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Abstract

A Threshold signature scheme is described. The signatures created

are computationally indistinguishable from those produced using the

Ed25519 and Ed448 curves as specified in RFC8032 except in that they

are non-deterministic. Threshold signatures are a form of digital

signature whose creation requires two or more parties to interact

but does not disclose the number or identities of the parties

involved.
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1. Introduction

Threshold encryption and key generation provide compelling

advantages over single private key approaches because splitting the

private key permits the use of that key to be divided between two or

more roles.

All existing digital signatures allow the signer role to be divided

between multiple parties by attaching multiple signatures to the

signed document. This approach, known as multi-signatures, is

distinguished from a threshold signature scheme in that the identity

and roles of the individual signers is exposed. In a threshold

signature scheme, the creation of a single signature requires the

participation of multiple signers and the signature itself does not

reveal the means by which it was constructed.

Rather than considering multi-signatures or threshold signatures to

be inherently superior, it is more useful to regard both as two

points on a continuum of choices:

Multiple digital signatures on the same document.

Multi-signatures are simple to create and provide the verifier
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Multi-party key release

Threshold signatures

Aggregate Signatures

with more information but require the acceptance criteria to be

specified independently of the signature itself. This requires

that the application logic or PKI provide some means of

describing the criteria to be applied.

A single signature created using a single

private key stored in an encrypted form whose use requires

participation of multiple key decryption shares.

A single signature created using multiple

signature key shares. Signature creation may be subject to

complex criteria such as requiring an (n,t) quorum of signers but

these criteria are fixed at the time the signature is created

A single signature created using multiple

signature key shares such that validation of the aggregate

signature serves to validate the participation of each of the

individual signers.

This document builds on the approach described in [draft-

hallambaker-threshold] to define a scheme that creates threshold

signatures that are computationally indistinguishable from those

produced according to the algorithm specified in [RFC8032]. The

scheme does not support the creation of aggregate signatures.

The approach used is based on that developed in FROST [Komlo]. This

document describes the signature scheme itself. The techniques used

to generate keys are described separately in [draft-hallambaker-

threshold].

As in the base document, we first describe signature generation for

the case that n = t using 'direct' coefficients, that is the secret

scalar is the sum of the secret shares. We then show how the scheme

is modified using Shamir secret sharing [Shamir79] and Lagrange

coefficients for the case that n > t.

1.1. Applications

Threshold signatures have application in any situation where it is

desired to have finer grain control of signing operations without

this control structure being visible to external applications. It is

of particular interest in situations where legacy applications do

not support multi-signatures.

1.1.1. HSM Binding

Hardware Security Modules (HSMs) prevent accidental disclosures of

signature keys by binding private keys to a hardware device from

which it cannot be extracted without substantial effort. This

provides effective mitigation of the chief causes of key disclosure
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but requires the signer to rely on the trustworthiness of a device

that represents a black box they have no means of auditing.

Threshold signatures allow the signer to take advantage of the key

binding control provided by an HSM without trusting it. The HSM only

contributes one of the key shares used to create the signature. The

other is provided by the application code (or possibly an additional

HSM).

1.1.2. Code Signing

Code signing is an important security control used to enable rapid

detection of malware by demonstrating the source of authorized code

distributions but places a critical reliance on the security of the

signer's private key. Inadvertent disclosure of code signing keys is

commonplace as they are typically stored in a form that allows them

to be used in automatic build processes. Popular source code

repositories are regularly scanned by attackers seeking to discover

private signature keys and passwords embedded in scripts.

Threshold signatures allow the code signing operation to be divided

between a developer key and an HSM held locally or by a signature

service. The threshold shares required to create the signature can

be mapped onto the process roles and personnel responsible for

authorizing code release. This last concern might be of particular

advantage in open source projects where the concentration of control

embodied in a single code signing key has proved to be difficult to

reconcile with community principles.

1.1.3. Signing by Redundant Services

Redundancy is as desirable for trusted services as for any other

service. But in the case that multiple hosts are tasked with

compiling a data set and signing the result, there is a risk of

different hosts obtaining a different view of the data set due to

timing or other concerns. This presents the risk of the hosts

signing inconsistent views of the data set.

Use of threshold signatures allows the criteria for agreeing on the

data set to be signed to be mapped directly onto the requirement for

creating a signature. So if there are three hosts and two must agree

to create a signature, three signature shares are created and with a

threshold of two.

2. Definitions

This section presents the related specifications and standard, the

terms that are used as terms of art within the documents and the

terms used as requirements language.

¶

¶

¶

¶

¶

¶

¶



2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2.2. Defined Terms

See [draft-hallambaker-threshold].

2.3. Related Specifications

This document extends the approach described in [draft-hallambaker-

threshold] to support threshold signatures. The deterministic

mechanism described in specification [draft-hallambaker-mesh-udf] is

used to generate the private keys used in the test vectors.

2.4. Implementation Status

The implementation status of the reference code base is described in

the companion document [draft-hallambaker-mesh-developer].

3. Principles

The threshold signatures created according to the algorithms

described in this document are compatible with but not identical to

the signatures created according to the scheme described in 

[RFC8032]. In particular:

The signature verification algorithm is unchanged.

