December 2010, <https://www.rfc-
editor.org/rfc/rfc6031>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
for Security", RFC 7748, DOI 10.17487/RFC7748, January
2016, <https://www.rfc-editor.org/rfc/rfc7748>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/
RFC8032, January 2017, <https://www.rfc-editor.org/rfc/
rfc8032>.

NIST, "Secure Hash Standard", August 2015.

Dworkin, M. J., "SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions", August 2015.

Informative References

[draft-hallambaker-mesh-developer]

Hallam-Baker, P., "Mathematical Mesh: Reference
Implementation", Work in Progress, Internet-Draft, draft-
hallambaker-mesh-developer-10, 27 July 2020, <https://
datatracker.ietf.org/doc/html/draft-hallambaker-mesh-

developer-10>.

[draft-hallambaker-mesh-trust]

[RFC4086]

Hallam-Baker, P., "Mathematical Mesh 3.0 Part X: The
Trust Mesh", Work in Progress, Internet-Draft, draft-
hallambaker-mesh-trust-09, 5 August 2021, <https://
datatracker.ietf.org/doc/html/draft-hallambaker-mesh-
trust-09>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC

https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5903
https://www.rfc-editor.org/rfc/rfc5903
https://www.rfc-editor.org/rfc/rfc6031
https://www.rfc-editor.org/rfc/rfc6031
https://www.rfc-editor.org/rfc/rfc7748
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8032
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-10
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-10
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-10
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-trust-09
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-trust-09
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-trust-09

[RFC4880]

[RFC5785]

[RFC5890]

[RFC6355]

[RFC6763]

[RFC7595]

[Shamir79]

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-
editor.org/rfc/rfc4086>.

Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
Thayer, "OpenPGP Message Format", RFC 4880, DOI 10.17487/
RFC4880, November 2007, <https://www.rfc-editor.org/rfc/
rfc4880>.

Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
Uniform Resource Identifiers (URIs)", RFC 5785, DOI
10.17487/RFC5785, April 2010, <https://www.rfc-
editor.org/rfc/rfc5785>.

Klensin, J., "Internationalized Domain Names for
Applications (IDNA): Definitions and Document Framework",
RFC 5890, DOI 10.17487/RFC5890, August 2010, <https://
www.rfc-editor.org/rfc/rfc5890>.

Narten, T. and J. Johnson, "Definition of the UUID-Based
DHCPv6 Unique Identifier (DUID-UUID)", RFC 6355, DOI
10.17487/RFC6355, August 2011, <https://www.rfc-
editor.org/rfc/rfc6355>.

Cheshire, S. and M. Krochmal, "DNS-Based Service
Discovery", RFC 6763, DOI 10.17487/RFC6763, February
2013, <https://www.rfc-editor.org/rfc/rfc6763>.

Thaler, D., Hansen, T., and T. Hardie, "Guidelines and
Registration Procedures for URI Schemes", BCP 35, RFC
7595, DOI 10.17487/RFC7595, June 2015, <https://www.rfc-
editor.org/rfc/rfc7595>.

Shamir, A., "How to share a secret.", 1979.

[XMLSchema] Gao, S., Sperberg-McQueen, C. M., Thompson, H. S.,

Mendelsohn, N., Beech, D., and M. Maloney, "W3C XML
Schema Definition Language (XSD) 1.1 Part 1: Structures",
5 April 2012.

https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4880
https://www.rfc-editor.org/rfc/rfc4880
https://www.rfc-editor.org/rfc/rfc5785
https://www.rfc-editor.org/rfc/rfc5785
https://www.rfc-editor.org/rfc/rfc5890
https://www.rfc-editor.org/rfc/rfc5890
https://www.rfc-editor.org/rfc/rfc6355
https://www.rfc-editor.org/rfc/rfc6355
https://www.rfc-editor.org/rfc/rfc6763
https://www.rfc-editor.org/rfc/rfc7595
https://www.rfc-editor.org/rfc/rfc7595

	Mathematical Mesh 3.0 Part II: Uniform Data Fingerprint.
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. UDF Types
	1.1.1. Cryptographic Keys and Nonces
	1.1.2. Fingerprint type UDFS

	1.2. Using UDFs in URIs
	1.2.1. Name Form
	1.2.2. Locator Form

	1.3. Secure Internet Names

	2. Definitions
	2.1. Requirements Language
	2.2. Defined Terms
	2.3. Related Specifications
	2.4. Implementation Status

	3. Architecture
	3.1. Base32 Presentation
	3.1.1. Precision Improvement

	3.2. Type Identifier
	3.3. Content Type Identifier
	3.4. Truncation
	3.4.1. Compressed presentation

	3.5. Presentation
	3.6. Alternative Presentations
	3.6.1. Word Lists
	3.6.2. Image List

	4. Fixed Length UDFs
	4.1. Nonce Type
	4.2. OID Identified Sequence
	4.3. Encryption/Authentication Type
	4.4. Key Pair Derivation
	4.4.1. Extraction step
	4.4.2. Elliptic Curve Diffie Hellman Key Pairs type 1-4
	4.4.3. Elliptic Curve Diffie Hellman Key Pairs type 5-7
	4.4.4. RSA Key Pairs
	4.4.5. Any Key Algorithm

	4.5. Shamir Shared Secret
	4.5.1. Secret Generation
	4.5.2. Recovery

	5. Variable Length UDFs
	5.1. Content Digest
	5.1.1. Content Digest Value
	5.1.2. Typed Content Digest Value
	5.1.3. Content Digest Compression
	5.1.4. Content Digest Presentation
	5.1.5. Example Encoding
	5.1.6. Using SHA-2-512 Digest
	5.1.7. Using SHA-3-512 Digest
	5.1.8. Using SHA-2-512 Digest with Compression
	5.1.9. Using SHA-3-512 Digest with Compression

	5.2. Authenticator UDF
	5.2.1. Authentication Content Digest Value
	5.2.2. Authentication Value

	5.3. Content Type Values
	5.3.1. PKIX Certificates and Keys
	5.3.2. OpenPGP Key
	5.3.3. DNSSEC

	6. UDF URIs
	6.1. Name form URI
	6.2. Locator form URI
	6.2.1. DNS Web service discovery
	6.2.2. Content Identifier
	6.2.3. Target URI
	6.2.4. Postprocessing
	6.2.5. Decryption and Authentication
	6.2.6. QR Presentation

	7. Strong Internet Names
	8. Security Considerations
	8.1. Confidentiality
	8.2. Availability
	8.3. Integrity
	8.4. Work Factor and Precision
	8.5. Semantic Substitution
	8.6. QR Code Scanning

	9. IANA Considerations
	9.1. Protocol Service Name
	9.2. Well Known
	9.3. URI Registration
	9.4. Media Types Registrations
	9.4.1. Media Type: application/pkix-keyinfo
	9.4.2. Media Type: application/udf

	9.5. Uniform Data Fingerprint Type Identifier Registry
	9.5.1. The name of the registry
	9.5.2. Required information for registrations
	9.5.3. Applicable registration policy
	9.5.4. Size, format, and syntax of registry entries
	9.5.5. Initial assignments and reservations

	10. Acknowledgements
	11. Appendix A: Prime Values for Secret Sharing
	12. Appendix B: Shamir Shared Secret Recovery Using Lagrange Interpolation
	13. Normative References
	14. Informative References