The unanimous threshold scheme produces values of R and S that

are deterministic but different from the values that would be

obtained by using the aggregate private key to sign the same

document.

The deterministic quorate threshold scheme produces values of R

and S that are deterministic for a given set of signers but will

change for a different set of signers or if the aggregate private

key was used to sign the same document.

?The non-deterministic quorate threshold scheme produces values

of R and S that will be different each time the document is

signed.

Recall that a digital signature as specified by [RFC8032] consists

of a pair of values S, R calculated as follows:

R = r.B
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Where

S.B

S = r + k.s mod L

B is the base point of the elliptic curve.

r is an unique, unpredictable integer value such that 0 r L

k is the result of applying a message digest function determined

by the curve (Ed25519, Ed448) to a set of parameters known to the

verifier which include the values R, A and PH(M).

A is the public key of the signer, A = s.B

PH(M) is the prehash function of the message value.

s is the secret scalar value

L is the order of the elliptic curve group.

To verify the signature, the verifier checks that:

S.B = R + k.A

This equality must hold for a valid signature since:

= (r + k.s).B

= r.B +k.(s.B)

= R + k.A

The value r plays a critical role in the signature scheme as it

serves to prevent disclosure of the secret scalar. If the value r is

known, s can be calculated as s = (S-r).k  mod L. It is therefore

essential that the value r be unguessable.

Furthermore, if the same value of r is used to sign two different

documents, this results two signatures with the same value R and

different values of k and S. Thus

S  = r + k .s mod L

S  = r + k .s mod L

s = (S  - S )(k  - k )  mod L

The method of constructing r MUST ensure that it is unique and

unguessable.
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3.1. Direct shared threshold signature

A threshold signature R, S is constructed by summing a set of

signature contributions from two or more signers. For the case that

the composite private key is the sum of the key shares (n = t), each

signer i provides a contribution as follows:

A  = s .B

R  = r .B

S  = r  + k.s  mod L

Where s  and r  are the secret scalar and unguessable value for the

individual signer.

The contributions of signers {1, 2, ... n} are then combined as

follows:

R = R  + R  + ... + R

S = S  + S  + ... + S

A = s.B

Where s = (s  + s  + ... + s ) mod L

The threshold signature is verified in the same manner as before:

S.B = R + k.A

Substituting for S.B we get:

= (S  + S  + ... + S ).B

= S .B + S .B + ... + S .B

= (r  + k.s ).B + (r  + k.s ).B + ... + (r  + k.s ).B

= (r .B + k.s .B) + (r .B + k.s .B) + ... + (r .B + k.s .B)

= (R1 + k.A1) + (R1 + k.A1) + ... + (Rn + k.An)

Substituting for R + k.A we get:

= R  + R  + ... + R  + k.(A  + A  + ... + A )

= R  + R  + ... + R  + k.A  + k.A  + ... + k.A

= (R  + k.A ) + (R  + k.A ) + ... + (R  + k.A )
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As expected, the operation of threshold signature makes use of the

same approach as threshold key generation and threshold decryption

as described in [draft-hallambaker-threshold]. As with threshold

decryption it is not necessary for each key share holder to have a

public key corresponding to their key share. All that is required is

that the sum of the secret scalar values used in calculation of the

signature modulo the group order be the value of the aggregate

secret scalar corresponding to the aggregate secret key.

While verification of [RFC8032] signatures is unchanged, the use of

threshold signatures requires a different approach to signing. In

particular, the fact that the value k is bound to the value R means

that the participants in the threshold signature scheme must agree

on the value R before the value k can be calculated. Since k is

required to calculate the signature contributions S  can be

calculated, it is thus necessary to calculate the values R  and S  in

separate phases. The process of using a threshold signature to sign

a document thus has the following stages orchestrated by a dealer as

follows:

The dealer determines the values F, C and PH(M) as specified in

[RFC8032] and transmits them to the signers {1, 2, ... n}.

Each signer generates a random value r  such that 1 r  L,

calculates the value R  = r .B and returns R to the dealer .

The dealer calculates the value R = R  + R  + ... + R  and

transmits R and A to the signers {1, 2, ... n}.

Each signer uses the suppled data to determine the value k and

hence S  = r  + k.s  mod L and transmits it to the dealer .

The dealer calculates the value S = S  + S  + ... + S  and

verifies that the resulting signature R, S verifies according

to the mechanism specified in [RFC8032]. If the signature is

correct, the dealer publishes it. Otherwise, the dealer MAY

identify the signer(s) that provided incorrect contributions by

verifying the values R  and S  for each.

For clarity, the dealer role is presented here as being implemented

by a single party.

3.2. Shamir shared threshold signature

To construct a threshold signature using shares created using Shamir

Secret Sharing, each private key value s  is multiplied by the

Lagrange coefficient l  corresponding to the set of shares used to

construct the signature:

A  = s l .B
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Where

R  = r .B

S  = ri + klisi mod L

It is convenient to combine the derivation of S  for the additive and

Shamir shared threshold signatures by introducing a key multiplier

coefficient c :

S  = ri + kcisi mod L

c  = 1 for the additive shared threshold signature

c  = l  for the Shamir shared threshold signature

3.3. Stateless computation of final share

One of the chief drawbacks to the algorithm described above is that

it requires signers to perform two steps with state carried over

from the first to the second to avoid reuse of the value r . This

raises particular concern for implementations such as signature

services or HSMs where maintaining state imposes a significant cost.

Fortunately, it is possible to modify the algorithm so that the

final signer does not need to maintain state between steps:

All the signers except the final signer F generate their value 

r  and submit the corresponding value R  to the dealer

Dealer calculates the value R - R  and sends it to the final

signer together with the all the other parameters required to

calculate k and the final signer's key multiplier coefficient 

c .

The final signer generates its value r

The final signer calculates the value R  from which the values R

and k can now be determined.

The final signer calculates its key share contribution S  = rF +

kcFsF mod L.

The final signer returns the values S  and R to the dealer.

The dealer reports the value R to the other signers and

continues the signature process as before.

While this approach to stateless computation of the signature

contributions is limited to the final share, this is sufficient to

cover the overwhelming majority of real-world applications where n = 

t = 2.
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Note that the final signer MAY calculate its value r

deterministically provided that the parameters R - R  and c  are used

in its determination. Other signers MUST NOT use a deterministic

means of generating their value r  since the information known to

them at the time this parameter is generated is not sufficient to

fix the value of R.

3.3.1. Side channel resistance

The use of Kocher side channel resistance as described in [draft-

hallambaker-threshold] entails randomly splitting the private key

into two shares and performing the private key operation separately

on each share to avoid repeated operations using the same private

key value at the cost of performing each operation twice.

This additional overhead MAY be eliminated when threshold approaches

are used by applying blinding factors whose sum is zero to each of

the threshold shares.

For example, if generation of the threshold signature is divided

between an application program A and an HSM B using the final share

approach to avoid maintaining state in the HSM, we might generate a

blinding factor thus:

A generates a random nonce n  and sends it to B with the other

parameters required to generate the signature.

B generates a random nonce n

B calculates the blinding factor x by calculating H(n nB)

where H is a strong cryptographic digest function and

converting the result to an integer in the range 1 x L.

B calculates the signature parameters as before except that the

threshold signature contribution is now S  = rB + k(cBsB + x)

mod L.

B returns the nonce n  to A with the other parameters.

A calculates the blinding factor x using the same approach as B

A calculates the signature parameters as before except that the

threshold signature contribution is now S  = rA + k(cAsA - x)

mod L.

This approach MAY be extended to the case that t > 2 by substituting

a Key Derivation Function (e.g. [RFC5860]) for the digest function.
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3.4. Security Analysis

We consider a successful breach of the threshold signature scheme to

be any attack that allows the attacker to create a valid signature

for any message without the participation of the required threshold

of signers.

Potential breaches include:

Disclosure of the signature key or signature key share.

Modification of signature data relating to message M to allow

creation of a signature for message M'.

Ability of one of the signers to choose the value of the

aggregate public key.

Access control attacks inducing a signer to create a signature

contribution that was not properly authenticated or authorized.

We regard attacks on the access control channel to be out of scope

for the threshold signature algorithm, though they are certainly a

concern for any system in which a threshold signature algorithm is

employed.

We do not consider the ability of a signer to cause creation of an

invalid signature to represent a breach.

3.4.1. Calculation of r values

The method of constructing the values r MUST ensure that each is

unique and unguessable both to external parties, the signers and the

dealer. The deterministic method specified in [RFC8032] cannot be

applied to generation of the values r  as it allows the dealer to

cause signers to reveal their key shares by requesting multiple

signature contributions for the same message but with different

values of k. In particular, requesting signature contributions for

the same message:

With different Lagrange coefficients.

With a false value of R

To avoid these attacks, the value r  is generated using a secure

random number generator. This approach requires the signer to ensure

that values are never reused requiring that the signing API maintain

state between the first and second rounds of the algorithm.

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

i

i

¶

¶

¶

i

¶



While there are many approaches to deterministic generation of r

that appear to be sound, closer inspection has demonstrated these to

be vulnerable to rogue key and rogue contribution attacks.

3.4.2. Replay Attack

The most serious concern in the implementation of any Schnorr type

signature scheme is the need to ensure that the value r  is never

revealed to any other party and is never used to create signatures

for two different values of k.s .

Ensuring this does not occur imposes significant design constraints

as creating a correct signature contribution requires that the

signer use the same value of r  to construct its value or R  and S .

For example, a HSM device may be required to perform multiple

signature operations simultaneously. Since the storage capabilities

of an HSM device are typically constrained, it is tempting to

attempt to avoid the need to track the value of r  within the device

itself using an appropriately authenticated and encrypted opaque

state token. Such mechanisms provide the HSM with the value of r  but

do not and cannot provide protection against a replay attack in

which the same state token is presented with a request to sign

different values of k.

3.4.3. Malicious Contribution Attack

In a malicious contribution attack, one or more parties present a

signature contribution that does not meet the criteria R  = r .B and

S  = r  + ks .

Such an attack is not considered to be a breach as it merely causes

the signature process to fail.

3.4.4. Rogue Key Attack

A threshold signature scheme that allows the participants to 'bring

their own key' may be vulnerable to a rogue key attack in which a

signer is able to select the value of the aggregate public signature

key by selecting a malicious public signature key value.

The scheme described in this document is a threshold signature

scheme and does not support this feature. Consequently, this attack

is not relevant. It is described here for illustrative purposes

only.

This particular attack only applies when the individual signers

create their own signature shares. It is not a concern when the

signature shares are created by splitting a master signature private

key.
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Consider the case where the aggregate public key signature is

calculated from the sum of public signature key share values

presented by the signers:

A = A  + A  + ... + A

If the public key values are presented in turn, the last signer

presenting their key share can force the selection of any value of A

that they choose by selecting A  = A  - (A  + A  + ... + A )

The attacker can thus gain control of the aggregate signature key by

choosing A  = s .B where s  is a secret scalar known only to the

attacker. But does so at the cost of not knowing the value s  and so

the signer cannot participate in the signature protocol.

This attack allows the attacker and the attacker alone to create

signatures which are validated under the aggregate signature key.

The attack is a consequence of the mistaken assumption that a

signature created under the signature key A  + A  + ... + A  provides

evidence of the individual participation of the corresponding key

holders without separate validation of the aggregate key.

Enabling the use of threshold signature techniques by ad-hoc groups

of signers using their existing signature keys as signature key

shares presents serious technical challenges that are outside the

scope of this specification.

4. Ed2519 Signature

The means by which threshold shares are created is described in 

[draft-hallambaker-threshold].

The dealer selects the signers who are to construct the signature.

Each signer then computes the value R :

Randomly generate an integer r  such that 1 r  L.

Compute the point R  = r B. For efficiency, do this by first

reducing r  modulo L, the group order of B. Let the string R  be

the encoding of this point.

Transmit the value R  to the dealer

At some later point, the dealer MAY complete the signature by

returning the values F, C, A and R as specified in [RFC8032]

together with the key multiplier coefficient c . The signers MAY

then complete their signature contributions:
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Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret

the 64-octet digest as a little-endian integer k.

Compute S  = (r  + kc s ) mod L. For efficiency, again reduce k

modulo L first.

Return the values R , S  to the dealer .

The dealer then completes the signature by:

Computing the composite value S = S  + S  + ... + S

Verifying that the signature R, S is valid.

Publishing the signature.

5. Ed448 Signature

The means by which threshold shares are created is described in 

[draft-hallambaker-threshold].

The dealer selects the signers who are to construct the signature.

Each signer then computes the value R :

Randomly generate an integer r  such that 1 r  L.

Compute the point R  = r B. For efficiency, do this by first

reducing r  modulo L, the group order of B. Let the string R  be

the encoding of this point.

Transmit the value R  to the dealer

At some later point, the dealer MAY complete the signature by

returning the values F, C, A and R as specified in [RFC8032]

together with the key multiplier coefficient c . The signers MAY

then complete the signature contributions:

Compute SHAKE256(dom4(F, C) || R || A || PH(M), 114), and

interpret the 114-octet digest as a little-endian integer k.

Compute S  = (r  + kc s ) mod L. For efficiency, again reduce k

modulo L first.

Return the values R , S  to the dealer.

The dealer then completes the signature by:

Computing the composite value S = S  + S  + ... + S

Verifying that the signature R, S is valid.
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Publishing the signature.

6. Test Vectors

6.1. Direct Threshold Signature Ed25519

The signers are Alice and Bob's Threshold Signature Service 'Bob'.

Each creates a key pair:

ED25519Alice's Key (ED25519)

    UDF:        ZAAA-GTSI-GXED-255X-XALI-CEXS-XKEY

    Scalar:     56271244081186130980636545017945156580516101894352492

        459594967614223399428880

    Encoded Private

  33 40 0E 22  D8 67 17 F4  8A 9F 6A 46  61 B4 0E AD

  8C D0 DD C3  79 CD 85 BD  95 5C 90 B9  6C CB 8C 23

    X: 11116793672970427161790264469280294507189044728140547954071022

        7976454124042406369344932655633664630560242213431409139866940

        284702002648469365756492647970

    Y: 61655404171611396573021808119108664749574235125343680206454285

        6299141386615046548323087409388548650272224487089895079970526

        0143544115364878870129761259200

    Encoded Public

  E2 AB 8F 37  62 C8 7B F9  E9 BC 59 0C  2E 99 A5 58

  0C C3 19 D5  CD DA 53 DF  3E C1 F0 C0  FE D3 55 5E

ED25519Bob's Key (ED25519)

    UDF:        ZAAA-GTSI-G2ED-255X-XBOB-XSXK-EY

    Scalar:     54940772670153459146152925564198105262971485730889818

        986727608573229799020168

    Encoded Private

  68 9A 68 92  8A 06 17 84  35 3C B7 08  F8 56 00 3F

  BA 31 8C 42  B0 42 FE 2D  18 F2 7F AB  CD 10 49 F1

    X: 14271495069349838216379540196263140964032393512903842206168182

        5518850827098876289800868735522232908519794251130907125878675

        6343411484065706313568410880015

    Y: 28094328948004112428189466223757440886388684291254605355859923

        6240968229706795825282419594219442074647093851302547452470435

        9438513477629978601366725015573

    Encoded Public

  32 E5 8D 5E  66 B2 F9 E9  14 79 08 71  96 3B 9A 75

  A2 31 59 4B  8E ED 18 EF  BD FF 11 D4  47 2A 8C F4

The composite Signature Key A = A  + A

2. ¶

¶

¶
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Aggregate Key = Alice + Bob ()

    UDF:        TBS

    Scalar:     26569330913556569171916721364983482306308422345436973

        56293312113171384684213

    Encoded Private

  B5 CE 0E B3  9C CF 18 99  CF 8D 4C BB  AE 81 79 1F

  CE 13 AA 3E  63 59 5B AC  8D 2C EB A4  55 C5 DF 05

    X: 67872685043898469012456949773240814121645904736114813455820339

        8688906486811443744733724675994181258029547346985079901494367

        752381127781166234556148580090

    Y: 36481740058369645484420180976004932062085375941522344052907594

        0118552792158551197107484892204562290802810655253510302448455

        4128548992118101415797909250954

    Encoded Public

  29 65 63 86  4F FB 10 8D  BA 7A 0A 68  04 6D 00 DA

  9B 1D C3 A4  AF BA 95 B4  5D 27 B4 35  00 2F DF 32

To sign the text "This is a test", Alice first generates her value r

and multiplies it by the base point to obtain the value R :

Alice:

r_a =  26964569597283588823958971235480505062310410788972392836560088

    34751424110238

R_a =

  00 76 86 F6  47 15 21 49  5D BC 40 61  C8 64 96 7B

  7A 77 B3 10  60 20 1D 50  C7 61 CF 27  CF 2F D3 E0

Alice passes her value R  to Bob along with the other parameters

required to calculate i. Bob then calculates his value R  and

multiplies it by the base point to obtain the value R :

Bob:

r_b =  11540386535681085531005638949280260705343094809283082001566243

    3246392456462

R_b =

  94 41 83 3D  D2 B1 FE 27  AD 28 EF 95  73 B5 5E E9

  4A D2 25 91  18 70 03 9C  C2 9B E6 F0  12 09 A9 5E

Bob can now calculate the composite value R = R  + R  and thus the

value k.
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R =

  C2 80 BF DE  1C 51 7D 11  34 74 7E A6  21 B8 65 B7

  1D 61 95 86  5E 21 7E 0A  FF 70 73 ED  1F AA 00 F0

k =  1701029122539816017242429513798138718318684555383488776740740931

    828674348023

Bob calculates his signature scalar contribution and returns the

value to Alice:

Bob:

S_b =  22552083956839743946415586440665231296779177689804281404209352

    33590198456755

Alice can now calculate her signature scalar contribution and thus

the signature scalar S.

Alice:

S_a =  64049035901867992939624616239692593314477498130612910883267027

    32679305425610

S =  1423106408538511474630833704992788220268551222661811622745687027

    984049631376

Alice checks to see that the signature verifies:

S.B = R + kA =

    X: 87070195024672107970135683323709734641492765460361546859769679

        39147985870824

    Y: 51837226000842215744816324309390118726778447446024784069358107

        69430908552186

6.2. Direct Threshold Signature Ed448

The signers are Alice and Bob's Threshold Signature Service 'Bob'.

Each creates a key pair:

¶
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¶



ED448Alice's Key (ED448)

    UDF:        ZAAA-ITSI-GXED-44XA-LICE-XSXK-EY

    Scalar:     63495803583658817688110446314786076976347236361354035

        5597788771064742993095132758589292255654895141583596922516472

        738879360490167934280

    Encoded Private

  A0 53 4C 93  3C 34 00 76  AE 5D B5 4A  C2 71 5F 43

  E1 D6 63 2C  5C 56 53 C8  98 A0 8F 03  FF F5 22 96

  91 45 8C 2B  CF E3 FD 7E  2A 9E 0B D6  F4 CC 66 61

  43 62 72 7B  34 B4 79 92

    X: 24743197509267833262111449556527285120868167712209919570838426

        3466168536901525943558973091346360088759980994772668117646359

        614426660579

    Y: 21342899120576770537664462049685258390853729788303428349051130

        8752175233505795318243164692156369495328007220135137156078814

        081547431302

    Encoded Public

  0A 3B F3 27  E7 E1 67 63  2C 59 E2 1C  D1 84 C7 83

  E8 1E D1 68  9F 32 A1 16  99 00 5C DA  29 B9 6C 08

  E4 15 57 7E  E5 63 C2 32  08 23 41 68  5F 49 1F FF

  BC 4D CD 3A  4E A6 85 49  00

ED448Bob's Key (ED448)

    UDF:        ZAAA-ITSI-G2ED-44XB-OBXS-XKEY

    Scalar:     72649803773199751564998543891898904839718409312910780

        0262041941160989643727331987658132182181970054245587322070535

        846720571414845714224

    Encoded Private

  BC 53 B4 74  3E A7 A7 FA  9F 05 9A BC  8C 22 26 15

  A1 4E BB 10  0E B5 59 6B  DE 9C 1B E9  F2 3C 65 42

  E7 B4 47 18  60 AC 18 A6  D2 78 B8 BC  CE F5 F4 28

  B2 3A FF 08  61 EF 6B 7C

    X: 58235851934808640621920816872959059172692411187640950432203039

        8116748997750134460231406698091317008063030408798536634284207

        667468558264

    Y: 34390767697909283892495761259186538632120422458392131201372282

        6056455656591826216381185634080685718154852726725624178995827

        091591132128

    Encoded Public

  93 63 5A 45  2D 4C 94 32  45 23 CD E2  A8 46 E4 78

  A0 80 59 DA  36 CB 6B 0C  06 64 6F BE  51 AB C0 BF

  1E DB A8 3F  2B 3B 80 0F  BF 00 E6 78  DD E0 83 E9

  AC 20 02 55  87 07 39 38  00

The composite Signature Key A = A  + A

¶
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Aggregate Key = Alice + Bob ()

    UDF:        TBS

    Scalar:     89488306051273634069773238262841883041784075539841550

        3672228636597106090916876462340541507950185640860121886233669

        49466515613996100051

    Encoded Private

  D3 29 DD AB  F6 0D 99 8B  75 65 B8 06  36 C9 3A 2C

  D4 08 C3 9B  7C F9 77 8C  68 29 0E 3D  5D C7 3E 00

  92 8B DC AE  26 FB 16 39  CD 25 1B 23  4A 5A 05 61

  1D 5C C4 70  0A C9 84 1F

    X: 17985659098670117617173315763082238685735647626871251468000984

        2080317111091696183607307614171726960576308774975742249260532

        199160570999

    Y: 31506323224859159594386181995639405170623657273945727288760063

        1624406694682617334725040181287905351066763414658543828623841

        509161975864

    Encoded Public

  9B 3E DF 49  55 40 9F 7B  EA 0B AA 40  B7 3D 15 82

  60 9F 7C 40  CF 67 DE 56  56 0D 03 87  63 3B 15 F2

  45 33 FE 48  BD 2D A0 A2  8B CC 74 DA  94 0F 39 00

  AC 39 CB 0A  9F A4 EB B0  00

To sign the text "This is a test", Alice first generates her value r

and multiplies it by the base point to obtain the value R :

Alice:

r_a =  62565527493713919857865193519602365931012101673562577311838141

    54054766232567180678736888903730646941353640437421091869275000749

    6255278

R_a =

  45 C6 4E FC  B3 CA 83 D6  12 9E 6C 9C  15 6A 63 E7

  50 B1 64 8A  F7 4C 45 BC  60 00 89 07  04 D3 6E ED

  55 15 E4 5D  BC 4F 61 A2  02 BD 37 FA  30 57 41 90

  CE 13 95 49  35 50 77 2D  00

Alice passes her value R  to Bob along with the other parameters

required to calculate i. Bob then calculates his value R  and

multiplies it by the base point to obtain the value R :
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Bob:

r_b =  68553581692021263576545409846872534945088226466517045820074454

    53563720130025310411907388118205768001112185289263525403420218781

    0825957

R_b =

  21 27 22 F0  00 88 E8 D0  97 06 50 01  03 C8 37 24

  A2 59 35 40  2B 3A 6D F9  90 4F 05 22  0C 43 71 D2

  2C 0B 7D B0  4D 1D 95 7C  8C 0B 4D 19  19 6F 41 FF

  A4 6F BF 9C  D8 47 58 9C  00

Bob can now calculate the composite value R = R  + R  and thus the

value k.

R =

  44 E0 13 83  9E 90 CE 1B  8B F2 71 04  6C E9 AE 16

  F8 BE 72 22  3E 29 BE C4  FB 41 DF 47  31 CC E3 9C

  93 2A 71 6B  B1 32 3E EE  8D 00 98 B5  DE E9 FF 33

  1B 61 A9 F8  13 1E E2 5F  80

k =  8559359322526978017385346909893058429591408900356440243822910260

    09124689192398260008095709124990846658648602608610131291879967363

    36428

Bob calculates his signature scalar contribution and returns the

value to Alice:

Bob:

S_b =  23225308473068317952317969434132903731627228506308768772207178

    49149309441840709888307940275398741726281603449230792143179257893

    4073681

Alice can now calculate her signature scalar contribution and thus

the signature scalar S.

Alice:

S_a =  15822521095547467691876148428778484160254716836077071285757716

    71810485457446614778358574022875083455217422316918648036906450706

    92022407

S =  1814505194285429948710794537219177453341743968670794816297843456

    72541640163068576718936805041495762784558266184172725122437649626

    096088

Alice checks to see that the signature verifies:
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S.B = R + kA =

    X: 20237958476218137983776478141950097846872887083363948281310043

        652612307164298

    Y: 42024667872160579723195748306782776970117818268757042395167033

        071351675224163

6.3. Shamir Threshold Signature Ed25519

The administrator creates the composite key pair

ED25519Aggregate Key (ED25519)

    UDF:        ZAAA-GTSI-GQED-255X-XAGG-REGA-TEXK-EY

    Scalar:     39348647608109113656999806950437958090469802387424444

        589375066079861075223816

    Encoded Private

  37 39 5E 7A  8B A5 A0 19  46 4B 58 22  EA 24 A5 71

  45 2C 2A AC  7A 3E FB CA  CE 3F D4 12  9A BA EB 70

    X: 14198837758377867455716504277518729070915183249890461230792115

        9904969716778427995951234766002164511738587575257530388758374

        7824906047250057721855068523970

    Y: 20211025649802071998810413948266748565975140520947927724517956

        2067625505077751598018629551746824533726709810990193455662385

        6152736116303441031851305458040

    Encoded Public

  6E 13 79 B4  39 DA 97 9C  5A 34 CE 79  CD 1B 50 DF

  A0 76 AD 49  81 6D 52 59  A4 2C DB CE  44 FF 3E F5

Three key shares are required for Alice, Bob and Carol with a

threshold of two. The parameters of the Shamir Secret Sharing

polynomial are:

a0 = 3934864760810911365699980695043795809046980238742444458937506607

    9861075223816

a1 = 2784115633880431304931825595251063942290923891174972818466623907

    0091375688

The key share values for the participants are
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xa = 1

ya = 3191460877786606900183192391175497525607129829436656287549977627

    503895344559

xb = 2

yb = 3219302034125411213232510647128008165030039068348406015734643866

    573986720247

xc = 3

yc = 3247143190464215526281828903080518804452948307260155743919310105

    644078095935

Alice and Carol are selected to sign the message "This is another

test"

The Lagrange coefficients are:

la = 3618502788666131106986593281521497120428558179689953803000975469

    142727125496

lc = 3618502788666131106986593281521497120428558179689953803000975469

    142727125494

Alice and Carol select their values ra, rc

ra = 5436932162843462293266539006078878918830367554401620912648914278

    387841243984

Ra =

  8D 87 BC 1E  A9 84 92 05  56 93 31 35  B4 76 C0 98

  EA F4 60 12  A5 5F D6 9B  0A 69 41 1A  36 45 7A 83

rc = 1538800080663244406394301816847739559173060560330113907829931117

    643929735504

Rc =

  4B 65 A9 E9  87 7B 90 37  04 1F A1 64  16 69 F0 C3

  0E 45 1B F4  5A 55 5C F1  99 A4 71 2C  B0 00 EB 15

The composite value R = R  + R

R =

  3B C4 76 D4  33 AC 43 21  D7 7E 4F 2D  58 E9 4B 92

  70 F2 36 37  2C D9 28 EA  4E 91 57 80  2F D4 21 E3
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The value k is

k = 65022205971444234659067578861063910015740009952224679471431141734

    79939649783

The values R and k (or the document to be signed) and the Lagrange

coefficients are passed to Alice and Carol who use them to calculate

their secret scalar values:

sa = 1168688528013779243288195305241749167982136564465030628323990972

    113115891344;

sc = 1994931193434023343845678829981237718202084026059875931041320416

    320688077527

The signature contributions can now be calulated:

Sa = 1642088151518325934823467054868266591252355171010295386239413063

    0650672438

Sc = 2567122318027391708469410793879025926580216565704722275843007694

    783454379696

The dealer calculates the composite value S = S  + S

S =  2583543199542574967817645464427708592492740117414825229705401825

    414105052134

The dealer checks to see that the signature verifies:

S.B = R + kA =

    X: 38305755396533183244339161726284183266009090657176834266005039

        016134810784785

    Y: 29407699810490002191056006520525329213760985707980252137477485

        352643976612632

6.4. Shamir Threshold Signature Ed448

The administrator creates the composite key pair
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ED448Aggregate Key (ED448)

    UDF:        ZAAA-ITSI-GQED-44XA-GGRE-GATE-XKEY

    Scalar:     50890460656419721531273587958284096015810982760541575

        4207268050539683337837216003977228732536078674802149039736292

        653681850024283019712

    Encoded Private

  78 22 7E 3B  89 95 80 5D  04 19 DC 27  F1 7F 9B E4

  86 2B 0B DD  55 64 EE 04  19 49 4D DE  B9 04 3B 9E

  8B 7D DC EC  EC 8F DD 1D  E7 88 86 FD  11 FD 78 EF

  1A 8B 84 8F  77 00 73 65

    X: 44109173355278142669484438370724914685176368933547176239809629

        7503768465595321590690311221269514682222687386378631457535068

        446135118173

    Y: 53219402718535721212460981200104434180077825188675868294070079

        5084662920552823356888138706016038637934794839496624474125511

        419755284720

    Encoded Public

  43 61 20 A0  B1 DF AA BD  6B 55 00 97  A3 BE CB B8

  09 57 20 88  16 69 E4 B9  E1 7E 9C 13  C0 41 5B CB

  4D 3E E4 99  2E 2D 48 89  1C C0 FB 26  58 C2 DD 5C

  C1 DC 17 82  D7 A0 43 EE  80

Three key shares are required for Alice, Bob and Carol with a

threshold of two. The parameters of the Shamir Secret Sharing

polynomial are:

a0 = 5089046065641972153127358795828409601581098276054157542072680505

    39683337837216003977228732536078674802149039736292653681850024283

    019712

a1 = 1602922392607822292317783703384491077419282575745896489241768437

    65938863574713864292893351873520049039965264366659426161520599832

    630033

The key share values for the participants are

¶

¶

¶

¶



xa = 1

ya = 1240678026032742766325213940052866671348070646645168579203272449

    20184189527311111121534818534521595952183422975677092929049356536

    700408

xb = 2

yb = 1026503607901547832269688123717346412883249820672769917741315388

    90977049140485389698232415116349269028838393633244856785796200509

    680662

xc = 3

yc = 8123291897703528982141623073818261544184289947003712562793583286

    17699087536596682749300116981769421054933642908126206425430444826

    60916

Alice and Carol are selected to sign the message "This is another

test"

The Lagrange coefficients are:

la = 9085484053695086131866547598600056679420517008591475753518627489

    75730019807697928580978776458461879816551468545458311523868779298

    24891

lc = 9085484053695086131866547598600056679420517008591475753518627489

    75730019807697928580978776458461879816551468545458311523868779298

    24889

Alice and Carol select their values ra, rc

ra = 2719648808372152695303324813004886411509189522037119771348270732

    01317204344949815636374307412539793080438754521149038747587752804

    50241

Ra =

  5F 55 7D 9B  FF 93 7E 29  29 17 86 F3  5B 86 2F 7E

  00 2A 10 A4  C4 1B 5C 62  62 D8 C8 CD  50 AD 5D E0

  F6 6A 79 63  A4 E3 59 E7  3B 62 83 5B  6B 39 94 42

  2A C5 F1 3D  8C A2 EC 91  00

rc = 9050006003211425294899204903626951978904214154147272814801034120

    83634683685763499954420274680944008271220208805334510963648274014

    41912

Rc =

  57 94 25 6D  A6 B2 E3 AB  59 5D 6F 3D  F8 2E C6 9E

  3D 7C F8 04  C2 D6 98 5D  CF 3E 15 60  08 AB 8B 66

  19 AB 0A 6D  1A E6 B1 45  D1 A6 0B 21  23 CA 59 A7

  F3 A3 DE 35  8E 04 1D 02  80
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The composite value R = R  + R

R =

  94 87 5A 3A  CE 75 7C 97  C0 24 93 5D  00 4C 0A AD

  8D 5B 74 9A  2F 1A 16 EE  85 8C EC EE  C3 17 91 68

  B2 80 4B 73  63 AC A1 04  65 82 16 80  B0 E1 48 3A

  02 63 18 A4  ED 88 15 3F  00

The value k is

k = 28597319766372023288919874253606353528116314247955304554628908699

    14741698440791352191812187685479498956177113463735604193977889389

    5471

The values R and k (or the document to be signed) and the Lagrange

coefficients are passed to Alice and Carol who use them to calculate

their secret scalar values:

sa = 4392022831009692311451139035928867113800256824945771810118317585

    13028032942708096610647251009001796496484075442397708880027894540

    0833;

sc = 1410932215853840777266228366029098258674888904368109522564046333

    64261049584709751578730749442603904910563611563685351983502233618

    319321

The signature contributions can now be calulated:

Sa = 1237911193328598461098720576842938619833847324963757947381135045

    60734496037707134982632828188157194256327767616978405671604912622

    997176

Sc = 4352294610170602596603144511079540327609274906403841682361237464

    38757029065808909094759113169492383225515142920572639508132292294

    64825

The dealer calculates the composite value S = S  + S

S =  1673140654345658720759035027950892652594774815604142115617258792

    04610198944288025892108739505106432578879281909035669622418141852

    462001
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The dealer checks to see that the signature verifies:

S.B = R + kA =

    X: 31370116705528265987661207265970557523081230091184475728092100

        801345054140398

    Y: 14983649831297656181541916312764508612330840642761296389133763

        572240307037592

7. Security Considerations

All the security considerations of [RFC7748], [RFC8032] and [draft-

hallambaker-threshold] apply and are hereby incorporated by

reference.

7.1. Rogue Key attack

The rogue key attack described in [draft-hallambaker-threshold] is

of particular concern to generation of threshold signatures.

If A and B are public keys, the intrinsic degree of trust in the

composite keypair A + B is that of the lesser of A and B.

7.2. Disclosure or reuse of the value r

As in any Schnorr signature scheme, compromise of the value r

results in compromise of the private key. The base signature

specification [RFC8032] describes a deterministic construction of r

that ensures confidentiality and uniqueness for a given value of k.

As described above, this approach is not applicable to the

generation of values of r  to compute threshold signature

contributions. Accordingly the requirements of [RFC4086] regarding

requirements for randomness MUST be observed.

Implementations MUST NOT use a deterministic generation of the value 

r  for any threshold contribution except for calculating the final

contribution when all the other parameters required to calculate k

are known.

7.3. Resource exhaustion attack

Implementation of the general two stage signing algorithm requires

that signers track generation and use of the values r  to avoid reuse

for different values of R . Implementations MUST ensure that

exhaustion of this resource by one party does not cause other

parties to be denied service.
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7.4. Signature Uniqueness

Signatures generated in strict conformance with [RFC8032] are

guaranteed to be unique such that signing the same document with the

same key will always result in the same signature value.

The signature modes described in this document are computationally

indistinguishable from those created in accordance with [RFC8032]

but are not unique.

Implementations MUST not use threshold signatures in applications

where signature values are used in place of cryptographic digests as

unique content identifiers.

8. IANA Considerations

This document requires no IANA actions.
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